WO2019225957A1 - 마그네틱 척 - Google Patents

마그네틱 척 Download PDF

Info

Publication number
WO2019225957A1
WO2019225957A1 PCT/KR2019/006103 KR2019006103W WO2019225957A1 WO 2019225957 A1 WO2019225957 A1 WO 2019225957A1 KR 2019006103 W KR2019006103 W KR 2019006103W WO 2019225957 A1 WO2019225957 A1 WO 2019225957A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
magnetic
magnetic chuck
workpiece
magnetizable core
Prior art date
Application number
PCT/KR2019/006103
Other languages
English (en)
French (fr)
Inventor
이용구
이종민
Original Assignee
(주)진영마그네틱리서치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)진영마그네틱리서치 filed Critical (주)진영마그네틱리서치
Publication of WO2019225957A1 publication Critical patent/WO2019225957A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • B23Q3/154Stationary devices
    • B23Q3/1543Stationary devices using electromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • B23Q3/154Stationary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2703/00Work clamping
    • B23Q2703/02Work clamping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2703/00Work clamping
    • B23Q2703/12Accessories for attaching

Definitions

  • the present invention relates to a magnetic chuck for floatingly supporting a target workpiece such as milling or grinding. More specifically, the posture of the workpiece can be variously changed in accordance with a table structure, a processing form, a processing method, and the structure is simplified. It relates to a magnetic chuck that can reduce manufacturing processes and costs.
  • the jig is largely classified into a fixed type of a structure arranged to protrude at a designated position on the table of the processing equipment, and a movable type in which an operator can adjust the position of the jig as necessary.
  • the movable jig is a jig of a type detachable from a table using a fastening means such as bolting, and a jig of a type detachable from a table using an electromagnetic force generated by on / off control of electric application (hereinafter, 'magnetic chuck'). Are classified as).
  • the conventional magnetic chuck since the conventional magnetic chuck must continuously supply electricity to the conventional magnetic chuck in order to maintain a fixed state with the table, there is a problem that power consumption is relatively large compared to the processing amount. In addition, when a power cut occurs during operations such as drilling or milling, the conventional magnetic chuck holding the workpiece in place is released and there is a problem that a safety accident occurs.
  • Patent Literature 1 Since the conventional magnetic chuck 200 of Patent Literature 1 constitutes the alnico magnet 224 with a magnetizable core, it is magnetically adsorbed to the workpiece seated on the lower plate 202 even after power is applied. The magnetic force to fix the position was maintained.
  • an alnico magnet 224 corresponding to the magnetizable core is mounted, and the insulating conductive coil 222 is wound in the transverse direction about the alnico magnet 224 to the extent thereof. Since the front and rear widths were wider, the size of the magnetic chuck 200 was larger and the weight was inevitably increased.
  • the structure of the above-described conventional magnetic chuck 200 has a low height compared to the front and rear widths, the stability of the vertical processing for the workpiece having a high height is degraded.
  • the conventional magnetic chuck 200 is an alnico magnet 224 ) Asymmetrical structure around.
  • This asymmetrical structure of the conventional magnetic chuck 200 has complicated the mold structure for filling the liquid resin for filling the insulating means 220 or epoxy granite, and also makes the inflow process of the insulating means 220 difficult.
  • such a problem increases the manufacturing cost of the magnetic chuck 200 and also causes a decrease in production efficiency.
  • the conventional magnetic chuck 200 should be configured with a lower plate 202 on which both the workpiece and the magnetic chuck 200 can be placed, and the lower plate 202 should be fastened with a bolt and a lower end of the alnico magnet 224. .
  • the lower plate 202 since the lower plate 202 has to have a plate shape wider than the front and rear width of the magnetic chuck 200 (see FIG. 1, reference mark) so that the workpieces can be placed together, in fact, the number of constituent members of the conventional magnetic chuck 200 is large and structured. It was also complicated.
  • the lower plate 202 has to have a large area according to the size of the workpiece, thereby increasing the weight and manufacturing cost of the magnetic chuck.
  • the conventional magnetic chuck 200 is directly fixed to the table of the processing equipment by the magnetic force generated immediately after applying the current to the insulating conductive coil 222, while applying the current to the conductive coil 222, the conventional magnetic chuck ( 200) was impossible to move. Therefore, the operator has to apply the current to the conductive coil 222 only after first placing the position of the magnetic chuck 200 on the table at the designated position, so that the worker has to be cumbersome and inconvenient.
  • the conventional magnetic chuck 200 has a complicated manufacturing process of the magnetic chuck 200 itself, a high cost of assembly production, and causes the increase in the processing, the assembly, and the man-hour of the processed parts.
  • the present invention has been invented to solve the above problems, it is possible to significantly reduce the manufacturing process and cost by reducing the number of constituent members and simplify the structure, and the magnetic adsorption fixing of the workpiece for the work is the front, rear and Since both sides and upper and lower sides are possible, the task is to provide a magnetic chuck that can maximize the operational convenience and can stably process workpieces larger than the width between the magnetic poles of the N and S poles.
  • one of the one or one end of the second conductor is a magnetic chuck in which a gap is formed so as not to contact the table for blocking the magnetic path.
  • the number of constituent members can be reduced and the structure can be simplified, thereby significantly reducing the manufacturing process and cost, and the magnetic adsorption fixation of the workpiece is performed on the front, rear, and both sides of the workpiece for work. Since it is possible, there is an effect to maximize the operational benefits.
  • the magnetizable core of the magnetic chuck has a horizontal axis structure between the first and second conductors, the conductive coil surrounding the magnetizable core is disposed in the longitudinal direction to narrow the front and rear widths of the magnetic chuck.
  • the height of the magnetic chuck is increased, thereby increasing the stability of the workpiece vertically.
  • FIG. 1 is a perspective view showing a first embodiment of a magnetic chuck according to the present invention
  • FIG. 2 is a cross-sectional view of the magnetic chuck shown in FIG.
  • FIG. 3 is a cross-sectional view sequentially showing a driving mode and a magnetically adsorption process of a workpiece in the first embodiment
  • FIG. 5 is a sectional view showing a second embodiment of a magnetic chuck according to the present invention.
  • FIG. 6 is a cross-sectional view showing a third embodiment of the magnetic chuck according to the present invention.
  • FIG. 7 is a perspective view showing an embodiment of a flange configured with a magnetic chuck according to the present invention.
  • FIG. 8 is a cross-sectional view showing an installation state of the jig shown in FIG. 7, and a plan view showing a plan view of FIG.
  • FIG. 9 is a sectional view showing a fourth embodiment of a magnetic chuck according to the present invention.
  • FIG. 10 is a cross-sectional view showing another embodiment of the fourth embodiment of the workpiece.
  • FIG. 11 is a perspective view showing still another embodiment of the fourth embodiment.
  • FIG. 12 is a cross-sectional view showing the fastening structure of the conductor and the object using a jig-shaped bolt.
  • za is a Chinese word denoted by " ⁇ ”, and is a flow of magnetic force generated by the magnetic force or magnetic field induction of the permanent magnet.
  • Magnetic field induction means having magnetic force with magnetic field induction through electric application.
  • FIG. 1 is a perspective view showing a first embodiment of a magnetic chuck according to the present invention
  • Figure 2 is a cross-sectional view of the magnetic chuck shown in FIG.
  • the magnetic chuck 10 of the present embodiment includes a magnetizable core 11, a conductive coil 15 surrounding the circumference of the magnetizable core 11, one end of the magnetizable core 11, bolts, welding, rivets, The other end of the magnetizable core 11 and the other end so as to face the first ceramic body 12 coupled to each other via a fixing means (not shown) such as resin bonding, and the first ceramic body 12 side by side.
  • the magnetism core 11 and the conductive coil 15 are wrapped between the second conductor 14 and the first conductor 12 and the second conductor 14 coupled by means. Includes an insulator (16) blocking; When the first conductor 12 and the second conductor 14 stand up on the table T, one of the first conductors 12 or one end of the second conductors 14 is blocked. In order to avoid contact with the table T, the gap G is formed.
  • the magnetizable core 11 may be a general magnetizable material or an Alnico material such that a magnetic field is induced by a current applied to the conductive coil 15.
  • the first and second conductors 12 and 14 are made of a magnetic material, and are bonded to both ends of the magnetizable core 11 and bolted, welded, riveted, and resin bonded so as to face each other around the magnetizable core 11. They are arranged side by side to each other via a fixing means such as. One or more selected ones of the first and second conductors 12 and 14 arranged in this manner are in contact with the workpiece W or the table T as shown in FIG. 1, and the workpiece W serving as a function of the magnetic chuck 10. In order to attach and fix the shape, the first ceramic body 12 and the second ceramic body 14 are disposed to stand upright on the table T. Accordingly, the magnetizable core 11 having both ends coupled to the first and second conductors 12 and 14 respectively forms a horizontal axis structure (see FIG. 2) parallel to the table T. As shown in FIG.
  • the first conductor 12 and the second conductor 14 are upright on the table T, one end of the first conductor 12 or one end of the second conductor 14 may be The gap G is formed so as not to contact the table T for magnetic insulation for blocking.
  • the first conductor 12 forms a gap G at one end thereof so as not to contact the table T, and the second conductor 14 has a table T. FIG. ). Therefore, even when electricity is applied to the conductive coil 15, the magnetic chuck 10 itself and the table (T) does not form a magnetic path, which causes the magnetic chuck 10 to move freely without being magnetically attracted to the table (T). This is possible.
  • the conductive coil 15 wraps around the magnetizable core 11 and constitutes a wire or a connector (not shown) drawn for the application of current. As a result, when a current is applied to the conductive coil 15, a magnetic field is induced around the magnetizable core 11, whereby the first and second conductors 12 and 14 conduct a magnetic field.
  • the insulator 16 insulates the magnetic path between the first conductor 12 and the second conductor 14 by wrapping the magnetizable core 11 and the conductive coil 15. Therefore, the magnetizable core 11 and the conductive coil 15 of the present embodiment are not exposed to the outside, and the first conductor 12 and the second conductor 14 are the magnetizable core 11 and the conductive coil 15. ) While wrapping and facing each other to form the front and rear, the magnetic chuck 10 forms a hexahedron shape.
  • the magnetic chuck 10 of the present embodiment further includes a non-conductive body 13 is inserted into the gap (G) coupled to reinforce the insulation for blocking the magnetic path.
  • the non-conductive body 13 of the present embodiment is coupled to the one end in order to block the magnetic path of one end of the first conductor 12.
  • the non-conductive body 13 is made of a non-conductive material, and blocks the magnetic path formed in the first ceramic body 12 from being transmitted to the table T.
  • FIG. 3 is a cross-sectional view sequentially showing the driving mode of the first embodiment and the magnetically adsorption process of the workpiece.
  • the magnetic chuck 10 of the present embodiment is coupled to both ends of the magnetizable core 11 arranged laterally so that the first and second conductors 12 and 14 face each other. Therefore, the first conductor 12 and the second conductor 14 form a posture placed on the table T, and in such a posture, the workpiece W is magnetically adsorbed to be fixed at a set position.
  • the magnetic force induced by the magnetizable core 11 through the electrical application to the conductive coil 15 is the first conductor 12 and the second conductor 14.
  • the ceramics of each of the second ceramic bodies 14 are connected to the table T.
  • the magnetic force induced in the magnetizable core 11 is the first magnetic body 12 and the second ceramic. It does not form a virtuous cycle of the virtuous cycle through the sieve 14. Therefore, even though electricity is applied to the conductive coil 15, the magnetic chuck 10 is not magnetically attracted to the table T, and as shown in FIG. 10) can be moved. Therefore, the workpiece W having a large size or a heavy weight is placed in advance on the table T, and the magnetic chuck 10 in a state where electricity is applied can be moved in accordance with the workpiece.
  • the magnetic force of the magnetizable core 11 is determined by the second conductor ( 14), the table T, the workpiece (W), the first ceramic body 12 and the magnetizable core 11 in order to form a virtuous cycle.
  • the magnetic chuck 10, the workpiece W, and the table T are magnetically attracted to each other by magnetic force, thereby fixing the workpiece W as well as the magnetic chuck 10 at a set position of the table T.
  • the operator may perform a machining operation such as grinding, milling, cutting, etc. on the workpiece (W).
  • FIG. 4 is a cross-sectional view showing another use of the first embodiment of the workpiece.
  • the magnetic chuck 10 of the present embodiment can be attached so as to contact the upper end of the first conductor 12 and the second conductor 14, as shown in Figure 4 (a).
  • the induced magnetic force of the magnetizable core 11 is in order of the first conductor 12, the workpiece W, the second conductor 14, and the magnetizable core 11. It will form a virtuous cycle that leads to. Therefore, the workpiece W is magnetically attracted to the upper surface of the magnetic chuck 10 by the generated magnetic force of the magnetic chuck 10.
  • the magnetic chuck 10 of the present embodiment constitutes a magnetic reference table 10a for holding the reference position of the workpiece W.
  • the magnetic reference base 10a functions to support the workpiece W to be accurately positioned at the reference position on the upper surface of the magnetic chuck 10, and if necessary, the operator may use the first ceramic body 12 or the second body.
  • the magnetic reference base 10a is detachably installed with the first and second conductors 12 and 14 so as to be installed on the conductors 14.
  • the magnetic reference base 10a is installed to protrude upward from the side of the first conductor 12. Through this, the workpiece (W) as shown in Figure 4 (b) is aligned with the point where the stopper (S) is located on the upper surface of the magnetic chuck 10 was correctly positioned in the reference position.
  • the magnetic chuck 10 does not apply a magnetic force to the table (T). Therefore, the operator can move the magnetic chuck 10 in the table T, and can move the position of the magnetic chuck 10 which magnetically adsorbs the workpiece W to a designated position.
  • FIG. 5 is a cross-sectional view showing a second embodiment of the magnetic chuck according to the present invention.
  • the flanges 19 and 19 ' are provided on at least one of the first conductor 12 or the second conductor 14 so that the magnetic chuck 10 can be fixed to the table. Is formed.
  • the flanges 19 and 19 ' may have various shapes according to the fastening position of the magnetic chuck 10 with respect to the table T, and as shown in FIG. 14) and 'L' may be formed to be bent, as shown in Figure 5 (b) may be formed so that the flange 19 'extends in the longitudinal direction of the second conductor (14).
  • the flanges 19 and 19 'of the illustrated shape are formed to be bent or extend in the longitudinal direction of the second conductor 14, but the shape and shape may be various.
  • the conductors having the flanges 19 and 19 ' are assumed to be second conductors 14 which are not connected to the non-conductive body 13, but the first conductors to which the non-conductive body 13 is connected. It may also be formed in (12) (see Fig. 6).
  • the flanges 19 and 19 ' are fastened to the table T by means of fastening means B, such as bolts, so as to fix the magnetic chuck 10 at one point of the table T. Do this.
  • the flanges 19 and 19 'and the table T may be fastened by various methods such as welding or bonding, in addition to the general fastening means B.
  • FIG. 6 is a cross-sectional view showing a third embodiment of the magnetic chuck according to the present invention.
  • the magnetic chuck 10 of the present embodiment further includes a support 17 having an upper end connected to the flange 19 and a lower end seated on the table T so as to support the flange 19.
  • the flange 19 is mounted on the table T as shown in FIG. 5 and has a bracket function fixed through the fastening means B, and the larger workpiece W is relatively wider than the magnetic chuck 10 as shown in FIG. 6. It also serves as a pedestal to support it.
  • the flange 19 is formed at the other end of the first conductor 12 so that the flange 19 is located above the magnetic chuck 10.
  • the width of the upper surface of the magnetic chuck 10 is expanded, so that the workpiece W seated on the upper surface of the magnetic chuck 10 can be stably fixed.
  • the magnetic chuck 10 when configured and arranged such that the flange 19 is located at the upper portion, the upper portion is relatively wider than the lower portion of the magnetic chuck 10.
  • the magnetic chuck 10 of this structure is the load is biased to the portion where the flange 19, the magnetic chuck 10 itself can be inclined without maintaining a stable posture in the table (T).
  • the pressure applied to the workpiece W is very large and the magnitude of the pressure applied is also fluid, which causes severe vibration to the magnetic chuck 10, and in this process ) Also vibrates violently due to machining vibrations, preventing precision machining.
  • the magnetic chuck 10 of the present embodiment further includes a support 17 which is mounted so that the upper end is coupled to the flange 19 and the lower end is seated on the table T, so that the flange 19 is stably supported. To be supported.
  • the support 17 supports the flange 19 to prevent the magnetic chuck 10 from inclining as shown in FIG. 6, even when the workpiece W is placed on the upper surface of the magnetic chuck 10 including the flange 19,
  • the magnetic chuck 10 itself can be maintained without tilting even during machining, and it can also prevent severe vibration that may occur during machining.
  • the support 17 is detachably coupled to the flange 19 via a fastening means B1 such as a bolt or a pin, the support 17 is flanged to the support 17 according to the arrangement position of the magnetic chuck 10. ) Can be combined or separated.
  • the support 17 is preferably a non-magnetic material so that the magnetic chuck 10 to which the support 17 is coupled is cut off with the table T even when a current is applied to the conductive coil 15. .
  • the magnetic chuck 10 having a structure in which the non-magnetic material 13 and the flange 19 are formed in the first ceramic body 12 and the support 17 of the non-magnetic material supports the flange 19 is provided.
  • the stopper S ' made of a magnetic material is disposed on the table T so that the second conductor 14 and the work W are attached.
  • the induced magnetic force of the magnetizable core 11 includes the second conductor 14, the stopper S ′, the workpiece W, the flange 19, the first conductor 12, and the magnetizable core 11.
  • Figure 7 is a perspective view showing an embodiment of a flange configured with a magnetic chuck according to the present invention
  • Figure 8 is a cross-sectional view showing the installation of the jig shown in Figure 7, and the plan view of Figure 7 (c) The figure is shown.
  • the flange chuck 19 is installed on the flange 19 as well as the through hole 19a to which the fastening means B1 is attached and detached from the support 17.
  • One or more nut holes 19b for inserting and detaching the jig J are formed to support the mounted workpiece W.
  • a plurality of small workpieces W may be seated as shown in FIG. 7B. have.
  • a plurality of small workpieces (W) can be arranged at regular intervals, to connect the jig (J) to the flange (19) to precisely space the gap.
  • the flange 19 constitutes a plurality of nut holes 19b into which the jig J is fitted, and the plurality of nut holes 19b are formed to be arranged at specified intervals.
  • the nut hole (19b) configured in the flange 19 may vary the interval, so that the operator is fixed by inserting the jig (J) in the required position, the workpiece (W) in accordance with the jig (J). It can rest on the flange 19.
  • the workpiece (W) may be pushed under a strong pressure in the process of processing, so that the flange (19) may be formed so as to protrude from the flange (19) to support it.
  • the nut holes 19b of the flange 19 may be arranged so as to form a single row at regular intervals, but in addition, a plurality of nut holes may form a single row, and the rows of nut holes may be different in each row. It can also be achieved. Therefore, according to the size of the workpiece (W) or the needs of the operator, the jig (J) can be arranged at different intervals and positions and the workpiece (W) can be processed.
  • the magnetic chuck 10 of the present embodiment forms a nut hole 14b corresponding to the nut hole 19b on the upper surface of the second ceramic body 14, and the jig J fixed to the flange 19.
  • jig (J ') for supporting the workpiece (W) is further configured. Therefore, the workpiece W has the jig J 'installed on the second conductor 14 together with the jig J provided on the flange 19 so as to hold the left side surface of the workpiece W on both sides, so that the workpiece Can support (W) more securely and settle down.
  • the jig (J, J ') of the present embodiment is a bolt shape that can be detachably fixed to the nut holes (14b, 19b) and the magnetic chuck so that the head can support the workpiece (W) from the left side Protruding to the surface of (10) is possible without limitation in the form.
  • the preferred jig J, J' of the present embodiment has a threaded portion J1 as shown in FIG. 8 (a). It consists of the taper part J2 and the head part J3.
  • the nut holes 14b and 19b also constitute a threaded portion screwed with the threaded portion J1 and a tapered portion in contact with the tapered portion J2. Therefore, when the threaded portion J1 of the jig J, J 'is engaged with the threaded portions of the nut holes 14b, 19b and fixed, the tapered portion J2 of the jig J, J' is nuthole 14b, 19b. ), The head part J3 of the jig J, J 'protrudes from the surface of the magnetic chuck 10.
  • This structure allows the tapered portion to maintain its position while restricting the left and right shaking of the jig (J, J '), corresponding to the pressing force applied by the cutter (C) in multiple directions during the machining process as shown in Figure 8 (b) It is possible to prevent the shaking of the workpiece (W).
  • the magnetic chuck 10 of the present embodiment as shown in Fig. 7 (c), the magnetic reference base 10a that can support the workpiece (W) in the designated position on the upper surface of the magnetic chuck 10 further.
  • a plurality of workpieces (W) can be precisely arranged side by side at a predetermined interval and position on the upper surface of the magnetic chuck 10, by the passage through the ceramic reference table (10a) in the second conductor (14)
  • the workpiece W can be fixed by a strong magnetic force.
  • FIG. 9 is a cross-sectional view showing a fourth embodiment of the magnetic chuck according to the present invention
  • FIG. 10 is a cross-sectional view showing another embodiment of the fourth embodiment with respect to the workpiece.
  • the magnetic chuck 10 of the present embodiment is a non-magnetic body coupled to one end of the first conductor 12 or one end of the second conductor 14, as shown in FIGS. 9A and 9B. In order to stagger (13 '), the other end of the remaining one conductor is coupled to the non-conductive body 13' or the magnetic body 18.
  • one end of the first conductor 12 is finished by a non-magnetic body 13 ′, and the other end of the second conductor 14 is attached to the ceramic body 18.
  • Each is finished by the non-magnetic object 13 'according to the arrangement
  • one end of the first ceramic body 12 is finished by a non-magnetic body 13 ′
  • the other end of the second ceramic body 14 is also a non-magnetic body 13 ′.
  • the non-conductive body 13 ' which finishes the other end of the second conductor 14 blocks the magnetic path with the workpiece W. Therefore, by connecting the magnetic reference base (10a) to the second conductor 14, the magnetic reference base (10a) forms a magnetic path between the workpiece (W) and the second conductor (14) to the workpiece (W) with a strong magnetic force ) As well as the fixed position, and performs a reference position function for the processing of the workpiece (W).
  • the non-magnetic body 13' and the magnetic body 18 are respectively formed of the first conductor 12 and It should be detachably coupled with the second conductor (14).
  • the objects 13 'and 18 of the present embodiment are detached from the first and second conductors 12 and 14 via a fastening means B3 such as a bolt.
  • the arrangement position of the magnetic chuck 10 is arranged. It is possible to separate the object interfering with the projection while changing the, and, as shown in Fig. 10 (b), the flange formed on the stopper (S ') and the second conductor 14 provided in the table (T) The operator may directly adjust and adjust the circulation path of the induced magnetic force required by the site 19 and the arrangement position of the workpiece W in the field.
  • the first conductor 12 or the second conductor 14 is formed with nut-type fixing holes 12a and 14a.
  • the fixing holes 12a and 14a are formed at positions communicating with the through holes S1 formed in the magnetic chuck 10 as shown in FIG. 10B. Therefore, when the magnetic chuck 10 magnetically absorbs the stopper S ', the through hole S1 and the fixing hole 14a are coupled to each other through the fastening means B2, so that the magnetic chuck 10 has its own magnetic force. In addition, the magnetic chuck 10 is firmly fixed to the stopper (S ').
  • the fixing holes 12a and 14a form a nut type
  • the fastening means B2 is preferably a bolt corresponding thereto, but is not necessarily limited thereto. .
  • Fig. 11 is a perspective view showing still another embodiment of the fourth embodiment
  • Fig. 12 is a sectional view showing the fastening structure of the conductor and the object by using a jig-shaped bolt.
  • At least one first jig hole 13a and a second jig hole 13b in which the jig J 'is installed are formed in the non-conductive body 13'.
  • the first jig hole 13a is fastened only to the non-conductive body 13 ′ without being directly coupled to the first and second conductors 12 and 14 as shown in FIG. Support to keep in place.
  • the second jig hole 13b is formed to penetrate up and down as shown in FIG. 12 (b), so that the jig J 'is directly coupled to the first and second conductors 12 and 14.
  • the lower ends of the second jig holes 13b and 13b ' are formed to have a narrow diameter so that the tapered portion J2 of the jig J' is caught, and the non-conductive body 13 'is connected via the jig J'.
  • the first and second conductors 12 and 14 are fastened to each other.
  • the second jig hole 13b is configured only at both ends of the non-conductive object 13 ', and the first jig hole 13a is configured at the center of the non-conductive object 13', but the position thereof is implemented. It is not limited to the example.
  • the jig J ' is not limited to being coupled to only the non-conductive body 13' like the first jig hole 13a, and the threaded portion J1 of the jig J 'is connected to the first and second conductors ( 12, 14, and in addition to the supporting means of the jig J ', the non-conductive body 13' and the first and second conductors 12, 14 may also have a function of a fastening means for fastening each other. have.
  • the jig J ' is a material having insulation to a magnetic path.
  • the fastening means between the object and the conductor may be a bolt such as a general wrench bolt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

본 발명은 밀링 또는 연삭 등의 대상 가공물을 부동하게 지지하는 마그네틱 척에 관한 것으로, 좀 더 상세하게는 테이블 구조, 가공 형태, 가공 방식 등에 맞춰서 가공물의 자세를 다양하게 변경할 수 있으며, 구조를 단순화해서 제작 공정과 원가를 절감할 수 있는 마그네틱 척에 관한 것으로, 자화성 코어와, 상기 자화성 코어의 둘레를 감싸는 도전성 코일과, 상기 자화성 코어의 일단과 결합되는 제1도자체와, 상기 제1도자체와 나란하게 마주하도록 자화성 코어의 타단과 결합되는 제2도자체와, 상기 제1도자체와 제2도자체 사이에서 자화성 코어와 도전성 코일을 감싸 자로를 차단하는 절연체를 포함하고; 상기 제1도자체와 제2도자체가 테이블 상에 직립시, 상기 제1도자체의 일단 또는 제2도자체의 일단 중 하나가 자로의 차단을 위해서 테이블과 접하지 않도록 공극이 형성된 것이다.

Description

마그네틱 척
본 발명은 밀링 또는 연삭 등의 대상 가공물을 부동하게 지지하는 마그네틱 척에 관한 것으로, 좀 더 상세하게는 테이블 구조, 가공 형태, 가공 방식 등에 맞춰서 가공물의 자세를 다양하게 변경할 수 있으며, 구조를 단순화해서 제작 공정과 원가를 절감할 수 있는 마그네틱 척에 관한 것이다.
일반적인 가공장비인 연삭기, 범용 밀링, CNC 머시닝센터, 직립볼반, 레디알볼반 등은, 가공물이 정밀하게 가공되도록 지정된 위치에 부동하게 지지하는 지그가 요구된다.
지그는 가공장비의 테이블에서 지정된 위치에 돌출하게 배치된 구조의 고정형과, 작업자가 필요에 따라 지그의 위치를 조정할 수 있는 이동형으로 크게 분류된다. 여기서 이동형 지그는, 볼팅 등의 체결수단을 이용해서 테이블과 탈착하는 타입의 지그와, 전기 인가의 온/오프 제어에 따라 생성되는 전자력을 이용해서 테이블과 탈착하는 타입의 지그(이하 '마그네틱 척')로 분류된다.
그런데 종래 마그네틱 척은 테이블과의 고정 상태를 유지시키기 위해서 전기를 종래 마그네틱 척에 지속적으로 공급해야 하므로, 가공량에 비해 전력 소비가 상대적으로 크다는 문제가 있었다. 또한 드릴링이나 밀링 가공 등의 작업 중에 단전이 발생하면, 가공물을 제 위치에 잡아두는 종래 마그네틱 척의 고정이 해제되어 자칫 안전 사고가 발생하는 문제가 있었다.
이러한 문제를 해결하기 위해서 후술할 특허문헌1 등의 종래 마그네틱 척이 개발되었다.
특허문헌1의 종래 마그네틱 척(200)은 알니코 자석(224)을 자화성 코어로 구성하므로, 충분한 전기가 인가된 이후에는 단전을 해도 하판(202)에 안착된 가공물에 자기적으로 흡착되어 그 위치를 고정하기 위한 자력이 유지되었다.
또한 종래 마그네틱 척(200)은 도 11a 내지 도 11c에 도시된 바와 같이, 환봉 형태의 가공물 뿐만 아니라, 본체부(210) 및 하판(202)에 소정의 요홈을 형성시켜서 가공물의 각도가공이 가능했다.
그런데, 종래 마그네틱 척(200)은, 자화성 코어에 상응하는 알니코 자석(224)이 입설되고, 절연 도전성 코일(222)은 알니코 자석(224)을 중심으로 횡방향으로 권선되어 그 범위만큼 전후 폭이 넓어져서, 마그네틱 척(200)의 크기가 커지고 중량 또한 증가할 수밖에 없었다.
더욱이 전술한 종래 마그네틱 척(200)의 구조는 전후 폭에 비해 높이가 낮으므로, 높이가 높은 가공물에 대한 수직 가공의 안정성을 떨어뜨렸다.
또한, 본체부(210)는 알니코 자석(224)의 상단과 연결되고, 지지부재(204)는 알니코 자석(224)과 나란하게 배치되므로, 종래 마그네틱 척(200)은 알니코 자석(224)을 중심으로 비대칭한 구조를 이루었다. 종래 마그네틱 척(200)의 이러한 비대칭 구조는, 절연수단(220) 충진용 액상 수지 또는 에폭시 그라나이트 등을 충진하기 위한 성형틀 구조를 복잡하게 했고, 절연수단(220)의 유입 공정 또한 어렵게 했다. 물론 이러한 문제는 마그네틱 척(200)의 제작 단가를 높이고 생산효율 또한 저해하는 원인이 되었다.
또한, 종래 마그네틱 척(200)은, 가공물과 마그네틱 척(200) 모두를 얹을 수 있는 하판(202)을 구성해야 하며, 하판(202)은 알니코 자석(224)의 하단과 볼트로 체결되어야 한다. 더욱이 하판(202)은 가공물을 함께 얹을 수 있도록 마그네틱 척(200)의 전후 폭(도 1 참조, 기준 표시)보다 넓은 판 형상을 이루어야 하므로, 사실상 종래 마그네틱 척(200)의 구성 부재 수는 많고 구조 또한 복잡했다. 특히 하판(202)은 가공물의 크기에 맞춰 넓은 면적을 갖추어야 하므로, 마그네틱 척의 중량과 제작 단가까지 증가시켰다.
또한 종래 마그네틱 척(200)은 절연 도전성 코일(222)에 전류를 인가하는 즉시 발생한 자력에 의해 가공장비의 테이블에 바로 고정되므로, 도전성 코일(222)에 전류를 인가하는 중에는 테이블에서 종래 마그네틱 척(200)의 이동이 불가능했다. 따라서, 작업자는 테이블에서 마그네틱 척(200)의 위치를 지정된 위치에 우선 배치한 이후에야 도전성 코일(222)에 전류를 인가해서 사용해야 하므로, 작업자는 가공 작업이 번거롭고 불편할 수밖에 없었다.
결국 종래 마그네틱 척(200)은 마그네틱 척(200) 자체의 제작 공정이 복잡하고 조립 생산 원가 또한 높았으며, 가공 부품의 가공과 조립 및 공수를 증가시키는 원인이 되었다.
이에 본 발명은 상기의 문제를 해소하기 위해 발명된 것으로, 구성 부재 수를 줄이고 구조를 단순화해서 제조 공정과 원가를 획기적으로 절감할 수 있으며, 작업을 위하여 가공물의 자기적 흡착 고정이 전,후면과 양측면과 상,하면 어느 곳에나 가능하므로, 작업상의 편익을 극대화할 수 있고 마그네틱의 N,S극 양 극간에 넓이보다 넓은 가공물도 안정적으로 가공할 수 있는 마그네틱 척의 제공이 해결하고자 하는 과제이다.
또한, 크기가 크거나 중량이 무거운 가공물을 테이블의 지정된 위치에 미리 안치시켜 놓고 전기가 인가된 상태의 마그네틱 척을 가공물에 맞춰 이동시킬 수도 있는 마그네틱 척의 제공이 해결하고자 하는 다른 과제이다.
또한, 높이가 높은 가공물의 수직 가공에 대한 안정도가 증가하는 마그네틱 척의 제공이 해결하고자 하는 또 다른 과제이다.
상기의 과제를 달성하기 위하여 본 발명은,
자화성 코어와, 상기 자화성 코어의 둘레를 감싸는 도전성 코일과, 상기 자화성 코어의 일단과 결합되는 제1도자체와, 상기 제1도자체와 나란하게 마주하도록 자화성 코어의 타단과 결합되는 제2도자체와, 상기 제1도자체와 제2도자체 사이에서 자화성 코어와 도전성 코일을 감싸서 이들을 고정시키고 자로를 차단하는 절연체를 포함하고;
상기 제1도자체와 제2도자체가 테이블 상에 직립시, 상기 제1도자체의 일단 또는 제2도자체의 일단 중 하나가 자로의 차단을 위해서 테이블과 접하지 않도록 공극이 형성된 마그네틱 척이다.
상기의 본 발명은, 구성 부재 수를 줄이고 구조를 단순화해서 제조 공정과 원가를 획기적으로 절감할 수 있고, 작업을 위하여 가공물의 자기적으로 흡착 고정이 전,후면과 양측면과 상,하면 어느 곳에나 가능하므로, 작업상의 편익을 극대화할 수 있는 효과가 있다.
또한, 마그네틱 척의 자화성 코어가 제1도자체와 제2도자체 사이에서 횡축 구조를 이루므로, 상기 자화성 코어를 감싸는 도전성 코일이 종방향으로 배치되어 마그네틱 척의 전후 폭이 좁아지는 효과가 있다.
또한, 크기가 크거나 마그네틱 척의 양 극간의 넓이보다 넓은 큰 가공물과 중량이 무거운 가공물을 테이블에 미리 안치시켜 놓고 전기가 인가된 상태에서도 마그네틱 척을 가공물에 맞춰 이동시켜서 가공물과 마그네틱 척과 테이블을 자력에 의해 부착 고정시키는 효과가 있다.
또한, 마그네틱 척의 높이가 높아져 가공물의 수직 가공에 대한 안정도가 증가하는 효과가 있다.
도 1은 본 발명에 따른 마그네틱 척의 제1 실시예를 도시한 사시도,
도 2는 도 1에 도시한 마그네틱 척의 단면도,
도 3은 상기 제1 실시예의 구동모습과 가공물의 자기적으로 흡착 과정을 순차 도시한 단면도,
도 4는 가공물에 대한 상기 제1 실시예의 다른 사용 모습을 도시한 단면도,
도 5는 본 발명에 따른 마그네틱 척의 제2 실시예를 도시한 단면도,
도 6은 본 발명에 따른 마그네틱 척의 제3 실시예를 도시한 단면도,
도 7은 본 발명에 따른 마그네틱 척이 구성된 플랜지의 일실시 예을 도시한 사시도,
도 8은 도 7에서 보인 지그의 설치 모습을 도시한 단면도와, 도 7의 (c)도면의 평면 모습을 도시한 도면,
도 9는 본 발명에 따른 마그네틱 척의 제4 실시예를 도시한 단면도,
도 10은 가공물에 대한 상기 제4 실시예의 다른 실시 모습을 도시한 단면도,
도 11은 상기 제4 실시예의 또 다른 실시 모습을 도시한 사시도,
도 12는 지그형 볼트를 이용해서 도자체와 피체의 체결 구조를 도시한 단면도이다.
상술한 본 발명의 특징 및 효과는 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 분명해질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 출원에서 사용한 용어는 단지 특정한 실시 예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다.
본 발명의 상세한 설명 및 청구범위에 기술되는 '자로'는 '磁路'로 표기되는 한자어로서, 영구자석의 자력 또는 자기장유도에 의해 생성된 자력의 흐름이다.
본 발명의 상세한 설명 및 청구범위에 기술되는 '도자성'과 '도자체'의 '도자'는 '導磁'로 표기되는 한자어로서, '자로'의 형성을 의미한다.
본 발명의 상세한 설명 및 청구범위에 기술되는 '자화'는 전기 인가를 통한 자기장유도로 자력을 갖게 됨을 의미한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
이하, 본 발명을 구체적인 내용이 첨부된 도면에 의거하여 상세히 설명한다.
도 1은 본 발명에 따른 마그네틱 척의 제1 실시예를 도시한 사시도이고, 도 2는 도 1에 도시한 마그네틱 척의 단면도이다.
본 실시의 마그네틱 척(10)은, 자화성 코어(11)와, 자화성 코어(11)의 둘레를 감싸는 도전성 코일(15)과, 자화성 코어(11)의 일단과 볼트, 용접, 리베트, 수지 접착 등의 고정수단(미도시)을 매개로 결합되는 제1도자체(12; 導磁體)와, 제1도자체(12)와 나란하게 마주하도록 자화성 코어(11)의 타단과 상기 고정수단을 매개로 결합되는 제2도자체(14)와, 제1도자체(12)와 제2도자체(14) 사이에서 자화성 코어(11)와 도전성 코일(15)을 감싸 자로(磁路)를 차단하는 절연체(16)를 포함하고; 제1도자체(12)와 제2도자체(14)가 테이블(T) 상에 직립시, 제1도자체(12)의 일단 또는 제2도자체(14)의 일단 중 하나의 자로를 차단하기 위해서 테이블(T)과 접하지 않도록 공극(G)이 형성된 것이다.
마그네틱 척(10)의 각 구성요소에 대하여 좀 더 구체적으로 설명한다.
자화성 코어(11)는 도전성 코일(15)에 인가된 전류에 의해 자기장이 유도되도록 일반적인 자화성 재질일 수도 있고, 알니코(Alnico) 재질일 수도 있다.
제1도자체(12)와 제2도자체(14)는 도자성 재질이며, 자화성 코어(11)를 중심으로 서로 마주하도록 자화성 코어(11)의 양단과 볼트, 용접, 리베트, 수지 접착 등의 고정수단을 매개로 각각 걸합하여 나란히 배치된다. 이렇게 배치된 제1도자체(12)와 제2도자체(14) 중 선택된 하나 이상은 도 1과 같이 가공물(W) 또는 테이블(T)과 접하고, 마그네틱 척(10)의 기능인 가공물(W)을 부착 고정하기 위해서 제1도자체(12)와 제2도자체(14)가 테이블(T) 상에 직립하도록 배치된다. 따라서, 양단이 각각 제1,2도자체(12, 14)에 결합하는 자화성 코어(11)는 테이블(T)과 나란한 횡축 구조(도 2 참조)를 이루게 된다.
이때, 제1도자체(12)와 제2도자체(14)가 테이블(T) 상에 직립시, 제1도자체(12)의 일단 또는 제2도자체(14)의 일단 중 하나가 자로 차단을 위한 자기적 절연을 위해서 테이블(T)과 접하지 않도록 공극(G)이 형성된다.
본 실시는 도 2의 (a)도면과 같이, 제1도자체(12)는 테이블(T)과 접하지 않도록 일단에 공극(G)을 형성하고, 제2도자체(14)는 테이블(T)과 접한다. 따라서 도전성 코일(15)에 전기가 인가되어도 마그네틱 척(10) 자체와 테이블(T) 간에 자로를 형성하지 못하며, 이로 인해 마그네틱 척(10)은 테이블(T)에 자기적으로 흡착됨 없이 자유로운 이동이 가능하다.
도전성 코일(15)은 자화성 코어(11)의 둘레를 감싸며, 전류 인가를 위해 인출된 전선 또는 커넥터(미도시)를 구성한다. 결국, 도전성 코일(15)에 전류가 인가되면, 자화성 코어(11)를 중심으로 자기장이 유도되고, 이를 통해 제1도자체(12) 및 제2도자체(14)는 자기장이 도자된다.
절연체(16)는 제1도자체(12)와 제2도자체(14) 사이에서 자화성 코어(11)와 도전성 코일(15)을 감싸 자로를 절연한다. 따라서 본 실시의 자화성 코어(11)와 도전성 코일(15)은 외부에 노출되지 않고, 제1도자체(12)와 제2도자체(14)는 자화성 코어(11)와 도전성 코일(15)을 감싸고 마주하여 전,후면을 이루면서, 마그네틱 척(10)은 육면체 형상을 이루게 된다.
참고로, 도 2의 (b)도면과 같이, 절연체(16)를 형성하는 수지 등의 절연물질이 제1,2도자체(12, 14) 사이에 충진되면, 상기 절연물질이 제1도자체(12)에 형성된 공극(G)으로 유입되어 매꿔진다. 이를 통해 제1도자체(12)와 테이블(T) 간에 자로가 차단되어서 자기적으로 절연된다.
한편, 본 실시의 마그네틱 척(10)은, 도 2의 (c)도면과 같이, 공극(G)에 삽입해 결합되어 자로 차단을 위한 절연성을 보강하는 비도자성 피체(13)를 더 포함한다.
본 실시의 비도자성 피체(13)는 제1도자체(12) 일단의 자로를 차단하기 위해서 상기 일단에 결합된다. 이때 비도자성 피체(13)는 비도자(非導磁) 재질로 이루어지며, 제1도자체(12)에 형성된 자로가 테이블(T)로 전달되는 것을 차단한다.
*도 3은 상기 제1 실시예의 구동모습과 가공물의 자기적으로 흡착 과정을 순차 도시한 단면도이다.
전술한 대로 본 실시의 마그네틱 척(10)은, 횡방향으로 배치된 자화성 코어(11)의 양단에 각각 제1도자체(12)와 제2도자체(14)가 서로 마주하도록 결합한다. 따라서 제1도자체(12)와 제2도자체(14)는 테이블(T) 상에 입설된 자세를 이루며, 이러한 자세에서 가공물(W)을 안치된 위치에 고정되도록 자기적으로 흡착한다.
마그네틱 척(10)의 구동 과정을 순차로 설명하면, 도전성 코일(15)로의 전기 인가를 통해 자화성 코어(11)에 유도된 자력은 제1도자체(12)과 제2도자체(14)에 각각 자로를 잇도록 도자하고, 제2도자체(14)의 자로는 테이블(T)로 이어진다. 그런데, 제1도자체(12)과 테이블(T)은 비도자성 피체(13)에 의해 자로가 차된되므로, 자화성 코어(11)에 유도된 자력은 제1도자체(12)과 제2도자체(14)을 경유하는 선순환 형태의 자로를 형성하지 못한다. 따라서 도전성 코일(15)에 전기가 인가됐음에도 불구하고 마그네틱 척(10)은 테이블(T)에 자기적으로 흡착되지 못하고, 도 3의 (a)도면과 같이 작업자는 테이블(T)에서 마그네틱 척(10)을 이동킬 수 있다. 따라서, 크기가 크거나 중량이 무거운 가공물(W)을 테이블(T)에 미리 안치시켜 놓고, 전기가 인가된 상태의 마그네틱 척(10)을 가공물에 맞춰 이동시킬 수 있다.
그런데, 도 3의 (b)도면과 같이 가공물(W)을 비도자성 피체(13)로 마감된 제1도자체(12)에 접합하면, 자화성 코어(11)의 자력은 제2도자체(14), 테이블(T), 가공물(W), 제1도자체(12) 및 자화성 코어(11) 순으로 선순환 형태의 자로를 이루게 된다. 결국, 마그네틱 척(10)과 가공물(W)과 테이블(T)은 자력에 의해 서로 자기적으로 흡착해서, 마그네틱 척(10)은 물론 가공물(W)을 테이블(T)의 안치된 위치에 고정시키고, 작업자는 가공물(W)에 대한 연삭, 밀링, 절삭 등과 같은 가공 작업을 수행할 수 있다.
도 4는 가공물에 대한 상기 제1 실시예의 다른 사용 모습을 도시한 단면도이다.
본 실시의 마그네틱 척(10)은 도 4의 (a)도면과 같이, 가공물(W)을 제1도자체(12)과 제2도자체(14)의 상단과 접하도록 부착할 수 있다. 이 경우 도전성 코일(15)에 전류를 인가하면 자화성 코어(11)의 유도 자력은 제1도자체(12), 가공물(W), 제2도자체(14) 및 자화성 코어(11) 순으로 이어지는 선순환 형태의 자로를 형성하게 된다. 따라서 가공물(W)은 마그네틱 척(10)의 발생 자력에 의해 마그네틱 척(10)의 상면에 자기적으로 흡착된다. 여기서 본 실시의 마그네틱 척(10)은 가공물(W)의 기준 위치를 잡기 위한 도자성 기준대(10a)를 구성한다. 여기서 도자성 기준대(10a)는 마그네틱 척(10)의 상면에서 가공물(W)이 기준 위치에 정확히 위치할 수 있도록 받침 기능을 하며, 필요에 따라 작업자가 제1도자체(12) 또는 제2도자체(14)에 설치할 수 있도록, 도자성 기준대(10a)는 제1,2도자체(12, 14)와 탈착 가능하게 설치된다.
본 실시에서 도자성 기준대(10a)는 제1도자체(12)의 측면에서 상부로 돌출하게 설치되었다. 이를 통해 도 4의 (b)도면과 같이 가공물(W)이 마그네틱 척(10)의 상면에서 스토퍼(S)가 위치한 지점과 맞춰져 기준 위치에 정확히 배치되었다.
한편, 제1도자체(12)와 제2도자체(14)와 테이블(T)은 비도자성 피체(13)의 자로 차단에 의해서, 자화성 코어(11)의 유도 자력이 제1도자체(12)와 테이블(T)과 제2도자체(14)를 따라 순환하는 자로가 형성되지 못하므로, 마그네틱 척(10)은 테이블(T)에 자력을 가하지 못한다. 따라서 작업자는 테이블(T)에서 마그네틱 척(10)을 이동시킬 수 있어서, 가공물(W)을 자기적으로 흡착한 마그네틱 척(10)의 위치를 지정된 위치로 이동시킬 수 있다.
그러나 도 4의 (b)도면과 같이, 테이블(T)에 돌출하게 구성된 스토퍼(S)를 제1도자체(12)에 도자가 가능하게 접합하면, 자화성 코어(11)의 유도 자력은 제1도자체(12), 스토퍼(S), 테이블(T), 제2도자체(14) 및 자화성 코어(11) 순으로 이어지는 선순환 형태의 자로를 형성하게 된다. 따라서 마그네틱 척(10)의 발생 자력은 테이블(T)에도 가해져서, 마그네틱 척(10)이 테이블(T)의 해당 위치에 자기적으로 흡착 고정된다.
도 5는 본 발명에 따른 마그네틱 척의 제2 실시예를 도시한 단면도이다.
본 실시의 마그네틱 척(10)은, 마그네틱 척(10)을 테이블에 고정할 수 있도록, 제1도자체(12) 또는 제2도자체(14) 중 하나 이상에 플랜지(19, 19')가 형성된다.
플랜지(19, 19')는 테이블(T)에 대한 마그네틱 척(10)의 체결 위치 등에 따라 다양한 형태를 이룰 수 있으며, 도 5의 (a)도면과 같이 플랜지(19)가 제2도자체(14)와 'L' 형태로 구부러지게 형성될 수도 있고, 도 5의 (b)도면과 같이 플랜지(19')가 제2도자체(14)의 길이방향으로 연장되게 형성될 수도 있다.
예시한 형태의 플랜지(19, 19')는 제2도자체(14)에서 구부러지거나 길이방향으로 연장되게 형성된 것이나, 이외에도 그 형태와 형상은 다양할 수 있다.
또한 본 실시에서 플랜지(19, 19')가 구성된 도자체는 비도자성 피체(13)와 연결되지 않은 제2도자체(14)인 것으로 했으나, 비도자성 피체(13)가 연결되는 제1도자체(12)에도 형성될 수 있다(도 6 참조).
플랜지(19, 19')는 도시한 바와 같이, 볼트 등의 체결수단(B)을 매개로 테이블(T)에 체결되어서, 마그네틱 척(10)을 테이블(T)의 일지점에 고정하는 브래킷 기능을 수행한다. 하지만, 플랜지(19, 19')와 테이블(T)은 일반적인 체결수단(B) 이외에도 용접 또는 접착 등의 다양한 방법으로 체결할 수 있다.
도 6은 본 발명에 따른 마그네틱 척의 제3 실시예를 도시한 단면도이다.
본 실시의 마그네틱 척(10)은, 플랜지(19)를 받쳐 지지하도록, 상단이 플랜지(19)에 연결되고, 하단이 테이블(T)에 안착되는 서포트(17)를 더 포함한다.
플랜지(19)는 도 5와 같이 테이블(T)에 안착해서 체결수단(B)을 매개로 고정되는 브래킷 기능과 더불어, 도 6과 같이 마그네틱 척(10)에 비해 상대적으로 폭인 큰 가공물(W)을 받치는 받침대 기능을 겸한다.
받침대 기능의 경우, 본 실시의 마그네틱 척(10)은 플랜지(19)가 제1도자체(12)의 타단에 형성되어서, 플랜지(19)가 마그네틱 척(10)의 상부에 위치한다. 결국, 마그네틱 척(10)의 상면 넓이가 확장되어서, 마그네틱 척(10)의 상면에 안착된 가공물(W)을 안정하게 고정할 수 있다.
그런데, 플랜지(19)가 상부에 위치하도록 마그네틱 척(10)을 구성 및 배치하면, 마그네틱 척(10)의 하부에 비해 상부가 상대적으로 넓은 상광 하협한 형태를 이루게 된다.
이러한 구조의 마그네틱 척(10)은 그 하중이 플랜지(19)가 위치한 부분으로 편중되어서, 마그네틱 척(10) 자체가 테이블(T)에서 안정한 자세를 유지하지 못하고 기울어질 수 있다. 뿐만 아니라 가공물(W)을 가공하는 중에는 가공물(W)에 가해지는 압력이 매우 크고 가해지는 압력의 크기 또한 유동적인데, 이는 마그네틱 척(10)에 심한 진동을 유발하게 되고, 이 과정에서 가공물(W) 역시 가공 진동으로 심하게 흔들리면서 정밀한 가공을 할 수 없게 한다.
따라서, 본 실시의 마그네틱 척(10)은 상단이 플랜지(19)에 결합하고, 하단이 테이블(T) 상에 안착하도록 입설되는 서포트(17)를 더 포함해서, 플랜지(19)가 안정하게 받쳐 지지되도록 한다.
서포트(17)는 도 6과 같이 플랜지(19)를 받쳐서 마그네틱 척(10)의 기울어짐을 방지하므로, 플랜지(19)를 포함한 마그네틱 척(10)의 상면에 가공물(W)이 얹혀져도, 제1도자체(12)의 연장부(19)를 견고히 지지하여 가공 중에도 마그네틱 척(10) 자체가 기울어짐 없이 제 자세를 유지하고, 가공 중에 발생할 수 있는 심한 진동도 방지할 수 있다.
참고로, 서포트(17)는 볼트 또는 핀 등의 체결수단(B1)을 매개로 플랜지(19)와 탈착 가능하게 결합되므로, 마그네틱 척(10)의 배치 자세에 따라 서포트(17)를 플랜지(19)에 결합하거나 분리할 수 있다.
한편, 서포트(17)가 결합된 마그네틱 척(10)이 도전성 코일(15)에 전류가 인가된 상태에서도 테이블(T)과의 자로가 차단되도록, 서포트(17)는 비도자성 재질인 것이 바람직하다.
따라서, 본 실시와 같이 제1도자체(12)에 비도자성 피체(13)와 플랜지(19)가 구성되고, 비도자성 재질의 서포트(17)가 플랜지(19)를 받치는 구조의 마그네틱 척(10)은, 도자성 재질의 스토퍼(S'; 도 11 참조)를 제2도자체(14)과 가공물(W)이 부착하도록 테이블(T)에 배치한다. 결국, 자화성 코어(11)의 유도 자력은 제2도자체(14), 스토퍼(S'), 가공물(W), 플랜지(19), 제1도자체(12) 및 자화성 코어(11) 순으로 이어지는 선순환 형태의 자로를 형성하고, 이를 통해 가공물(W)이 마그네틱 척(10)의 자력에 의해 마그네틱 척(10)에 자기적으로 흡착하며, 마그네틱 척(10) 자체는 스토퍼(S')에 자기적으로 흡착 고정된다.
도 7은 본 발명에 따른 마그네틱 척이 구성된 플랜지의 일실시 예를 도시한 사시도이고, 도 8은 도 7에서 보인 지그의 설치 모습을 도시한 단면도와, 도 7의 (c)도면의 평면 모습을 도시한 도면이다.
본 실시의 마그네틱 척(10)은, 도 7의 (a)도면과 같이, 서포트(17)와의 탈착을 위한 체결수단(B1)이 끼워지는 관통홀(19a)은 물론, 플랜지(19) 상에 안착된 가공물(W)을 부동하게 지지하는 지그(J) 삽탈용 너트홀(19b)이 하나 이상 형성된다.
전술한 바와 같이, 플랜지(19)에는 마그네틱 척(10)에 비해 상대적으로 대형 가공물(W)을 안착할 수도 있지만, 도 7의 (b)도면과 같이 다수 개의 소형 가공물(W)을 안착할 수도 있다. 이때, 다수의 소형 가공물(W)을 일정 간격으로 배열시킬 수 있으며, 정밀한 상기 간격을 잡기 위해서 플랜지(19)에 지그(J)를 연결한다.
이를 위해 플랜지(19)는 지그(J)가 끼워지는 다수의 너트홀(19b)을 구성하며, 다수의 너트홀(19b)은 지정된 간격으로 배열되게 형성된다. 이때, 플랜지(19)에 구성되는 너트홀(19b)은 그 간격이 다양할 수 있고, 따라서 작업자는 필요한 위치에 지그(J)를 끼워 고정하고, 해당 지그(J)에 맞춰서 가공물(W)을 플랜지(19) 상에 안착할 수 있다.
또한 가공 작업 과정에서 가공물(W)이 강한 압력을 받아 밀릴 수 있는데, 이를 다방향에서 잡아 지지하도록, 플랜지(19)에는 걸림대(미도시)가 돌출하게 형성될 수 있다.
본 실시는 플랜지(19)의 너트홀(19b)이 일정한 간격으로 1열을 이루도록 배치 구성될 수 있으나, 이외에도 다수의 너트홀이 하나의 열을 이루되 각 열별로 너트홀의 간격이 서로 다른 다열을 이룰 수도 있다. 따라서 가공물(W)의 크기 또는 작업자의 필요에 따라 지그(J)를 서로 다른 간격과 위치에 맞춰 배치하고 가공물(W)을 가공할 수 있다.
이와 더불어, 본 실시의 마그네틱 척(10)은 너트홀(19b)에 상응하는 너트홀(14b)을 제2도자체(14)의 상면에 형성해서, 플랜지(19)에 고정된 지그(J)와 함께 가공물(W)을 받치는 지그(J')를 추가 구성한다. 따라서, 가공물(W)은 플랜지(19)에 설치된 지그(J)와 함께 제2도자체(14)에 설치된 지그(J')가 가공물(W)의 좌측면을 양쪽에서 각각 잡아 지지하므로, 가공물(W)을 더욱 안정적으로 받쳐 안치할 수 있다.
참고로, 본 실시의 지그(J, J')는 너트홀(14b, 19b)에 끼워 탈착 가능하게 고정할 수 있는 볼트 형태이면서 헤드가 가공물(W)을 좌측면에서 지지할 수 있도록, 마그네틱 척(10)의 표면에 돌출되면 그 형태에 제한 없이 가능하다. 그러나 지그(J, J')의 안정된 고정성과 가공물(W)에 대한 지지력 보장을 위해서, 바람직한 본 실시의 지그(J, J')는 도 8의 (a)도면과 같이 나사산부(J1)와 테이퍼부(J2)와 헤드부(J3)로 구성된다. 이와 더불어 너트홀(14b, 19b) 역시 나사산부(J1)와 나사결합하는 나사산부와, 테이퍼부(J2)와 접하는 테이퍼부를 구성한다. 따라서 지그(J, J')의 나사산부(J1)가 너트홀(14b, 19b)의 나사산부에 맞물려 고정되면, 지그(J, J')의 테이퍼부(J2)는 너트홀(14b, 19b)의 테이퍼부에 밀착되고, 지그(J, J')의 헤드부(J3)는 마그네틱 척(10)의 표면에 돌출된다. 이러한 구조는 테이퍼부가 지그(J, J')의 좌우 흔들림을 제한하면서 제 위치를 유지할 수 있게 하므로, 도 8의 (b)도면과 같이 가공 과정에서 커터(C)가 다방향으로 가하는 가압력에 대응하여 가공물(W)의 흔들림을 방지할 수 있다.
한편, 본 실시의 마그네틱 척(10)은 도 7의 (c)도면과 같이, 마그네틱 척(10)의 상면에서 가공물(W)을 지정 위치에 받침할 수 있는 도자성 기준대(10a)를 더 구성한다. 따라서 다수의 가공물(W)을 마그네틱 척(10)의 상면에서 일정한 간격과 위치에 나란하게 정확히 배치할 수 있고, 제2도자체(14)에서 도자성 기준대(10a)를 경유하는 자로에 의해 가공물(W)을 강력한 자력으로 고정할 수 있다.
본 실시의 전술한 구조는 전술한 대로 다수의 가공물(W)을 일정 간격으로 배열해 고정할 수 있게 하므로, 가공물(W)에 대한 가공 작업을 무인 자동화하면서 인건비 절감은 물론 다량의 가공물(W)을 정밀하면서도 신속히 처리할 수 있다.
도 9는 본 발명에 따른 마그네틱 척의 제4 실시예를 도시한 단면도이고, 도 10은 가공물에 대한 상기 제4 실시예의 다른 실시 모습을 도시한 단면도이다.
본 실시의 마그네틱 척(10)은, 도 9의 (a)도면 및 (b)도면과 같이, 제1도자체(12)의 일단 또는 제2도자체(14)의 일단에 결합된 비도자성 피체(13')와 엇갈리도록, 남은 한 도자체의 타단에는 비도자성 피체(13') 또는 도자성 피체(18)가 결합된다.
따라서 도 9의 (a)도면과 같이, 제1도자체(12)의 일단은 비도자성 피체(13')에 의해 마감되고, 제2도자체(14)의 타단은 도자성 피체(18)에 의해 각각 마감되어서, 마그네틱 척(10)의 배치 자세에 따라 비도자성 피체(13')가 테이블(T)과 접할 수 있다.
또한, 도 9의 (b)도면과 같이, 제1도자체(12)의 일단은 비도자성 피체(13')에 의해 마감되고, 제2도자체(14)의 타단 역시 비도자성 피체(13')에 의해 각각 마감될 수 있다. 이 경우에 제2도자체(14)의 타단을 마감한 비도자성 피체(13')는 가공물(W)과의 자로를 차단하게 된다. 따라서 도자성 기준대(10a)를 제2도자체(14)에 연결해서 도자성 기준대(10a)가 가공물(W)과 제2도자체(14) 간에 자로를 형성시켜 강한 자력으로 가공물(W)을 흡착 고정시킴은 물론, 가공물(W)의 가공을 위한 기준 위치 기능도 수행한다.
이상 설명한 제1,2도자체(12, 14)와 피체(13', 18) 간의 연결을 위해서는, 비도자성 피체(13')와 도자성 피체(18)가 각각 제1도자체(12) 및 제2도자체(14)와 탈착 가능하게 결합되어야 한다. 이를 위해 본 실시의 피체(13', 18)는 볼트 등의 체결수단(B3)을 매개로 제1,2도자체(12, 14)와 탈착한다.
이러한 구성과 구조를 통해서, 도 10의 (a)도면과 같이 가공물(W)에 구성된 돌기(미도시)가 마그네틱 척(10)과의 접합에 간섭을 줄 경우, 마그네틱 척(10)의 배치 자세를 변경하면서 상기 돌기에 간섭을 주는 피체를 분리할 수 있고, 또한, 도 10의 (b)도면과 같이, 테이블(T)에 설치된 스토퍼(S')와 제2도자체(14)에 구성된 플랜지(19) 및 가공물(W)의 배치 위치 등에 따라 요구되는 유도 자력의 순환 경로를 현장에서 작업자가 직접 조합 조정할 수도 있다.
한편, 도 10의 (a)도면 및 (b)도면과 같이, 제1도자체(12) 또는 제2도자체(14) 중 하나 이상에는 너트 타입의 고정홀(12a, 14a)이 형성된다. 이러한 고정홀(12a, 14a)은 도 10의 (b)도면과 같이, 마그네틱 척(10)에 형성된 관통홀(S1)과 연통하는 위치에 형성된다. 따라서, 마그네틱 척(10)이 스토퍼(S')에 자기적으로 흡착하면 관통홀(S1)과 고정홀(14a)을 체결수단(B2)을 매개로 결속시켜서, 마그네틱 척(10)의 자체 자력과 더불어서 마그네틱 척(10)이 스토퍼(S')에 견고히 고정되도록 한다.
마그네틱 척(10)과 스토퍼(S') 간에 탈착을 위해서, 고정홀(12a, 14a)은 너트 타입을 이루고, 체결수단(B2)은 이에 대응하는 볼트인 것이 바람직하나, 반드시 이에 한정하는 것은 아니다.
도 11은 상기 제4 실시예의 또 다른 실시 모습을 도시한 사시도이고, 도 12는 지그형 볼트를 이용해서 도자체와 피체의 체결 구조를 도시한 단면도이다.
도 10의 (b)도면과 같이, 비도자성 피체(13')에 지그(J')가 설치되는 하나 이상의 제1지그홀(13a)과 제2지그홀(13b)을 형성한다. 여기서 제1지그홀(13a)은 도 12의 (a)도면과 같이 제1,2도자체(12, 14)와 직접 결합됨 없이 비도자성 피체(13')에만 체결되어서, 가공물(W)이 제 위치를 유지하도록 지지한다.
한편, 제2지그홀(13b)은 도 12의 (b)도면과 같이 상하로 관통하게 형성되어서, 지그(J')가 제1,2도자체(12, 14)와 직접 결합되도록 한다. 이때, 제2지그홀(13b, 13b')의 하단은 지그(J')의 테이퍼부(J2)가 걸리도록 홀의 직경을 좁게 형성해서, 지그(J')를 매개로 비도자성 피체(13')와 제1,2도자체(12, 14)가 서로 체결된다.
본 실시에서 제2지그홀(13b)은 비도자성 피체(13')의 양단에만 각각 구성하고, 제1지그홀(13a)은 비도자성 피체(13')의 중앙부에 구성했으나, 그 위치는 실시 예에 한정하는 것은 아니다.
또한 제1지그홀(13a)과 같이 지그(J')가 비도자성 피체(13')에만 결합되는 것으로 한정하지 않고, 지그(J')의 나사산부(J1)를 제1,2도자체(12, 14)까지 연장해서, 지그(J')가 갖는 지지수단 기능 외에도 비도자성 피체(13')와 제1,2도자체(12, 14)를 서로 체결시키는 체결수단의 기능도 갖도록 할 수 있다. 이 경우 지그(J')는 자로에 대한 절연성을 갖는 재질인 것이 바람직하다.
또한 본 실시의 피체는 비도자성 피체(13')로만 예시했으나, 도자성 피체(18)와 제1,2도자체(12, 14) 간에 결합에도 동일한 구조가 적용된다.
또한, 피체와 도자체 간에 체결을 위한 수단으로 지그(J')를 예시했으나, 피체와 도자체 간에 체결 수단은 일반적인 렌치볼트 등의 볼트가 적용될 수 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예들을 참조해 설명했지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (5)

  1. 자화성 코어와, 상기 자화성 코어의 둘레를 감싸는 도전성 코일과, 상기 자화성 코어의 일단과 결합되는 제1도자체와, 상기 제1도자체와 나란하게 마주하도록 자화성 코어의 타단과 결합되는 제2도자체와, 상기 제1도자체와 제2도자체 사이에서 자화성 코어와 도전성 코일을 감싸 자로를 차단하는 절연체를 포함하고;
    상기 제1도자체와 제2도자체가 테이블 상에 직립시, 상기 제1도자체의 일단 또는 제2도자체의 일단 중 하나가 자로의 차단을 위해서 테이블과 접하지 않도록 공극이 형성된 것;
    을 특징으로 하는 마그네틱 척.
  2. 제 1 항에 있어서,
    상기 공극에 삽입해 결합되어서 자로 차단을 위한 절연성을 보강하는 비도자성 피체;
    를 더 포함하는 것을 특징으로 하는 마그네틱 척.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 마그네틱 척을 테이블에 고정하도록, 상기 제1도자체와 제2도자체 중 하나 이상에 구부러지도록 형성된 플랜지; 및
    상기 플랜지를 받쳐 지지하도록, 상단이 상기 플랜지에 연결되고 하단이 테이블에 안착되는 비도자성 재질의 서포트;
    를 더 포함하는 것을 특징으로 하는 마그네틱 척.
  4. 제 3 항에 있어서,
    상기 플랜지에 다수의 너트홀이 일정 간격으로 열을 이루며 배치 구성되고;
    상기 플랜지에 안착된 가공물을 측면에서 잡아 지지하도록, 상기 너트홀에 탈착 가능하게 고정되는 지그;
    를 더 포함하는 것을 특징으로 하는 마그네틱 척.
  5. 제 2 항에 있어서,
    상기 제1도자체의 일단 또는 제2도자체의 일단에 결합된 비도자성 피체와 엇갈리도록, 남은 하나의 도자체의 타단에는 도자성 피체 또는 비도자성 피체가 결합된 것을 특징으로 하는 마그네틱 척.
PCT/KR2019/006103 2018-05-23 2019-05-22 마그네틱 척 WO2019225957A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0058213 2018-05-23
KR1020180058213A KR102179136B1 (ko) 2018-05-23 2018-05-23 마그네틱 척

Publications (1)

Publication Number Publication Date
WO2019225957A1 true WO2019225957A1 (ko) 2019-11-28

Family

ID=68616073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006103 WO2019225957A1 (ko) 2018-05-23 2019-05-22 마그네틱 척

Country Status (2)

Country Link
KR (1) KR102179136B1 (ko)
WO (1) WO2019225957A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102547653B1 (ko) * 2023-01-30 2023-06-26 임종일 세라믹 표면 연마 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584630A (ja) * 1991-09-25 1993-04-06 Kanetetsuku Kk 磁気チヤツクの取付装置
JPH0794321A (ja) * 1991-12-28 1995-04-07 Matsushita Electric Ind Co Ltd マグネットチャック
KR100473643B1 (ko) * 1996-11-07 2005-06-08 이용구 마그네트척
KR20120081703A (ko) * 2011-01-12 2012-07-20 개성테크노로지스 주식회사 영구 자석 척
KR20120130040A (ko) * 2012-02-09 2012-11-28 최태광 영구자석과 전자석을 결합한 자성체 홀딩장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337547B1 (ko) 2012-03-26 2013-12-06 주식회사진영정기 마그네틱 척

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584630A (ja) * 1991-09-25 1993-04-06 Kanetetsuku Kk 磁気チヤツクの取付装置
JPH0794321A (ja) * 1991-12-28 1995-04-07 Matsushita Electric Ind Co Ltd マグネットチャック
KR100473643B1 (ko) * 1996-11-07 2005-06-08 이용구 마그네트척
KR20120081703A (ko) * 2011-01-12 2012-07-20 개성테크노로지스 주식회사 영구 자석 척
KR20120130040A (ko) * 2012-02-09 2012-11-28 최태광 영구자석과 전자석을 결합한 자성체 홀딩장치

Also Published As

Publication number Publication date
KR102179136B1 (ko) 2020-12-11
KR20190133372A (ko) 2019-12-03

Similar Documents

Publication Publication Date Title
JP2853858B2 (ja) ワークピースの固定装置
JP5575112B2 (ja) 自己締着型磁気装置および該磁気装置制御用のコントロールユニット
KR101482618B1 (ko) 일체형 자기 장치 및 일체형 자기장치의 제조 방법
CN102300672A (zh) 用于将工件保持在精确的固定位置的磁性夹持装置
KR102157780B1 (ko) 지그
WO2019225957A1 (ko) 마그네틱 척
WO2013147433A1 (ko) 마그네틱 척
KR20140074001A (ko) 전자석 척 및 이 전자석 척의 몰딩 방법
KR101855772B1 (ko) 리스폿을 위한 부품 고정 시스템
WO2023138699A1 (zh) 磁钢粘贴定位工装
CA2277402C (en) A holding device for workpieces in the form of even metal sheets
KR101787000B1 (ko) 직각 영구 전자 척
CN1281374C (zh) 用于固定铁磁体件的磁性平板架
KR20160149907A (ko) 더블 영구 전자 척
CN115302286B (zh) 用于弧形零件的磁吸工装及其定位方法
KR102162878B1 (ko) 영구자석 내장형 마그네틱 척
JPH02262813A (ja) 分離型耐張碍子ブラケット着脱工法と分離型耐張碍子ブラケット
CN213105740U (zh) 适于高精度加工的多适用快速装夹治具
CN210579403U (zh) 一种用于电子加工的分段式防静电装置
CN107904597B (zh) 一种柔性自适应复合碳刷式电磁场同步耦合模块
CN217992255U (zh) 支撑限位工装
CN112640272B (zh) 旋转电机的临时固定夹具以及使用该临时固定夹具的旋转电机的组装方法
CN216227106U (zh) 钻孔用磁吸定位装置
JP2860840B2 (ja) 吊り金具の取付け方法
CN216939529U (zh) 一种卧加铣衬套夹具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807901

Country of ref document: EP

Kind code of ref document: A1