WO2019225548A1 - 遠隔操作システム、情報処理方法、及びプログラム - Google Patents

遠隔操作システム、情報処理方法、及びプログラム Download PDF

Info

Publication number
WO2019225548A1
WO2019225548A1 PCT/JP2019/019930 JP2019019930W WO2019225548A1 WO 2019225548 A1 WO2019225548 A1 WO 2019225548A1 JP 2019019930 W JP2019019930 W JP 2019019930W WO 2019225548 A1 WO2019225548 A1 WO 2019225548A1
Authority
WO
WIPO (PCT)
Prior art keywords
operator
posture
slave robot
signal
video
Prior art date
Application number
PCT/JP2019/019930
Other languages
English (en)
French (fr)
Inventor
ヤン ロッド
ホセ エンリケ チェン
元紀 佐野
Original Assignee
Telexistence株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telexistence株式会社 filed Critical Telexistence株式会社
Priority to EP19808432.9A priority Critical patent/EP3797931B1/en
Priority to JP2020521223A priority patent/JP7239916B2/ja
Priority to KR1020207032490A priority patent/KR20210013042A/ko
Priority to CN201980034293.6A priority patent/CN112154047A/zh
Publication of WO2019225548A1 publication Critical patent/WO2019225548A1/ja
Priority to US16/953,013 priority patent/US20210069894A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0081Programme-controlled manipulators with master teach-in means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1689Teleoperation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/006Controls for manipulators by means of a wireless system for controlling one or several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/084Tactile sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/002Specific input/output arrangements not covered by G06F3/01 - G06F3/16
    • G06F3/005Input arrangements through a video camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35444Gesture interface, controlled machine observes operator, executes commands

Definitions

  • the present invention relates to a remote operation system, an information processing method, and a program.
  • Non-Patent Document 1 A technique for causing an operator to experience such a feeling has been proposed (see, for example, Non-Patent Document 1).
  • This technology is also called telepresence (telepresence), telexistence (registered trademark of the present applicant, tele-distance), or the like.
  • the slave robot is a humanoid robot, and the slave robot is compatible with the movement of the operator's body (head, torso, arm, hand, etc.). The part to do works.
  • the operator of the slave robot wears a shielded head-mounted display in order to share the field of view of the slave robot, that is, the image captured by the image sensor included in the slave robot.
  • the field of view of the operator is also synchronized with the field of view of the slave robot via the head mounted display.
  • the present invention has been made in view of these points, and provides a technique for reducing the disagreement of the sensation felt by the operator when the operation of the slave robot of the remote operation system and the operation of the operator are started. For the purpose.
  • the first aspect of the present invention is a remote operation system.
  • This system includes a slave robot that operates in conjunction with a change in the posture of the operator, a capture device that acquires a signal indicating the posture of the operator's body, and a control device.
  • the control device receives a signal indicating the posture of the slave robot from the slave robot, and receives a signal indicating the posture of the operator's body from the capture device; and the slave robot
  • a posture comparison unit that obtains a posture error indicating a difference between the posture of the operator and the posture of the operator, and generated based on a change in the posture of the operator on the condition that the posture error is within a predetermined threshold range
  • An operation connecting unit that transmits an operation signal for operating the slave robot to the slave robot.
  • the control device is configured to guide the operator to a posture to be taken in order to match the posture of the slave robot and the posture of the operator before the motion connecting unit transmits the motion signal to the slave robot.
  • a connection information presentation unit that presents the information to the operator may be further provided.
  • the remote operation system may further include a head mounted display for presenting an image to the operator when attached to the operator's head, and the control device displays an image to be displayed on the head mounted display.
  • the video control unit may further include a posture of the slave robot and a posture of the operator before the motion connecting unit transmits the motion signal to the slave robot.
  • a guide video for guiding the operator to a posture to be taken may be generated for matching.
  • the video control unit may cause the head-mounted display to display a video imaged by an imaging device included in the slave robot while the motion coupling unit transmits the motion signal to the slave robot.
  • the video control unit is configured to virtually display a position where the operator can perceive a hand of the slave robot when an image captured by an image sensor provided on a head of the slave robot is displayed on the head mounted display.
  • the guide video may be generated such that a typical connection marker is displayed.
  • the remote operation system is a tactile presentation device for presenting tactile information acquired by a tactile sensor provided in the hand of the slave robot to the hand of the operator when attached to the hand of the operator.
  • the control device may further include a tactile signal generation unit that generates a tactile presentation signal for operating the tactile presentation device, and the tactile signal generation unit is configured to perform the operation on the video.
  • the tactile sense presentation signal may be generated on the condition that the position of the person's hand and the position of the surface of the connecting marker overlap.
  • the video control unit may generate a virtual cutting marker for cutting off synchronization between the operation of the operator and the operation of the slave robot, and the motion connecting unit may be configured to generate the virtual cutting marker.
  • the transmission of the operation signal to the slave robot may be stopped on the condition that the position of the hand portion and the position of the surface of the cutting marker overlap.
  • the motion linking unit may transmit the motion signal to the slave robot on condition that a state in which the posture error is within a predetermined threshold range elapses.
  • the motion linking unit may transmit an operation signal for operating the slave robot to the slave robot so that the posture error acquired by the posture comparison unit is within a predetermined threshold range.
  • the slave robot may be a humanoid robot having at least a head and a hand corresponding to the operator's head and hand, respectively, and the posture comparison unit may include the slave robot and the operator.
  • the difference between the position of the head of the slave robot and the position of the head of the operator and the difference between the position of the hand of the slave robot and the position of the hand of the operator when virtually superposed May be acquired as the posture error.
  • a second aspect of the present invention provides a remote operation comprising: a slave robot that operates in conjunction with a change in the posture of the operator; a capture device that acquires a signal indicating the posture of the operator's body; and a control device. It is the information processing method which the processor with which the said control apparatus in a system performs is performed.
  • the processor receives a signal indicating the posture of the slave robot from the slave robot, receives a signal indicating the posture of the operator's body from the capture device, and The step of obtaining a posture error indicating a difference between the posture and the posture of the operator, and the posture error is within a predetermined threshold range, and generated based on a change in the posture of the operator Transmitting an operation signal for operating the slave robot to the slave robot.
  • the third aspect of the present invention is a program.
  • the program includes a slave robot that operates in conjunction with a change in the posture of the operator, a capture device that acquires a signal indicating the posture of the operator's body, and a control device.
  • a function for receiving a signal indicating the posture of the slave robot from the slave robot a function for receiving a signal indicating the posture of the operator's body from the capture device, the posture of the slave robot, and the operator's posture.
  • any combination of the above components and at least a part of the expression of the present invention converted between a method, an apparatus, a system, a computer program, a data structure, a recording medium, etc. are also effective as an aspect of the present invention It is.
  • a computer-readable recording medium storing the program may be provided, and the program may be transmitted through a communication line.
  • FIG. 1 is a diagram schematically showing the external appearance of the components of the remote control system S.
  • FIG. 2 is a diagram schematically showing the components of the remote control system S and the flow of information exchanged between the components.
  • summary of the remote control system S is demonstrated first.
  • an operator U who uses the remote operation system S wears various presentation devices 2 (head mounted display 2a, tactile sense presentation device 2b, headphones 2c, and image sensor 2d).
  • the movement of the operator U's body is tracked by the capture device 4.
  • the capture device 4 is a known motion capture device using infrared light or visible light, for example, and captures a signal indicating the posture of the operator U's body by imaging a tracking marker attached to the operator U's body. Obtain and transmit to the control device 1.
  • the slave robot R includes various sensors 3 (an image sensor 3a, a tactile sensor 3b, and a microphone 3c), and sensor information acquired by each sensor 3 is transmitted to the control device 1.
  • the tactile sensor 3b includes a temperature sensor 31, an acceleration sensor 32, and a pressure sensor 33.
  • the slave robot R is a machine imitating a human shape.
  • the image sensor 3a is arranged at a position corresponding to the eyes of the slave robot R.
  • the tactile sensor 3b is disposed at a position corresponding to the fingertip of the slave robot R, and the microphone 3c is disposed at a position corresponding to the ear of the slave robot R.
  • the control device 1 is a cloud server that exists on the communication network N. As shown in FIG. 2, the control device 1 analyzes the change in the posture of the operator U based on a signal indicating the posture of the operator U's body. The control device 1 generates an operation signal for operating the slave robot R based on the change in the posture of the operator U, and transmits the operation signal to the slave robot R.
  • the slave robot R includes an actuator in each part such as a neck, a shoulder, and an elbow, and the operation signal generated by the control device 1 is a signal for operating these actuators. Thereby, the slave robot R can move in conjunction with a change in the posture of the operator U.
  • the control device 1 generates a presentation signal for operating the presentation device 2 worn by the operator U based on the sensor information acquired from the sensor 3 included in the slave robot R, and transmits the presentation signal to the presentation device 2. For example, image information acquired by imaging by the imaging element 3a is converted by the control device 1 into an image signal to be presented on the head mounted display 2a. As a result, the operator U can view the image captured by the imaging element 3a, which is the “eye” of the slave robot R, through the monitor of the head mounted display 2a.
  • FIG. 1 shows a state in which the right hand of the slave robot R and a cube that is the contact object O held by the right hand of the slave robot R are shown on the monitor of the head mounted display 2a.
  • tactile information including temperature, vibration, and pressure acquired by the tactile sensor 3b is converted by the control device 1 into a tactile presentation signal for operating the tactile presentation device 2b.
  • the operator U can feel the tactile sensation captured by the “fingertip” of the slave robot R via the tactile sensation presentation device 2b.
  • the head mounted display 2a is a shielded head mounted display. For this reason, when the operator U observes the video imaged by the imaging device 3a via the head mounted display 2a, it is possible to obtain an immersion feeling as if the operator U is at the location where the slave robot R is present.
  • the operator U wears the head mounted display 2a
  • the operator U cannot see his / her surroundings. Since the head mounted display 2a also operates as part of the capture device, the operator U needs to wear the head mounted display 2a before synchronizing the movement of the operator U and the movement of the slave robot R. Since the operator U wears the head mounted display 2a before the image signal is sent from the control device 1 to the head mounted display 2a, the movement of the operator U and the movement of the slave robot R are synchronized. Until completion, the operator U cannot see the surroundings, which is inconvenient.
  • the head mounted display 2a includes an image pickup device 2d for picking up an image of the line of sight of the operator U when attached to the operator U. Thereby, the operator U can observe the surroundings with the head mounted display 2a mounted.
  • the slave robot R includes a sensor group that operates in conjunction with a change in the posture of the operator U and acquires a signal for operating the presentation device 2 worn by the operator U.
  • the operator U can obtain visual, auditory, tactile, and the like obtained if the slave robot R is present in a place that does not actually exist. You can experience the sensation.
  • FIG. 3 is a diagram schematically illustrating a functional configuration of the control device 1 according to the embodiment.
  • the control device 1 includes a communication unit 10, a storage unit 11, and a control unit 12.
  • the communication unit 10 transmits / receives data to / from the presentation device 2 included in the operator U, the sensor 3 included in the slave robot R, and the capture device 4 via the communication network N.
  • the storage unit 11 includes a ROM (Read Only Memory) that stores a BIOS (Basic Input Output System) of a computer that implements the control device 1, a RAM (Random Access Memory) that is a work area of the control device 1, and an OS (Operating System). ), An application program, and a large-capacity storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive) that stores various types of information including various databases referred to when the application program is executed.
  • BIOS Basic Input Output System
  • BIOS Basic Input Output System
  • RAM Random Access Memory
  • OS Operating System
  • An application program and a large-capacity storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive) that stores various types of information including various databases referred to when
  • the control unit 12 is a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) of the control device 1 and executes a program stored in the storage unit 11 to execute a reception control unit 120 and a transmission control unit 121.
  • Posture comparison unit 122 Motion connection unit 123, video control unit 124, tactile signal generation unit 125, connection information presentation unit 126, and voice control unit 127.
  • control apparatus 1 may be implement
  • each unit constituting the control unit 12 is realized by at least one of a plurality of different processors executing a program.
  • Both the reception control unit 120 and the transmission control unit 121 are realized by, for example, a LAN (Local Area Network) controller.
  • the reception control unit 120 receives data from a device external to the control device 1 via the communication unit 10. Further, the transmission control unit 121 transmits data to a device outside the control device 1 via the communication unit 10.
  • the reception control unit 120 or the transmission control unit 121 transmits / receives data to / from an external device via the communication unit 10.
  • the reception control unit 120 receives a signal indicating the posture of the slave robot R from the slave robot R. Further, the reception control unit 120 receives a signal indicating the posture of the operator U's body from the capture device 4.
  • the posture comparison unit 122 acquires a posture error indicating a difference between the posture of the slave robot R and the posture of the operator U. Specifically, the posture comparison unit 122 calculates the posture of the slave robot R from the signal indicating the posture of the slave robot R, and calculates the posture of the operator U from the signal indicating the posture of the operator U. . Subsequently, the posture comparison unit 122 calculates a posture error indicating a difference between the posture of the slave robot R and the posture of the operator U based on the calculated posture of the slave robot R and the posture of the operator U. Get in.
  • FIGS. 4A to 4B are diagrams for explaining posture errors acquired by the posture comparison unit 122 according to the embodiment.
  • FIG. 4A is a diagram illustrating seven feature points set for the operator U and the slave robot R, respectively.
  • the numbers surrounded by squares indicate the feature points set for the operator U
  • the numbers surrounded by circles indicate the feature points set for the slave robot R.
  • the slave robot R is a humanoid robot having at least a head and a hand corresponding to the head and hand of the operator U, respectively.
  • the same numbers indicate the corresponding feature points.
  • “1” surrounded by a square is a feature point set in the right eye of the operator U
  • “1” surrounded by a circle is set in the image sensor 3 a provided on the right side of the slave robot R. It is a characteristic point.
  • each feature point is represented by a number assigned to the feature point, such as “feature point 1”.
  • control apparatus 1 acquires the position of each feature point set for the operator U by acquiring and analyzing information obtained by the capture apparatus 4 tracking the operator U. Further, the control device 1 acquires the position of each feature point set in the slave robot R by acquiring and analyzing the operation state (for example, the rotation angle of the motor) of each actuator of the slave robot R.
  • FIG. 4B is a diagram showing a result of superimposing the feature points set for the operator U and the feature points set for the slave robot R.
  • the feature points set for the eyes of the operator U It is a figure which shows the example at the time of overlapping the feature point set to the slave robot.
  • the feature point 1, the feature point 2, the feature point 3, the feature point 4, and the feature point 5 are generally overlapped, but the feature point 6 and the feature point 7 that are the feature points of the “hand”. The state where it is off is illustrated.
  • a difference E indicates a difference between the feature point set for the operator U and the feature point of the slave robot R corresponding to the feature point.
  • the position of the hand of the operator U matches the position of the hand of the slave robot R. It is preferable in reducing the disagreement of the sensation felt. Since the hand is a part where the movement of the operator U is large when the slave robot R is operated, if the position of the hand of the operator U and the position of the hand of the slave robot R are deviated from each other, the interval related to the perspective is reduced. This is because the discrepancy increases and the operator U tends to feel uncomfortable in the operation of the slave robot R.
  • the posture comparison unit 122 when the slave robot R and the operator U are virtually overlapped, at least the difference E between the position of the head of the slave robot R and the position of the head of the operator U. Then, the sum of the difference E between the position of the hand of the slave robot R and the position of the hand of the operator U, or the sum or product of weighted differences for each part is acquired as the posture error. In addition, the posture comparison unit 122 determines the difference between the head orientation of the slave robot R and the head orientation of the operator U, and the orientation of the hand portion of the slave robot R and the orientation of the hand portion of the operator U. The difference may be added to the posture error. Further, not only the head and hands, but also posture errors of other body parts such as arms may be added.
  • the motion linking unit 123 operates to operate the slave robot R generated based on the change in the posture of the operator U on condition that the posture error acquired by the posture comparison unit 122 is within a predetermined threshold range. A signal is transmitted to the slave robot R. Note that the movement connecting unit 123 sending the movement signal to the slave robot R means that the movement of the operator U and the movement of the slave robot R are started.
  • the “predetermined threshold range” is a “posture matching determination threshold range” that is referred to by the motion connecting unit 123 in order to determine whether or not to start transmitting a motion signal to the slave robot R.
  • the posture match determination threshold range is narrower, it becomes more difficult for the operator U to perceive disagreement when the synchronization of the movement of the operator U and the movement of the slave robot R is started.
  • the posture match determination threshold range is narrower, the accuracy required for matching between the posture of the operator U and the posture of the slave robot R becomes higher. Therefore, the motion of the operator U and the motion of the slave robot R are synchronized. It will take some time to start.
  • the specific value of the threshold range for posture matching determination is determined by the designer of the remote operation system S in consideration of the length of each part of the slave robot R, the performance of the actuator mounted on the slave robot R, and the like. What is necessary is just to determine by experiment, balancing the reduction of the disagreement of the sensation occurring in the operator U and the smooth synchronization between the movement of the operator U and the movement of the slave robot R.
  • the motion linking unit 123 is based on the condition that the difference between the posture of the operator U and the posture of the slave robot R falls within a predetermined threshold range and the motion of the slave robot R. Start motion synchronization. Thereby, when the operator U starts the operation of the slave robot R, the deviation between the field of view expected from the line of sight of the operator U and the field of view captured by the imaging device 3a of the slave robot R is reduced. . Therefore, the control device 1 according to the embodiment can reduce the disagreement of the sensation felt by the operator U when starting the synchronization of the operation of the slave robot R of the remote operation system S and the operation of the operator U. .
  • connection information presenting unit 126 guides the operator to the posture that the operator should take in order to match the posture of the slave robot R and the posture of the operator U before the motion connecting unit 123 transmits the motion signal to the slave robot R. Information to do so is presented to the operator U.
  • connection information presenting unit 126 may present the operator U with voice guidance for guiding the user to the posture that the operator should take in order to match the posture of the slave robot R and the posture of the operator U. More specifically, first, the connection information presenting unit 126 performs voice control on voice data for voice guidance for guiding the posture to be taken by the operator in order to match the posture of the slave robot R and the posture of the operator U. To generate. Subsequently, the connection information presentation unit 126 may control the voice control unit 127 so that the voice guidance voice data is reproduced on the headphones 2c.
  • connection information presenting unit 126 may present the operator U with video guidance for guiding to the posture that the operator should take in order to match the posture of the slave robot R and the posture of the operator U.
  • the head mounted display 2a worn by the operator U is a device for presenting an image to the operator U when attached to the head of the operator U.
  • the video control unit 124 controls video displayed on the head mounted display 2a.
  • the connection information presentation unit 126 causes the video control unit 124 to generate a guidance video for guiding the posture to be taken by the operator in order to match the posture of the slave robot R and the posture of the operator U.
  • the video control unit 124 displays a video on the head mounted display 2a by transmitting a video signal to be displayed on the head mounted display 2a to the head mounted display 2a via the transmission control unit 121.
  • the video control unit 124 reduces the posture error between the posture of the slave robot R and the posture of the operator U. Generate a guide video. Thereby, the operator U can synchronize with the slave robot R smoothly.
  • the video control unit 124 transmits a video signal to be displayed on the head mounted display 2a to the head mounted display 2a via the transmission control unit 121, thereby displaying the video on the head mounted display 2a.
  • the video control unit 124 displays a video on the head mounted display 2a”.
  • FIGS. 5A to 5B are diagrams illustrating an example of a guide video generated by the video control unit 124 according to the embodiment.
  • 5A and 5B show images displayed on the monitor of the head mounted display 2a before the synchronization of the operation of the slave robot R and the operation of the operator U is started. Yes.
  • FIGS. 5A and 5B show the thigh, forearm, hand, and lower abdomen of the operator U himself imaged by the imaging device 2d provided in the head mounted display 2a.
  • the video control unit 124 displays two virtual cubes Mc on the head mounted display 2a, and displays a message I instructing to touch the cubes with both hands. Both the virtual cube Mc and the message I do not actually exist, and are guide videos generated by the video control unit 124 using AR (Augmented Reality) technology.
  • the video control unit 124 perceives the hand of the slave robot R by the operator U when a stereoscopic video imaged by the imaging device 3a provided on the head of the slave robot R is displayed on the head mounted display 2a.
  • the guide video is generated so that the virtual cube Mc is displayed at the position. Therefore, as shown in FIG. 5B, when the operator U “touches” the cube Mc displayed on the left and right with the left hand and the right hand, the posture between the posture of the operator U and the posture of the slave robot R. The error naturally falls within a predetermined threshold range. In this sense, the virtual cube Mc generated by the video control unit 124 can be said to be a “connection marker” that is displayed to connect the movement of the operator U and the movement of the slave robot R.
  • the video control unit 124 displays the countdown video C on the head mounted display 2a when the posture error between the posture of the operator U and the posture of the slave robot R falls within a predetermined threshold range.
  • FIG. 5B shows an example in which a countdown video C for 5 seconds is displayed.
  • the motion connecting unit 123 transmits the motion signal to the slave robot R on condition that a state in which the posture error is within the predetermined threshold range elapses.
  • the “predetermined period” is a “pre-synchronization standby period” in which the motion connecting unit 123 waits before starting the synchronization of the motion of the slave robot R and the motion of the operator U. Since the operator U waits for a predetermined period in a state where the posture error is within the predetermined threshold range, the operator U can be prepared to operate the slave robot R. Compared to the case where the motion connecting unit 123 suddenly starts the synchronization of the motion of the slave robot R and the motion of the operator U, the control device 1 can prepare to enter the virtual space. Mismatch can be reduced.
  • the video control unit 124 causes the head mounted display 2a to display the stereoscopic video acquired by the imaging device 2d provided in the head mounted display 2a before the motion connecting unit 123 transmits the motion signal to the slave robot R. Further, the video control unit 124 synchronizes the operation of the slave robot R and the operation of the operator U while the operation connecting unit 123 transmits an operation signal to the slave robot R.
  • the stereoscopic image captured by the image sensor 3a included in the is switched to the head mounted display 2a and displayed.
  • the video control unit 124 may perform an effect related to switching of video when the operation of the slave robot R and the operation of the operator U are synchronized. For example, the video control unit 124 may fade in the video acquired by the imaging device 3a while fading out the stereoscopic video acquired by the imaging device 2d. Since it is easy to be aware of switching between the image of the environment in which the robot actually exists and the image of the environment in which the slave robot R is present, the operator U can be prepared to operate the slave robot R.
  • the video control unit 124 captures images of the slave robot R at the timing of displaying the countdown video C on the head mounted display 2a even before the motion connecting unit 123 starts transmitting the motion signal to the slave robot R. You may make it display the three-dimensional image which the element 3a imaged on the head mounted display 2a.
  • the video control unit 124 causes the head-mounted display 2a to display a stereoscopic video imaged by the imaging device 3a included in the slave robot R before the motion coupling unit 123 starts transmitting the motion signal to the slave robot R.
  • a message indicating that synchronization is started may be displayed on the head mounted display 2a.
  • the video control unit 124 also displays a stereoscopic image when the stereoscopic image captured by the image sensor 3a included in the slave robot R is displayed on the head mounted display 2a before the motion coupling unit 123 starts transmitting the motion signal to the slave robot R.
  • the display mode of the video may be different from the display mode after the start of transmission (for example, the luminance value is changed).
  • the audio control unit 127 outputs the audio collected by the microphone 3c to the headphones 2c at the same timing as the video control unit 124 switches the video displayed on the head mounted display 2a to the stereoscopic video captured by the imaging device 3a. To do. Thereby, the operator U can suppress that visual information and auditory information become inconsistent.
  • the cube Mc displayed by the video control unit 124 on the head mounted display 2a is an AR video, which is a virtual object that does not actually exist. For this reason, the operator U cannot actually touch the cube Mc. Then, when the operator U “touches” the cube Mc, the hand rests in a space where there is actually nothing.
  • the control device 1 includes a haptic signal generation unit 125 that generates a haptic presentation signal for operating the haptic presentation device 2b.
  • the tactile signal generation unit 125 is a slave robot on the condition that the position of the hand of the operator U in the stereoscopic image displayed by the head mounted display 2a overlaps the position of the surface of the cube Mc that is the connection marker. Regardless of whether or not the R imaging element 2d has acquired tactile information, a tactile presentation signal may be generated. Specifically, the tactile signal generation unit 125 generates a tactile presentation signal that reproduces a tactile sensation felt when the operator U touches the cube. Thus, since the operator U can obtain a feeling of “touching” the cube Mc, the control device 1 can easily make the operator U stand still in a state of “touching” the cube Mc. it can.
  • an image captured by the image sensor 3a included in the slave robot R is displayed on the head mounted display 2a worn by the operator U.
  • the operator U is observing a kind of VR (Virtual Reality) image in that the operator U is not observing the image of the environment in which the operator U actually exists.
  • VR Virtual Reality
  • the tactile signal generation unit 125 is a virtual for disconnecting the synchronization between the operation of the operator U and the operation of the slave robot R.
  • a cutting marker is generated and displayed on the head mounted display 2a.
  • FIG. 6 is a diagram illustrating another example of the guide video generated by the video control unit 124 according to the embodiment, and is a virtual for disconnecting the synchronization between the operation of the slave robot R and the operation of the operator U. It is a figure which shows the marker for cutting
  • the motion connecting unit 123 is configured so that the position of the hand of the operator U in the stereoscopic image displayed on the head mounted display 2a and the position of the surface of the sphere Md that is a cutting marker overlap with each other. Stops sending the operation signal to.
  • the video control unit 124 causes the head mounted display 2a to display the stereoscopic video acquired by the imaging device 2d provided in the head mounted display 2a.
  • the tactile signal generator 125 generates a message I indicating that the synchronization between the operation of the slave robot R and the operation of the operator U has been completed, and displays the message I on the head mounted display 2a.
  • the operator U can know that the synchronization between the operation of the slave robot R and the operation of the operator U has ended, and thus can know the timing for removing each of the equipped presentation devices 2.
  • the tactile signal generation unit 125 determines the position of the hand of the slave robot R and the position of the surface of the sphere Md as the cutting marker in the stereoscopic image displayed on the head mounted display 2a. On the condition that they overlap, a tactile presentation signal is generated regardless of whether or not the tactile sensor 3b has acquired tactile information. As a result, the operator U can realize that he / she has “touched” the sphere Md for releasing the synchronization with the slave robot R.
  • FIG. 7 is a diagram showing the operation of the control device 1 in a tabular format when the synchronization of the operation of the slave robot R and the operation of the operator U is started and ended.
  • the video control unit 124 determines the shape of the connection marker displayed on the head mounted display 2 a to start the synchronization between the operation of the slave robot R and the operation of the operator U, and the operation of the slave robot R.
  • the shape of the connecting marker displayed on the head mounted display 2a for the end of synchronization with the operation of the operator U.
  • the tactile signal generation unit 125 makes the virtual hand set for the coupling marker different from the virtual hand set for the cutting marker.
  • the shape of the connecting marker is a cube, and its touch is smooth.
  • the shape of the cutting marker is a sphere, and its touch is rough. Therefore, the operator U can recognize the marker by its shape and touch without visually recognizing the connecting marker or the cutting marker.
  • the video control unit 124 gradually switches the video to be displayed on the head mounted display 2a. This is to make the operator U prepare to operate the slave robot R.
  • the video control unit 124 instantaneously switches the video to be displayed on the head mounted display 2a. This is because the image captured by the image pickup device 2d substantially matches the image captured by the operator U's own eyes, and thus the disagreement of the sense of the operator U is unlikely to occur. Instead, as shown in FIG. 6, the video control unit 124 displays a message I after video switching at the end of synchronization between the operation of the slave robot R and the operation of the operator U. This is because it is not necessary to work by looking at the image of the head mounted display 2a after the synchronization is completed, but rather, the control device 1 needs to inform the operator U of the timing of removing each of the equipped presentation devices 2. .
  • the video control unit 124 makes the effect at the start of synchronization between the operation of the slave robot R and the operation of the operator U different from the effect at the end of the synchronization.
  • the operator U can intuitively recognize whether the synchronization between the operation of the slave robot R and the operation of the operator U has started or ended.
  • FIG. 8 is a flowchart for explaining the flow of processing at the start of synchronization executed by the control device 1 according to the embodiment. The processing in this flowchart starts when the control device 1 receives information indicating that the capture device 4 has been activated, for example.
  • the video control unit 124 causes the head mounted display 2a to display a guide video for guiding the operator U to the posture to be taken in order to match the posture of the slave robot R and the posture of the operator U (S2).
  • the reception control unit 120 receives a signal indicating the posture of the slave robot R from the slave robot R (S4). Further, the reception control unit 120 receives a signal indicating the posture of the operator U's body from the capture device 4 (S6).
  • the posture comparison unit 122 acquires a posture error indicating a difference between the posture of the slave robot R and the posture of the operator U (S8).
  • the video control unit 124 displays the countdown video C on the head mounted display 2a until a predetermined period elapses ( S12).
  • step S14 is repeated from this process.
  • the motion connecting unit 123 When the posture error acquired by the posture comparison unit 122 is within a predetermined threshold range for a predetermined period of time (Yes in S14), the motion connecting unit 123 generates the slave generated based on the change in the posture of the operator U. Transmission of an operation signal for operating the robot R is started (S16). When the motion linking unit 123 starts transmitting the motion signal, the processing in this flowchart ends.
  • step S4 and the process of step S6 may be switched in order or may be executed in parallel. If the posture of the slave robot R is determined in advance, the process of step S4 may be omitted, or may be executed only once before step S2.
  • connection information presenting unit 126 presents the guidance information to the operator U by voice or video at the start and end of the synchronization of the operation of the slave robot R and the operation of the operator U has been described. Instead of this, or in addition to this, the connection information presenting unit 126 may present tactile guidance to the operator U. In this case, for example, the connection information presenting unit 126 presents to the operator U the closer the posture of the operator U approaches the posture that the operator should take in order to match the posture of the slave robot R and the posture of the operator U. What is necessary is just to make the haptic signal generation part 125 generate
  • the operator U is equipped with a microphone (not shown) so that the control device 1 can acquire the operator's speech.
  • a voice recognition unit included in the control unit 12 of the control device 1 analyzes the utterance of the operator U, and ends the synchronization between the operation of the slave robot R and the operation of the operator U when a disconnection instruction is received. What should I do?
  • the video control unit 124 acquires information indicating the position of the hand of the slave robot R in time series, and changes the display location of the connecting marker according to the change in the position of the hand of the slave robot R. Also good.
  • On the head mounted display 2a of the operator U who wants to inherit the operation right a connection marker that moves with the passage of time is presented.
  • the motion coupling unit 123 starts synchronization between the operator U and the slave robot R when the operator U touches the moving marker for movement. As a result, the control device 1 can smoothly transfer the operation right of the slave robot R between the operators U when one slave robot R is sequentially operated by a plurality of operators U.
  • the capture device 4 for acquiring the movement of the operator U's body captures a tracking marker attached to the operator U's body with, for example, a camera using infrared light or visible light.
  • a motion capture device of the type has been described.
  • the capture device 4 analyzes an image captured by a camera (for example, a camera included in the head mounted display 2a) attached to the operator U to analyze the body movement of the operator U. It may be an “inside-out” type motion capture device to acquire.
  • the posture comparison unit 122 when the posture comparison unit 122 virtually superimposes the slave robot R and the operator U, at least the difference E between the position of the head of the slave robot R and the position of the head of the operator U In the above description, the sum of the difference E between the position of the hand of the slave robot R and the position of the hand of the operator U is acquired as the posture error.
  • the posture comparison unit 122 generates a posture model of the operator U by simulation based on a signal indicating the posture of the operator U, compares the posture model with the posture of the slave robot R, and calculates a posture error. You may get it.
  • the posture error between the posture of the operator U and the posture of the slave robot R is reduced by the movement of the operator U before starting the synchronization of the motion of the operator U and the motion of the slave robot R.
  • the posture error may be reduced by the movement of the slave robot R before the synchronization of the movement of the operator U and the movement of the slave robot R is started.
  • the motion connecting unit 123 transmits an operation signal for operating the slave robot R to the slave robot so that the posture error acquired by the posture comparison unit 122 is within a predetermined threshold range.
  • the control apparatus 1 can start the synchronization of the movement of the operator U and the movement of the slave robot R even if the operator U does not move.
  • connection information presentation unit 126 stops the posture of the operator U while the slave robot R is moving in order to reduce the posture error before starting the synchronization of the motion of the operator U and the motion of the slave robot R.
  • Information for prompting the user to be present may be presented to the operator U. Accordingly, the control device 1 can suppress an increase in the posture error due to the operator U moving while the slave robot R is moving.
  • the video control unit 124 when the stereoscopic image captured by the imaging device 3a provided on the head of the slave robot R is displayed on the head mounted display 2a, the operator U moves the hand of the slave robot R.
  • the video control unit 124 may display the virtual cube Mc at a fixed position regardless of the actual position of the hand of the slave robot R.
  • the motion connecting unit 123 operates the slave robot R so that the hand of the slave robot R moves to the display position of the virtual cube Mc.
  • the connection information presenting unit 126 presents the operator U with information for guiding the hand of the operator U to the display position of the virtual cube Mc.
  • the control apparatus 1 can always start the synchronization of the movement of the operator U and the movement of the slave robot R from the same position (that is, the display position of the virtual cube Mc).

Abstract

遠隔操作システムにおいて、スレーブロボットは、操作者の姿勢の変化に連動して動作する。キャプチャ装置は、操作者の身体の姿勢を示す信号を取得する。制御装置は、スレーブロボットから当該スレーブロボットの姿勢を示す信号を受信するとともに、キャプチャ装置から操作者の身体の姿勢を示す信号を受信する受信制御部120と、スレーブロボットの姿勢と操作者の姿勢との差異を示す姿勢誤差を取得する姿勢比較部122と、姿勢誤差が所定の閾範囲内となることを条件として、操作者の姿勢の変化に基づいて生成されたスレーブロボットを動作させるための動作信号をスレーブロボットに送信する動作連結部123と、を備える。

Description

遠隔操作システム、情報処理方法、及びプログラム
 本発明は遠隔操作システム、情報処理方法、及びプログラムに関する。
 操作者とは離れた場所に存在するスレーブロボット(Slave Robot)を操作者が遠隔操作することによって、操作者が実際には存在しない場所に存在したとするならば得られる視覚、聴覚、及び触覚等の感覚を操作者に経験させるための技術が提案されている(例えば、非特許文献1を参照)。この技術は、telepresence(テレプレゼンス)やtelexistence(本願出願人の登録商標、テレイグジスタンス)等とも呼ばれている。非特許文献1における遠隔操作システムにおいて、スレーブロボットは人型のロボットであり、操作者の身体(頭部、胴部、腕部、及び手部等)の動きと同期して、スレーブロボットの対応する部位が動作する。
 スレーブロボットの操作者は、スレーブロボットの視界、すなわちスレーブロボットが備える撮像素子がとらえた映像を共有するために、遮蔽型のヘッドマウントディスプレイを装着する。操作者の動きとスレーブロボットとの同期が開始すると、操作者の視界も、ヘッドマウントディスプレイを介してスレーブロボットの視界と同期する。
Fernando, C. L., Furukawa, M., Kurogi, T., Kamuro, S., Sato, K., Minamizawa, and S. Tachi, "Design of TELESAR v for transferring bodily consciousness in telexistence", IEEE International Conference on Intelligent Robots and Systems 2012, pp. 5112-5118.
 操作者の動きとスレーブロボットとの同期が開始したとき、操作者自身の身体の動きとヘッドマウントディスプレイに表示されるスレーブロボットの部位の動きとがずれていると、操作者は感覚の不一致によってスレーブロボットの操作に違和感が生じやすくなる。
 本発明はこれらの点に鑑みてなされたものであり、遠隔操作システムのスレーブロボットの動作と操作者の動作との同期を開始する際に操作者が感じる感覚の不一致を低減する技術を提供することを目的とする。
 本発明の第1の態様は、遠隔操作システムである。このシステムは、操作者の姿勢の変化に連動して動作するスレーブロボットと、前記操作者の身体の姿勢を示す信号を取得するキャプチャ装置と、制御装置と、を備える。ここで、前記制御装置は、前記スレーブロボットから当該スレーブロボットの姿勢を示す信号を受信するとともに、前記キャプチャ装置から前記操作者の身体の姿勢を示す信号を受信する受信制御部と、前記スレーブロボットの姿勢と前記操作者の姿勢との差異を示す姿勢誤差を取得する姿勢比較部と、前記姿勢誤差が所定の閾範囲内となることを条件として、前記操作者の姿勢の変化に基づいて生成された前記スレーブロボットを動作させるための動作信号を前記スレーブロボットに送信する動作連結部と、を備える。
 前記制御装置は、前記動作連結部が前記動作信号を前記スレーブロボットに送信する前に、前記スレーブロボットの姿勢と前記操作者の姿勢とを合わせるために前記操作者が取るべき姿勢に誘導するための情報を前記操作者に提示する連結情報提示部をさらに備えてもよい。
 前記遠隔操作システムは、前記操作者の頭部に取り付けられたとき映像を前記操作者に提示するためのヘッドマウントディスプレイをさらに備えてもよく、前記制御装置は、前記ヘッドマウントディスプレイに表示させる映像を制御する映像制御部をさらに備えてもよく、前記映像制御部は、前記動作連結部が前記動作信号を前記スレーブロボットに送信する前に、前記スレーブロボットの姿勢と前記操作者の姿勢とを合わせるために前記操作者が取るべき姿勢に誘導するためのガイド映像を生成してもよい。
 前記映像制御部は、前記動作連結部が前記スレーブロボットに前記動作信号を送信している間は、前記スレーブロボットが備える撮像素子が撮像した映像を前記ヘッドマウントディスプレイに表示させてもよい。
 前記映像制御部は、前記スレーブロボットの頭部に備えられた撮像素子が撮像する映像が前記ヘッドマウントディスプレイに表示された場合に前記操作者によって前記スレーブロボットの手部が知覚される位置に仮想的な連結用マーカが表示されるように、前記ガイド映像を生成してもよい。
 前記遠隔操作システムは、前記操作者の手部に取り付けられたとき、前記スレーブロボットの手部に備えられた触覚センサが取得した触覚情報を前記操作者の手部に提示するための触覚提示装置をさらに備えてもよく、前記制御装置は、前記触覚提示装置を動作させるための触覚提示信号を生成する触覚信号生成部をさらに備えてもよく、前記触覚信号生成部は、前記映像における前記操作者の手部の位置と前記連結用マーカの表面の位置とが重なることを条件として、前記触覚提示信号を生成してもよい。
 前記映像制御部は、前記操作者の動作と前記スレーブロボットの動作との同期を切断するための仮想的な切断用マーカを生成してもよく、前記動作連結部は、前記映像における前記操作者の手部の位置と前記切断用マーカの表面の位置とが重なることを条件として、前記スレーブロボットへの前記動作信号の送信を停止してもよい。
 前記動作連結部は、前記姿勢誤差が所定の閾範囲内となる状態が所定の期間経過することを条件として、前記動作信号を前記スレーブロボットに送信してもよい。
 前記動作連結部は、前記姿勢比較部が取得した姿勢誤差が所定の閾範囲内となるように、前記スレーブロボットを動作させるための動作信号を前記スレーブロボットに送信してもよい。
 前記スレーブロボットは、前記操作者の頭部及び手部にそれぞれ対応する頭部及び手部を少なくとも備える人型ロボットであってもよく、前記姿勢比較部は、前記スレーブロボットと前記操作者とを仮想的に重ね合わせたときに、前記スレーブロボットの頭部の位置と前記操作者の頭部の位置との差異と前記スレーブロボットの手部の位置と前記操作者の手部の位置との差異との和を、前記姿勢誤差として取得してもよい。
 本発明の第2の態様は、操作者の姿勢の変化に連動して動作するスレーブロボットと、前記操作者の身体の姿勢を示す信号を取得するキャプチャ装置と、制御装置と、を備える遠隔操作システムにおける前記制御装置が備えるプロセッサが実行する情報処理方法である。この方法において、前記プロセッサが、前記スレーブロボットから当該スレーブロボットの姿勢を示す信号を受信するステップと、前記キャプチャ装置から前記操作者の身体の姿勢を示す信号を受信するステップと、前記スレーブロボットの姿勢と前記操作者の姿勢との差異を示す姿勢誤差を取得するステップと、前記姿勢誤差が所定の閾範囲内となることを条件として、前記操作者の姿勢の変化に基づいて生成された前記スレーブロボットを動作させるための動作信号を前記スレーブロボットに送信するステップと、を実行する。
 本発明の第3の態様は、プログラムである。このプログラムは、操作者の姿勢の変化に連動して動作するスレーブロボットと、前記操作者の身体の姿勢を示す信号を取得するキャプチャ装置と、制御装置と、を備える遠隔操作システムにおける前記制御装置に、前記スレーブロボットから当該スレーブロボットの姿勢を示す信号を受信する機能と、前記キャプチャ装置から前記操作者の身体の姿勢を示す信号を受信する機能と、前記スレーブロボットの姿勢と前記操作者の姿勢との差異を示す姿勢誤差を取得する機能と、前記姿勢誤差が所定の閾範囲内となることを条件として、前記操作者の姿勢の変化に基づいて生成された前記スレーブロボットを動作させるための動作信号を前記スレーブロボットに送信する機能と、を実現させる。
 なお、以上の構成要素の任意の組合せ、本発明の少なくとも一部の表現を方法、装置、システム、コンピュータプログラム、データ構造、記録媒体などの間で変換したものもまた、本発明の態様として有効である。このプログラムの少なくとも一部をアップデートするために、このプログラムを記録したコンピュータ読み取り可能な記録媒体が提供されてもよく、また、このプログラムが通信回線で伝送されてもよい。
 本発明によれば、遠隔操作システムのスレーブロボットの動作と操作者の動作との同期を開始する際に操作者が感じる感覚の不一致を低減することができる。
遠隔操作システムの構成要素の外観を模式的に示す図である。 遠隔操作システムの構成要素と、各構成要素間でやり取りされる情報の流れを模式的に示す図である。 実施の形態に係る制御装置の機能構成を模式的に示す図である。 実施の形態に係る姿勢比較部が取得する姿勢誤差を説明するための図である。 実施の形態に係る映像制御部が生成するガイド映像の一例を示す図である。 スレーブロボットの動作と操作者の動作との同期を切断するための仮想的な切断用マーカの一例を示す図である。 スレーブロボットの動作と操作者の動作との同期開始時及び同期終了時における制御装置の動作を表形式で示す図である。 実施の形態に係る制御装置が実行する同期開始時の処理の流れを説明するためのフローチャートである。
<遠隔操作システムの概要>
 図1は、遠隔操作システムSの構成要素の外観を模式的に示す図である。また、図2は、遠隔操作システムSの構成要素と、各構成要素間でやり取りされる情報の流れを模式的に示す図である。以下、図1及び図2を参照して、遠隔操作システムSの概要についてまず説明する。
 図1に示すように、遠隔操作システムSを利用する操作者Uは、種々の提示装置2(ヘッドマウントディスプレイ2a、触覚提示装置2b、ヘッドフォン2c、及び撮像素子2d)を装着する。操作者Uの身体の動きはキャプチャ装置4によってトラッキングされる。キャプチャ装置4は、例えば赤外線又は可視光を用いた既知のモーションキャプチャ装置であり、操作者Uの身体に取り付けられたトラッキング用のマーカを撮像することによって操作者Uの身体の姿勢を示す信号を取得して制御装置1に送信する。
 スレーブロボットRは種々のセンサ3(撮像素子3a、触覚センサ3b、及びマイクロフォン3c)を備えており、各センサ3が取得したセンサ情報は制御装置1に送信される。なお、触覚センサ3bは、温度センサ31、加速度センサ32、及び圧力センサ33を含む。
 図1に示すように、スレーブロボットRは人の形を模した機械である。このため、撮像素子3aはスレーブロボットRの目に相当する個所に配置されている。同様に、触覚センサ3bはスレーブロボットRの指先に相当する個所に配置され、マイクロフォン3cはスレーブロボットRの耳に相当する個所に配置されている。
 制御装置1は、通信ネットワークN上に存在するクラウドサーバである。図2に示すように、制御装置1は操作者Uの身体の姿勢を示す信号に基づいて操作者Uの姿勢の変化を解析する。制御装置1は、操作者Uの姿勢の変化に基づいて、スレーブロボットRを動作させるための動作信号を生成し、スレーブロボットRに送信する。スレーブロボットRは、首部、肩部、肘部等の各部にアクチュエータを備えており、制御装置1が生成する動作信号はこれらのアクチュエータを動作させるための信号である。これにより、スレーブロボットRは、操作者Uの姿勢の変化に連動して動くことができる。
 制御装置1は、スレーブロボットRが備えるセンサ3から取得したセンサ情報に基づいて、操作者Uが装着している提示装置2を動作させるための提示信号を生成し、提示装置2に送信する。例えば、撮像素子3aが撮像して取得した画像情報は、制御装置1によってヘッドマウントディスプレイ2aに提示させる画像信号に変換される。これにより、操作者Uは、スレーブロボットRの「目」である撮像素子3aがとらえた映像をヘッドマウントディスプレイ2aのモニタ越しに見ることができる。図1は、ヘッドマウントディスプレイ2aのモニタに、スレーブロボットRの右手と、スレーブロボットRの右手が保持する接触対象Oである立方体とが映されている様子を示している。
 同様に、触覚センサ3bが取得した温度、振動、及び圧力を含む触覚情報は、制御装置1によって触覚提示装置2bを動作させるための触覚提示信号に変換される。これにより、操作者Uは、スレーブロボットRの「指先」がとらえた触覚を触覚提示装置2bを介して感じることができる。
 実施の形態に係る遠隔操作システムSにおいて、ヘッドマウントディスプレイ2aは遮蔽型のヘッドマウントディスプレイである。このため、操作者Uがヘッドマウントディスプレイ2aを介して撮像素子3aが撮像した映像を観察すると、あたかも操作者UがスレーブロボットRの存在場所にいるかのような没入感を得ることができる。
 一方で、ひとたび操作者Uがヘッドマウントディスプレイ2aを装着すると、操作者Uは自身の周囲を見ることができなくなる。ヘッドマウントディスプレイ2aはキャプチャ装置の一部としても動作するため、操作者Uは、操作者Uの動きとスレーブロボットRの動きとを同期する前にヘッドマウントディスプレイ2aを装着する必要がある。操作者Uは、制御装置1からヘッドマウントディスプレイ2aに画像信号が送られてくる前にヘッドマウントディスプレイ2aを装着することになるので、操作者Uの動きとスレーブロボットRの動きとの同期が完了するまで操作者Uは周囲を見ることができず不便である。
 そこで、図1に示すように、ヘッドマウントディスプレイ2aは、操作者Uに装着されたときに操作者Uの視線方向を撮像するための撮像素子2dを備えている。これにより、操作者Uは、ヘッドマウントディスプレイ2aを装着した状態で周囲を観察することができる。
 このように、スレーブロボットRは、操作者Uの姿勢の変化に連動して動作するとともに、操作者Uが装着する提示装置2を動作させる信号を取得するセンサ群を備える。操作者Uは、実施の形態に係る遠隔操作システムSを用いることにより、実際には存在しない場所であるスレーブロボットRの存在場所に存在したとするならば得られる視覚、聴覚、及び触覚等の感覚を経験することができる。
<実施の形態に係る制御装置の機能構成>
 以上を踏まえ、実施の形態に係る制御装置1について説明する。
 図3は、実施の形態に係る制御装置1の機能構成を模式的に示す図である。制御装置1は、通信部10、記憶部11、及び制御部12を備える。
 通信部10は、通信ネットワークNを介して操作者Uが備える提示装置2、スレーブロボットRが備えるセンサ3、及びキャプチャ装置4との間でデータを送受信する。記憶部11は、制御装置1を実現するコンピュータのBIOS(Basic Input Output System)等を格納するROM(Read Only Memory)や制御装置1の作業領域となるRAM(Random Access Memory)、OS(Operating System)やアプリケーションプログラム、当該アプリケーションプログラムの実行時に参照される各種データベースを含む種々の情報を格納するHDD(Hard Disk Drive)やSSD(Solid State Drive)等の大容量記憶装置である。
 制御部12は、制御装置1のCPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサであり、記憶部11に記憶されたプログラムを実行することによって受信制御部120、送信制御部121、姿勢比較部122、動作連結部123、映像制御部124、触覚信号生成部125、連結情報提示部126、及び音声制御部127として機能する。
 なお、制御装置1は、例えばクラウドコンピューティングシステムのように複数のプロセッサやメモリ等の計算リソースによって実現されてもよい。この場合、制御部12を構成する各部は、複数の異なるプロセッサの中の少なくともいずれかのプロセッサがプログラムを実行することによって実現される。
 受信制御部120及び送信制御部121は、いずれも例えばLAN(Local Area Network)コントローラによって実現される。受信制御部120は、通信部10を介して制御装置1の外部の装置からデータを受信する。また、送信制御部121は、通信部10を介して制御装置1の外部の装置にデータを送信する。以下、受信制御部120又は送信制御部121が通信部10を介して外部の装置とデータを送受信することを前提として、単に「受信制御部120がデータを受信する」、「送信制御部121がデータを送信する」のように記載する。
 受信制御部120は、スレーブロボットRからスレーブロボットRの姿勢を示す信号を受信する。また、受信制御部120は、キャプチャ装置4から操作者Uの身体の姿勢を示す信号を受信する。姿勢比較部122は、スレーブロボットRの姿勢と操作者Uの姿勢との差異を示す姿勢誤差を取得する。具体的には、姿勢比較部122は、スレーブロボットRの姿勢を示す信号からスレーブロボットRの姿勢を算出し、操作者Uの身体の姿勢を示す信号から操作者Uの身体の姿勢を算出する。続いて、姿勢比較部122は、算出したスレーブロボットRの姿勢と操作者Uの身体の姿勢とに基づいてスレーブロボットRの姿勢と操作者Uの姿勢との差異を示す姿勢誤差を算出することで取得する。
 図4(a)-(b)は、実施の形態に係る姿勢比較部122が取得する姿勢誤差を説明するための図である。具体的には、図4(a)は、操作者UとスレーブロボットRとのそれぞれに設定された7つの特徴点を示す図である。図4(a)において、四角で囲った数字は操作者Uに設定された特徴点を示し、丸で囲った数字はスレーブロボットRに設定された特徴点を示す。
 実施の形態に係るスレーブロボットRは、操作者Uの頭部及び手部にそれぞれ対応する頭部及び手部を少なくとも備える人型ロボットである。操作者Uに設定された特徴点とスレーブロボットRに設定された特徴点とにおいて、同一の数字は対応する特徴点を示す。例えば、四角で囲われた「1」は、操作者Uの右目に設定された特徴点であり、丸で囲われた「1」はスレーブロボットRの右側に備えられた撮像素子3aに設定された特徴点である。以下、操作者Uに設定された特徴点とスレーブロボットRに設定された特徴点とを特に区別しない場合、「特徴点1」のように、各特徴点をその特徴点に割り当てた数字で表すことがある。
 なお、制御装置1は、キャプチャ装置4が操作者Uをトラッキングした情報を取得して解析することで、操作者Uに設定された各特徴点の位置を取得する。また、制御装置1は、スレーブロボットRの各アクチュエータの動作状態(例えば、モータの回転角等)を取得して解析することで、スレーブロボットRに設定された各特徴点の位置を取得する。
 図4(b)は、操作者Uに設定された特徴点とスレーブロボットRに設定された特徴点とを重ね合わせた結果を示す図であり、操作者Uの目に設定され特徴点に、スレーブロボットRに設定された特徴点を重ねた場合の例を示す図である。図4(b)は、特徴点1、特徴点2、特徴点3、特徴点4、及び特徴点5はおおむね重なっているが、「手部」の特徴点である特徴点6と特徴点7とはずれている様子を図示している。図4(b)では、操作者Uに設定された特徴点と、その特徴点に対応するスレーブロボットRの特徴点とのずれを差異Eで示している。
 操作者Uの動きとスレーブロボットRの動きとの同期が開始されたとき、操作者Uの視線方向とスレーブロボットRの視線方向とが合っていることは、操作者Uが感じる感覚の不一致を低減する上で好ましい。操作者Uの動きとスレーブロボットRの動きとの同期が開始されたときに視線方向がずれていると、操作者Uは酔いやすくなる傾向があるからである。
 また、操作者Uの動きとスレーブロボットRの動きとの同期が開始されたとき、操作者Uの手部の位置とスレーブロボットRの手部の位置とが合っていることも、操作者Uが感じる感覚の不一致を低減する上で好ましい。手部は、スレーブロボットRの操作時に操作者Uの動きが大きい部位であるため、操作者Uの手部の位置とスレーブロボットRの手部の位置とがずれていると遠近感に関する間隔の不一致が大きくなり、操作者UはスレーブロボットRの操作に違和感を感じやすくなる傾向があるからである。
 以上を踏まえ、姿勢比較部122は、スレーブロボットRと操作者Uとを仮想的に重ね合わせたときに、少なくともスレーブロボットRの頭部の位置と操作者Uの頭部の位置との差異Eと、スレーブロボットRの手部の位置と操作者Uの手部の位置との差異Eとの和あるいは各部ごとの差異を重みづけしたものの和や積などを、姿勢誤差として取得する。この他、姿勢比較部122は、スレーブロボットRの頭部の向きと操作者Uの頭部の向きとの差異、及びスレーブロボットRの手部の向きと操作者Uの手部の向きとの差異を、姿勢誤差に加えてもよい。また、頭部や手部のみでなく、腕部など他の身体部位の姿勢誤差を加えても良い。
 図3の説明に戻る。動作連結部123は、姿勢比較部122が取得した姿勢誤差が所定の閾範囲内となることを条件として、操作者Uの姿勢の変化に基づいて生成されたスレーブロボットRを動作させるための動作信号を、スレーブロボットRに送信する。なお、動作連結部123が動作信号をスレーブロボットRに送信することは、操作者Uの動きとスレーブロボットRの動きとの同期が開始することを意味する。
 ここで、「所定の閾範囲」とは、スレーブロボットRに動作信号の送信を開始するか否かを判定するために、動作連結部123が参照する「姿勢一致判定用閾範囲」である。姿勢一致判定用閾範囲が狭いほど、操作者Uの動きとスレーブロボットRの動きとの同期を開始したときに操作者Uが感覚の不一致を感じにくくなる。一方、姿勢一致判定用閾範囲が狭いほど、操作者Uの姿勢とスレーブロボットRの姿勢との一致に求められる精度が高くなるので、操作者Uの動きとスレーブロボットRの動きとの同期を開始するまでに時間がかかることになる。
 そこで、姿勢一致判定用閾範囲の具体的な値は、遠隔操作システムSの設計者が、スレーブロボットRの各部位の長さ、スレーブロボットRに搭載されているアクチュエータの性能等を考慮して、操作者Uに生じる感覚の不一致の低減と、操作者Uの動きとスレーブロボットRの動きとのスムースな同期とのバランスを取りながら実験によって定めればよい。
 このように、実施の形態に係る動作連結部123は、操作者Uの姿勢とスレーブロボットRの姿勢との差異が所定の閾範囲となることを条件として操作者Uの動きとスレーブロボットRの動きの同期を開始する。これにより、操作者Uは、スレーブロボットRの操作を開始したときに、操作者U自身の視線方向から期待される視界と、スレーブロボットRの撮像素子3aが撮像する視界とのずれが小さくなる。ゆえに、実施の形態に係る制御装置1は、遠隔操作システムSのスレーブロボットRの動作と操作者Uの動作との同期を開始する際に操作者Uが感じる感覚の不一致を低減することができる。
 操作者UとスレーブロボットRとが異なる場所に存在している場合、操作者UはスレーブロボットRの姿勢を直接見ることができない。そこで、連結情報提示部126は、動作連結部123が動作信号をスレーブロボットRに送信する前に、スレーブロボットRの姿勢と操作者Uの姿勢とを合わせるために操作者が取るべき姿勢に誘導するための情報を操作者Uに提示する。
 例えば、連結情報提示部126は、スレーブロボットRの姿勢と操作者Uの姿勢とを合わせるために操作者が取るべき姿勢に誘導するための音声によるガイダンスを操作者Uに提示してもよい。より具体的には、まず、連結情報提示部126は、スレーブロボットRの姿勢と操作者Uの姿勢とを合わせるために操作者が取るべき姿勢に誘導するための音声ガイダンス用音声データを音声制御部に生成させる。続いて、連結情報提示部126は、音声制御部127を制御して、音声ガイダンス用音声データをヘッドフォン2cに再生させるようにすればよい。
 また、連結情報提示部126は、スレーブロボットRの姿勢と操作者Uの姿勢とを合わせるために操作者が取るべき姿勢に誘導するための映像によるガイダンスを操作者Uに提示してもよい。
 操作者Uが装着するヘッドマウントディスプレイ2aは、操作者Uの頭部に取り付けられたとき映像を操作者Uに提示するため装置である。映像制御部124は、ヘッドマウントディスプレイ2aに表示させる映像を制御する。連結情報提示部126は、映像制御部124に、スレーブロボットRの姿勢と操作者Uの姿勢とを合わせるために操作者が取るべき姿勢に誘導するためのガイダンス映像を生成させる。映像制御部124は、ヘッドマウントディスプレイ2aに表示させるための映像信号を送信制御部121を介してヘッドマウントディスプレイ2aに送信することによって、ヘッドマウントディスプレイ2aに映像を表示させる。具体的には、映像制御部124は、操作者Uがヘッドマウントディスプレイ2aに表示されたガイド映像にしたがって動くと、スレーブロボットRの姿勢と操作者Uの姿勢との姿勢誤差が小さくなるようにガイド映像を生成する。これにより、操作者Uは、スレーブロボットRとスムースに同期することができる。
 以下、説明の便宜上、映像制御部124がヘッドマウントディスプレイ2aに表示させるための映像信号を送信制御部121を介してヘッドマウントディスプレイ2aに送信することによって、ヘッドマウントディスプレイ2aに映像を表示させることを前提として、「映像制御部124がヘッドマウントディスプレイ2aに映像を表示させる」のように記載する。
 図5(a)-(b)は、実施の形態に係る映像制御部124が生成するガイド映像の一例を示す図である。図5(a)-(b)に示す図は、いずれもスレーブロボットRの動作と操作者Uの動作との同期が開始される前に、ヘッドマウントディスプレイ2aのモニタに映し出される映像を示している。このため、図5(a)-(b)は、ヘッドマウントディスプレイ2aに設けられた撮像素子2dが撮像した操作者U自身の太もも、前腕、手部、及び下腹部が図示されている。
 図5(a)に示すように、映像制御部124は、ヘッドマウントディスプレイ2aに2つの仮想的な立方体Mcを表示させるとともに、その立方体に両手で触れることを指示するメッセージIを表示させる。仮想的な立方体McとメッセージIとはともに現実には存在せず、映像制御部124がAR(Augmented Reality)技術を用いて生成したガイド映像である。
 映像制御部124は、スレーブロボットRの頭部に備えられた撮像素子3aが撮像する立体映像がヘッドマウントディスプレイ2aに表示された場合に、操作者UによってスレーブロボットRの手部が知覚される位置に仮想的な立方体Mcが表示されるように、ガイド映像を生成する。したがって、図5(b)に示すように、操作者Uが左手及び右手でそれぞれ左右に表示された立方体Mcに「触れる」と、操作者Uの姿勢とスレーブロボットRの姿勢との間の姿勢誤差は、自然と所定の閾範囲となる。この意味で、映像制御部124が生成する仮想的な立方体Mcは、操作者Uの動きとスレーブロボットRの動きを連結するために表示する「連結用マーカ」といえる。
 映像制御部124は、操作者Uの姿勢とスレーブロボットRの姿勢との間の姿勢誤差が所定の閾範囲となると、カウントダウン映像Cをヘッドマウントディスプレイ2aに表示させる。図5(b)は、5秒間のカウントダウン映像Cが表示されている例を示している。操作者Uが立方体Mcに触れた状態で静止し、その状態で5秒間が経過すると、動作連結部123は、動作信号をスレーブロボットRに送信する。
 この場合、動作連結部123は、姿勢誤差が所定の閾範囲内となる状態が所定の期間経過することを条件として、動作信号をスレーブロボットRに送信することになる。ここで「所定の期間」とは、動作連結部123がスレーブロボットRの動作と操作者Uの動作との同期を開始する前に待機する「同期前待機期間」である。操作者Uは、姿勢誤差が所定の閾範囲内となる状態で所定の期間待機することになるので、スレーブロボットRの操作の心構えができる。動作連結部123がスレーブロボットRの動作と操作者Uの動作との同期が突然開始される場合と比較して、仮想空間に入ることの心構えができるので、制御装置1は操作者Uの感覚の不一致を低減することができる。
 映像制御部124は、動作連結部123が動作信号をスレーブロボットRに送信する前は、ヘッドマウントディスプレイ2aに備えられた撮像素子2dが取得した立体映像をヘッドマウントディスプレイ2aに表示させる。また、映像制御部124は、動作連結部123がスレーブロボットRに動作信号を送信している間は、スレーブロボットRの動作と操作者Uの動作とが同期することになるため、スレーブロボットRが備える撮像素子3aが撮像した立体映像をヘッドマウントディスプレイ2aに切り替えて表示させる。
 ここで、映像制御部124は、スレーブロボットRの動作と操作者Uの動作との同期時に、映像の切り替えに係る演出を施してもよい。例えば、映像制御部124は、撮像素子2dが取得した立体映像をフェードアウトさせつつ、撮像素子3aが取得した映像をフェードインしてもよい。自身が実際に存在する環境の映像とスレーブロボットRが存在する環境の映像との切り替えを意識しやすいため、操作者Uは、スレーブロボットRの操作の心構えをすることができる。
 また、映像制御部124は、動作連結部123がスレーブロボットRに動作信号の送信を開始する前であっても、カウントダウン映像Cをヘッドマウントディスプレイ2aに表示させるタイミングで、スレーブロボットRが備える撮像素子3aが撮像した立体映像をヘッドマウントディスプレイ2aに表示させるようにしてもよい。
 図示はしないが、映像制御部124は、動作連結部123がスレーブロボットRに動作信号の送信を開始する前にスレーブロボットRが備える撮像素子3aが撮像した立体映像をヘッドマウントディスプレイ2aに表示させる場合には、同期が開始されることを示すメッセージをヘッドマウントディスプレイ2aに表示させてもよい。また、映像制御部124は、動作連結部123がスレーブロボットRに動作信号の送信を開始する前にスレーブロボットRが備える撮像素子3aが撮像した立体映像をヘッドマウントディスプレイ2aに表示させる場合の立体映像の表示態様を送信開始後の表示態様と異ならせる(例えば、輝度値を変更する)ようにしてもよい。これにより、操作者Uは、これから同期するスレーブロボットRが置かれた環境の映像を同期前から観察できるため、スレーブロボットRの操作の心構えをすることができる。
 なお、音声制御部127は、映像制御部124がヘッドマウントディスプレイ2aに表示させる映像を撮像素子3aが撮像した立体映像に切り替えるタイミングと同じタイミングで、マイクロフォン3cが集音した音声をヘッドフォン2cに出力する。これにより、操作者Uは、視覚情報と聴覚情報とが不一致となることを抑制できる。
 ところで、映像制御部124がヘッドマウントディスプレイ2aに表示させる立方体McはAR映像であり、実際には存在しない仮想的な物体である。このため、操作者Uは、立方体Mcに実際に触れることはできない。そうすると、操作者Uが立方体Mcに「触れた」状態で静止することは、実際には何もない空間に手部を静止させることになる。
 ここで、図1を参照して上述したように、遠隔操作システムSの操作者Uは、操作者Uの手部を取り付けたとき、スレーブロボットRの手部に備えられた触覚センサ3bが取得した触覚情報を操作者Uの手部に提示するための触覚提示装置2bを装着している。そのため、制御装置1は、触覚提示装置2bを動作させるための触覚提示信号を生成する触覚信号生成部125を備えている。
 そこで、触覚信号生成部125は、ヘッドマウントディスプレイ2aが表示する立体映像における操作者Uの手部の位置と、連結用マーカである立方体Mcの表面の位置とが重なることを条件として、スレーブロボットRの撮像素子2dが触覚情報を取得したか否かに関わらず、触覚提示信号を生成してもよい。具体的には、触覚信号生成部125は、操作者Uが立方体に触れたときに感じられる触覚を再現する触覚提示信号を生成する。これにより、操作者Uは、立方体Mcに「触れた」感覚を得ることができるため、制御装置1は、操作者Uが立方体Mcに「触れた」状態で静止することを容易にさせることができる。
 以上、スレーブロボットRの動作と操作者Uの動作との同期を開始する際の制御装置1の動作について主に説明した。次に、スレーブロボットRの動作と操作者Uの動作との同期を終了する際の制御装置1の動作について説明する。
 ひとたびスレーブロボットRの動作と操作者Uの動作とが同期すると、操作者Uが装着しているヘッドマウントディスプレイ2aには、スレーブロボットRが備える撮像素子3aがとらえた映像が表示される。操作者Uは、操作者Uが実際に存在する環境の映像を観察していないという点において、操作者Uは一種のVR(Virtual Reality)映像を観察していることになる。
 そこで、触覚信号生成部125は、スレーブロボットRの動作と操作者Uの動作とが同期しているときは、操作者Uの動作とスレーブロボットRの動作との同期を切断するための仮想的な切断用マーカを生成し、ヘッドマウントディスプレイ2aに表示させる。
 図6は、実施の形態に係る映像制御部124が生成するガイド映像の別の例を示す図であり、スレーブロボットRの動作と操作者Uの動作との同期を切断するための仮想的な切断用マーカを示す図である。具体的には、図6は、切断用マーカが仮想的な球体Mdである場合に、操作者Uの動作とスレーブロボットRの動作との同期が切断された直後にヘッドマウントディスプレイ2aに表示される映像の例を示している。
 動作連結部123は、ヘッドマウントディスプレイ2aに表示されている立体映像中における操作者Uの手部の位置と切断用マーカである球体Mdの表面の位置とが重なることを条件として、スレーブロボットRへ動作信号の送信を停止する。動作連結部123がスレーブロボットRへ動作信号の送信を停止すると、映像制御部124は、ヘッドマウントディスプレイ2aに備えられた撮像素子2dが取得した立体映像をヘッドマウントディスプレイ2aに表示させる。
 また、触覚信号生成部125は、スレーブロボットRの動作と操作者Uの動作との同期が終了したことを示すメッセージIを生成し、ヘッドマウントディスプレイ2aに表示させる。これにより、操作者Uは、スレーブロボットRの動作と操作者Uの動作との同期が終了したことを知ることができるので、装備している各提示装置2を取り外すタイミングを知ることができる。
 触覚信号生成部125は、連結用マーカの場合と同様に、ヘッドマウントディスプレイ2aに表示されている立体映像におけるスレーブロボットRの手部の位置と切断用マーカである球体Mdの表面の位置とが重なることを条件として、触覚センサ3bが触覚情報を取得したか否かに関わらず、触覚提示信号を生成する。これにより、操作者Uは、スレーブロボットRとの同期を解除するための球体Mdに「触れた」ことを実感することができる。
 図7は、スレーブロボットRの動作と操作者Uの動作との同期開始時及び同期終了時における制御装置1の動作を表形式で示す図である。図7に示すように、映像制御部124は、スレーブロボットRの動作と操作者Uの動作との同期開始のためにヘッドマウントディスプレイ2aに表示させる連結用マーカの形状と、スレーブロボットRの動作と操作者Uの動作との同期終了のためにヘッドマウントディスプレイ2aに表示させる連結用マーカの形状とを異ならせる。また、触覚信号生成部125は、連結用マーカに設定する仮想的な手触りと、切断用マーカに設定する仮想的な手触りとを異ならせる。
 具体的には、図7に示すように、連結用マーカの形状は立方体であり、その手触りはなめらかである。また、切断用マーカの形状は球体であり、その手触りは粗い。したがって、操作者Uは、連結用マーカ又は切断用マーカを視認しなくても、その形状と手触りとでマーカを認識することができる。
 上述したように、スレーブロボットRの動作と操作者Uの動作との同期開始時には、映像制御部124は、ヘッドマウントディスプレイ2aに表示させる映像を徐々に切り替える。これは、操作者UにスレーブロボットRの操作の心構えをさせるためである。
 一方、スレーブロボットRの動作と操作者Uの動作との同期終了時には、映像制御部124は、ヘッドマウントディスプレイ2aに表示させる映像を瞬時に切り替える。撮像素子2dが撮像する映像は操作者U自身の目でとらえる映像とほぼ一致するため、操作者Uの感覚の不一致は起こりにくいからである。そのかわり、図6に示すように、映像制御部124は、スレーブロボットRの動作と操作者Uの動作との同期終了時には映像切り替え後にメッセージIを表示する。同期終了後はヘッドマウントディスプレイ2aの映像を見て作業をする必要はなく、むしろ、制御装置1は、装備している各提示装置2を取り外すタイミングを操作者Uに知らせる必要があるからである。
 このように、映像制御部124は、スレーブロボットRの動作と操作者Uの動作との同期開始時の演出と、同期終了時の演出を異ならせる。これにより、操作者Uは、スレーブロボットRの動作と操作者Uの動作との同期が開始されたのか終了したのかを直感的に認識することができる。
<制御装置1が実行する学習方法の処理フロー>
 図8は、実施の形態に係る制御装置1が実行する同期開始時の処理の流れを説明するためのフローチャートである。本フローチャートにおける処理は、例えばキャプチャ装置4が起動したことを示す情報を制御装置1が受信したときに開始する。
 映像制御部124は、スレーブロボットRの姿勢と操作者Uの姿勢とを合わせるために操作者Uが取るべき姿勢に誘導するためのガイド映像をヘッドマウントディスプレイ2aに表示させる(S2)。受信制御部120は、スレーブロボットRからスレーブロボットRの姿勢を示す信号を受信する(S4)。また、受信制御部120は、キャプチャ装置4から操作者Uの身体の姿勢を示す信号を受信する(S6)。
 姿勢比較部122は、スレーブロボットRの姿勢と操作者Uの姿勢との差異を示す姿勢誤差を取得する(S8)。姿勢比較部122が取得した姿勢誤差が所定の閾範囲内の場合(S10のYes)、映像制御部124は、所定の期間が経過するまでの間カウントダウン映像Cをヘッドマウントディスプレイ2aに表示させる(S12)。
 姿勢比較部122が取得した姿勢誤差が所定の閾範囲外の場合(S10のNo)、又は所定の期間が経過していない場合(S14のNo)、制御装置1はステップS4に戻ってステップS4の処理からステップS14の処理を繰り返す。
 姿勢比較部122が取得した姿勢誤差が所定の閾範囲内である状態が所定の期間経過すると(S14のYes)、動作連結部123は、操作者Uの姿勢の変化に基づいて生成されたスレーブロボットRを動作させるための動作信号の送信を開始する(S16)。動作連結部123が動作信号の送信を開始すると、本フローチャートにおける処理は終了する。
<実施の形態に係る制御装置1が奏する効果>
 以上説明したように、実施の形態に係る制御装置1によれば、遠隔操作システムSのスレーブロボットRの動作と操作者Uの動作との同期を開始する際に操作者Uが感じる感覚の不一致を低減することができる。
 なお、上記の処理の順序は一例であり、各ステップの順序を適宜変更したり、ステップの一部を省略したりすることができる。例えば、ステップS4の処理とステップS6の処理は順序を入れ替えてもよいし、並列に実行してもよい。また、スレーブロボットRの姿勢があらかじめ定まっている場合には、ステップS4の処理を省略してもよいし、ステップS2の前に一度だけ実行されてもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の分散・統合の具体的な実施の形態は、以上の実施の形態に限られず、その全部又は一部について、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を合わせ持つ。以下、そのような変形例を説明する。
<第1の変形例>
 上記では、映像制御部124が、スレーブロボットRの動作と操作者Uの動作との同期開始時に連結用マーカをヘッドマウントディスプレイ2aに表示させる場合について説明した。これに替えて、あるいはこれに加えて、例えば操作者Uが同期開始のために取るべき姿勢を記載した文章やイラストをヘッドマウントディスプレイに表示させてり、矢印等のアイコンによるガイダンス映像をヘッドマウントディスプレイに表示させたりしてもよい。
<第2の変形例>
 上記では、スレーブロボットRの動作と操作者Uの動作との同期開始時及び同期終了時に、連結情報提示部126が音声又は映像でガイダンス情報を操作者Uに提示する場合について説明した。これに替えて、あるいはこれに加えて、連結情報提示部126は、触覚によるガイダンスを操作者Uに提示してもよい。この場合、連結情報提示部126は、例えば操作者Uの姿勢がスレーブロボットRの姿勢と操作者Uの姿勢とを合わせるために操作者が取るべき姿勢に近づくほど、操作者Uに提示する触覚が小さくなるような信号を触覚信号生成部125に生成させればよい。
<第3の変形例>
 上記では、映像制御部124が、スレーブロボットRの動作と操作者Uの動作との同期終了時に、切断用マーカをヘッドマウントディスプレイ2aに表示させる場合について説明した。これに替えて、あるいはこれに加えて、制御装置1が操作者Uの発話による切断指示を受信することを契機として、スレーブロボットRの動作と操作者Uの動作との同期を終了するようにしてもよい。
 これを実現するために、操作者Uに図示しないマイクロフォンを装備させ、制御装置1が操作者の発話を取得できるようにする。また、制御装置1の制御部12が備える図示しない音声認識部が操作者Uの発話を解析し、切断指示を受信し場合にスレーブロボットRの動作と操作者Uの動作との同期を終了するようにすればよい。
<第4の変形例>
 1台のスレーブロボットRを複数の操作者Uで順番に操作するような場合には、スレーブロボットRを操作中の操作者Uに代わって、別の操作者UがスレーブロボットRの操作権を受け継ぐことがある。この場合、操作権を受け継ぐ操作者UがスレーブロボットRと同期しようとするとき、スレーブロボットRは前の操作者Uの動作に同期して動いていることもあり得る。
 そこで、映像制御部124は、スレーブロボットRの手部の位置を示す情報を時系列的に取得し、スレーブロボットRの手部の位置の変化に応じて連結用マーカの表示場所を変更してもよい。操作権を受け継ごうとする操作者Uのヘッドマウントディスプレイ2aには、時間の経過に伴って移動する連結用マーカが提示される。動作連結部123は、操作者Uが移動する連結用マーカに触れることを契機として、その操作者UとスレーブロボットRとの同期を開始する。これにより、制御装置1は、1台のスレーブロボットRを複数の操作者Uで順番に操作する場合に、スレーブロボットRの操作権を操作者U間でスムースに受け渡すことができる。
<第5の変形例>
 上記では、操作者Uの身体の動きを取得するためのキャプチャ装置4が、例えば赤外線又は可視光を用いたカメラで操作者Uの身体に取り付けられたトラッキング用のマーカを撮像する「outside-in」タイプのモーションキャプチャ装置である場合について説明した。これに替えて、あるいはこれに加えて、キャプチャ装置4は、操作者Uに取り付けられたカメラ(例えばヘッドマウントディスプレイ2aが備えるカメラ)が撮像した映像を解析して操作者Uの身体の動きを取得する「inside-out」タイプのモーションキャプチャ装置であってもよい。
<第6の変形例>
 上記では、姿勢比較部122が、スレーブロボットRと操作者Uとを仮想的に重ね合わせたときに、少なくともスレーブロボットRの頭部の位置と操作者Uの頭部の位置との差異Eと、スレーブロボットRの手部の位置と操作者Uの手部の位置との差異Eとの和を、姿勢誤差として取得する場合について説明した。ここで、姿勢比較部122は、操作者Uの身体の姿勢を示す信号に基づいて操作者Uの姿勢モデルをシミュレーションによって生成し、姿勢モデルとスレーブロボットRの姿勢とを比較して姿勢誤差を取得してもよい。
<第7の変形例>
 上記では、操作者Uの動きとスレーブロボットRの動きとの同期を開始する前に、操作者Uが動くことによって操作者Uの姿勢とスレーブロボットRの姿勢との間の姿勢誤差を小さくすることについて主に説明した。これに替えて、あるいはこれに加えて、操作者Uの動きとスレーブロボットRの動きとの同期を開始する前に、スレーブロボットRが動くことによって姿勢誤差を小さくしてもよい。
 具体的には、動作連結部123が、姿勢比較部122が取得した姿勢誤差が所定の閾範囲内となるように、スレーブロボットRを動作させるための動作信号をスレーブロボットに送信する。これにより、制御装置1は、操作者Uが動かなくても操作者Uの動きとスレーブロボットRの動きとの同期を開始することができる。
 連結情報提示部126は、操作者Uの動きとスレーブロボットRの動きとの同期を開始する前に姿勢誤差を小さくするためにスレーブロボットRが動いている間、操作者Uに姿勢を静止していることを促すための情報を操作者Uに提示してもよい。これにより、制御装置1は、スレーブロボットRが動いている間に操作者Uも動いてしまうことで姿勢誤差が増大することを抑制できる。
 上記では、映像制御部124は、スレーブロボットRの頭部に備えられた撮像素子3aが撮像する立体映像がヘッドマウントディスプレイ2aに表示された場合に、操作者UによってスレーブロボットRの手部が知覚される位置に仮想的な立方体Mcが表示されるように、ガイド映像を生成する場合について説明した。これに替えて、映像制御部124は、スレーブロボットRの手部の実際の位置にかかわらず、固定の位置に仮想的な立方体Mcを表示してもよい。
 この場合、動作連結部123は、仮想的な立方体Mcの表示位置にスレーブロボットRの手部が移動するようにスレーブロボットRを動作させる。一方、連結情報提示部126は、仮想的な立方体Mcの表示位置に操作者Uの手部を誘導するための情報を操作者Uに提示する。これにより、制御装置1は、常に同じ位置(すなわち、仮想的な立方体Mcの表示位置)から操作者Uの動きとスレーブロボットRの動きとの同期を開始させることができる。
1・・・制御装置
10・・・通信部
11・・・記憶部
12・・・制御部
120・・・受信制御部
121・・・送信制御部
122・・・姿勢比較部
123・・・動作連結部
124・・・映像制御部
125・・・触覚信号生成部
126・・・連結情報提示部
127・・・音声制御部
2・・・提示装置
2a・・・ヘッドマウントディスプレイ
2b・・・触覚提示装置
2c・・・ヘッドフォン
2d・・・撮像素子
3・・・センサ
3a・・・撮像素子
3b・・・触覚センサ
3c・・・マイクロフォン
4・・・キャプチャ装置
N・・・通信ネットワーク
R・・・スレーブロボット
S・・・遠隔操作システム
 

Claims (12)

  1.  操作者の姿勢の変化に連動して動作するスレーブロボットと、
     前記操作者の身体の姿勢を示す信号を取得するキャプチャ装置と、
     制御装置と、を備え、
     前記制御装置は、
     前記スレーブロボットから当該スレーブロボットの姿勢を示す信号を受信するとともに、前記キャプチャ装置から前記操作者の身体の姿勢を示す信号を受信する受信制御部と、
     前記スレーブロボットの姿勢と前記操作者の姿勢との差異を示す姿勢誤差を取得する姿勢比較部と、
     前記姿勢誤差が所定の閾範囲内となることを条件として、前記操作者の姿勢の変化に基づいて生成された前記スレーブロボットを動作させるための動作信号を前記スレーブロボットに送信する動作連結部と、を備える、
     遠隔操作システム。
  2.  前記制御装置は、前記動作連結部が前記動作信号を前記スレーブロボットに送信する前に、前記スレーブロボットの姿勢と前記操作者の姿勢とを合わせるために前記操作者が取るべき姿勢に誘導するための情報を前記操作者に提示する連結情報提示部をさらに備える、
     請求項1に記載の遠隔操作システム。
  3.  前記遠隔操作システムは、前記操作者の頭部に取り付けられたとき映像を前記操作者に提示するためのヘッドマウントディスプレイをさらに備え、
     前記制御装置は、前記ヘッドマウントディスプレイに表示させる映像を制御する映像制御部をさらに備え、
     前記映像制御部は、前記動作連結部が前記動作信号を前記スレーブロボットに送信する前に、前記スレーブロボットの姿勢と前記操作者の姿勢とを合わせるために前記操作者が取るべき姿勢に誘導するためのガイド映像を生成する、
     請求項1又は2に記載の遠隔操作システム。
  4.  前記映像制御部は、前記動作連結部が前記スレーブロボットに前記動作信号を送信している間は、前記スレーブロボットが備える撮像素子が撮像した映像を前記ヘッドマウントディスプレイに表示させる、
     請求項3に記載の遠隔操作システム。
  5.  前記映像制御部は、前記スレーブロボットの頭部に備えられた撮像素子が撮像する映像が前記ヘッドマウントディスプレイに表示された場合に前記操作者によって前記スレーブロボットの手部が知覚される位置に仮想的な連結用マーカが表示されるように、前記ガイド映像を生成する、
     請求項3又は4に記載の遠隔操作システム。
  6.  前記遠隔操作システムは、前記操作者の手部に取り付けられたとき、前記スレーブロボットの手部に備えられた触覚センサが取得した触覚情報を前記操作者の手部に提示するための触覚提示装置をさらに備え、
     前記制御装置は、前記触覚提示装置を動作させるための触覚提示信号を生成する触覚信号生成部をさらに備え、
     前記触覚信号生成部は、前記映像における前記操作者の手部の位置と前記連結用マーカの表面の位置とが重なることを条件として、前記触覚提示信号を生成する、
     請求項5に記載の遠隔操作システム。
  7.  前記映像制御部は、前記操作者の動作と前記スレーブロボットの動作との同期を切断するための仮想的な切断用マーカを生成し、
     前記動作連結部は、前記映像における前記操作者の手部の位置と前記切断用マーカの表面の位置とが重なることを条件として、前記スレーブロボットへの前記動作信号の送信を停止する、
     請求項3から6のいずれか一項に記載の遠隔操作システム。
  8.  前記動作連結部は、前記姿勢誤差が所定の閾範囲内となる状態が所定の期間経過することを条件として、前記動作信号を前記スレーブロボットに送信する、
     請求項1から7のいずれか一項に記載の遠隔操作システム。
  9.  前記動作連結部は、前記姿勢比較部が取得した姿勢誤差が所定の閾範囲内となるように、前記スレーブロボットを動作させるための動作信号を前記スレーブロボットに送信する、
     請求項1に記載の遠隔操作システム。
  10.  前記スレーブロボットは、前記操作者の頭部及び手部にそれぞれ対応する頭部及び手部を少なくとも備える人型ロボットであり、
     前記姿勢比較部は、前記スレーブロボットと前記操作者とを仮想的に重ね合わせたときに、前記スレーブロボットの頭部の位置と前記操作者の頭部の位置との差異と前記スレーブロボットの手部の位置と前記操作者の手部の位置との差異との和を、前記姿勢誤差として取得する、
     請求項1から9のいずれか一項に記載の遠隔操作システム。
  11.  操作者の姿勢の変化に連動して動作するスレーブロボットと、前記操作者の身体の姿勢を示す信号を取得するキャプチャ装置と、制御装置と、を備える遠隔操作システムにおける前記制御装置が備えるプロセッサが、
     前記スレーブロボットから当該スレーブロボットの姿勢を示す信号を受信するステップと、
     前記キャプチャ装置から前記操作者の身体の姿勢を示す信号を受信するステップと、
     前記スレーブロボットの姿勢と前記操作者の姿勢との差異を示す姿勢誤差を取得するステップと、
     前記姿勢誤差が所定の閾範囲内となることを条件として、前記操作者の姿勢の変化に基づいて生成された前記スレーブロボットを動作させるための動作信号を前記スレーブロボットに送信するステップと、
     を実行する情報処理方法。
  12.  操作者の姿勢の変化に連動して動作するスレーブロボットと、前記操作者の身体の姿勢を示す信号を取得するキャプチャ装置と、制御装置と、を備える遠隔操作システムにおける前記制御装置に、
     前記スレーブロボットから当該スレーブロボットの姿勢を示す信号を受信する機能と、
     前記キャプチャ装置から前記操作者の身体の姿勢を示す信号を受信する機能と、
     前記スレーブロボットの姿勢と前記操作者の姿勢との差異を示す姿勢誤差を取得する機能と、
     前記姿勢誤差が所定の閾範囲内となることを条件として、前記操作者の姿勢の変化に基づいて生成された前記スレーブロボットを動作させるための動作信号を前記スレーブロボットに送信する機能と、
     を実現させるプログラム。
     
PCT/JP2019/019930 2018-05-21 2019-05-20 遠隔操作システム、情報処理方法、及びプログラム WO2019225548A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19808432.9A EP3797931B1 (en) 2018-05-21 2019-05-20 Remote control system, information processing method, and program
JP2020521223A JP7239916B2 (ja) 2018-05-21 2019-05-20 遠隔操作システム、情報処理方法、及びプログラム
KR1020207032490A KR20210013042A (ko) 2018-05-21 2019-05-20 원격조작 시스템, 정보처리 방법 및 프로그램
CN201980034293.6A CN112154047A (zh) 2018-05-21 2019-05-20 远程操作系统、信息处理方法以及程序
US16/953,013 US20210069894A1 (en) 2018-05-21 2020-11-19 Remote control system, information processing method, and non-transitory computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018097145 2018-05-21
JP2018-097145 2018-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/953,013 Continuation US20210069894A1 (en) 2018-05-21 2020-11-19 Remote control system, information processing method, and non-transitory computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2019225548A1 true WO2019225548A1 (ja) 2019-11-28

Family

ID=68616945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019930 WO2019225548A1 (ja) 2018-05-21 2019-05-20 遠隔操作システム、情報処理方法、及びプログラム

Country Status (6)

Country Link
US (1) US20210069894A1 (ja)
EP (1) EP3797931B1 (ja)
JP (1) JP7239916B2 (ja)
KR (1) KR20210013042A (ja)
CN (1) CN112154047A (ja)
WO (1) WO2019225548A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188104A1 (ja) * 2022-03-30 2023-10-05 三菱電機株式会社 遠隔体験システム、情報処理装置、情報処理方法およびプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11420331B2 (en) * 2019-07-03 2022-08-23 Honda Motor Co., Ltd. Motion retargeting control for human-robot interaction
US20210252699A1 (en) * 2019-09-18 2021-08-19 Purdue Research Foundation System and method for embodied authoring of human-robot collaborative tasks with augmented reality
CN112936269B (zh) * 2021-02-04 2022-07-08 珠海一微半导体股份有限公司 一种基于智能终端的机器人控制方法
CN114227679B (zh) * 2021-12-17 2023-07-25 深圳市金大智能创新科技有限公司 一种基于数字化虚拟人驱动的远程机器人控制方法及系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126985A (ja) * 1983-12-13 1985-07-06 Agency Of Ind Science & Technol 遠隔操作における作業状況表示装置
JPH0550382A (ja) * 1991-08-23 1993-03-02 Fuji Electric Co Ltd マスタ・スレーブマニピユレータの起動方法
JPH08117238A (ja) * 1994-10-25 1996-05-14 Olympus Optical Co Ltd 手術用マニピュレータ
JPH08257948A (ja) * 1995-03-20 1996-10-08 Yaskawa Electric Corp ロボットの遠隔操作装置
JPH0966476A (ja) * 1995-08-29 1997-03-11 Hitachi Ltd 感触再現装置及びこれを用いたマニピュレータシステム
JP2001198865A (ja) * 2000-01-20 2001-07-24 Toshiba Corp 2足歩行ロボット装置およびその運用方法
JP2003053685A (ja) * 2001-08-10 2003-02-26 Toshiba Corp 医療用マニピュレータ
JP2012517847A (ja) * 2009-02-17 2012-08-09 ソフトキネティック スタジオ エスエー ユーザに様々な姿勢を取ることを要求する姿勢検出器付きコンピュータビデオゲームシステム
US20130211594A1 (en) * 2012-02-15 2013-08-15 Kenneth Dean Stephens, Jr. Proxy Robots and Remote Environment Simulator for Their Human Handlers
WO2016194539A1 (ja) * 2015-05-29 2016-12-08 オリンパス株式会社 医療用マニピュレータシステム
JP2017119043A (ja) * 2015-12-29 2017-07-06 株式会社コナミデジタルエンタテインメント ゲーム制御装置及びプログラム
JP2019063951A (ja) * 2017-10-02 2019-04-25 株式会社オカムラ 作業システム、作業システムの制御方法及びプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233318A1 (en) * 2006-03-29 2007-10-04 Tianmo Lei Follow Robot
WO2012029227A1 (ja) * 2010-08-31 2012-03-08 パナソニック株式会社 マスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、制御プログラム、並びに、集積電子回路
JP2012171088A (ja) * 2011-02-24 2012-09-10 Olympus Corp マスタ操作入力装置及びマスタスレーブマニピュレータ
US9259289B2 (en) * 2011-05-13 2016-02-16 Intuitive Surgical Operations, Inc. Estimation of a position and orientation of a frame used in controlling movement of a tool
US9770828B2 (en) * 2011-09-28 2017-09-26 The Johns Hopkins University Teleoperative-cooperative robotic system
KR101978740B1 (ko) * 2012-02-15 2019-05-15 삼성전자주식회사 원격조종시스템 및 그 제어방법
EP3242774B1 (en) * 2015-01-09 2019-03-13 Titan Medical Inc. Alignment difference safety in a master-slave robotic system
US9852546B2 (en) * 2015-01-28 2017-12-26 CCP hf. Method and system for receiving gesture input via virtual control objects
US9643314B2 (en) * 2015-03-04 2017-05-09 The Johns Hopkins University Robot control, training and collaboration in an immersive virtual reality environment
US10551923B2 (en) * 2016-05-04 2020-02-04 Worcester Polytechnic Institute Haptic glove as a wearable force feedback user interface
WO2018061683A1 (ja) * 2016-09-30 2018-04-05 ソニー株式会社 力覚提示装置
KR102239469B1 (ko) * 2018-01-19 2021-04-13 한국과학기술원 객체 제어 방법 및 객체 제어 장치

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126985A (ja) * 1983-12-13 1985-07-06 Agency Of Ind Science & Technol 遠隔操作における作業状況表示装置
JPH0550382A (ja) * 1991-08-23 1993-03-02 Fuji Electric Co Ltd マスタ・スレーブマニピユレータの起動方法
JPH08117238A (ja) * 1994-10-25 1996-05-14 Olympus Optical Co Ltd 手術用マニピュレータ
JPH08257948A (ja) * 1995-03-20 1996-10-08 Yaskawa Electric Corp ロボットの遠隔操作装置
JPH0966476A (ja) * 1995-08-29 1997-03-11 Hitachi Ltd 感触再現装置及びこれを用いたマニピュレータシステム
JP2001198865A (ja) * 2000-01-20 2001-07-24 Toshiba Corp 2足歩行ロボット装置およびその運用方法
JP2003053685A (ja) * 2001-08-10 2003-02-26 Toshiba Corp 医療用マニピュレータ
JP2012517847A (ja) * 2009-02-17 2012-08-09 ソフトキネティック スタジオ エスエー ユーザに様々な姿勢を取ることを要求する姿勢検出器付きコンピュータビデオゲームシステム
US20130211594A1 (en) * 2012-02-15 2013-08-15 Kenneth Dean Stephens, Jr. Proxy Robots and Remote Environment Simulator for Their Human Handlers
WO2016194539A1 (ja) * 2015-05-29 2016-12-08 オリンパス株式会社 医療用マニピュレータシステム
JP2017119043A (ja) * 2015-12-29 2017-07-06 株式会社コナミデジタルエンタテインメント ゲーム制御装置及びプログラム
JP2019063951A (ja) * 2017-10-02 2019-04-25 株式会社オカムラ 作業システム、作業システムの制御方法及びプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FERNANDO, C. L.FURUKAWA, M.KUROGI, T.KAMURO, S.SATO, K.MINAMIZAWAS. TACHI: "Design of TELESAR v for transferring bodily consciousness in telexistence", IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2012, pages 5112 - 5118, XP032287660, DOI: 10.1109/IROS.2012.6385814
See also references of EP3797931A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188104A1 (ja) * 2022-03-30 2023-10-05 三菱電機株式会社 遠隔体験システム、情報処理装置、情報処理方法およびプログラム

Also Published As

Publication number Publication date
US20210069894A1 (en) 2021-03-11
EP3797931B1 (en) 2023-08-02
JPWO2019225548A1 (ja) 2021-06-17
JP7239916B2 (ja) 2023-03-15
KR20210013042A (ko) 2021-02-03
EP3797931A4 (en) 2021-07-28
CN112154047A (zh) 2020-12-29
EP3797931A1 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
WO2019225548A1 (ja) 遠隔操作システム、情報処理方法、及びプログラム
JP6642432B2 (ja) 情報処理装置及び情報処理方法、並びに画像表示システム
EP2568355A2 (en) Combined stereo camera and stereo display interaction
Tachi Telexistence: Enabling humans to be virtually ubiquitous
US11086392B1 (en) Devices, systems, and methods for virtual representation of user interface devices
TWI530860B (zh) 用以擴增實境及虛擬實境之目鏡系統及使用該系統之方法
JP6601402B2 (ja) 制御装置、制御方法およびプログラム
JP6822410B2 (ja) 情報処理システム及び情報処理方法
US11526133B2 (en) Electronic devices and systems
Wei et al. Multi-view merging for robot teleoperation with virtual reality
WO2023059458A1 (en) Apparatus, system, and method for detecting user input via hand gestures and arm movements
Tachi From 3D to VR and further to telexistence
US20230359422A1 (en) Techniques for using in-air hand gestures detected via a wrist-wearable device to operate a camera of another device, and wearable devices and systems for performing those techniques
JP2019207572A (ja) 情報処理装置及びプログラム
KR20170045678A (ko) Hmd를 이용한 아바타 장치
US11662815B2 (en) Apparatus, system, and method for detecting user input via hand gestures and arm movements
WO2021246134A1 (ja) デバイス、制御方法及びプログラム
CN213186104U (zh) 一种分布式遥控装置
Inoue et al. Enhancing bodily expression and communication capacity of telexistence robot with augmented reality
US20230325002A1 (en) Techniques for neuromuscular-signal-based detection of in-air hand gestures for text production and modification, and systems, wearable devices, and methods for using these techniques
Oyama et al. Wearable behavior navigation systems for first-aid assistance
Correia Marques et al. Immersive Commodity Telepresence with the AVATRINA Robot Avatar
JP2024516475A (ja) リストバンドシステムのための分割アーキテクチャならびに関連するデバイスおよび方法
WO2022203697A1 (en) Split architecture for a wristband system and related devices and methods
CN113409469A (zh) 一种融合现实互动系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019808432

Country of ref document: EP

Effective date: 20201221