WO2019227647A1 - 背光模组、显示装置及背光模组的制作方法 - Google Patents

背光模组、显示装置及背光模组的制作方法 Download PDF

Info

Publication number
WO2019227647A1
WO2019227647A1 PCT/CN2018/097410 CN2018097410W WO2019227647A1 WO 2019227647 A1 WO2019227647 A1 WO 2019227647A1 CN 2018097410 W CN2018097410 W CN 2018097410W WO 2019227647 A1 WO2019227647 A1 WO 2019227647A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
backlight
substrate
light
silicone film
Prior art date
Application number
PCT/CN2018/097410
Other languages
English (en)
French (fr)
Inventor
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/172,846 priority Critical patent/US10726772B2/en
Publication of WO2019227647A1 publication Critical patent/WO2019227647A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present application relates to the field of display technology, and in particular, to a backlight module, a display device, and a method for manufacturing a backlight module.
  • Organic light emitting diode display device Organic Light Emitting Display (OLED) It has the characteristics of self-luminous, no backlight, thin thickness, wide viewing angle, and fast response speed, so it has the natural advantages of flexible display. Facing the competition of flexible OLEDs, the traditional liquid crystal display technology has gradually adopted flexible substrates to make breakthroughs in the directions of flexibility and curved surfaces. Therefore, it can be seen that the era of flexible and curved display is approaching.
  • OLED Organic Light Emitting Display
  • FIG. 1 is a schematic plan view of a display device in the prior art
  • FIG. 2 is a schematic cross-sectional view of a display device in FIG. 1.
  • the display device 10 includes a display region 12 and a lower frame 111.
  • the lower frame 11 is provided with a driving component 111, a backlight source 112, and a light mixing region 113.
  • the width of the lower frame 11 is L1, and the width of the light mixing region 113 is L2.
  • the lower border 111 further drives the lower border 111 due to the presence of the driving component 111, the backlight 112, and the mixed light region 113. Compression has become a technical problem that needs to be solved urgently.
  • the display device 10 adopts a side-type light-entry scheme. Because the backlight 112 itself has a certain thickness, and because the backlight 112 is a point light source, it needs to diffuse the light uniformly through the light-scattering effect of the light guide plate to avoid hotspots at low light Phenomenon (ie, yin and yang stripes appear on the display screen) requires a certain mixing distance L2.
  • the compression of the light mixing distance L2 is usually accompanied by a sharp attenuation of the backlight efficiency, so that there is a certain limit (about 2 mm) for the backlight lower bezel of the existing center-size LCD module.
  • the light mixing distance limits the width of the lower frame and restricts the development of the full screen.
  • the technical problem mainly solved by the present application is to provide a backlight module, a display device and a method for manufacturing the backlight module, which can make the backlight source achieve the light mixing effect with a smaller light mixing distance.
  • the first technical solution adopted in the present application is to provide a backlight module, which includes a substrate, a backlight source disposed on the substrate, and a silica gel covering a light emitting surface of the backlight source.
  • the second technical solution adopted in this application is to provide a display device including a backlight module, the backlight module including a substrate, a backlight source disposed on the substrate, and a cover The silica gel film on the light exit surface of the backlight source, wherein the cross section of the silica gel film along the direction perpendicular to the substrate is arc-shaped to diffuse the light emitted by the backlight source.
  • a third technical solution adopted in the present application is to provide a method for manufacturing a backlight module, including: preparing a substrate; setting a backlight source on one side of the substrate; and emitting light from the backlight source.
  • a silicone film is formed on the surface, wherein a cross section of the silicone film along a direction perpendicular to the substrate is arc-shaped to diffuse light emitted by the backlight source.
  • the backlight module provided by the present application includes a substrate, a backlight source disposed on the substrate, and a silicone film covering the light emitting surface of the backlight source.
  • the cross section in the direction of the substrate is arc-shaped to diffuse the light emitted by the backlight.
  • FIG. 1 is a schematic plan view of a display device in the prior art
  • FIG. 2 is a schematic cross-sectional structure diagram of the display device in FIG. 1;
  • FIG. 3 is a schematic cross-sectional structure diagram of an embodiment of a backlight module of the present application.
  • FIG. 4 is a schematic sectional view of another embodiment of the silica gel film in FIG. 3;
  • FIG. 5 is a schematic diagram of the distribution of the LED lamps on the substrate in FIG. 3;
  • FIG. 6 is a schematic cross-sectional structure diagram of an embodiment of a display device of the present application.
  • FIG. 7 is a schematic flowchart of an embodiment of a method for manufacturing a backlight module according to the present application.
  • FIG. 8a is a schematic cross-sectional view of the backlight module in step 701 in FIG. 7;
  • 8b is a schematic cross-sectional view of the backlight module in step 702 in FIG. 7;
  • 8c is a schematic cross-sectional view of a backlight module when a silicone film is applied in step 703 in FIG. 7;
  • 8d is a schematic plan view of a stencil mask in step 703 in FIG. 7;
  • FIG. 8e is a schematic cross-sectional view of a backlight module after the silicone film is cured in step 703 in FIG. 7;
  • FIG. 8f is a schematic cross-sectional view of the backlight module after step 703 in FIG. 7.
  • This embodiment provides a backlight module, which includes a substrate, a backlight provided on the substrate, and a silicone film covering a light-emitting surface of the backlight.
  • the silicone film has an arc shape in a cross section perpendicular to the substrate direction. Diffusion of light from backlight.
  • FIG. 3 is a schematic cross-sectional structure diagram of an embodiment of a backlight module of the present application.
  • the backlight module 20 includes a substrate 21, a backlight source 22 disposed on the substrate 21, and a silicone film 23 covering a light emitting surface of the backlight source 22.
  • the cross section of the silicone film 23 along the direction perpendicular to the substrate 21 is arc-shaped to diffuse the light emitted by the backlight 22.
  • the substrate 21 is a flexible printed circuit board.
  • Circuit referred to as FPC
  • Flexible circuit board is a kind of highly reliable and excellent flexible printed circuit board made of polyimide or polyester film as the substrate. It has high wiring density, light weight, thin thickness, and bending. Good sexual characteristics.
  • the substrate 21 controls the backlight 22 to provide backlight for the display device.
  • the substrate 21 may also be another type of circuit board, which is not limited in this application.
  • the backlight module 20 further includes a diffusion film 24 and a brightness enhancement film 25.
  • the diffusion film 24 is located on a side of the silicone film 23 away from the backlight 22 and is spaced from the silicone film 23.
  • the light emitted by the backlight 22 is in The light is mixed before reaching the diffusion film 24, and the light mixing distance is L3.
  • the base material of the diffusion film 24 is polyethylene terephthalate ( Polyethylene terephthalate (PET for short), coated with optical astigmatism particles on both sides of PET.
  • PET Polyethylene terephthalate
  • the diffusion film 23 may be made of other materials, which is not limited in the present application.
  • the brightness enhancement film 25 is located on a side of the diffusion film 24 away from the silicone film 23 and is disposed adjacent to the diffusion film 24.
  • the brightness enhancement film 25 is used to improve the luminous efficiency of the entire backlight system.
  • the backlight source 22 includes a plurality of LED lamps 221 distributed in an array, and the light emitting surface of each LED lamp 221 is covered with a silicone film 23 having a curved surface.
  • the silica gel film 23 is a silica gel layer containing a phosphor or a silica gel layer containing a quantum dot.
  • the red phosphor, the green phosphor, and the blue phosphor are mixed with silica gel according to a preset ratio to form a silica gel film 23.
  • the silica gel film 23 may be another transparent layer containing fluorescent powder or quantum dots, which is not limited in this application.
  • a cross section of the silica gel film 23 along a direction perpendicular to the substrate 21 is arc-shaped.
  • the cross-section of the silica gel film 23 in a direction perpendicular to the substrate 21 may be any one of a double-arc or a multi-arc curve.
  • FIG. 4 is a schematic cross-sectional view of another embodiment of the silica gel film in FIG. 3.
  • FIG. 5 is a schematic diagram of the distribution of the LED lamps on the substrate in FIG. 3.
  • the LED light 221 is a blue light LED light, and the blue light emitted by the blue light LED light is irradiated on the silicone film 23 mixed according to a preset ratio to emit a preset light.
  • LED light 221 is mini For LEDs (sub-millimeter light emitting diodes), the length and width of the LED lights 221 are 100 to 1000 ⁇ m, and the distance between adjacent LED lights 221 is 100 to 2000 ⁇ m. In other embodiments, the size, arrangement, and color of the LED lights can be determined according to actual conditions.
  • the LED lights are red LED lights, and only the phosphor mixing ratio corresponding to the silicone film 23 can be changed accordingly. Not limited. Due to the diffusion of light by the silicone film 23, the pitch of the LED lights 221 can be increased within a certain range without the phenomenon of hotspot, thereby reducing the LED The number of lamps 221 reduces manufacturing costs.
  • the silicone film 23 is formed by a stencil mask. Specifically, the liquid silicone film 23 is coated on the LED lamps 221 distributed in an array through a stencil mask, and the silicone films 23 are coated on the LED lamps 221 distributed in an array by heating molding and temperature curing.
  • FIG. 6 is a schematic cross-sectional structure diagram of an embodiment of a display device of the present application.
  • the display device 3 includes a backlight module 30 and a display module 31.
  • the backlight module 30 is the same as the backlight module 20 in FIG. 3, which is not described in this application.
  • the backlight module 31 is located on the back of the display module 31.
  • a circuit board and a backlight source of a side-type backlight are located on a lower frame of a display panel. The width of the lower frame is limited and cannot be very narrow.
  • the substrate 21 and the backlight 22 of the present application are located on the back of the display panel.
  • the lower frame has no backlight source, and the lower frame is not limited by the distance of mixed light.
  • the width of the lower frame can be compressed to be approximately the same as that of the upper and left frames to achieve a full screen.
  • the backlight since the light mixing distance is reduced, the thickness of the backlight module 30 is reduced, and the thickness of the display device 3 is further reduced.
  • the backlight may also be an edge-type backlight.
  • the solution for reducing the light mixing distance of the present application may also reduce the light-mixing distance of the edge-type backlight, thereby reducing the width of the lower frame.
  • FIG. 7 is a schematic flowchart of an embodiment of a method for manufacturing a backlight module of the present application.
  • the manufacturing method of the backlight module of the present application includes the following steps:
  • Step 701 Prepare a substrate.
  • FIG. 8a is a schematic cross-sectional view of the backlight module in step 701 in FIG.
  • the substrate 41 is a flexible printed circuit board.
  • Circuit referred to as FPC
  • Flexible circuit board is a kind of highly reliable and excellent flexible printed circuit board made of polyimide or polyester film as the substrate. It has high wiring density, light weight, thin thickness, and bending. Good sexual characteristics.
  • the substrate 41 controls the backlight source to provide backlight for the display device. In other embodiments.
  • the substrate 41 may be another type of circuit board, which is not limited in this application.
  • Step 702 Set a backlight source on one side of the substrate.
  • FIG. 8b is a schematic cross-sectional view of the backlight module in step 702 in FIG.
  • a plurality of LED lamps 421 distributed in an array are prepared on the substrate 41.
  • the arrangement of the plurality of LED lights 421 is similar to that of FIG. 5, and details are not described herein again.
  • LED light 221 is blue light LED light
  • LED light 421 is mini For LEDs (sub-millimeter light emitting diodes)
  • the length and width of the LED lights 421 are 100 to 1000 ⁇ m
  • the distance between adjacent LED lights 421 is 100 to 2000 ⁇ m.
  • Step 703 A silicone film is formed on the light-emitting surface of the backlight, wherein the cross-section of the silicone film along the direction perpendicular to the substrate is curved to diffuse the light emitted by the backlight.
  • FIG. 8c is a schematic cross-sectional view of the backlight module when the silicone film is coated in step 703 in FIG. 7
  • FIG. 8d is a schematic plan view of the stencil mask in step 703 in FIG. 7, and
  • the stencil mask 46 is an arrayed micron-scale hole-like structure.
  • the stencil mask 46 includes a plurality of through holes 461.
  • the plurality of through holes 461 are distributed in an array.
  • the centers correspond one-to-one with the structural centers of the plurality of LED lights 421.
  • the area of each through hole 461 is larger than the area of each LED lamp 421, and the length and width of each through hole 461 are 100-1500 ⁇ m.
  • the LED lights 421 are square with a side length of 150 ⁇ m, the through holes 461 are square and the side length is 160 ⁇ m.
  • the size of the LED lights 421 is slightly larger than the size of the through holes 461.
  • the shape of each LED light 421 is The heart corresponds to the centroid of each through hole 461.
  • the centers of the through holes 461 of the stencil mask 46 and the centers of the LED lights 421 are aligned one by one by using positioning marks, and then the liquid
  • the material of the silica gel film 43 is placed at the structural center of the plurality of through holes 461.
  • the material of the silica gel film 43 is a silica gel solution containing a fluorescent powder or a silica gel solution containing a quantum dot.
  • the stencil mask 46 is removed and the liquid silicone film 43 is cured by heating and shaping and cooling to cure the silicone film 43 to cover the LED lamp. 421, and the cross section of the silicone film 43 along the direction perpendicular to the substrate 41 is arc-shaped.
  • the liquid silicone film 43 is covered by the through holes 461 to the LED lights 421. , So that the silicone film 43 can be accurately matched with a plurality of LED lights 421, and the sample preparation accuracy is improved.
  • the red phosphor, the green phosphor, and the blue phosphor are mixed with silica gel according to a preset ratio to form a silica gel film 43.
  • the centers are aligned with the centers of the plurality of LED lights 421, and the material of the liquid-state silicone film 43 is placed at the structural center of the plurality of through holes 461 by coating or inkjet printing.
  • the stencil mask 46 is removed and the material of the silicone film 43 is heated, so that the silicone film 43 forms a droplet shape on the LED lamp 421 under the tension of the liquid itself and covers the LED lamp 421.
  • the silicone film 43 is cured in a droplet shape by cooling down, so that the silicone film 43 covers the LED lamp 421, and the cross section of the silicone film 43 along the direction perpendicular to the substrate 41 is arc-shaped.
  • the silicone film 43 may be shaped by other methods, so that the cross section of the silicone film 43 in the direction perpendicular to the substrate 41 is any one of a double-arc or a multi-arc curve.
  • FIG. 8f is a schematic cross-sectional view of the backlight module after step 703 in FIG.
  • a diffusion film 44 and a brightness enhancement film 45 are sequentially prepared to form a backlight module.
  • the diffusion film 44 and the brightness enhancement film 45 are similar to the diffusion film 24 and the brightness enhancement film 25 in FIG. 3, and are not repeated here.
  • the backlight module provided in the present application includes a substrate, a backlight source disposed on the substrate, and a silicone film covering a light emitting surface of the backlight source, wherein the silicone film The cross-section along the direction perpendicular to the substrate is arc-shaped to diffuse the light from the backlight.
  • a silicone film with an arc-shaped cross section By covering the surface of the backlight with a silicone film with an arc-shaped cross section, the light angle of the backlight can be increased, thereby achieving a light mixing goal with a smaller light mixing distance and reducing the thickness of the backlight module.
  • the liquid silicone film material is covered by the through holes to the LED lights, so that the silicone film can be used. Accurately matches multiple LED lights, which improves the precision of sample preparation.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本申请公开了一种背光模组、显示装置及背光模组的制作方法,背光模组包括基板,设置在基板上的背光源,以及包覆在背光源的出光面的硅胶膜,其中,硅胶膜沿垂直于基板方向的截面为弧形,以扩散背光源发出的光线。通过在背光源的的表面包覆截面为弧形的硅胶膜,能够增加背光源的出光角度,从而实现用更小的混光距离达成混光目标,减小了背光模组的厚度。

Description

背光模组、显示装置及背光模组的制作方法
【技术领域】
本申请涉及显示技术领域,特别是涉及一种背光模组、显示装置及背光模组的制作方法。
【背景技术】
随着可穿戴应用设备如智能眼镜、智能手表等的逐渐兴起,显示行业对可挠曲显示器件的需求也不断增加。有机发光二极管显示器件 (Organic Light Emitting Display,OLED) 具有自发光不需背光源、厚度薄、视角广、反应速度快等特点,从而具有可挠曲显示的天然优势。面对柔性OLED的竞争,传统的液晶显示技术也逐渐采用柔性衬底往柔性、曲面等方向进行突破,由此可见,柔性、曲面显示的时代即将来临。
参阅图1和图2,图1是现有技术中显示装置的平面结构示意图,图2是图1中显示装置的剖面结构示意图。结合图1和图2,现有技术中,显示装置10包括显示区域12和下边框111,下边框11上设有驱动组件111、背光源112以及混光区域113。下边框11的宽度为L1,混光区域113的宽度为L2。由于目前显示装置10的上、左右边框均压缩至极小的边框足以满足现阶段全面屏的需求,但是在下边框111由于驱动组件111、背光源112以及混光区域113的存在,使得下边框111进一步压缩成为当前急需解决的技术问题。显示装置10采用侧入式入光方案,由于背光源112本身存在一定的厚度,同时由于背光源112作为点光源,本身需要通过导光板的散光作用将光线均匀扩散开从而避免近光处的hotspot现象(即显示画面出现阴阳条纹),需要一定的混光距离L2。当减小下边框111的宽度L1时,随着混光距离L2的压缩通常会伴随着背光效率的急剧衰减,使得现有中心尺寸液晶模组的背光下边框存在一定的极限(大约2mm)。
也就是说,现有技术中,混光距离限制了下边框的的宽度,制约了全面屏的发展。
【发明内容】
本申请主要解决的技术问题是提供一种背光模组、显示装置及背光模组的制作方法,能够使得背光源以更小的混光距离达到混光效果。
为解决上述技术问题,本申请采用的第一个技术方案是:提供一种背光模组,包括基板,设置在所述基板上的背光源,以及包覆在所述背光源的出光面的硅胶膜,其中,所述硅胶膜沿垂直于所述基板方向的截面为弧形,以扩散所述背光源发出的光线。
为解决上述技术问题,本申请采用的第二个技术方案是:提供一种显示装置,包括背光模组,所述背光模组包括基板,设置在所述基板上的背光源,以及包覆在所述背光源的出光面的硅胶膜,其中,所述硅胶膜沿垂直于所述基板方向的截面为弧形,以扩散所述背光源发出的光线。
为解决上述技术问题,本申请采用的第三个技术方案是:提供一种背光模组的制作方法,包括:准备基板;在所述基板的一侧设置背光源;在所述背光源的出光面形成硅胶膜,其中,所述硅胶膜沿垂直于所述基板方向的截面为弧形,以扩散所述背光源发出的光线。
本申请的有益效果是:区别于现有技术,本申请提供的背光模组包括基板,设置在基板上的背光源,以及包覆在背光源的出光面的硅胶膜,其中,硅胶膜沿垂直于基板方向的截面为弧形,以扩散背光源发出的光线。通过在背光源的的表面包覆截面为弧形的硅胶膜,能够增加背光源的出光角度,从而实现用更小的混光距离达成混光目标,减小了背光模组的厚度。
【附图说明】
图1是现有技术中显示装置的平面结构示意图;
图2是图1中显示装置的剖面结构示意图;
图3是本申请背光模组一实施方式的剖面结构示意图;
图4是图3中硅胶膜其他实施方式的截面形状示意图;
图5是图3中LED灯在基板上的分布示意图;
图6是本申请显示装置一实施方式的剖面结构示意图;
图7是本申请背光模组的制作方法一实施方式的流程示意图;
图8a是图7中步骤701中的背光模组的剖面示意图;
图8b是图7中步骤702中的背光模组的剖面示意图;
图8c是图7中步骤703中涂覆硅胶膜时背光模组的剖面示意图;
图8d是图7中步骤703中钢网掩模板的平面示意图;
图8e是图7中步骤703中硅胶膜固化后背光模组的剖面示意图;
图8f是图7中步骤703后背光模组的剖面示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本申请保护的范围。
本实施方式提供一种背光模组,包括基板,设置在基板上的背光源,以及包覆在背光源的出光面的硅胶膜,其中,硅胶膜沿垂直于基板方向的截面为弧形,以扩散背光源发出的光线。
为了清楚说明上述背光模组的具体结构,参阅图3,图3是本申请背光模组一实施方式的剖面结构示意图。
本实施方式中,背光模组20包括基板21,设置在基板21上的背光源22,以及包覆在背光源22的出光面的硅胶膜23。其中,硅胶膜23沿垂直于基板21方向的截面为弧形,以扩散背光源22发出的光线。
本实施方式中,基板21为柔性电路板(Flexible Printed Circuit,简称FPC)。柔性电路板是以聚酰亚胺或聚酯薄膜为基材制成的一种具有高度可靠性,绝佳的可挠性印刷电路板,具有配线密度高、重量轻、厚度薄、弯折性好的特点。基板21控制背光源22为显示装置提供背光。在其他实施方式中,基板21也可以为其他类型的电路板,本申请对此不作限定。
本实施方式中,背光模组20还包括扩散膜24以及增亮膜25,扩散膜24位于硅胶膜23远离背光源22的一侧,且与硅胶膜23间隔设置,背光源22发出的光在到达扩散膜24之前进行混光,混光距离为L3。扩散膜24的基材为聚对苯二甲酸乙二醇酯( Polyethylene terephthalate,简称PET),在PET的两面涂光学散光颗粒。在其他实施方式中,扩散膜23也可以为其他材料,本申请不作限制。当光线经过扩散膜24时,会不断于2个折射率相异的介质中穿过,故光线就会发生许多折射、反射与散射的现象,造成了光学扩散的效果,使得出射的光线均匀分散,最终将光线柔和均匀的散播出来。增亮膜25位于扩散膜24远离硅胶膜23的一侧,且与扩散膜24相邻设置。增亮膜25用于提高整个背光系统发光效率。
本实施方式中,背光源22包括多个阵列分布的LED灯221,每一个LED灯221的出光面均包覆有包覆表面为曲面的硅胶膜23。硅胶膜23为含有荧光粉的硅胶层或含有量子点的硅胶层。在一个具体的实施方式中,将红色荧光粉、绿色荧光粉以及蓝色荧光粉与硅胶按照预设比例混合以形成硅胶膜23。在LED灯221的光线穿过硅胶膜23时,由于硅胶膜23的表面为曲面, 增大了光线从硅胶膜23射出时的出光角度,将光形打开,以更小的混光距离L3即可离实现混光效果。由于混光距离L3的减小,进而减小了背光模组20的厚度。在其他实施方式中,硅胶膜23也可以为含有荧光粉或量子点的其他透明层,本申请对此不作限定。
进一步的,本实施方式中,硅胶膜23沿垂直于基板21方向的截面为弧形。在其他实施方式中,硅胶膜23沿垂直于基板21方向的截面也可以为双弧形或多弧形曲线中的任一种。请参阅图4,图4是图3中硅胶膜其他实施方式的截面形状示意图。
进一步的,参阅图5,图5是图3中LED灯在基板上的分布示意图。如图5所示, LED灯221为蓝光LED灯,蓝光LED灯发出的蓝光照射在根据预设比例混合的硅胶膜23即可发出预设光。LED灯221为mini LED(亚毫米发光二极管),LED灯221的长度和宽度均为100~1000μm,相邻的LED灯221之间的间距为100~2000μm。在其他实施方式中,LED灯的尺寸、排布以及发光颜色可以根据实际情况决定,例如LED灯为红色LED灯,只需对应更改硅胶膜23对应的荧光粉混合比例即可,本申请对此不作限定。由于硅胶膜23对光线的扩散,可以在一定范围内增加LED灯221间距而不出现hotspot的现象,进而减少了LED 灯221的数目,降低了制作成本。
进一步的,硅胶膜23是通过钢网掩膜的方式形成的。具体的,通过钢网掩模板将液体状的硅胶膜23涂布在呈阵列分布的LED灯221上,通过加热塑型和降温固化将硅胶膜23包覆在呈阵列分布的LED灯221上。
参阅图6,图6是本申请显示装置一实施方式的剖面结构示意图。如图6所示,显示装置3包括背光模组30和显示模组31。背光模组30与图3中的背光模组20相同,本申请在此不做赘述。背光模组31位于显示模组31的背部。现有技术中的侧入式背光的电路板和背光源位于显示面板的下边框,下边框的宽度受限,无法做到很窄;而本申请的基板21和背光源22位于显示面板的背部,为直下式背光,下边框没有背光源,下边框不受混光距离的限制,可以将下边框的宽度压缩至与上、左右边框大致相同,实现全面屏。另外,由于减小了混光距离,减小了背光模组30的厚度,进而减小了显示装置3的厚度。在其他实施方式中,背光也可以采用侧入式背光,本申请减小混光距离的方案也可以减小侧入式背光的混光距离,进而减小下边框的宽度。
参阅图7,图7是本申请背光模组的制作方法一实施方式的流程示意图。
如图7所示,本申请背光模组的制作方法包括如下步骤:
步骤701: 准备基板。
参阅图8a,图8a是图7中步骤701中的背光模组的剖面示意图。本实施方式中,基板41为柔性电路板(Flexible Printed Circuit,简称FPC)。柔性电路板是以聚酰亚胺或聚酯薄膜为基材制成的一种具有高度可靠性,绝佳的可挠性印刷电路板,具有配线密度高、重量轻、厚度薄、弯折性好的特点。基板41控制背光源为显示装置提供背光。在其他实施方式中。本实施方式中,基板41以可以为其他类型的电路板,本申请对此不作限定。
步骤702: 在基板的一侧设置背光源。
参阅图8b,图8b是图7中步骤702中的背光模组的剖面示意图。如8b所示,在基板41上制备呈阵列分布的多个LED灯421。本实施方式中,多个LED灯421的排布方式与图5类似,在此不再赘述。LED灯221为蓝光LED灯,LED灯421为mini LED(亚毫米发光二极管),LED灯421的长度和宽度均为100~1000μm,相邻的LED灯421之间的间距为100~2000μm。
步骤703: 在背光源的出光面形成硅胶膜,其中,硅胶膜沿垂直于基板方向的截面为弧形,以扩散背光源发出的光线。
参阅图8c、8d以及8e,图8c是图7中步骤703中涂覆硅胶膜时背光模组的剖面示意图,图8d是图7中步骤703中钢网掩模板的平面示意图,图8e是图7中步骤703中硅胶膜固化后背光模组的剖面示意图。
本实施方式中,钢网掩模板46为阵列化微米级别的孔状结构,钢网掩模板46包括多个通孔461,多个通孔461以阵列形式分布,且多个通孔461的结构中心与多个LED灯421的结构中心一一对应。每个通孔461的面积大于每个LED灯421的面积,每个通孔461的长度和宽度均为100-1500μm。
在一个具体的实施方式中,LED灯421为正方形,边长为150μm,通孔461为正方形,边长为160μm,LED灯421的尺寸略大于通孔461的尺寸,每个LED灯421的形心与每个通孔461的形心对应。
本实施方式中,首先利用定位标记将钢网掩模板46的多个通孔461的中心与多个LED灯421的中心一一对准后,通过涂覆或者喷墨打印的方式将液体状的硅胶膜43的材质置于多个通孔461的结构中心处,其中,硅胶膜43的材质为含有荧光粉的硅胶溶液或含有量子点的硅胶溶液。待将硅胶膜43的材质置于多个通孔461中之后,移除钢网掩模板46并通过加热塑形和降温固化使液体状的硅胶膜43固化,以使硅胶膜43包覆LED灯421,且硅胶膜43沿垂直于基板41方向的截面为弧形。由于本申请将钢网掩模板46的多个通孔461的中心与多个LED灯421的中心对准后,再通过通孔461将液体状的硅胶膜43材质覆盖到多个LED灯421上,使得硅胶膜43能够精确的与多个LED灯421匹配,提高了制样精度。
在一个具体的实施方式中,将红色荧光粉、绿色荧光粉以及蓝色荧光粉与硅胶按照预设比例混合以形成硅胶膜43,利用定位标记将钢网掩模板46的多个通孔461的中心与多个LED灯421的中心一一对准,通过涂覆或者喷墨打印的方式将液体状的硅胶膜43的材质置于多个通孔461的结构中心处。移除钢网掩模板46并对硅胶膜43的材质进行加热,以使硅胶膜43在LED灯421上靠液体自身的张力形成液滴形状且包覆LED灯421。然后通过降温使硅胶膜43在液滴状的形态下固化,进而使得硅胶膜43包覆LED灯421,且硅胶膜43沿垂直于基板41方向的截面为弧形。在其他实施方式中,也可以通过其他方式对硅胶膜43塑型,以使硅胶膜43的沿垂直于基板41方向的截面为双弧形或多弧形曲线中的任一种。
进一步的,参阅图8f,图8f是图7中步骤703后背光模组的剖面示意图。如图8f所示,在硅胶膜43固化后,依次制备扩散膜44和增亮膜45,以形成背光模组。扩散膜44和增亮膜45与图3中的扩散膜24和增亮膜25类似,在此不再赘述。
区别于现有技术,本申请具有以下优点:1.本申请提供的背光模组,包括基板,设置在基板上的背光源,以及包覆在背光源的出光面的硅胶膜,其中,硅胶膜沿垂直于基板方向的截面为弧形,以扩散背光源发出的光线。通过在背光源的的表面包覆截面为弧形的硅胶膜,能够增加背光源的出光角度,从而实现用更小的混光距离达成混光目标,减小了背光模组的厚度。2.本申请通过将钢网掩模板的多个通孔的中心与多个LED灯的中心对准后,再通过通孔将液体状的硅胶膜材质覆盖到多个LED灯上使得硅胶膜能够精确的与多个LED灯匹配,提高了制样精度。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种背光模组,其中,包括基板,设置在所述基板上的背光源,以及包覆在所述背光源的出光面的硅胶膜,其中,所述硅胶膜沿垂直于所述基板方向的截面为弧形,以扩散所述背光源发出的光线。
  2. 根据权利要求1所述的背光模组,其中,所述硅胶膜为含有荧光粉的硅胶层或含有量子点的硅胶层。
  3. 根据权利要求1所述的背光模组,其中,所述背光源包括多个阵列分布的LED灯,每一个所述LED灯的出光面均包覆有包覆表面为曲面的所述硅胶膜。
  4. 根据权利要求2所述的背光模组,其中,所述背光源包括多个阵列分布的LED灯,每一个所述LED灯的出光面均包覆有包覆表面为曲面的所述硅胶膜。
  5. 根据权利要求4所述的背光模组,其中,所述硅胶膜沿垂直于所述基板方向的截面为弧形、双弧形或多弧形曲线中的任一种。
  6. 根据权利要求4所述的背光模组,其中,所述LED灯为蓝光LED灯,所述LED灯的长度和宽度均为100~1000μm,相邻的所述LED灯之间的间距为100~2000μm。
  7. 根据权利要求4所述的背光模组,其中,所述背光模组还包括扩散膜以及增亮膜,所述扩散膜位于所述硅胶膜远离所述背光源的一侧,且与所述硅胶膜间隔设置,所述增亮膜位于所述扩散膜远离所述硅胶膜的一侧,且与所述扩散膜相邻设置。
  8. 根据权利要求1所述的背光模组,其中,所述硅胶膜是通过钢网掩膜的方式形成的。
  9. 一种显示装置,其中,包括背光模组,所述背光模组包括基板,设置在所述基板上的背光源,以及包覆在所述背光源的出光面的硅胶膜,其中,所述硅胶膜沿垂直于所述基板方向的截面为弧形,以扩散所述背光源发出的光线。
  10. 根据权利要求9所述的显示装置,其中,所述硅胶膜为含有荧光粉的硅胶层或含有量子点的硅胶层。
  11. 根据权利要求9所述的显示装置,其中,所述背光源包括多个阵列分布的LED灯,每一个所述LED灯的出光面均包覆有包覆表面为曲面的所述硅胶膜。
  12. 根据权利要求10所述的显示装置,其中,所述背光源包括多个阵列分布的LED灯,每一个所述LED灯的出光面均包覆有包覆表面为曲面的所述硅胶膜。
  13. 根据权利要求12所述的显示装置,其中,所述硅胶膜沿垂直于所述基板方向的截面为弧形、双弧形或多弧形曲线中的任一种。
  14. 根据权利要求12所述的背光模组,其中,所述LED灯为蓝光LED灯,所述LED灯的长度和宽度均为100~1000μm,相邻的所述LED灯之间的间距为100~2000μm。
  15. 根据权利要求12所述的显示装置,其中,所述背光模组还包括扩散膜以及增亮膜,所述扩散膜位于所述硅胶膜远离所述背光源的一侧,且与所述硅胶膜间隔设置,所述增亮膜位于所述扩散膜远离所述硅胶膜的一侧,且与所述扩散膜相邻设置。
  16. 根据权利要求9所述的显示装置,其中,所述硅胶膜是通过钢网掩膜的方式形成的。
  17. 一种背光模组的制作方法,其中,包括:
    准备基板;
    在所述基板的一侧设置背光源;
    在所述背光源的出光面形成硅胶膜,其中,所述硅胶膜沿垂直于所述基板方向的截面为弧形,以扩散所述背光源发出的光线。
  18. 根据权利要求17所述的制作方法,其中,所述在所述基板的一侧设置背光源的步骤具体包括:
    在所述基板上制备呈阵列分布的多个LED灯;
    所述在所述背光源的出光面形成硅胶膜,其中,所述硅胶膜相对于所述背光源的包覆表面为曲面以扩散所述背光源发出的光线的步骤具体包括:
    利用定位标记将钢网掩模板的多个通孔的中心与多个所述LED灯的中心一一对准后,通过涂覆或者喷墨打印的方式将液体状的所述硅胶膜的材质置于多个所述通孔中,其中,所述硅胶膜的材质为含有荧光粉的硅胶溶液或含有量子点的硅胶溶液;
    移除所述钢网掩模板并通过加热塑形和降温固化使液体状的所述硅胶膜固化,以使所述硅胶膜包覆所述LED灯,且所述硅胶膜沿垂直于所述基板方向的截面为弧形。
  19. 根据权利要求18所述的制作方法,其中,所述硅胶膜沿垂直于所述基板方向的截面为弧形、双弧形或多弧形曲线中的任一种。
  20. 根据权利要求18所述的制作方法,其中,所述LED灯为蓝光LED灯,所述LED灯的长度和宽度均为100~1000μm,相邻的所述LED灯之间的间距为100~2000μm。
PCT/CN2018/097410 2018-05-29 2018-07-27 背光模组、显示装置及背光模组的制作方法 WO2019227647A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/172,846 US10726772B2 (en) 2018-05-29 2018-10-28 Display device, backlight module and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810532486.1 2018-05-29
CN201810532486.1A CN108732818A (zh) 2018-05-29 2018-05-29 背光模组、显示装置及背光模组的制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/172,846 Continuation US10726772B2 (en) 2018-05-29 2018-10-28 Display device, backlight module and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2019227647A1 true WO2019227647A1 (zh) 2019-12-05

Family

ID=63936694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097410 WO2019227647A1 (zh) 2018-05-29 2018-07-27 背光模组、显示装置及背光模组的制作方法

Country Status (2)

Country Link
CN (1) CN108732818A (zh)
WO (1) WO2019227647A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161752A (zh) * 2019-05-28 2019-08-23 武汉华星光电技术有限公司 一种背光模组及显示装置
CN110420776B (zh) * 2019-08-06 2021-03-02 京东方科技集团股份有限公司 一种掩膜组件及Mini LED背光模组的制作方法
CN111474768A (zh) * 2020-04-21 2020-07-31 Tcl华星光电技术有限公司 背光模组及其制备方法与显示装置
CN115720644A (zh) * 2021-05-27 2023-02-28 京东方科技集团股份有限公司 背光模组、其制作方法及显示装置
CN114464604B (zh) * 2021-07-16 2023-04-11 荣耀终端有限公司 显示装置、电子设备及背光模组的封装方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162318A (zh) * 2006-10-11 2008-04-16 詹宗文 具有植入式led的背光板结构及其制作方法
CN105206642A (zh) * 2015-10-13 2015-12-30 南京大学 一种超高密度led显示器件及其制造方法
CN105226167A (zh) * 2015-11-02 2016-01-06 杭州电子科技大学 一种全角度发光的柔性led灯丝及其制造方法
CN206497275U (zh) * 2016-11-11 2017-09-15 广东晶科电子股份有限公司 直下式led灯条及背光模组
CN107799510A (zh) * 2017-12-01 2018-03-13 广东省半导体产业技术研究院 一种全光谱白光微led芯片

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341163C (zh) * 2004-03-29 2007-10-03 宏齐科技股份有限公司 白光发光二极管单元
EP2056366B1 (en) * 2006-08-14 2013-04-03 Fujikura Ltd. Light emitting device and illumination device
CN101603664B (zh) * 2009-06-23 2012-04-11 中国乐凯胶片集团公司 一种光学扩散膜
CN101639181A (zh) * 2009-08-07 2010-02-03 广东昭信光电科技有限公司 直下式背光系统
CN101851414B (zh) * 2010-04-15 2012-10-10 宁波激智新材料科技有限公司 应用于光学扩散薄膜的组合物、光学扩散薄膜及液晶显示装置
CN102339914B (zh) * 2011-09-28 2013-07-24 广东昭信灯具有限公司 一种具有白光光子晶体的发光二极管的制备方法
CN102540291B (zh) * 2012-02-08 2014-05-07 宁波长阳科技有限公司 一种光学扩散膜的制备方法
CN105609494B (zh) * 2014-10-27 2019-03-01 光宝光电(常州)有限公司 白光发光装置
CN104993035B (zh) * 2015-07-30 2018-08-17 厦门大学 一种暖白光led发光装置
CN107565004B (zh) * 2016-06-07 2020-06-30 青岛云源光电科技有限公司 一种led面光源高显指发光的封装方法
CN107546312A (zh) * 2017-08-24 2018-01-05 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162318A (zh) * 2006-10-11 2008-04-16 詹宗文 具有植入式led的背光板结构及其制作方法
CN105206642A (zh) * 2015-10-13 2015-12-30 南京大学 一种超高密度led显示器件及其制造方法
CN105226167A (zh) * 2015-11-02 2016-01-06 杭州电子科技大学 一种全角度发光的柔性led灯丝及其制造方法
CN206497275U (zh) * 2016-11-11 2017-09-15 广东晶科电子股份有限公司 直下式led灯条及背光模组
CN107799510A (zh) * 2017-12-01 2018-03-13 广东省半导体产业技术研究院 一种全光谱白光微led芯片

Also Published As

Publication number Publication date
CN108732818A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2019227647A1 (zh) 背光模组、显示装置及背光模组的制作方法
US11709397B2 (en) Backlight including patterned reflectors, diffuser plate, and method for fabricating the backlight
WO2016054838A1 (zh) 直下式背光模组及其制造方法
WO2019184163A1 (zh) 背光模组及显示装置
CN108732816B (zh) 面光源背光模组及液晶显示面板
US11927791B2 (en) Backlights including patterned reflectors
US20190302529A1 (en) Backlight module and display device
WO2017206290A1 (zh) 背光模组以及液晶显示器
JP2023524022A (ja) タイル状構成要素を有する表示デバイス
WO2017193416A1 (zh) 液晶显示面板及液晶显示器
WO2016148414A1 (ko) 발광소자 어레이와 이를 포함하는 조명시스템
WO2023159686A1 (zh) 背光模组及显示装置
WO2022160803A1 (zh) 一种发光模组和显示装置
CN109164638B (zh) 发光模组及其制造方法、直下式背光源
US10726772B2 (en) Display device, backlight module and manufacturing method thereof
CN112346169A (zh) 一种新型直下式背光模组及其led发光器件
WO2016201749A1 (zh) 量子管发光装置、背光模组及液晶显示器
CN112180497A (zh) 一种玻璃导光板与玻璃扩散板融合背光结构
WO2013100234A1 (en) Lamp device and lcd using the same
TW200842456A (en) Liquid crystal display and side-type backlight module thereof
TW200844566A (en) Backlight module and liquid crystal display
WO2021221899A1 (en) Backlights including patterned reflectors
CN202452281U (zh) 导电化学强化玻璃制造一体成型背光模组
WO2019227796A1 (zh) 背光模组及显示装置
WO2013143176A1 (zh) 一种直下式背光模组及液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920996

Country of ref document: EP

Kind code of ref document: A1