WO2019227990A1 - 导电膜及其制备方法及显示装置 - Google Patents

导电膜及其制备方法及显示装置 Download PDF

Info

Publication number
WO2019227990A1
WO2019227990A1 PCT/CN2019/076329 CN2019076329W WO2019227990A1 WO 2019227990 A1 WO2019227990 A1 WO 2019227990A1 CN 2019076329 W CN2019076329 W CN 2019076329W WO 2019227990 A1 WO2019227990 A1 WO 2019227990A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
nano
oxidized
metal
film according
Prior art date
Application number
PCT/CN2019/076329
Other languages
English (en)
French (fr)
Inventor
陈浩
张伟
章小同
Original Assignee
京东方科技集团股份有限公司
合肥京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/484,599 priority Critical patent/US11515058B2/en
Publication of WO2019227990A1 publication Critical patent/WO2019227990A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present disclosure relates to the field of display. Specifically, the present disclosure relates to a conductive film, a method of manufacturing the same, and a display device.
  • flexible transparent conductive films based on flexible substrates have broad application prospects in the field of flexible displays.
  • the transparent flexible conductive films that are currently being studied and applied are classified into oxide-based, metal-based, polymer-based and the like according to the conductive layer.
  • Flexible transparent conductive films not only require high light transmittance, good thermal stability, and good electrical conductivity, but also require flexibility and certain mechanical strength.
  • the present disclosure provides a conductive film including:
  • the nanometal is uniformly dispersed in the film matrix.
  • the film matrix is a crosslinked oxidized nanocellulose.
  • the film substrate is a divalent or trivalent metal ion crosslinked oxidized nanocellulose.
  • the divalent or trivalent metal ion is selected from at least one of calcium ion, magnesium ion, aluminum ion, and trivalent iron ion.
  • the nano metal is selected from at least one of nano silver, nano copper, and nano gold.
  • the nano metal is selected from at least one of nano metal particles and nano metal wires.
  • the nano metal particles have a particle diameter of 10 to 20 nm.
  • the nano metal wire has a diameter of 10 to 20 nm and a length of 100 to 200 nm.
  • a weight ratio of the nanometal to the oxidized nanocellulose is from 10: 100 to 200: 100.
  • the aspect ratio of the oxidized nanocellulose is 200 to 2000, and the diameter is 1 to 10 nm.
  • the conductive film has a thickness of 5 to 50 ⁇ m.
  • the present disclosure provides a method for preparing a conductive film according to any one of the above, the method comprising:
  • the mixture coated on the base substrate is dried to obtain the conductive film.
  • the method further comprises: after the drying step, immersing the conductive film in a solution of a divalent or trivalent metal ion to replace it with a divalent or trivalent metal ion At least a portion of sodium ions in the oxidized nanocellulose.
  • the base substrate is a polyethylene terephthalate or polymethyl methacrylate base substrate.
  • the present disclosure provides a display device including the conductive film according to any one of the above.
  • the conductive film is at least one of a cathode, an anode, a source, a drain, and a gate.
  • the display device further includes a polyethylene terephthalate or a polymethyl methacrylate substrate in direct contact with the conductive film.
  • FIG. 1 is a diagram exemplarily illustrating a process step of preparing a conductive film according to a specific embodiment of the present disclosure
  • FIG. 2 exemplarily shows a structural formula of an oxidized nanocellulose molecule obtained according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural view exemplarily showing that nano silver according to a specific embodiment of the present disclosure is uniformly dispersed in a film matrix formed of oxidized nano cellulose;
  • FIG. 4 is a schematic structural view exemplarily showing that nanosilver is uniformly dispersed in crosslinked oxidized nanocellulose according to another specific embodiment of the present disclosure.
  • the flexible transparent conductive film has a broad application prospect in the field of flexible display.
  • the transparent flexible conductive film is classified into oxide-based, metal-based, polymer-based and the like according to the conductive layer.
  • Oxide-based conductive films are more mature for TFT-LCD applications.
  • a flexible transparent conductive film can be made by depositing an oxide-based conductive film as a conductive layer on a substrate such as polyethylene terephthalate, polymethyl methacrylate, and the like.
  • oxide-based conductive materials are liable to fall off due to thermal expansion problems.
  • the preparation process of oxide-based conductive materials often requires high-precision process equipment such as evaporation and sputtering, and special gases are also required. Therefore, this material has a complicated process, high cost and is not environmentally friendly.
  • the metal-based conductive film has a low light transmittance, and it is difficult to meet the increasing requirements of electronic products in this regard.
  • the polymer conductive film has good light transmission but poor temperature resistance and poor chemical stability, which affects the performance of other structures.
  • the conductive ability of polymer-based conductive films is also poor and needs to be further improved.
  • Cellulose is a macromolecular polysaccharide composed of glucose and is the main component of plant cell walls. Cellulose is the most widely distributed and most abundant polysaccharide in nature, accounting for more than 50% of the carbon content of the plant world. At normal temperature, cellulose is neither soluble in water nor in common organic solvents, such as alcohol, ether, acetone, and benzene. It is also insoluble in dilute alkali solutions. Therefore, it is relatively stable at room temperature due to the existence of hydrogen bonds between cellulose molecules. Cellulose can be dissolved in copper ammonia Cu (NH 3 ) 4 (OH) 2 solution and copper ethylenediamine [NH 2 CH 2 CH 2 NH 2 ] Cu (OH) 2 solution.
  • Cellulose chemically reacts with oxidants to form a series of substances with a structure different from the original cellulose. Such a reaction process is called cellulose oxidation to obtain oxidized cellulose.
  • the inventors of the present disclosure have conducted intensive studies and found that the nano-metal / oxidized nano-cellulose composite conductive film has high light transmittance (higher than about 90%), high heat resistance (up to 400 ° C), and high electrical conductivity , Can be used for flexible display.
  • the oxidized nano-cellulose is derived from lignin in plants in nature, has low cost, is environmentally friendly in preparation process, and conforms to the concept of sustainable development. Therefore, the nano-metal / oxidized nano-cellulose composite conductive film is a kind of biomass-based conductive film.
  • a conductive film including:
  • the conductive film may include:
  • Oxidized nanocellulose as a matrix material Oxidized nanocellulose as a matrix material.
  • the present disclosure provides a nano-metal / oxidized nano-cellulose composite conductive film.
  • the oxidized nanocellulose forms the main body of the film, that is, the film matrix.
  • the nano-metal is filled in the film substrate, and is preferably uniformly dispersed in the film substrate.
  • the nano-metal plays a conductive role, and the oxidized nano-cellulose serves as a skeleton of the composite material to uniformly disperse the nano-metal particles therein.
  • the oxidized nanocellulose film itself has good light transmittance (higher than about 90%), which can improve the light transmittance of the entire conductive film.
  • the nano-metal in the nano-metal / oxidized nano-cellulose composite conductive film, can be uniformly dispersed in the film matrix.
  • various physical and chemical properties of the conductive film can be made uniform throughout the thin film, thereby improving display performance.
  • the film substrate may be a cross-linked oxidized nano-cellulose.
  • the composite material is more compact, which can further improve the heat resistance, and ensure the film formation continuity and the uniformity of the conductive properties of the conductive film.
  • the oxidized nano-cellulose is a divalent or trivalent metal ion cross-linked oxidized nano-cellulose.
  • the divalent or trivalent metal ion is at least one selected from the group consisting of calcium ion, magnesium ion, aluminum ion, and trivalent iron ion.
  • the nano-metal may be selected from at least one of nano-silver, nano-copper and nano-gold.
  • the nano-metal may be selected from at least one of nano-metal particles and nano-metal wires.
  • the nano metal particles may have a particle diameter of 10 to 20 nm.
  • the nano metal wire may have a diameter of 10 to 20 nm and a length of 100 to 200 nm.
  • the weight ratio of the nano-metal to the oxidized nano-cellulose is 10: 100 to 200: 100, for example, 20: 100 to 150: 100, or 25: 100 to 100: 100 .
  • the ratio of the two is within this range, the requirements for conductivity, heat resistance, light transmittance, and film-forming properties can be simultaneously satisfied.
  • the aspect ratio of the oxidized nano-cellulose can be 200 to 2000, and the diameter can be 1 to 10 nm.
  • the thickness of the conductive film may be 5 to 50 ⁇ m.
  • a method for producing a conductive film according to any one of the above may be provided. As shown in FIG. 1, the method includes:
  • the method may further include: after the drying step S13, immersing the conductive film in a solution of a divalent or trivalent metal ion to replace at least a portion of sodium in the oxidized nanocellulose with the divalent or trivalent metal ion. ion.
  • the nano metal and the oxidized nano cellulose are mixed uniformly, which can be performed by ultrasonic treatment.
  • the base substrate may be a polyethylene terephthalate or polymethyl methacrylate base substrate.
  • the conductive film is in direct contact with the polyethylene terephthalate or polymethyl methacrylate substrate.
  • the oxidized nanocellulose material and the substrate have high affinity because they both contain oxygen-containing groups such as ester groups. Facilitates adhesion of the conductive film to the base substrate.
  • a display device may be provided, the display device including the conductive film according to any one of the above.
  • the conductive film may be at least one of a cathode, an anode, a source, a drain, and a gate.
  • the display device may further include a polyethylene terephthalate or a polymethylmethacrylate substrate in direct contact with the conductive film.
  • a polyethylene terephthalate or polymethyl methacrylate substrate By using a polyethylene terephthalate or polymethyl methacrylate substrate, the oxidized nanocellulose material and the substrate have high affinity because they both contain oxygen-containing groups such as ester groups. Facilitates adhesion of the conductive film to the base substrate.
  • Oxidized nanocellulose can be obtained by oxidizing cellulose with hypochlorite in the presence of an alkali metal bromide and tetramethylpiperidine-N-oxide at a pH of 9 to 10.
  • the structural formula of the oxidized nanocellulose thus obtained is shown in FIG. 2.
  • the nano metal is nano silver particles, but the present disclosure is not limited thereto.
  • the nano metal may be at least one of nano copper or nano gold.
  • the nano metal may be a nano metal wire.
  • the dispersion of nano-silver particles can be obtained by reducing the soluble silver salt in the presence of a surfactant with alkaline metal borohydride in water under alkaline conditions.
  • the conductive film according to the present disclosure may be a nano-silver / non-crosslinked oxidized nano-cellulose composite conductive film, as shown in FIG. 3. It can be seen from FIG. 3 that the nano-silver particles are uniformly dispersed in the uncrosslinked oxidized nano-cellulose. In uncrosslinked oxidized nanocellulose, the metal ion is sodium ion.
  • the conductive film according to the present disclosure may also be a nano silver / crosslinked oxidized nano cellulose composite conductive film, as shown in FIG. 4. It can be seen from FIG. 4 that the nano-silver particles are uniformly dispersed in the cross-linked oxidized nano-cellulose. In the uncrosslinked oxidized nanocellulose, at least part of the sodium ions is replaced by divalent or trivalent metal ions. The structure of the cross-linked oxidized nanocellulose is more compact, has stronger water and gas blocking properties, and has better waterproof oxygen penetration ability. In addition, it has excellent high temperature resistance.
  • nano-metals such as sodium silver and silver enhances its heat dissipation speed, making its heat resistance up to 400 ° C, which can meet the requirements of electronic devices for thermal stability.
  • the mechanical properties of the material are further improved, the bending performance is more excellent, and it has great potential in the field of flexible display devices.
  • Tetramethylpiperidine-N-oxide (TEMPO) (catalyst) and NaBr were added to deionized water and stirred until dissolved.
  • Add wet wood pulp typically 81% water content).
  • NaClO for oxidation.
  • the AgNO 3 powder was dissolved in deionized water, and the surfactant polyvinylpyrrolidone (PVP) was added to the solution and stirred thoroughly to obtain solution A.
  • PVP polyvinylpyrrolidone
  • NaBH 4 and NaOH were dissolved in deionized water to obtain solution B.
  • Solution A was dropped into solution B while sonicating and constant temperature magnetic stirring. Control the temperature to the end of the reaction, and then wash and sonicate to obtain a nano-silver aqueous dispersion.
  • the TEMPO-oxidized nano-cellulose solution and the nano-silver water dispersion were mixed in proportion.
  • the ultrasonic dispersion is uniformly applied on a flat substrate. Air-drying water can obtain a uniformly dispersed nano silver / oxidized nano cellulose composite flexible transparent conductive film.
  • 0.033 g of TEMPO and 0.33 g of NaBr were added to 100 g of deionized water and stirred until dissolved. 1.25 g of wet wood pulp (coniferous bleached sulfate pulp, purchased from Nippon Paper Co., Ltd.) having a water content of 81% was added. Then, 0.5 g of an aqueous NaClO solution having a concentration of 3.8 mmol / g was added to obtain a mixture. The pH of the mixture was then maintained at a pH of 10 with a 0.4 mol / L NaOH aqueous solution. After a reaction time of 6 h, it was filtered with filter paper.
  • the filtrate on the filter paper was dispersed ultrasonically in deionized water.
  • the non-oxidized nanocellulose was centrifuged at 10,000 rpm and then settled at the bottom of the centrifuge tube.
  • the supernatant was obtained as a TEMPO-oxidized nanocellulose solution with a mass fraction of 0.1%.
  • Example 2 Aqueous dispersion of silver nano
  • the TEMPO-oxidized nano-cellulose solution and the nano-silver aqueous dispersion were mixed at a ratio of 2: 8 by weight of the TEMPO-oxidized nano-cellulose and nano-silver.
  • the ultrasonic dispersion is uniform, it is poured into a polydimethyl terephthalate petri dish so that the thickness of the dried conductive film is 20 ⁇ m. It was dried at 60 ° C. to obtain a uniformly dispersed nano-silver / oxidized nano-cellulose composite flexible transparent conductive film, that is, the conductive film of Example 3.
  • a conductive film of Example 4 was obtained in the same manner as in Example 3 except that the weight ratio of TEMPO-oxidized nano-cellulose to nano-silver was changed to 3: 7.
  • a conductive film on the substrate was obtained in the same manner as in Example 3 except that the weight ratio of TEMPO-oxidized nanocellulose to nanosilver was changed to 4: 6.
  • the conductive film is peeled from the base substrate.
  • the peeled conductive film was immersed in a calcium chloride solution having a concentration of 0.1 mol / L for 2 hours to obtain the conductive film of Example 5.
  • a conductive film of Example 6 was obtained in the same manner as in Example 5 except that the weight ratio of TEMPO-oxidized nano-cellulose to nano-silver was changed to 5: 5.
  • Example 3-6 The performance of the conductive film obtained in Example 3-6 was tested by the following method
  • the length and diameter of 100 EMPO-oxidized nanocellulose were measured by laser diffraction scattering method, and the average values were taken as the length and diameter of TEMPO-oxidized nanocellulose, respectively.
  • the diameter of 100 silver nanoparticles was measured by a laser diffraction scattering method, and the average value was taken as the diameter of the silver nanoparticles.
  • the heat resistance of the conductive film indicates the temperature at which the conductive film is lost at 5 wt%.
  • the nano-metal / oxidized nano-cellulose composite conductive film has high light transmittance (greater than about 90%), high heat resistance (greater than or equal to 350 ° C.), and high conductivity.
  • heat resistance 400 ° C or higher
  • crosslinking can be further improved by crosslinking.
  • a biomass-based conductive film includes a nano-metal as a filling material; and an oxidized nano-cellulose as a matrix material.
  • the nano-metal / oxidized nano-cellulose composite conductive film has high light transmittance (higher than about 90%), high heat resistance (up to 400 ° C), and high conductivity. It can be used for flexible displays, and oxidizes nano-cellulose Lignin from natural plants is low in cost and environmentally friendly in preparation, which is in line with the concept of sustainable development.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

提供的是导电膜及其制备方法及显示装置。所述导电膜包含:作为填充材料的纳米金属;和作为基体材料的氧化纳米纤维素。纳米金属/氧化纳米纤维素复合的导电膜可用于柔性显示。

Description

导电膜及其制备方法及显示装置
对相关申请的交叉引用
本公开要求2018年5月30日提交的中国专利申请号201810544773.4的优先权,其通过引用以其全部结合在此。
技术领域
本公开涉及显示领域。具体地,本公开涉及导电膜及其制备方法及显示装置。
背景技术
随着电子产品向轻量化、可折叠方向发展,以柔性衬底基板为基础的柔性透明导电膜在柔性显示领域应用前景广阔。当前研究和应用较多的透明柔性导电膜按导电层分类有氧化物系、金属系、高分子系等等。柔性透明导电膜不仅要求光透过率高、热稳定性好、导电性能好,还要求具有可弯曲性和一定的机械强度。
发明内容
在一个方面,本公开提供一种导电膜,所述导电膜包含:
由氧化纳米纤维素形成的膜基体,和
填充在所述膜基体中的纳米金属。
在本公开的一个实施方案中,所述纳米金属均匀地分散在所述膜基体中。
在本公开的另一个实施方案中,所述膜基体是交联的氧化纳米纤维素。
在本公开的另一个实施方案中,所述膜基体是二价或三价金属离子交联的氧化纳米纤维素。
在本公开的另一个实施方案中,所述二价或三价金属离子选自钙离子、镁离子、铝离子和三价铁离子中的至少一种。
在本公开的另一个实施方案中,所述纳米金属选自纳米银、纳米铜和纳米金中的至少一种。
在本公开的另一个实施方案中,所述纳米金属选自纳米金属颗粒和纳米金属线中的至少一种。
在本公开的另一个实施方案中,所述纳米金属颗粒的粒径为10至20nm。
在本公开的另一个实施方案中,所述纳米金属线的直径为10至20nm且长度为100至200nm。
在本公开的另一个实施方案中,所述纳米金属与所述氧化纳米纤维素的重量比为10∶100至200∶100。
在本公开的另一个实施方案中,所述氧化纳米纤维素的长径比为200至2000,且直径为1至10nm。
在本公开的另一个实施方案中,所述导电膜的厚度为5至50μm。
在另一个方面,本公开提供一种用于制备上面任何一项所述的导电膜的方法,所述方法包括:
将纳米金属的分散液和氧化纳米纤维素分散液混合,得到混合物,
将所述混合物涂覆于衬底基板上,和
干燥涂覆于所述衬底基板上的所述混合物,得到所述导电膜。
在本公开的一个实施方案中,所述方法还包括:在所述干燥步骤之后,将所述导电膜浸渍于二价或三价金属离子的溶液中,以用二价或三价金属离子置换所述氧化纳米纤维素中的至少一部分钠离子。
在本公开的一个实施方案中,所述衬底基板是聚对苯二甲酸乙二醇酯或聚甲基丙烯酸甲酯衬底基板。
在再一个方面,本公开提供一种显示装置,所述显示装置包含上面任何一项所述的导电膜。
在本公开的一个实施方案中,所述导电膜是阴极、阳极、源极、漏极和栅极中的至少一种。
在本公开的另一个实施方案中,所述显示装置还包含与所述导电膜直接接触的聚对苯二甲酸乙二醇酯或聚甲基丙烯酸甲酯衬底基板。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述 中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的示例性实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是示例性地显示根据本公开的一个具体的实施方案的制备导电膜的工艺步骤图;
图2是示例性地显示根据本公开的一个实施方案得到的氧化纳米纤维素分子的结构式;
图3是示例性地显示根据本公开的一个具体的实施方案的纳米银均匀地分散在由氧化纳米纤维素形成的膜基体中的结构示意图;和
图4是示例性地显示根据本公开的另一个具体的实施方案的纳米银均匀地分散在交联的氧化纳米纤维素中的结构示意图。
具体实施方式
下面将结合本公开的具体实施方案,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施方案和/或实施例仅仅是本公开一部分实施方案和/或实施例,而不是全部的实施方案和/或实施例。基于本公开中的实施方案和/或实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方案和/或所有其他实施例,都属于本公开保护的范围。
在本公开中,如果没有具体指明,层和膜可以互换地使用。本公开中,所有数值特征都指在测量的误差范围之内,例如在所限定的数值的±10%之内,或±5%之内,或±1%之内。
柔性透明导电膜在柔性显示领域应用前景广阔。透明柔性导电膜按导电层分类有氧化物系、金属系、高分子系等等。
氧化物系导电膜因在TFT-LCD上应用较为成熟。例如,将氧化物系导电膜作为导电层沉积在聚对苯二甲酸乙二醇、聚甲基丙烯酸甲酯等衬底上可以制成柔性透明导电膜。但这种氧化物系导电材料容易因热膨胀问题而发生脱落。而且,氧化物系导电材料的制备过程往往要采用蒸镀、溅射等高精度工艺设备,还需要使用特殊气体。因此这种材料工艺复杂、成本 高且不环保。而金属系导电膜因其光透过率较低,很难满足电子产品在该方面日益增高的要求。较新的关于银薄膜的研究结果表明:其光透过率也只有80%左右。高分子系导电膜透光性好但耐温性能差,化学稳定性差从而影响其他结构的性能。高分子系导电膜的导电能力也较差,有待进一步改善。
随着透明导电材料的技术研究发展,人们开始研究复合型导电材料,如电介质/金属/电介质、氧化物/金属/氧化物等三明治结构的复合导电膜。虽然导电性能得到很大提升,但仍不能解决制备工艺复杂、成本高昂的问题。一些采用碳纳米管、石墨烯等新材料的新型导电膜也存在制备过程的环境污染、成膜连续型、均一性、产率过低等问题。
因此,仍然需要提供一种具有高光透过率、高耐热特性、高导电性及环境友好的导电膜及其制备方法,以及含有导电膜的显示装置。
纤维素是由葡萄糖组成的大分子多糖,并且是植物细胞壁的主要成分。纤维素是自然界中分布最广、含量最多的一种多糖,占植物界碳含量的50%以上。常温下,纤维素既不溶于水,又不溶于一般的有机溶剂,如酒精、乙醚、丙酮、苯等。它也不溶于稀碱溶液中。因此,在常温下,它是比较稳定的,这是因为纤维素分子之间存在氢键。纤维素能溶于铜氨Cu(NH 3) 4(OH) 2溶液和铜乙二胺[NH 2CH 2CH 2NH 2]Cu(OH) 2溶液等。
纤维素与氧化剂发生化学反应,生成一系列与原来纤维素结构不同的物质。这样的反应过程,称为纤维素氧化,得到氧化纤维素。
本公开的发明人经过深入细致的研究,发现纳米金属/氧化纳米纤维素复合的导电膜具有高光透过率(高于约90%)、高耐热特性(可高达400℃)及高导电性,可用于柔性显示。并且氧化纳米纤维素源自自然界植物中的木质素,成本低廉且制备过程环保,符合可持续发展理念。因此,纳米金属/氧化纳米纤维素复合的导电膜是一种生物质基导电膜。
因此,在本公开的一个方面,可以提供一种导电膜,包含:
由氧化纳米纤维素形成的膜基体,和
填充在所述膜基体中的纳米金属。
换言之,导电膜可以包含:
作为填充材料的纳米金属;和
作为基体材料的氧化纳米纤维素。
即,本公开提供的是一种纳米金属/氧化纳米纤维素复合的导电膜。氧化纳米纤维素形成膜的主体,即膜基体。纳米金属填充在膜基体中,优选均匀分散在膜基体中。
在纳米金属/氧化纳米纤维素复合的导电膜中,纳米金属起导电作用,氧化纳米纤维素作为复合材料的骨架使纳米金属颗粒均匀分散其中。并且,氧化纳米纤维素薄膜本身的透光性好(高于约90%),可以提升整个导电膜的透光性能。
在纳米金属/氧化纳米纤维素复合的导电膜中,纳米金属可以均匀地分散在膜基体中。通过使纳米金属均匀地分散在膜基体中,可以使导电膜的各种物理和化学性能在整个薄膜中均匀,从而提高显示性能。
在纳米金属/氧化纳米纤维素复合的导电膜中,膜基体可以是交联的氧化纳米纤维素。通过交联处理,复合后的材料更为紧密,可以进一步提高耐热性,并且保证导电膜的成膜连续性和导电性能均一性。
在纳米金属/氧化纳米纤维素复合的导电膜中,氧化纳米纤维素是二价或三价金属离子交联的氧化纳米纤维素。二价或三价金属离子选自钙离子、镁离子、铝离子和三价铁离子中的至少一种。
在纳米金属/氧化纳米纤维素复合的导电膜中,纳米金属可以选自纳米银、纳米铜和纳米金中的至少一种。
在纳米金属/氧化纳米纤维素复合的导电膜中,纳米金属可以选自纳米金属颗粒和纳米金属线中的至少一种。
纳米金属颗粒的粒径可以为10至20nm。
纳米金属线的直径可以为10至20nm且长度可以为100至200nm。
在纳米金属/氧化纳米纤维素复合的导电膜中,纳米金属与氧化纳米纤维素的重量比为10∶100至200∶100,例如20∶100至150∶100,或25∶100至100∶100。通过使两者的比例在此范围内,可以同时满足导电性、耐热性、透光率和成膜性的要求。
在纳米金属/氧化纳米纤维素复合的导电膜中,氧化纳米纤维素的长径比可以为200至2000,且直径可以为1至10nm。
在纳米金属/氧化纳米纤维素复合的导电膜中,导电膜的厚度可以为5 至50μm。
在本公开的另一个方面,可以提供一种用于制备上面任何一项所述的导电膜的方法。如图1所示,所述方法包括:
S11:将纳米金属的分散液和氧化纳米纤维素混合,得到混合物,
S12:将混合物涂覆于衬底基板上,和
S13:干燥涂覆于衬底基板上的混合物,得到导电膜。
所述方法还可以包括:在所述干燥步骤S13之后,将导电膜浸渍于二价或三价金属离子的溶液中,以用二价或三价金属离子置换氧化纳米纤维素中的至少一部分钠离子。
在将纳米金属的分散液和氧化纳米纤维素混合得到的混合物中,将纳米金属和氧化纳米纤维素混合均匀,这可以通过超声处理进行。
此外,在干燥涂覆于衬底基板上的混合物后,得到的导电膜位于衬底基板上。根据需要,可以将导电膜从衬底基板上剥离。将导电膜浸渍于二价或三价金属离子的溶液中可以包括:将导电膜与衬底基板以未剥离的状态浸渍于二价或三价金属离子的溶液中,也可以包括:将剥离后的导电膜浸渍于二价或三价金属离子的溶液中。
衬底基板可以是聚对苯二甲酸乙二醇酯或聚甲基丙烯酸甲酯衬底基板。导电膜与所述聚对苯二甲酸乙二醇酯或聚甲基丙烯酸甲酯衬底基板直接接触。通过使用聚对苯二甲酸乙二醇酯或聚甲基丙烯酸甲酯衬底基板,氧化纳米纤维素材料与衬底基板因都含有酯基等含氧基团而表现出高亲和性,有利于导电膜在衬底基板上的粘附。
在本公开的再一个方面,可以提供一种显示装置,所述显示装置包含上面任何一项所述的导电膜。
在显示装置中,导电膜可以是阴极、阳极、源极、漏极和栅极中的至少一种。
显示装置可以还包含与所述导电膜直接接触的聚对苯二甲酸乙二醇酯或聚甲基丙烯酸甲酯衬底基板。通过使用聚对苯二甲酸乙二醇酯或聚甲基丙烯酸甲酯衬底基板,氧化纳米纤维素材料与衬底基板因都含有酯基等 含氧基团而表现出高亲和性,有利于导电膜在衬底基板上的粘附。
氧化纳米纤维素可以由纤维素在碱金属溴化物和四甲基哌啶-N-氧化物存在下,在pH为9至10的条件下被次氯酸盐氧化得到。由此得到的氧化纳米纤维素的结构式如图2所示。
下面以纳米金属是纳米银颗粒为例进行说明,但本公开不限于此。例如纳米金属还可以是纳米铜或纳米金中的至少一种。此外,纳米金属也可以是纳米金属线。
纳米银颗粒的分散液可以通过可溶性银盐在表面活性剂存在下,在水中在碱性条件下被碱金属硼氢化物还原得到。
因此,根据本公开的导电膜可以是纳米银/未交联的氧化纳米纤维素复合的导电膜,如图3中所示。从图3可以看出,纳米银颗粒均匀地分散在未交联的氧化纳米纤维素中。在未交联的氧化纳米纤维素中,金属离子是钠离子。
另外,根据本公开的导电膜也可以是纳米银/交联的氧化纳米纤维素复合的导电膜,如图4中所示。从图4可以看出,纳米银颗粒均匀地分散在交联的氧化纳米纤维素中。未交联的氧化纳米纤维素中,至少部分钠离子被二价或三价金属离子置换。交联的氧化纳米纤维素的结构更加致密,具有更强的阻水阻气特性,防水氧穿透能力更强。此外,它本身耐高温性能优异。纳米金属如钠米银的加入增强了其散热速度,使之耐热性能可达400℃,从而可以满足电子器件对热稳定性的要求。经交联过程处理后,该材料的力学性能进一步提高,弯曲性能更加优异,在柔性显示器件领域具有较大潜力。
下面提供一种制备纳米银/氧化纳米纤维素复合的导电膜的示例方法。
将四甲基哌啶-N-氧化物(TEMPO)(催化剂)和NaBr加入去离子水中搅拌至溶解。加入湿木浆(一般含水量为81%)。再加入适量的NaClO以起到氧化作用。然后用NaOH维持pH=10。反应适当时间后过滤。再将其超声分散于去离子水中以除去未氧化的纤维素。高速离心后可得TEMPO氧化的纳米纤维素溶液。
将AgNO 3粉末溶于去离子水中,加入表面活性剂聚乙烯吡咯烷酮(PVP)充分搅拌得溶液A。将NaBH 4和NaOH溶解在去离子水中得溶液B。超声振荡和恒温磁力搅拌时将溶液A滴入溶液B中。控制恒温至反应结束,再洗涤及超声分散,得到纳米银的水分散液。
将TEMPO氧化的纳米纤维素溶液及纳米银的水分散液按比例混合。超声分散均匀后涂覆于平整的衬底基板上。风干水分即可得分散均匀的纳米银/氧化纳米纤维素复合的柔性透明导电膜。
实施例
下面通过具体实施方式来进一步说明本公开的技术方案。但是,这些实施例是为了举例说明本公开,而不应当理解为限制本公开。
实施例1:TEMPO氧化的纳米纤维素溶液的制备
将0.033g TEMPO和0.33g NaBr加入到100g的去离子水中搅拌至溶解。加入1.25g的含水量为81%的湿木浆(针叶木漂白硫酸盐浆,购买于日本制纸株式会社)。再加入0.5g的浓度为3.8mmol/g的NaClO水溶液,得到混合物。然后用0.4mol/L浓度的NaOH水溶液维持混合物的pH=10。反应6h时间后用滤纸过滤。再将滤纸上滤得物超声分散于去离子水中。未被氧化的纳米纤维素10000rpm离心后沉在离心管底部。得到上清液,为TEMPO氧化的纳米纤维素质量分数为0.1%的TEMPO氧化的纳米纤维素溶液。
实施例2:纳米银的水分散液
将0.0136g AgNO 3粉末溶于40mL去离子水中。加入1.2g PVP,并且充分搅拌得溶液A。将0.05g NaBH 4和0.02g NaOH溶解在100mL去离子水中得溶液B。超声振荡和恒温磁力搅拌时将溶液A滴入溶液B中。控制恒温(70℃)至反应结束(2h)。再洗涤及超声分散,得到纳米银的水分散液。
实施例3:导电膜的制备
将TEMPO氧化的纳米纤维素溶液及纳米银的水分散液按TEMPO氧化的纳米纤维素与纳米银的重量比为2∶8的比例混合。超声分散均匀后,倒入聚对苯二甲酸二甲酯培养皿中,使得干燥后的导电膜的厚度为20μm。将其60℃干燥,得到分散均匀的纳米银/氧化纳米纤维素复合的柔性透明导电膜,即实施例3的导电膜。
实施例4:导电膜的制备
除了将TEMPO氧化的纳米纤维素与纳米银的重量比例改变为3∶7之外,以与实施例3相同的方式制备,得到实施例4的导电膜。
实施例5:导电膜的制备
除了将TEMPO氧化的纳米纤维素与纳米银的重量比例改变为4∶6之外,以与实施例3相同的方式制备,得到在衬底基板上的导电膜。
将导电膜从衬底基板上剥离。将剥离的导电膜在0.1mol/L浓度的氯化钙溶液中浸渍2h时间,得到实施例5的导电膜。
实施例6:导电膜的制备
除了将TEMPO氧化的纳米纤维素与纳米银的重量比例改变为5∶5之外,以与实施例5相同的方式制备,得到实施例6的导电膜。
性能测试
通过如下方法测试实施例3-6得到的导电膜的性能
1.TEMPO氧化的纳米纤维素的长度和直径
由激光衍射散射法测量100根EMPO氧化的纳米纤维素的长度和直径,并且将其平均值分别作为TEMPO氧化的纳米纤维素的长度和直径。
2.纳米银的平均粒径
由激光衍射散射法测量100颗纳米银粒子的直径,并且将其平均值作为纳米银粒子的直径。
2.导电膜的透光率
用分光光度计在560nm处测量。
3.导电膜的耐热性
导电膜的耐热性表示导电膜在5重量%损失时的温度。
4.导电膜的电阻率
使用四探针法测量。
结果总结于下表中
Figure PCTCN2019076329-appb-000001
从表中可以看出,纳米金属/氧化纳米纤维素复合的导电膜具有高光透过率(高于约90%)、高耐热特性(大于或等于350℃)及高导电性。此外,通过交联可以进一步提高耐热性(大于或等于400℃)。
根据本公开,可以提供生物质基导电膜及其制备方法及显示装置。所述导电膜包含作为填充材料的纳米金属;和作为基体材料的氧化纳米纤维 素。纳米金属/氧化纳米纤维素复合的导电膜具有高光透过率(高于约90%)、高耐热特性(可高达400℃)及高导电性,可用于柔性显示,并且氧化纳米纤维素源自自然界植物中的木质素,成本低廉且制备过程环保,符合可持续发展理念。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (16)

  1. 一种导电膜,所述导电膜包含:
    由氧化纳米纤维素形成的膜基体,和
    填充在所述膜基体中的纳米金属。
  2. 根据权利要求1所述的导电膜,其中所述纳米金属均匀地分散在所述膜基体中。
  3. 根据权利要求1所述的导电膜,其中所述膜基体是交联的氧化纳米纤维素。
  4. 根据权利要求1所述的导电膜,其中所述膜基体是二价或三价金属离子交联的氧化纳米纤维素。
  5. 根据权利要求4所述的导电膜,其中所述二价或三价金属离子选自钙离子、镁离子、铝离子和三价铁离子中的至少一种。
  6. 根据权利要求1所述的导电膜,其中所述纳米金属选自纳米银、纳米铜和纳米金中的至少一种。
  7. 根据权利要求1所述的导电膜,其中所述纳米金属选自纳米金属颗粒和纳米金属线中的至少一种,所述纳米金属颗粒的粒径为10至20nm,并且所述纳米金属线的直径为10至20nm且长度为100至200nm。
  8. 根据权利要求1所述的导电膜,其中所述纳米金属与所述氧化纳米纤维素的重量比为10∶100至200∶100。
  9. 根据权利要求1所述的导电膜,其中所述氧化纳米纤维素的长径比为200至2000,且直径为1至10nm。
  10. 根据权利要求1所述的导电膜,所述导电膜的厚度为5至50μm。
  11. 一种用于制备权利要求1所述的导电膜的方法,所述方法包括:
    将纳米金属的分散液和氧化纳米纤维素分散液混合,得到混合物,
    将所述混合物涂覆于衬底基板上,和
    干燥涂覆于所述衬底基板上的所述混合物,得到所述导电膜。
  12. 权利要求11所述的方法,所述方法还包括:在所述干燥步骤之后,将所述导电膜浸渍于二价或三价金属离子的溶液中,以用二价或三价金属离子置换所述氧化纳米纤维素中的至少一部分钠离子。
  13. 权利要求11所述的方法,其中,所述衬底基板是聚对苯二甲酸乙二醇酯或聚甲基丙烯酸甲酯衬底基板。
  14. 一种显示装置,所述显示装置包含权利要求1所述的导电膜。
  15. 权利要求14所述的显示装置,其中所述导电膜是阴极、阳极、源极、漏极和栅极中的至少一种。
  16. 权利要求14所述的显示装置,所述显示装置还包含与所述导电膜直接接触的聚对苯二甲酸乙二醇酯或聚甲基丙烯酸甲酯衬底基板。
PCT/CN2019/076329 2018-05-30 2019-02-27 导电膜及其制备方法及显示装置 WO2019227990A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/484,599 US11515058B2 (en) 2018-05-30 2019-02-27 Conductive film, production method thereof, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810544773.4 2018-05-30
CN201810544773.4A CN108717944B (zh) 2018-05-30 2018-05-30 导电膜及其制备方法及显示装置

Publications (1)

Publication Number Publication Date
WO2019227990A1 true WO2019227990A1 (zh) 2019-12-05

Family

ID=63912378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076329 WO2019227990A1 (zh) 2018-05-30 2019-02-27 导电膜及其制备方法及显示装置

Country Status (3)

Country Link
US (1) US11515058B2 (zh)
CN (1) CN108717944B (zh)
WO (1) WO2019227990A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108717944B (zh) * 2018-05-30 2021-01-08 京东方科技集团股份有限公司 导电膜及其制备方法及显示装置
CN112143041B (zh) * 2020-09-04 2022-04-08 五邑大学 基元序构化纤维素基纳米流体离子导体材料和制备方法及应用
CN114698648B (zh) * 2022-03-29 2024-03-22 浙江恒达新材料股份有限公司 一种纳米银负载的抗菌纤维纳米颗粒的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360616A (zh) * 2013-07-10 2013-10-23 武汉纺织大学 一种石墨烯/纳晶纤维素分散液制备杂化膜的方法
JP2017157339A (ja) * 2016-02-29 2017-09-07 ナノサミット株式会社 透明導電フィルム及びその製造方法
CN108717944A (zh) * 2018-05-30 2018-10-30 京东方科技集团股份有限公司 导电膜及其制备方法及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101456838B1 (ko) 2007-04-20 2014-11-04 캄브리오스 테크놀로지즈 코포레이션 복합 투명 도전체 및 그 제조 방법
JP2010202856A (ja) 2009-02-06 2010-09-16 Kao Corp セルロース繊維の懸濁液とその製造方法
CA2914834A1 (en) * 2013-06-18 2014-12-24 Celluforce Inc. Conductive cellulose nanocrystals, method of producing same and uses thereof
CN107658333A (zh) * 2017-10-31 2018-02-02 京东方科技集团股份有限公司 一种柔性显示面板及其制造方法、柔性显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103360616A (zh) * 2013-07-10 2013-10-23 武汉纺织大学 一种石墨烯/纳晶纤维素分散液制备杂化膜的方法
JP2017157339A (ja) * 2016-02-29 2017-09-07 ナノサミット株式会社 透明導電フィルム及びその製造方法
CN108717944A (zh) * 2018-05-30 2018-10-30 京东方科技集团股份有限公司 导电膜及其制备方法及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAIYU ZHANG: "Use of chitosan to reinforce transparent conductive cellulose nanopaper", JOURNAL OF MATERIALS CHEMISTRY C, 29 November 2017 (2017-11-29), pages 242 - 248, XP055658303 *

Also Published As

Publication number Publication date
US20200381137A1 (en) 2020-12-03
US11515058B2 (en) 2022-11-29
CN108717944B (zh) 2021-01-08
CN108717944A (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2019227990A1 (zh) 导电膜及其制备方法及显示装置
CN112876712B (zh) 一种MXene基柔性聚乙烯醇电磁屏蔽复合薄膜及制备方法
Zhu et al. PET/Ag NW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility
JP2000511245A (ja) 中空炭素微小繊維の縺れをほぐす方法、電気伝導性透明炭素微小繊維凝集フイルム、及びそのようなフイルムを形成するための被覆組成物
CN106205780B (zh) 一种木材刨片基柔性电极材料的制备方法
Ma et al. Cellulose transparent conductive film and its feasible use in perovskite solar cells
Mao et al. Electroless silver plated flexible graphite felt prepared by dopamine functionalization and applied for electromagnetic interference shielding
CN109102919B (zh) 一种复合导电膜及其制备方法和应用
JP2017048291A (ja) 導電性高分子組成物、その分散液、その製造方法およびその用途
CN113720884A (zh) 可穿戴的导电薄膜传感器及其制备方法与应用
Zhang et al. Use of chitosan to reinforce transparent conductive cellulose nanopaper
TW201007309A (en) Transparent conductive film and method for manufacturing the same
KR101536627B1 (ko) 표면조도가 낮은 은 나노와이어 - 그라핀 하이브리드 전극 제조 방법
CN114835932A (zh) 一种铜纳米线/芳纶纳米纤维复合导电薄膜及其制备方法
TWI466140B (zh) 透明導電膜與其形成方法
CN113773688A (zh) 一种功能化纳米复合电磁屏蔽涂料及制备方法和应用
JP2018154921A (ja) 複合面状体およびその製造方法、それが形成された部材
Knuth et al. Development of xanthan gum‐based solid polymer electrolytes with addition of expanded graphite nanosheets
EA027119B1 (ru) Способ получения композиционных наночастиц графен/медь
KR100888984B1 (ko) 나노 금속 입자가 중합체비드에 결합된 도전성 볼 및 이의제조 방법
Kim et al. Transparent conducting films based on nanofibrous polymeric membranes and single‐walled carbon nanotubes
Sun et al. Preparation of micron-scale Cu@ Ag conductive particles by displacement coating to reinforce epoxy conductive adhesives
JP2017157339A (ja) 透明導電フィルム及びその製造方法
TW200952570A (en) Advanced print circuit board and the method of the same
WO2020113430A1 (zh) 石墨烯导电结构及其制备方法、自修复方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19812101

Country of ref document: EP

Kind code of ref document: A1