WO2019225797A1 - 브라운 가스 발생 장치 - Google Patents

브라운 가스 발생 장치 Download PDF

Info

Publication number
WO2019225797A1
WO2019225797A1 PCT/KR2018/006762 KR2018006762W WO2019225797A1 WO 2019225797 A1 WO2019225797 A1 WO 2019225797A1 KR 2018006762 W KR2018006762 W KR 2018006762W WO 2019225797 A1 WO2019225797 A1 WO 2019225797A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
anode
positive electrode
electrode plate
plate
Prior art date
Application number
PCT/KR2018/006762
Other languages
English (en)
French (fr)
Inventor
김종만
오광진
고해훈
Original Assignee
다온기전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다온기전 주식회사 filed Critical 다온기전 주식회사
Publication of WO2019225797A1 publication Critical patent/WO2019225797A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/044Hydrogen or oxygen by electrolysis of water producing mixed hydrogen and oxygen gas, e.g. Brown's gas [HHO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a brown gas generator, and more particularly, to a brown gas generator that generates brown gas by electrolyzing water.
  • the Brown gas generator using electrolysis applies electric energy to water containing an electrolyte and the like to generate oxygen gas on the anode side and hydrogen gas on the cathode side as the water molecules are decomposed. Device.
  • the Brown gas generator is developed and used in a variety of devices.
  • a pair of cases are provided with an inlet and a first outlet through which water is introduced and discharged, and a positive electrode plate and a negative electrode plate are disposed in the case, and an ion membrane is disposed between the positive electrode plate and the negative electrode plate.
  • water molecules may be decomposed by electric energy to generate hydrogen and oxygen.
  • the conventional Brown gas generator as described above uses a case made of an insulator such as a synthetic resin, and arranges the ion membrane, the positive electrode plate, and the negative electrode plate in close contact with the case formed of the insulator.
  • the conventional Brown gas generator as described above, generates oxygen and hydrogen by decomposing water because it controls only the time that water is in contact with the positive electrode plate and the negative electrode plate even when the water flow path is delayed to form a flow path in the case. There is a problem that there is a limit to the efficiency.
  • the problem to be solved by the present invention is to provide a Brown gas generator that can maximize the efficiency of generating hydrogen and oxygen.
  • the anode receiving portion is formed therein, the positive electrode plate is electrically connected to the positive electrode;
  • a negative electrode plate having a negative electrode accommodating portion formed therein and the negative electrode electrically connected thereto;
  • an insulating plate disposed between the positive electrode plate and the negative electrode plate, the insulating plate insulating the positive electrode plate and the negative electrode plate, wherein the positive electrode plate includes an inlet for supplying water to the positive electrode accommodating part and an oxygen gas at the positive accommodating part.
  • a first outlet for discharging the water may be formed, and a second outlet for discharging water containing hydrogen gas may be formed in the cathode receiving portion.
  • the anode receiving portion formed on the anode plate includes a first anode path portion extending in one direction from the inlet, a second anode path portion extending from the first outlet in the other direction, and the first and second anodes.
  • One or more third anode path portions formed between the first and second anode path portions may be formed to connect the path portions.
  • the width and depth of the third anode path portion may be smaller than the width and depth of the first and second anode path portions.
  • the negative electrode accommodating part formed on the negative electrode plate may include a first negative electrode path part extending in one direction from the second outlet and a second negative electrode formed at a position parallel to the first negative electrode path part and formed in one direction.
  • One or more third negative electrode path portions formed between the first and second negative electrode path portions may be formed to connect the path portion and the first and second negative electrode path portions.
  • the width and depth of the third cathode path portion may be smaller than the width and depth of the first and second cathode path portions.
  • the positive electrode plate may further include a positive electrode connection part to which a positive electrode of a DC power supplied from the outside is connected, and the negative electrode plate may further include a negative electrode connection part to which a negative electrode of a DC power supplied from the outside is connected to the upper part. .
  • the insulating plate may be formed with a hole having a shape corresponding to the positive and negative accommodating portion so that the positive and negative accommodating portion is formed in one space.
  • the present invention by contacting the water and the positive electrode plate by forming a path through which water flows inside the positive electrode plate and the negative electrode plate without using a separate positive electrode plate and negative electrode plate in the case of the insulating insulator. Since the area can be maximized, there is an effect of maximizing the amount of hydrogen and oxygen that can occur at the same time.
  • the path formed on the anode plate is formed at the first anode path part as the first anode path part is formed in one direction at the inlet through which water is introduced, and a plurality of third anode path parts are formed in the vertical direction at the first anode path part. Since water may be rapidly delivered to the plurality of third anode path portions, water may quickly spread to the cathode receiving portion of the anode plate through the first to third anode path portions formed on the anode plate.
  • FIG. 1 is a perspective view showing a brown gas generator according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing a brown gas generator according to an embodiment of the present invention.
  • FIG 3 is a perspective view illustrating a cathode plate of the Brown gas generator according to the embodiment of the present invention.
  • FIG. 4 is a front view illustrating an anode plate of the Brown gas generator according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG. 4.
  • FIG. 6 is a schematic diagram showing a brown gas collection device using a brown gas generator according to an embodiment of the present invention.
  • FIG. 7 is a perspective view showing a brown gas generator according to another embodiment of the present invention.
  • FIG. 1 is a perspective view showing a brown gas generator according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view showing a brown gas generator according to an embodiment of the present invention
  • 3 is a perspective view illustrating a cathode plate of a brown gas generator according to an embodiment of the present invention.
  • the brown gas generator 100 includes a positive electrode plate 110, a negative electrode plate 120, and an insulating plate 130.
  • the anode plate 110 may be formed in a rectangular or square shape, as shown in FIGS. 1 and 2. And the positive electrode connecting portion 118 for connecting the electrode in the upper direction may be formed to protrude.
  • the positive electrode plate 110 includes a positive electrode body 111, an inlet 112, a first discharge 114, a positive accommodating portion 116, and a positive electrode connecting portion 118.
  • the anode body 111 is formed in a rectangular or square shape, as shown.
  • a metal may be used, in this embodiment, it may be manufactured using titanium (titanium), it may be manufactured by plating a platinum (platinum) on titanium. Accordingly, the anode body 111 may increase corrosion resistance and chemical resistance, and may prevent contamination of water, which is an electrolyte even when water is ionized. At this time, if necessary, the metal used for the anode body 111 and the material to be plated may use other kinds of materials as necessary.
  • a plurality of coupling holes C1 may be formed in the anode body 111. As shown in FIG. 2, the plurality of coupling holes C1 may be formed along the edge of the anode body 111, and in this embodiment, eight may be formed to surround the anode receiving portion 116. .
  • the inlet 112 is provided to supply water to the inside of the anode body 111, and may be disposed outside the anode body 111. In this embodiment, as will be described later, when defining a position where the positive electrode connecting portion 118 is formed in the positive electrode body 111, the inlet 112 may be disposed in a position biased to the outer upper portion of the positive electrode body 111. . Accordingly, as shown in FIG. 2, an inlet 112a may be formed in the inlet 112.
  • the first discharge part 114 may be provided for discharging water supplied to the inside of the positive electrode body 111 and may be disposed outside the positive electrode body 111. And the inlet 112 may be disposed in a position biased to the outer bottom of the positive electrode matrix. Accordingly, as shown in FIG. 2, the first outlet 114a may be formed inside the first outlet 114.
  • the position where the inlet 112 and the first outlet 114 are disposed can be arranged in a diagonal direction toward the edge side in the anode body 111 of the rectangular or square shape, as can be seen through FIG. have.
  • the water discharged through the first discharge unit 114 may include oxygen generated by electrolysis.
  • the anode receiving portion 116 may be formed inside the anode body 111, and as shown in FIG. 2, may be formed in a predetermined groove shape on the inner surface.
  • the anode receiving portion 116 is a space in which water introduced through the inlet 112a can be filled, and the first anode path portion 116a so that water can be filled in the entire anode receiving portion 116.
  • the second anode path portion 116b and the third anode path portion 116c may be formed.
  • the first anode path portion 116a may be formed in a straight line shape having a predetermined length in a downward direction at the inlet 112a, and may be formed to have a predetermined width and a predetermined depth.
  • the second anode path portion 116b may be formed in a straight line shape having a predetermined length in an upward direction at the first outlet 114a, and may be formed to have a predetermined width and a predetermined depth.
  • the lengths, widths, and depths of the first anode path portion 116a and the second anode path portion 116b may be the same, and may be disposed side by side at positions spaced apart from each other.
  • a plurality of third anode path portions 116c may be formed to connect the first anode path portions 116a and the second anode path portions 116b with each other.
  • the third anode path portion 116c is formed in a vertical direction with the first anode path portion 116a and the second anode path portion 116b, and is formed in the horizontal direction as shown in FIG. 2.
  • the third anode path portion 116c may be formed to have a predetermined width and a predetermined depth, and the width and depth of the third anode path portion 116c may be the first anode path portion 116a and the second anode. It may be smaller than the width and depth of the path portion 116b, respectively.
  • the positive electrode connecting portion 118 is disposed at an upper side of the positive electrode body 111.
  • the positive electrode connector 118 is provided to connect an external power source to the positive electrode plate 110, and a positive electrode connector E1 may be formed to connect the external power source.
  • the positive electrode connecting portion 118 is provided to connect the positive power of the external power source.
  • the negative electrode plate 120 may be formed in a rectangular or square shape, as shown in FIGS. 1 and 2. And the negative electrode connecting portion 128 for connecting the electrode in the upward direction may be formed to protrude.
  • the negative electrode plate 120 includes a negative electrode body 121, a second discharge part 122, a negative electrode receiving part 126, and a negative electrode connection part.
  • the cathode body 121 is formed in a rectangular or square shape.
  • the negative electrode body 121 like the positive electrode body 111, a metal may be used, in this embodiment, it may be manufactured using titanium, may be manufactured by plating platinum on titanium. Accordingly, the negative electrode body 121 may increase corrosion resistance and chemical resistance, and may prevent contamination of water, which is an electrolyte even if water is ionized. If necessary, the metal used for the cathode body 121 and the material to be plated may use other kinds of materials as necessary.
  • a plurality of coupling holes C2 may be formed in the cathode body 121. As shown in FIGS. 1 and 2, the plurality of couplers C2 may be formed along the edge of the cathode body 121 and correspond to the plurality of couplers C1 formed on the anode body 111. May be placed in position. In the present embodiment, eight coupling holes C2 may be formed to surround the cathode receiving part 126.
  • the second discharge part 122 is provided to discharge the water introduced into the negative electrode accommodating part 126 formed inside the negative electrode body 121, and in this embodiment, the water discharged to the second discharge part 122. May include hydrogen generated by electrolysis.
  • the second discharge part 122 may be disposed outside the cathode body 121.
  • the second discharge part 122 may be disposed at a position biased to the outer upper portion of the negative electrode body 121. Accordingly, as shown in FIG. 3, a second outlet 122a may be formed in the second outlet 122.
  • the second discharge part 122 may be disposed to be biased in the upper right direction in the rectangular or square cathode body 121, and the anode body 111 may be disposed. It may be disposed in a position opposite to the inlet 112 disposed in.
  • the second discharge part 122 is disposed at the upper part, referring to FIG. 3, since the hydrogen gas is moved upward through the negative electrode accommodating part 126 formed in the negative electrode body 121. good.
  • the negative accommodating part 126 may be formed in the inner side of the negative electrode body 121, and as shown in FIG. 3, may be formed in a predetermined groove shape on the inner side.
  • the negative electrode accommodating part 126 may be formed in a shape corresponding to the positive electrode accommodating part 116, and may include a first negative electrode path part 126a, a second negative electrode path part 126b, and a third negative electrode path.
  • the part 126c may be formed.
  • the first cathode path part 126a may be formed in a straight line shape having a predetermined length in the downward direction from the second discharge part 122. It may be formed to have a width and a predetermined depth.
  • the second cathode path part 126b may be formed in parallel with the first cathode path part 126a at a position spaced apart from each other, and may have a predetermined width and a predetermined depth. In this case, the first cathode path part 126a and the second cathode path part 126b may have the same length, width, and depth.
  • the third cathode path part 126c may be formed in plural to connect the first cathode path part 126a and the second cathode path part 126b with each other.
  • the third cathode path portion 126c is formed in the vertical direction with the first cathode path portion 126a and the second cathode path portion 126b, and is formed in the horizontal direction as shown in FIG. 3.
  • the third cathode path part 126c may be formed to have a predetermined width and a predetermined depth, and the width and depth of the third cathode path part 126c may be the first cathode path part 126a and the second cathode. It may be smaller than the width and depth of the path portion 126b, respectively.
  • the negative electrode connecting portion 128 is disposed on the upper one side of the negative electrode body 121.
  • the negative electrode connector 128 is provided to connect an external power source to the negative electrode plate 120, and a negative electrode connector E2 may be formed to connect the external power source.
  • the negative electrode connecting portion 128 is provided to be connected to the negative power of the external power source.
  • the insulating plate 130 may have a rectangular or square shape similarly to the shapes of the anode body 111 and the cathode body 121, and a hole 132 may be formed inside.
  • the insulating plate 130 may be disposed between the positive electrode body 111 and the negative electrode body 121, and may be made of an insulating material so that the positive electrode body 111 and the negative electrode body 121 are insulated from each other.
  • the insulating plate 130 may be made of silicon, synthetic resin, or the like, and may be made of any material as long as it is a material capable of insulating between the positive electrode body 111 and the negative electrode body 121.
  • the insulating plate 130 may be formed relatively thinner than the positive electrode body 111 and the negative electrode body 121, and may vary depending on the power applied to the positive electrode plate 110 and the negative electrode plate 120. Can be, but is not limited to this.
  • the insulating plate 130 is disposed between the positive electrode body 111 and the negative electrode body 121, and the positive electrode body 111 in a state where the positive electrode body 111 and the negative electrode body 121 are coupled to each other by a bolt B or the like. ) And the water introduced into the cathode receiving portion 116 through the cathode body 121 can be prevented from being discharged to the outside. Accordingly, as shown in FIG. 2, a plurality of couplers C3 may be formed in the insulating plate 130, and the plurality of couplers C3 may be formed in the anode body 111 and the cathode body 121, respectively. It may be formed at a position corresponding to the formed coupling sphere (C1, C2).
  • the positive electrode plate 110 and the negative electrode plate 120 is disposed, in this embodiment, the positive electrode plate 110, the insulating plate 130 and the negative electrode plate 120 ) May be coupled using a coupling means such as bolt (B).
  • the insulating tube S may be penetrated through the C1, C2, and C3.
  • the insulating tube S is configured to electrically insulate the positive electrode plate 110 and the negative electrode plate 120, and may be made of silicon, rubber, or synthetic resin.
  • a hole 132 is formed in the insulating plate 130, and the size of the hole 132 is a positive accommodating part 116 and a negative accommodating part 126 formed in the positive electrode body 111 and the negative electrode body 121, respectively. It may be formed in a size corresponding to the size of.
  • the shape of the hole 132 may also be formed in a rectangular or square shape.
  • the positive electrode accommodating part 116 and the negative electrode accommodating part 126 formed in the positive electrode plate 110 and the negative electrode plate 120 respectively have the same space.
  • the positive electrode of the DC power is connected to the positive electrode connecting portion 118 of the positive electrode plate 110, the negative electrode connecting portion of the negative electrode plate 120 A negative pole of the DC power supply is connected to the 128.
  • the water is supplied through the inlet 112 formed in the anode plate 110, the water is filled in the anode receiver 116 through the inlet 112a, and the water contacts the anode plate 110 so that the water is electricity.
  • the decomposition produces hydrogen gas and oxygen gas.
  • the electrolyzed hydrogen gas is collected at the negative electrode accommodating part 126 side which is a negative electrode, and oxygen gas is collected at the positive electrode accommodating part 116 side which is a positive electrode.
  • the water flowing into the anode receiving portion 116 and the cathode receiving portion 126 through the inlet 112a is the first to third anode path portion (116a, 116b, 116c) and the first to third cathode path portion 126A, 126B, and 126C may spread throughout the positive and negative receivers 116 and 126.
  • the water introduced into the anode receiver 116 and the cathode receiver 126 may be discharged to the outside through the first outlet 114a together with the oxygen gas generated at the anode receiver 116.
  • the hydrogen gas may be discharged through the second outlet 122a together with the hydrogen gas generated on the side 126.
  • direct current power is applied to the positive electrode plate 110 and the negative electrode plate 120, and a direct current power supply having a voltage of 12 V and a current of 20 A is supplied.
  • a direct current power supply having a voltage of 12 V and a current of 20 A is supplied.
  • FIG. 4 is a front view illustrating an anode plate of a brown gas generator according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG. 4.
  • the anode receiving portion 116 formed on the anode plate 110 will be described in more detail.
  • the negative electrode accommodating part 126 formed on the negative electrode plate 120 is formed in substantially the same manner as the positive electrode accommodating part 116, and a detailed description thereof will be omitted.
  • the anode receiving part 116 includes a first anode path part 116a, a second anode path part 116b, and a third anode path part 116c.
  • the first anode path portion 116a, the second anode path portion 116b, and the third anode path portion 116c may be formed in the shape of a groove formed on the inner surface of the anode body 111, respectively.
  • the first anode path portion 116a and the second anode path portion 116b are formed at positions spaced apart from each other side by side, as shown in the vertical direction.
  • a plurality of third anode path portions 116c may be provided between the first anode path portion 116a and the second anode path portion 116b in a horizontal direction.
  • the third anode path portions 116c are formed to be spaced apart from each other at regular intervals, and the plurality of third anode path portions 116c are disposed on the same plane as the inner surface of the anode body 111.
  • the first anode path portion 116a, the second anode path portion 116b, and the third anode path portion 116c are respectively the first cathode path portion 126.
  • the second cathode path part 126b and the third cathode path part 126c may be disposed at positions facing each other. Therefore, the water flowing into the anode receiving portion 116 and the cathode receiving portion 126 is mostly the first to third anode path portion 116a, 116b, 116c and the first to third cathode passage portion 126a, 126b, 126c. Can be moved through).
  • the width w1 of the first anode path portion 116a and the second anode path portion 116b may be greater than the width w2 of the third anode path portion 116c.
  • the width w2 of the anode path portion 116c may be about 60% (error range 10%) of the width w1 of the first anode path portion 116a and the second anode path portion 116b.
  • the depth d1 of the first anode path portion 116a and the second anode path portion 116b may be deeper than the depth d2 of the third anode path portion 116c, and in the present embodiment, the third The depth d2 of the anode path portion 116c may be about 40% (error range 10%) of the depth d1 of the first anode path portion 116a and the second anode path portion 116b.
  • the first anode path portion 116a, the second anode path portion 116b, and the third anode path portion 116c are formed in the anode receiving portion 116 as described above, and thus are introduced through the inlet 112a.
  • Water first flows through the first anode path portion 116a connected to the inlet 112a and then to the second anode path portion 116b connected to the first outlet 114a through the plurality of third anode path portions 116c. Can flow.
  • the water moved through the second anode path portion 116b connected to the first outlet 114a is discharged to the outside through the first outlet 114a.
  • FIG. 6 is a schematic diagram showing a brown gas collection device using a brown gas generator according to an embodiment of the present invention.
  • a brown gas collecting device 200 for capturing hydrogen generated by the brown gas generating device 100 according to the present embodiment will be described.
  • the brown gas collecting device 200 includes a brown gas generating device 100, a water storage unit 210, and a gas purification unit 220.
  • the water reservoir 210 is connected to the inlet 112 of the brown gas generator 100 through the water supply pipe 212.
  • the first discharge part 114 of the brown gas generator 100 is connected to the first water discharge pipe 214.
  • the water discharged through the first water discharge pipe 214 is water containing oxygen gas.
  • the second discharge part 122 of the brown gas generator 100 is connected to the second water discharge pipe 216.
  • the water discharged through the second water discharge pipe 216 is water containing hydrogen gas.
  • the water discharged to the first water discharge pipe 214 and the second water discharge pipe 216 is connected to the integrated discharge pipe 222 and merged into one.
  • the integrated discharge pipe 222 is connected to the gas purification unit 220. Accordingly, the water including the hydrogen gas and the water containing the oxygen gas are supplied to the gas purification unit 220 in the integrated discharge pipe 222.
  • the gas purifier 220 may be partially filled with water, and water including hydrogen gas and oxygen gas supplied through the integrated discharge pipe 222 may be supplied into the water filled in the gas purifier 220 by water. Brown gas mixed with purified hydrogen gas and oxygen gas may be discharged through the purification gas exhaust pipe 224. Brown gas discharged to the refinery gas exhaust pipe 224 may be supplied to an external device. In this case, the generated brown gas may be used for industrial purposes.
  • the positive electrode terminal 232 may be electrically connected to the positive electrode connector 118, and the negative electrode terminal 234 may be electrically connected to the negative electrode connector 128.
  • the power supplied to the Brown gas generator 100 through the positive electrode terminal 232 and the negative electrode terminal 234 is DC power.
  • FIG. 7 is a perspective view showing a brown gas generator according to another embodiment of the present invention.
  • the brown gas generator 100 includes an anode plate 110, a cathode plate 120, and an insulation plate 130.
  • anode plate 110 the same description as in the embodiment is omitted.
  • the anode plate 110 may be formed in a rectangular or square shape, and a positive electrode connecting portion 118 for connecting the electrodes in the upper direction may protrude.
  • the positive electrode connecting portion 118 may be formed on the positive electrode plate 110 and disposed at a position spaced apart from the negative electrode connecting portion 128 formed on the negative electrode plate 120. That is, the positive electrode connecting portion 118 and the negative electrode connecting portion 128 are formed on the positive electrode plate 110 and the negative electrode plate 120, respectively, the positive electrode connecting portion 118 is formed on the upper left of the positive electrode plate 110, The negative electrode connector 128 may be formed on the upper right side of the negative electrode plate 120.
  • the positive electrode connecting portion 118 and the negative electrode connecting portion 128 spaced apart from each other are connected to prevent short circuits. can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

본 발명은 브라운 가스 발생 장치에 관한 것으로, 본 발명의 일 실시예에 따른 브라운 가스 발생 장치는, 내부에 양극 수용부가 형성되고, 양전극이 전기적으로 연결되는 양극 플레이트; 내부에 음극 수용부가 형성되며, 음전극이 전기적으로 연결되는 음극 플레이트; 및 상기 양극 플레이트 및 음극 플레이트 사이에 배치되며, 상기 양극 플레이트와 음극 플레이트를 절연시키는 절연 플레이트를 포함하고, 상기 양극 플레이트에는 상기 양극 수용부로 물이 공급되는 유입구 및 상기 양극 수용부에서 산소 가스가 포함된 물이 배출되는 제1 배출구가 형성되며, 상기 음극 플레이트에는 상기 음극 수용부에서 수소 가스가 포함된 물이 배출되는 제2 배출구가 형성될 수 있다. 본 발명에 의하면, 절연성을 가지는 절연체인 케이스의 내부에 별도의 양전극판 및 음극판을 이용않지 않고, 양극 플레이트 및 음극 플레이트의 내부에 물이 흐를 수 있는 경로를 형성함으로써, 물과 양극 플레이트와 접촉되는 면적을 극대화할 수 있어, 동일 시간에 발생할 수 있는 수소 및 산소의 양을 극대화할 수 있는 효과가 있다.

Description

브라운 가스 발생 장치
본 발명은 브라운 가스 발생 장치에 관한 것으로, 더욱 상세하게는 물을 전기분해여 브라운 가스를 발생시키는 브라운 가스 발생 장치에 관한 것이다.
전기 분해를 이용한 브라운 가스 발생 장치는, 전해질 등이 함유된 물에 전기에너지를 가하여, 물 분자가 분해됨에 따라 양극 측에 산소 기체가 발생하고, 음극 측에 수소 기체가 발생하여 브라운 가스를 발생시키는 장치이다.
이러한 브라운 가스 발생 장치는, 다양한 종류의 장치들이 개발되어 사용된다. 대체로, 한 쌍으로 이루어진 케이스에 물이 유입되고 배출되는 유입구와 제1 배출구가 구비되고, 케이스 내에 양극판 및 음극판이 배치되고, 양극판 및 음극판의 사이에 이온막이 배치된 구조를 가진다. 그리고 이온막, 양극판 및 음극판을 기준으로 케이스의 양측에 형성된 공간에 물이 통과하면서 전기에너지에 의해 물 분자가 분해되어 수소 및 산소가 발생할 수 있다.
상기와 같은 종래의 브라운 가스 발생 장치는, 합성수지 등과 같은 절연체로 제조된 케이스를 이용하고, 절연체로 형성된 케이스 내부에 이온막, 양극판 및 음극판을 밀착한 상태로 배치한다.
이때, 대체로 브라운 가스 발생 장치에서 물이 이온막, 양극판 및 음극판과의 접촉시간을 연장하기 위한 다양한 연구들이 이루어진고 있다. 종래에는 대체로, 케이스의 내측에 물이 특정 경로를 따라 진행할 수 있도록 수로를 형성하고, 케이스 내로 유입된 물의 경로를 복잡하게 하여 물의 흐름을 늦추는 방법이 이용되고 있다.
상기와 같은 종래의 브라운 가스 발생 장치는, 케이스에 물이 흐르는 경로를 형성하여 물이 흐르는 속도를 지연시키더라도 물이 양극판 및 음극판과 접촉되는 시간만 제어하기 때문에 물을 분해하여 산소 및 수소를 발생시키는 효율에 한계가 있는 문제가 있다.
본 발명이 해결하고자 하는 과제는, 수소 및 산소를 발생시키는 효율을 극대화할 수 있는 브라운 가스 발생 장치를 제공하는 것이다.
본 발명의 일 실시예에 따른 브라운 가스 발생 장치는, 내부에 양극 수용부가 형성되고, 양전극이 전기적으로 연결되는 양극 플레이트; 내부에 음극 수용부가 형성되며, 음전극이 전기적으로 연결되는 음극 플레이트; 및 상기 양극 플레이트 및 음극 플레이트 사이에 배치되며, 상기 양극 플레이트와 음극 플레이트를 절연시키는 절연 플레이트를 포함하고, 상기 양극 플레이트에는 상기 양극 수용부로 물이 공급되는 유입구 및 상기 양극 수용부에서 산소 가스가 포함된 물이 배출되는 제1 배출구가 형성되며, 상기 음극 플레이트에는 상기 음극 수용부에서 수소 가스가 포함된 물이 배출되는 제2 배출구가 형성될 수 있다.
그리고 상기 양극 플레이트에 형성된 양극 수용부에는, 상기 유입구에서 일 방향으로 연장되어 형성된 제1 양극 경로부, 상기 제1 배출구에서 타 방향으로 연장되어 형성된 제2 양극 경로부 및 상기 제1 및 제2 양극 경로부가 연결되도록 상기 제1 및 제2 양극 경로부의 사이에 형성된 하나 이상의 제3 양극 경로부가 형성될 수 있다.
이때, 상기 제3 양극 경로부의 폭 및 깊이는 상기 제1 및 제2 양극 경로부의 폭 및 깊이보다 작을 수 있다.
또한, 상기 음극 플레이트에 형성된 음극 수용부에는, 상기 제2 배출구에서 일 방향으로 연장되어 형성된 제1 음극 경로부, 상기 제1 음극 경로부와 나란한 위치에 이격되어 형성되며 일 방향으로 형성된 제2 음극 경로부 및 상기 제1 및 제2 음극 경로부가 연결되도록 상기 제1 및 제2 음극 경로부의 사이에 형성된 하나 이상의 제3 음극 경로부가 형성될 수 있다.
이때, 상기 제3 음극 경로부의 폭 및 깊이는 상기 제1 및 제2 음극 경로부의 폭 및 깊이보다 작을 수 있다.
그리고 상기 양극 플레이트는 상부에 외부에서 공급되는 직류 전원의 양전극이 연결되는 양전극 연결부를 더 포함하고, 상기 음극 플레이트는 상부에 외부에서 공급되는 직류 전원의 음전극이 연결되는 음전극 연결부를 더 포함할 수 있다.
여기서, 상기 절연 플레이트는 상기 양극 수용부 및 음극 수용부가 하나의 공간으로형성되도록 상기 양극 수용부 및 음극 수용부에 대응되는 형상의 홀이 형성될 수 있다.
본 발명에 의하면, 절연성을 가지는 절연체인 케이스의 내부에 별도의 양전극판 및 음극판을 이용않지 않고, 양극 플레이트 및 음극 플레이트의 내부에 물이 흐를 수 있는 경로를 형성함으로써, 물과 양극 플레이트와 접촉되는 면적을 극대화할 수 있어, 동일 시간에 발생할 수 있는 수소 및 산소의 양을 극대화할 수 있는 효과가 있다.
양극 플레이트에 형성된 경로는 물이 유입되는 유입구에서, 일 방향을 향해 제1 양극 경로부가 형성되고, 제1 양극 경로부에서 수직 방향으로 다수의 제3 양극 경로부가 형성됨에 따라 제1 양극 경로부에서 다수의 제3 양극 경로부로 물이 빠르게 전달될 수 있어, 양극 플레이트에 형성된 제1 내지 제3 양극 경로부를 통해 양극 플레이트의 양극 수용부에 물이 빠르게 퍼질 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 브라운 가스 발생 장치를 도시한 사시도이다.
도 2는 본 발명의 일 실시예에 따른 브라운 가스 발생 장치를 도시한 분해 사시도이다.
도 3은 본 발명의 일 실시예에 따른 브라운 가스 발생 장치의 음극 플레이트를 도시한 사시도이다.
도 4는 본 발명의 일 실시예에 따른 브라운 가스 발생 장치의 양극 플레이트를 도시한 정면도이다.
도 5는 도 4의 절취선 AA'를 따라 취한 단면도이다.
도 6은 본 발명의 일 실시예에 따른 브라운 가스 발생 장치를 이용한 브라운 가스 포집 장치를 도시한 개략도이다.
도 7은 본 발명의 다른 실시예에 따른 브라운 가스 발생 장치를 도시한 사시도이다.
본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 더 구체적으로 설명한다.
도 1은 본 발명의 일 실시예에 따른 브라운 가스 발생 장치를 도시한 사시도이고, 도 2는 본 발명의 일 실시예에 따른 브라운 가스 발생 장치를 도시한 분해 사시도이다. 그리고 도 3은 본 발명의 일 실시예에 따른 브라운 가스 발생 장치의 음극 플레이트를 도시한 사시도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 브라운 가스 발생 장치(100)는, 양극 플레이트(110), 음극 플레이트(120) 및 절연 플레이트(130)를 포함한다.
양극 플레이트(110)는, 도 1 및 도 2에 도시된 바와 같이, 직사각형 또는 정사각형 형상으로 형성될 수 있다. 그리고 상부 방향으로 전극을 연결하기 위한 양전극 연결부(118)가 돌출되어 형성될 수 있다.
이러한 양극 플레이트(110)는, 양극 몸체(111), 유입부(112), 제1 배출부(114), 양극 수용부(116) 및 양전극 연결부(118)를 포함한다.
양극 몸체(111)는, 도시된 바와 같이, 직사각형 또는 정사각형 형상으로 형성된다. 그리고 양극 몸체(111)는, 금속이 이용될 수 있으며, 본 실시예에서, 티타늄(titanium)을 이용하여 제조될 수 있으며, 티타늄에 백금(platinum)이 도금되어 제조될 수 있다. 그에 따라 양극 몸체(111)는 내식성 및 내화학성을 높일 수 있으며, 물이 이온화되더라도 전해액인 물의 오염을 방지할 수 있다. 이때, 필요에 따라 양극 몸체(111)에 이용되는 금속 및 도금되는 물질은 필요에 따라 다른 종류의 재질이 이용될 수 있다.
또한, 양극 몸체(111)에는 다수의 결합구(C1)가 형성될 수 있다. 다수의 결합구(C1)는 도 2에 도시된 바와 같이, 양극 몸체(111)의 테두리를 따라 형성될 수 있으며, 본 실시예에서, 양극 수용부(116)를 둘러싸도록 여덟 개가 형성될 수 있다.
유입부(112)는 물이 양극 몸체(111)의 내부에 공급되기 위해 구비되며, 양극 몸체(111)의 외측에 배치될 수 있다. 본 실시예에서, 후술하겠지만, 양극 몸체(111)에 양전극 연결부(118)가 형성된 위치를 상부로 정의하면, 유입부(112)는 양극 몸체(111)의 외측 상부에 치우친 위치에 배치될 수 있다. 그에 따라 도 2에 도시된 바와 같이, 유입부(112)의 내부에 유입구(112a)가 형성될 수 있다.
제1 배출부(114)는 물이 양극 몸체(111)의 내부에 공급된 물이 배출되기 위해 구비되고, 양극 몸체(111)의 외측에 배치될 수 있다. 그리고 유입부(112)가 양극 모체의 외측 하부에 치우친 위치에 배치될 수 있다. 그에 따라 도 2에 도시된 바와 같이, 제1 배출부(114)의 내부에 제1 배출구(114a)가 형성될 수 있다.
본 실시예에서, 유입부(112)와 제1 배출부(114)가 배치되는 위치는 도 2를 통해 확인할 수 있듯이, 직사각형 또는 정사각형 형상의 양극 몸체(111)에서 모서리 측으로 대각 방향에 배치될 수 있다. 여기서, 제1 배출부(114)를 통해 배출되는 물에는 전기 분해에 의해 생성된 산소가 포함될 수 있다.
양극 수용부(116)는 양극 몸체(111)의 내측에 형성될 수 있으며, 도 2에 도시된 바와 같이, 내측면에 소정의 홈 형상으로 형성될 수 있다. 본 실시예에서, 양극 수용부(116)는 유입구(112a)를 통해 유입된 물이 채워질 수 있는 공간이며, 양극 수용부(116) 전체에 물이 채워질 수 있도록 제1 양극 경로부(116a), 제2 양극 경로부(116b) 및 제3 양극 경로부(116c)가 형성될 수 있다.
제1 양극 경로부(116a)는 유입구(112a)에서 하부 방향으로 소정의 길이를 가지는 직선의 형상으로 형성될 수 있고, 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있다. 그리고 제2 양극 경로부(116b)는 제1 배출구(114a)에서 상부 방향으로 소정의 길이를 가지는 직선의 형상으로 형성될 수 있으며, 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있다. 이때, 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)의 길이, 폭 및 깊이는 서로 동일할 수 있으며, 서로 이격된 위치에 나란하게 배치될 수 있다.
제3 양극 경로부(116c)는 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)를 서로 연결하도록 다수 개가 형성될 수 있다. 본 실시예에서, 제3 양극 경로부(116c)는 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)와 수직 방향으로 형성되어, 도 2에 도시된 바와 같이, 수평 방향으로 형성될 수 있다. 그리고 제3 양극 경로부(116c)는 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있는데, 제3 양극 경로부(116c)의 폭 및 깊이는 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)의 폭 및 깊이보다 각각 작을 수 있다.
양전극 연결부(118)는, 양극 몸체(111)의 상부 일 측에 배치된다. 양전극 연결부(118)는 양극 플레이트(110)에 외부 전원을 연결하기 위해 구비되며, 외부 전원을 연결하기 위해 양전극 연결구(E1)가 형성될 수 있다. 본 실시예에서, 양전극 연결부(118)는 외부 전원의 양극 전원이 연결되기 위해 구비된다.
음극 플레이트(120)는, 도 1 및 도 2에 도시된 바와 같이, 직사각형 또는 정사각형 형상으로 형성될 수 있다. 그리고 상부 방향으로 전극을 연결하기 위한 음전극 연결부(128)가 돌출되어 형성될 수 있다.
이러한 음극 플레이트(120)는, 음극 몸체(121), 제2 배출부(122), 음극 수용부(126) 및 음극 연결부를 포함한다.
음극 몸체(121)는, 도시된 바와 같이, 직사각형 또는 정사각형 형상으로 형성된다. 그리고 음극 몸체(121)는, 양극 몸체(111)와 같이, 금속이 이용될 수 있고, 본 실시예에서, 티타늄을 이용하여 제조될 수 있고, 티타늄에 백금이 도금되어 제조될 수 있다. 그에 따라 음극 몸체(121)는 내식성 및 내화학성을 높일 수 있고, 물이 이온화되더라도 전해약인 물의 오염을 방지할 수 있다. 그리고 필요에 따라 음극 몸체(121)에도 이용되는 금속 및 도금되는 물질은 필요에 따라 다른 종류의 재질이 이용될 수 있다.
또한, 음극 몸체(121)에도 다수의 결합구(C2)가 형성될 수 있다. 다수의 결합구(C2)는 도 1 및 도 2에 도시된 바와 같이, 음극 몸체(121)의 테두리를 따라 형성될 수 있고, 양극 몸체(111)에 형성된 다수의 결합구(C1)에 대응되는 위치에 배치될 수 있다. 본 실시예에서, 다수의 결합구(C2)는 음극 수용부(126)를 둘러싸도록 여덟 개가 형성될 수 있다.
제2 배출부(122)는 음극 몸체(121)의 내부에 형성된 음극 수용부(126)로 유입된 물이 배출되기 위해 구비되며, 본 실시예에서, 제2 배출부(122)로 배출되는 물에는 전기 분해에 의해 생성된 수소가 포함될 수 있다. 이때, 제2 배출부(122)는 음극 몸체(121)의 외측에 배치될 수 있다. 본 실시예에서, 제2 배출부(122)는 음극 몸체(121)의 외측 상부에 치우친 위치에 배치될 수 있다. 그에 따라 도 3에 도시된 바와 같이, 제2 배출부(122)의 내부에 제2 배출구(122a)가 형성될 수 있다.
본 실시예에서, 제2 배출부(122)는 도 1 및 도 2에 도시된 바와 같이, 직사각형 또는 정사각형 형상의 음극 몸체(121)에서 우측 상부 방향에 치우쳐 배치될 수 있으며, 양극 몸체(111)에 배치된 유입부(112)와 대향된 위치에 배치될 수 있다. 이렇게 제2 배출부(122)가 상부에 배치되는 것은, 도 3을 참조하면, 음극 몸체(121)에 형성된 음극 수용부(126)를 통해 수소 가스가 상부로 이동되기 때문에 되도록 상부에 배치되는 것이 좋다.
음극 수용부(126)는 음극 몸체(121)의 내측에 형성될 수 있고, 도 3에 도시된 바와 같이, 내측면에 소정의 홈 형상으로 형성될 수 있다. 본 실시예에서, 음극 수용부(126)는 양극 수용부(116)와 대응되는 형상으로 형성될 수 있으며, 제1 음극 경로부(126a), 제2 음극 경로부(126b) 및 제3 음극 경로부(126c)가 형성될 수 있다.
제1 음극 경로부(126a)는 본 실시예에서, 제1 음극 경로부(126a)는 제2 배출부(122)에서 하부 방향으로 소정의 길이를 가지는 직선의 형상으로 형성될 수 있고, 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있다. 그리고 제2 음극 경로부(126b)는 제1 음극 경로부(126a)와 이격된 위치에 나란하게 형성될 수 있으며, 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있다. 이때, 제1 음극 경로부(126a) 및 제2 음극 경로부(126b)는 길이, 폭 및 깊이가 서로 동일할 수 있다.
제3 음극 경로부(126c)는 제1 음극 경로부(126a) 및 제2 음극 경로부(126b)를 서로 연결하도록 다수 개가 형성될 수 있다. 본 실시예에서, 제3 음극 경로부(126c)는 제1 음극 경로부(126a) 및 제2 음극 경로부(126b)와 수직 방향으로 형성되어, 도 3에 도시된 바와 같이, 수평 방향으로 형성될 수 있다. 그리고 제3 음극 경로부(126c)는 소정의 폭 및 소정의 깊이를 가지도록 형성될 수 있으며, 제3 음극 경로부(126c)의 폭 및 깊이는 제1 음극 경로부(126a) 및 제2 음극 경로부(126b)의 폭 및 깊이보다 각각 작을 수 있다.
음전극 연결부(128)는 음극 몸체(121)의 상부 일 측에 배치된다. 음전극 연결부(128)는 음극 플레이트(120)에 외부 전원을 연결하기 위해 구비되고, 외부 전원을 연결하기 위해 음전극 연결구(E2)가 형성될 수 있다. 본 실시예에서, 음전극 연결부(128)는 외부 전원의 음극 전원이 연결되기 위해 구비된다.
절연 플레이트(130)는, 양극 몸체(111) 및 음극 몸체(121)의 형상과 마찬가지로 직사각형 또는 정사각형 형상을 가질 수 있고, 내측에 홀(132)이 형성될 수 있다. 절연 플레이트(130)는 양극 몸체(111) 및 음극 몸체(121)의 사이에 배치되며, 양극 몸체(111) 및 음극 몸체(121)가 서로 절연되도록 절연 물질로 제조될 수 있다. 본 실시예에서, 절연 플레이트(130)는 실리콘이나 합성수지 등으로 제조될 수 있으며, 양극 몸체(111) 및 음극 몸체(121) 사이에서 절연할 수 있는 물질이면 어떤 물질로 제조되어도 무관하다.
그리고 절연 플레이트(130)는 도시된 바와 같이, 양극 몸체(111) 및 음극 몸체(121)에 비해 상대적으로 얇게 형성될 수 있으며, 양극 플레이트(110) 및 음극 플레이트(120)에 걸리는 전력에 따라 달라질 수 있지만, 이에 한정되지 않는다.
절연 플레이트(130)는 양극 몸체(111) 및 음극 몸체(121)의 사이에 배치되어, 양극 몸체(111) 및 음극 몸체(121)가 서로 볼트(B) 등에 의해 결합된 상태에서 양극 몸체(111)와 음극 몸체(121)의 사이를 통해 양극 수용부(116)에 유입된 물이 외부로 배출되는 것을 방지할 수 있다. 그에 따라 절연 플레이트(130)에는 도 2에 도시된 바와 같이, 다수의 결합구(C3)가 형성될 수 있으며, 다수의 결합구(C3)는 양극 몸체(111) 및 음극 몸체(121)에 각각 형성된 결합구(C1, C2)에 대응되는 위치에 형성될 수 있다.
그리고 절연 플레이트(130)가 사이에 개재된 상태에서, 양극 플레이트(110) 및 음극 플레이트(120)가 배치되는데, 본 실시예에서, 양극 플레이트(110), 절연 플레이트(130) 및 음극 플레이트(120)는 볼트(B) 등의 결합수단을 이용하여 결합될 수 있다.
이때, 볼트(B)에 의해 양극 플레이트(110) 및 음극 플레이트(120)가 서로 단락되는 것을 방지하기 위해 양극 플레이트(110), 음극 플레이트(120) 및 절연 플레이트(130)에 형성된 각각의 결합구(C1, C2, C3)에 절연관(S)이 관통하여 배치될 수 있다. 절연관(S)은 양극 플레이트(110) 및 음극 플레이트(120)를 전기적으로 절연하기 위한 구성으로, 실리콘이나 고무 또는 합성 수지 재질 등으로 제조될 수 있다.
또한, 절연 플레이트(130)에는 홀(132)이 형성되는데, 홀(132)의 크기는 양극 몸체(111) 및 음극 몸체(121)에 각각 형성된 양극 수용부(116) 및 음극 수용부(126)의 크기에 대응되는 크기로 형성될 수 있다. 본 실시예에서, 양극 수용부(116) 및 음극 수용부(126)의 전체적인 형상이 직사각형 또는 정사각형 형상으로 형성됨에 따라 홀(132)의 형상도 직사각형 또는 정사각형 형상으로 형성될 수 있다.
상기와 같이, 절연 플레이트(130)에 홀(132)이 형성되에 따라 양극 플레이트(110) 및 음극 플레이트(120)에 각각 형성된 양극 수용부(116) 및 음극 수용부(126)는 서로 동일한 공간으로 형성될 수 있다. 그에 따라 유입부(112)를 통해 유입된 물은 양극 수용부(116)의 제1 양극 경로부(116a) 및 음극 수용부(126)의 제1 음극 경로부(126a)에 먼저 흐르고, 제3 양극 경로부(116c) 및 제3 음극 경로부(126c)를 통해 제2 양극 경로부(116b) 및 제2 음극 경로부(126b)로 흘러 양극 수용부(116) 및 음극 수용부(126) 전체를 채울 수 있다.
본 실시예에 따른 브라운 가스 발생 장치(100)의 작동되는 것을 설명하면, 양극 플레이트(110)의 양전극 연결부(118)에 직류 전원의 (+)극이 연결되고, 음극 플레이트(120)의 음전극 연결부(128)에 직류 전원의 (-)극이 연결된다. 그리고 양극 플레이트(110)에 형성된 유입부(112)를 통해 물이 공급되면, 유입구(112a)를 통해 양극 수용부(116)에 물이 채워지면서 물과 양극 플레이트(110)가 접촉하여 물이 전기 분해되면서 수소 가스와 산소 가스가 생성된다.
이렇게 전기 분해된 수소 가스는 (-)극인 음극 수용부(126) 측에 모이고, 산소 가스는 (+)극인 양극 수용부(116) 측에 모인다. 이때, 유입구(112a)를 통해 양극 수용부(116) 및 음극 수용부(126)로 유입된 물은 제1 내지 제3 양극 경로부(116a, 116b, 116c) 및 제1 내지 제3 음극 경로부(126A, 126B, 126C)를 통해 양극 수용부(116) 및 음극 수용부(126) 전체에 걸쳐 퍼질 수 있다. 그리고 양극 수용부(116) 및 음극 수용부(126)에 유입된 물은 양극 수용부(116) 측에 생성된 산소 가스와 함께 제1 배출구(114a)를 통해 외부로 배출될 수 있으며, 음극 수용부(126) 측에 생성된 수소 가스와 함께 제2 배출구(122a)를 통해 배출될 수 있다.
본 실시예에서 직류 전원을 양극 플레이트(110) 및 음극 플레이트(120)에 인가하는데, 12V의 전압과 20A의 전류를 갖는 직류 전원을 공급한다. 그에 따라 20A의 전류가 공급됨에 따라 전기 분해에 의해 생성되는 수소 가스는 약 160㎖가 생성될 수 있고, 산소 가스는 약 80㎖가 생성될 수 있다.
도 4는 본 발명의 일 실시예에 따른 브라운 가스 발생 장치의 양극 플레이트를 도시한 정면도이고, 도 5는 도 4의 절취선 AA'를 따라 취한 단면도이다.
도 4 및 도 5를 참조하여, 양극 플레이트(110)에 형성된 양극 수용부(116)에 대해 보다 상세하게 설명한다. 이때, 음극 플레이트(120)에 형성된 음극 수용부(126)는 양극 수용부(116)와 거의 동일하게 형성되어 그에 대한 자세한 설명은 생략한다.
양극 수용부(116)는 앞서 설명한 바와 같이, 제1 양극 경로부(116a), 제2 양극 경로부(116b) 및 제3 양극 경로부(116c)를 포함한다. 제1 양극 경로부(116a), 제2 양극 경로부(116b) 및 제3 양극 경로부(116c)는 각각 양극 몸체(111)의 내측면에 형성된 홈의 형상으로 형성될 수 있다.
제1 양극 경로부(116a) 및 제2 양극 경로부(116b)는 수직 방향으로 도시된 바와 같이, 서로 나란하게 이격된 위치에 형성된다. 그리고 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)의 사이에 수평 방향으로 다수 개의 제3 양극 경로부(116c)가 구비될 수 있다. 제3 양극 경로부(116c)는 서로 일정 간격으로 이격된 상태로 형성되며, 다수의 제3 양극 경로부(116c)의 사이는 양극 몸체(111)의 내측면과 동일한 평면상에 배치된다.
그에 따라 양극 플레이트, 절연 플레이트 및 음극 플레이트가 결합될 때, 제1 양극 경로부(116a), 제2 양극 경로부(116b) 및 제3 양극 경로부(116c)는 각각 제1 음극 경로부(126), 제2 음극 경로부(126b) 및 제3 음극 경로부(126c)와 대향된 위치에 배치될 수 있다. 따라서 양극 수용부(116) 및 음극 수용부(126)로 유입된 물은 대부분 제1 내지 제3 양극 경로부(116a, 116b, 116c) 및 제1 내지 제3 음극 경로부(126a, 126b, 126c)를 통해 이동될 수 있다.
이때, 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)의 폭(w1)은 제3 양극 경로부(116c)의 폭(w2)보다 클 수 있으며, 본 실시예에서, 제3 양극 경로부(116c)의 폭(w2)은 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)의 폭(w1)의 약 60%(오차 범위 10%)일 수 있다. 또한, 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)의 깊이(d1)는 제3 양극 경로부(116c)의 깊이(d2)보다 깊을 수 있고, 본 실시예에서, 제3 양극 경로부(116c)의 깊이(d2)는 제1 양극 경로부(116a) 및 제2 양극 경로부(116b)의 깊이(d1)의 약 40%(오차 범위 10%)일 수 있다.
양극 수용부(116)에 제1 양극 경로부(116a), 제2 양극 경로부(116b) 및 제3 양극 경로부(116c)가 상기에서 설명한 바와 같이 형성됨에 따라 유입구(112a)를 통해 유입된 물은 유입구(112a)와 연결된 제1 양극 경로부(116a)를 통해 먼저 흐른 다음 다수의 제3 양극 경로부(116c)를 통해 제1 배출구(114a)와 연결된 제2 양극 경로부(116b)로 흐를 수 있다. 그리고 제1 배출구(114a)와 연결된 제2 양극 경로부(116b)를 통해 이동된 물은 제1 배출구(114a)를 통해 외부로 배출된다. 이렇게 양극 수용부(116)에 유입된 물이 흐르는 경로를 조절함으로써, 물의 흐름을 조절하여 물과 양극 플레이트(110)와의 접촉시간을 늘릴 수 있다.
도 6은 본 발명의 일 실시예에 따른 브라운 가스 발생 장치를 이용한 브라운 가스 포집 장치를 도시한 개략도이다.
도 6을 참조하여 본 실시예에 따른 브라운 가스 발생 장치(100)에서 발생된 수소를 포집하기 위한 브라운 가스 포집 장치(200)에 대해 설명한다.
브라운 가스 포집 장치(200)는, 도시된 바와 같이, 브라운 가스 발생 장치(100), 물 저장부(210) 및 가스 정제부(220)를 포함한다. 물 저장부(210)는 물 공급관(212)을 통해 브라운 가스 발생 장치(100)의 유입부(112)와 연결된다. 그리고 브라운 가스 발생 장치(100)의 제1 배출부(114)는 제1 물 배출관(214)과 연결된다. 제1 물 배출관(214)을 통해 배출되는 물은 산소 가스가 포함된 물이다.
그리고 브라운 가스 발생 장치(100)의 제2 배출부(122)는 제2 물 배출관(216)과 연결된다. 제2 물 배출관(216)을통해 배출되는 물은 수소 가스가 포함된 물이다.
이렇게 제1 물 배출관(214) 및 제2 물 배출관(216)으로 배출된 물은 통합 배출관(222)과 연결되어 하나로 합쳐진다. 통합 배출관(222)은 가스 정제부(220)과 연결된다. 그에 따라 통합 배출관(222)에서 수소 가스가 포함된 물과 산소 가스가 포함된 물은 가스 정제부(220)으로 공급된다. 가스 정제부(220)는 내부에 물이 일부 채워질 수 있으며, 통합 배출관(222)을 통해 공급된 수소 가스 및 산소 가스가 포함된 물이 가스 정제부(220)에 채워진 물속으로 공급되어 물에 의해 정제된 수소 가스 및 산소 가스가 혼합된 브라운 가스가 정제 가스 배기관(224)을 통해 배출될 수 있다. 정제 가스 배기관(224)으로 배출된 브라운 가스는 외부 장치에 공급될 수 있다. 이때, 생성된 브라운 가스는 산업용으로 이용될 수 있다.
양전극 단자(232)는 양전극 연결부(118)에 전기적으로 연결되고, 음전극 단자(234)는 음전극 연결부(128)에 전기적으로 연결될 수 있다. 이때, 양전극 단자(232) 및 음전극 단자(234)를 통해 브라운 가스 발생 장치(100)에 공급되는 전력은 직류 전력이다.
도 7은 본 발명의 다른 실시예에 따른 브라운 가스 발생 장치를 도시한 사시도이다.
도 7을 참조하면, 본 발명의 다른 실시예에 따른 브라운 가스 발생 장치(100)는, 양극 플레이트(110), 음극 플레이트(120) 및 절연 플레이트(130)를 포함한다. 본 실시예에 대해 설명하면서, 일 실시예에서와 동일한 설명은 생략한다.
양극 플레이트(110)는 도시된 바와 같이, 직사각형 또는 정사각형 형상으로 형성되고, 상부 방향에 전극을 연결하기 위한 양전극 연결부(118)가 돌출되어 형성될 수 있다. 이때, 양전극 연결부(118)는 양극 플레이트(110)의 상부에 형성되면서, 음극 플레이트(120)에 형성된 음전극 연결부(128)와 이격된 위치에 배치될 수 있다. 즉, 양전극 연결부(118) 및 음전극 연결부(128)는 각각 양극 플레이트(110) 및 음극 플레이트(120)의 상부에 형성되되, 양전극 연결부(118)는 양극 플레이트(110)의 좌측 상단에 형성되고, 음전극 연결부(128)는 음극 플레이트(120)의 우측 상단에 형성될 수 있다.
그에 따라 브라운 가스 발생 장치(100)에 양전극 단자(232) 및 음전극 단자(234)를 연결할 때, 서로 이격되게 배치된 양전극 연결부(118) 및 음전극 연결부(128)에 연결하여, 서로 단락되는 것을 방지할 수 있다.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이므로, 본 발명이 상기 실시예에만 국한되는 것으로 이해돼서는 안 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어야 할 것이다.

Claims (7)

  1. 내부에 양극 수용부가 형성되고, 양전극이 전기적으로 연결되는 양극 플레이트;
    내부에 음극 수용부가 형성되며, 음전극이 전기적으로 연결되는 음극 플레이트; 및
    상기 양극 플레이트 및 음극 플레이트 사이에 배치되며, 상기 양극 플레이트와 음극 플레이트를 절연시키는 절연 플레이트를 포함하고,
    상기 양극 플레이트에는 상기 양극 수용부로 물이 공급되는 유입구 및 상기 양극 수용부에서 산소 가스가 포함된 물이 배출되는 제1 배출구가 형성되며,
    상기 음극 플레이트에는 상기 음극 수용부에서 수소 가스가 포함된 물이 배출되는 제2 배출구가 형성된 브라운 가스 발생 장치.
  2. 청구항 1에 있어서,
    상기 양극 플레이트에 형성된 양극 수용부에는, 상기 유입구에서 일 방향으로 연장되어 형성된 제1 양극 경로부, 상기 제1 배출구에서 타 방향으로 연장되어 형성된 제2 양극 경로부 및 상기 제1 및 제2 양극 경로부가 연결되도록 상기 제1 및 제2 양극 경로부의 사이에 형성된 하나 이상의 제3 양극 경로부가 형성된 브라운 가스 발생 장치.
  3. 청구항 2에 있어서,
    상기 제3 양극 경로부의 폭 및 깊이는 상기 제1 및 제2 양극 경로부의 폭 및 깊이보다 작은 브라운 가스 발생 장치.
  4. 청구항 1에 있어서,
    상기 음극 플레이트에 형성된 음극 수용부에는, 상기 제2 배출구에서 일 방향으로 연장되어 형성된 제1 음극 경로부, 상기 제1 음극 경로부와 나란한 위치에 이격되어 형성되며 일 방향으로 형성된 제2 음극 경로부 및 상기 제1 및 제2 음극 경로부가 연결되도록 상기 제1 및 제2 음극 경로부의 사이에 형성된 하나 이상의 제3 음극 경로부가 형성된 브라운 가스 발생 장치.
  5. 청구항 4에 있어서,
    상기 제3 음극 경로부의 폭 및 깊이는 상기 제1 및 제2 음극 경로부의 폭 및 깊이보다 작은 브라운 가스 발생 장치.
  6. 청구항 1에 있어서,
    상기 양극 플레이트는 상부에 외부에서 공급되는 직류 전원의 양전극이 연결되는 양전극 연결부를 더 포함하고,
    상기 음극 플레이트는 상부에 외부에서 공급되는 직류 전원의 음전극이 연결되는 음전극 연결부를 더 포함하는 브라운 가스 발생 장치.
  7. 청구항 1에 있어서,
    상기 절연 플레이트는 상기 양극 수용부 및 음극 수용부가 하나의 공간으로형성되도록 상기 양극 수용부 및 음극 수용부에 대응되는 형상의 홀이 형성된 브라운 가스 발생 장치.
PCT/KR2018/006762 2018-05-21 2018-06-15 브라운 가스 발생 장치 WO2019225797A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180057682A KR102207611B1 (ko) 2018-05-21 2018-05-21 브라운 가스 발생 장치
KR10-2018-0057682 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019225797A1 true WO2019225797A1 (ko) 2019-11-28

Family

ID=68616417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006762 WO2019225797A1 (ko) 2018-05-21 2018-06-15 브라운 가스 발생 장치

Country Status (2)

Country Link
KR (1) KR102207611B1 (ko)
WO (1) WO2019225797A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975947A (ja) * 1995-09-06 1997-03-25 Hoshizaki Electric Co Ltd 電解槽
JP2006043707A (ja) * 2005-10-26 2006-02-16 Shimazaki Denki Kk 電解水生成装置
JP2015223553A (ja) * 2014-05-28 2015-12-14 株式会社スイソサム 水素水生成装置
KR20150143027A (ko) * 2014-06-13 2015-12-23 현대아쿠아텍주식회사 산소수 및 수소수 생성장치
KR20160123594A (ko) * 2015-04-16 2016-10-26 주식회사 파이노 기능수 생성모듈

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567138A (en) 1979-06-29 1981-01-24 Bunshiyuushiya:Kk Character board of light pen type input device for photocomposition of electronic computer
JPS6053816B2 (ja) 1980-06-03 1985-11-27 株式会社東芝 高周波加熱装置
KR200203167Y1 (ko) 2000-05-10 2000-11-15 이강운 재생에너지의 효율적 활용을 위한 분리형 물의전기분해장치 및 이를 이용한 연소장치
JP2003328169A (ja) 2002-05-14 2003-11-19 Takeshi Shinpo 水素ガス発生装置
KR100684685B1 (ko) * 2005-03-17 2007-02-20 김춘식 수소 및 산소 혼합가스 발생장치
KR100704955B1 (ko) 2006-02-02 2007-04-09 주식회사 제이앤스테크 정수기
JP3126047U (ja) 2006-07-28 2006-10-12 大同メタル工業株式会社 水の電気分解装置を用いた酸素ガス処理装置
JP2009114498A (ja) 2007-11-06 2009-05-28 Kemitsukusu:Kk 水素生成装置、プラス極側カバー
KR20150101696A (ko) 2014-02-27 2015-09-04 현대아쿠아텍주식회사 수소수 생성장치
KR101630165B1 (ko) 2015-02-12 2016-06-14 주식회사 웨스피 캐소드 피딩형 수소발생장치
KR20170036228A (ko) 2015-09-24 2017-04-03 김영규 비촉매 물연료 셀룰로오스 전지
KR101773022B1 (ko) 2015-11-30 2017-08-30 김길재 수소 수/산소 수의 생성장치
KR102053637B1 (ko) 2016-10-26 2019-12-09 하이젠월드 주식회사 내연기관의 배기가스 및 연료 절감 장치
KR101843789B1 (ko) * 2016-12-07 2018-03-30 김건하 전기분해를 이용한 브라운가스 발생용 전해조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975947A (ja) * 1995-09-06 1997-03-25 Hoshizaki Electric Co Ltd 電解槽
JP2006043707A (ja) * 2005-10-26 2006-02-16 Shimazaki Denki Kk 電解水生成装置
JP2015223553A (ja) * 2014-05-28 2015-12-14 株式会社スイソサム 水素水生成装置
KR20150143027A (ko) * 2014-06-13 2015-12-23 현대아쿠아텍주식회사 산소수 및 수소수 생성장치
KR20160123594A (ko) * 2015-04-16 2016-10-26 주식회사 파이노 기능수 생성모듈

Also Published As

Publication number Publication date
KR102207611B1 (ko) 2021-01-26
KR20190132766A (ko) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2016167473A1 (ko) 기능수 생성모듈
WO2012086934A2 (ko) 정류기 일체형 전기분해장치
WO2019225796A1 (ko) 수소 발생 장치
CN1395627A (zh) 电解池的改进
WO2019107898A1 (ko) 수소함유수 제조 장치
WO2019225797A1 (ko) 브라운 가스 발생 장치
WO2013103236A1 (ko) 적층형 유동상 축전식 탈이온화장치
WO2019231006A1 (ko) 브라운 가스 발생 장치
WO2019240313A1 (ko) 수소 발생 장치
WO2019240312A1 (ko) 브라운 가스 발생 장치
WO2019231008A1 (ko) 브라운 가스 발생 장치
WO2019231005A1 (ko) 수소 발생 장치
WO2019240314A1 (ko) 브라운 가스 발생 장치
WO2019231007A1 (ko) 수소 발생 장치
WO2019240311A1 (ko) 수소 발생 장치
WO2016104934A1 (ko) 전해모듈
WO2022182028A1 (ko) 수소 및 산소 생성 장치
WO2016104935A1 (ko) 파이프형 전해셀
WO2020004676A1 (ko) 브라운 가스 발생 장치
KR102062986B1 (ko) 브라운 가스 발생 장치
WO2021015313A1 (ko) 이온수기용 직렬 전해장치
WO2024143650A1 (ko) 촉매코팅막을 이용한 수소발생장치
WO2018038430A1 (ko) 수직형 전해장치
KR102266282B1 (ko) 알칼리 수전해조 스택
CN114409033A (zh) 一种利用电场分离水中离子的装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 27.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18919740

Country of ref document: EP

Kind code of ref document: A1