WO2019225247A1 - 採光制御システム、駆動装置、及び、駆動方法 - Google Patents
採光制御システム、駆動装置、及び、駆動方法 Download PDFInfo
- Publication number
- WO2019225247A1 WO2019225247A1 PCT/JP2019/016835 JP2019016835W WO2019225247A1 WO 2019225247 A1 WO2019225247 A1 WO 2019225247A1 JP 2019016835 W JP2019016835 W JP 2019016835W WO 2019225247 A1 WO2019225247 A1 WO 2019225247A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- illuminance
- optical film
- light source
- target area
- source unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/17—Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B5/00—Doors, windows, or like closures for special purposes; Border constructions therefor
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B9/00—Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
- E06B9/24—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S11/00—Non-electric lighting devices or systems using daylight
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S19/00—Lighting devices or systems employing combinations of electric and non-electric light sources; Replacing or exchanging electric light sources with non-electric light sources or vice versa
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/11—Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Definitions
- the present invention relates to a daylighting control system, a driving apparatus, and a driving method capable of controlling the light distribution of light incident on an optical film device.
- Patent Document 1 discloses an optical device capable of performing light distribution.
- the circadian rhythm of the user is destroyed due to the orientation of the window, the layout of the furniture, the fluctuation of the weather, the brightness of the artificial light source installed in the lighting space, and the like. There is a case.
- the present invention provides a daylighting control system, a driving device, and a driving method capable of adjusting a circadian rhythm of a user.
- a lighting control system includes a refractive index variable layer capable of electrically adjusting a refractive index of light, an optical film device used for lighting a target region, and illumination that illuminates the target region
- the optical film device and the illumination system so that a first integrated value of the melanotropic illuminance of the target area in the second half of the predetermined period is smaller than a second integrated value of the melanotropic illuminance of the target area in the first half of the predetermined period
- the lighting system includes a first light source unit and a second light source unit, and the target region is subject to a photopic when the target region is illuminated by the first light source unit.
- the ratio of the melanic illuminance to the illuminance is the photopic illuminance of the target area when the target area is illuminated by the second light source unit. Smaller than the ratio of Meranopikku illumination against.
- a driving apparatus is a driving apparatus that drives an optical film device and an illumination system, and the optical film device includes a refractive index variable layer capable of electrically adjusting a refractive index of light.
- the illumination system illuminates the target area, and the first integrated value of the melanotropic illuminance of the target area in the second half of the predetermined period is the melanotropic illuminance of the target area in the first half of the predetermined period.
- the ratio of the melanotropic illuminance to the photopic illuminance of the target area when the target area is illuminated by the section is determined by the second light source section. Less than Meranopikku illuminance ratio for photo pick illumination of the target area when the target area is illuminated.
- a driving method is a driving method of an optical film device and an illumination system, which is executed by a computer, and the optical film device is capable of electrically adjusting a refractive index of light.
- the lighting system includes a variable layer and is used for daylighting the target region.
- the lighting system illuminates the target region
- the driving method is configured such that the first integrated value of the melanotropic illuminance of the target region in the second half of the predetermined period
- Driving the optical film device and the illumination system to be smaller than a second integrated value of the melanotropic illuminance of the target region in the first half of the target area
- the illumination system including a first light source unit and a second light source unit , Melanopic illuminance with respect to fotopic illuminance of the target area when the target area is illuminated by the first light source unit It is smaller than the ratio of Meranopikku insolation of a photo pick illumination of the target area when the target area by the second light source unit is illuminated.
- a daylighting control system capable of adjusting a circadian rhythm of a user are realized.
- FIG. 1 is a diagram illustrating an overview of a daylighting control system according to an embodiment.
- FIG. 2 is a block diagram illustrating a functional configuration of the daylighting control system according to the embodiment.
- FIG. 3 is a diagram showing visibility for obtaining melanotropic illuminance.
- FIG. 4 is a diagram schematically illustrating the traveling direction of light in the transparent mode.
- FIG. 5 is a diagram schematically showing the traveling direction of light in the light distribution mode.
- FIG. 6 is a flowchart of an operation example of the daylighting control system.
- FIG. 7 is a cross-sectional view of the optical film device according to the embodiment.
- FIG. 8 is an enlarged cross-sectional view illustrating a part of the optical film device according to the embodiment.
- FIG. 9 is an enlarged cross-sectional view for explaining the transparent mode of the optical film device according to the embodiment.
- FIG. 10 is an enlarged cross-sectional view for explaining a light distribution mode of the optical film device according to the embodiment.
- the x axis, the y axis, and the z axis represent the three axes of the three-dimensional orthogonal coordinate system.
- the z axis direction is the vertical direction and the z axis is perpendicular to the z axis.
- the direction (direction parallel to the xy plane) is the horizontal direction.
- the x-axis and the y-axis are orthogonal to each other and both are orthogonal to the z-axis. Note that the plus direction in the z-axis direction is vertically upward.
- plane view means a view from a direction perpendicular to the main surface of the first substrate or the second substrate.
- FIG. 1 is a diagram illustrating an overview of a daylighting control system according to an embodiment.
- FIG. 2 is a block diagram illustrating a functional configuration of the daylighting control system according to the embodiment.
- the optical film device 100 is shown in cross section.
- the daylighting control system 10 is a system that can adjust the circadian rhythm of the user existing in the target area 80 by controlling the light incident on the optical film device 100 and the illumination system 300.
- the optical film device 100 is a light distribution control element that can change the traveling direction of light incident on the optical film device 100 (that is, distribute light) and emit the light.
- the optical film device 100 has a sheet shape having a main surface parallel to the ZX plane, and is used by being attached to a window 91 or the like.
- the illumination system 300 includes a first light source unit 301 and a second light source unit 302 having different emission characteristics (for example, emission spectrum), and illuminates the target region 80.
- emission characteristics for example, emission spectrum
- the daylighting control system 10 includes a sensor 20, a drive device 30, an optical film device 100, and an illumination system 300.
- the sensor 20 is arranged in the target area 80 in the building 90 or in the vicinity of the target area 80, and estimates or detects the melanotropic illuminance of the target area 80. More precisely, melanotropic illuminance is called melanotropic equivalent illuminance, and is used as an indicator of light that affects human circadian rhythm.
- the melanotropic illuminance is obtained by multiplying the light to be measured by the visibility as shown by the solid line in FIG.
- FIG. 3 is a diagram showing visibility for obtaining melanotropic illuminance. Note that the term photopic illuminance is used in this specification for melanopic illuminance. The photopic illuminance is generally simply referred to as “illuminance”. In FIG. 3, the visibility for obtaining the fotopic illuminance is also shown by a broken line.
- the senor 20 includes a band pass filter 21, a silicon photodiode 22, and a detection circuit 23.
- the band-pass filter 21 is an optical filter that gives light incident on the band-pass filter 21 substantially the same characteristics as the visual sensitivity as shown in FIG.
- the center wavelength of the bandpass filter 21 is, for example, not less than 485 nm and not more than 495 nm.
- the silicon photodiode 22 is a photoelectric conversion element that converts the light transmitted through the band-pass filter 21 into a current corresponding to the amount of the light.
- the detection circuit 23 includes a circuit that converts the current output from the silicon photodiode 22 into a voltage.
- the detection circuit 23 outputs a detection signal corresponding to the current output from the silicon photodiode 22.
- the detection signal is a signal indicating melanotropic illuminance.
- the configuration of the sensor 20 as described above is an example.
- the sensor 20 only needs to be able to estimate or detect melanotropic illuminance.
- the sensor 20 may be configured to detect photopic illuminance and convert the fotopic illuminance into melanotropic illuminance.
- the drive device 30 is a device that drives the optical film device 100 and the illumination system 300. Specifically, the driving device 30 optically controls the first integrated value of the melanotropic illuminance of the target area 80 in the second half of the predetermined period to be smaller than the second integrated value of the melanotropic illuminance of the target area 80 in the first half of the predetermined period.
- the film device 100 and the illumination system 300 are driven.
- the integrated value of melanotropic illuminance is a time integrated value of melanotropic illuminance.
- the drive device 30 includes a control unit 31, a storage unit 32, a timer unit 33, a communication unit 34, and a voltage application circuit 35.
- the driving device 30 may include an operation receiving unit (user interface device) that receives a user operation.
- the control unit 31 is at least one of a detection signal output from the sensor 20 (more specifically, a detection circuit 23), time information output from the time measuring unit 33, and external information obtained via the communication unit 34.
- the control signal is output to each of the voltage application circuit 35 and the illumination system 300 based on the above.
- the control unit 31 is realized by a microcomputer or a processor.
- the storage unit 32 is a storage device that stores a program executed by the control unit 31 for driving the optical film device 100 and the illumination system 300.
- the storage unit 32 is realized by a semiconductor memory, for example.
- Time measuring unit 33 measures the current time and outputs time information indicating the current time to control unit 31.
- the timer unit 33 is realized by, for example, a real time clock.
- the communication unit 34 is a communication interface for the drive device 30 to communicate with other devices.
- the communication unit 34 is a wireless communication circuit, for example, and acquires information from other devices by wireless communication.
- the communication unit 34 is a wired communication circuit, and may acquire information from another device by wired communication.
- the voltage application circuit 35 applies a voltage between the pair of electrode layers included in the optical film device 100 based on the control signal output by the control unit 31.
- the driving mode of the optical film device 100 includes a transparent mode and a light distribution mode.
- FIG. 4 is a diagram schematically illustrating the traveling direction of light in the transparent mode. As shown in FIG. 4, in the transparent mode, the optical film device 100 causes light (for example, external light) incident on the optical film device 100 to travel straight. As a result, the floor surface of the building 90 is illuminated by external light. At this time, the optical film device 100 is in a state in which no voltage is applied, for example.
- FIG. 5 is a diagram schematically showing the traveling direction of light in the light distribution mode.
- the optical film device 100 in the light distribution mode, the optical film device 100 refracts light incident on the optical film device 100. As a result, the ceiling of the building 90 is illuminated by external light, and the target area 80 becomes bright.
- the optical film device 100 In the light distribution mode, the optical film device 100 is in a voltage application state, for example.
- the optical film device 100 may be in a voltage-less application state in the light distribution mode, and the optical film device 100 may be in a voltage application state in the transparent mode.
- the voltage application circuit 35 applies an AC voltage having a rectangular waveform between the pair of electrode layers included in the optical film device 100 and having a frequency of about 100 Hz.
- the voltage application circuit 35 is realized by, for example, an insulated power conversion circuit that converts an alternating voltage supplied from a power system into the rectangular alternating voltage and outputs the same.
- the power conversion circuit includes a variable voltage source and a low frequency inverter circuit.
- the voltage application circuit 35 may apply an AC voltage having a sinusoidal waveform between the pair of electrode layers, or may apply a DC voltage. Further, the voltage application circuit 35 may apply a minute alternating voltage even when no voltage is applied.
- the optical film device 100 is an optical device that includes a refractive index variable layer capable of electrically adjusting the refractive index of light and is used for daylighting the target region 80.
- the optical film device 100 is a light distribution film device.
- the optical film device 100 is attached to the indoor side of the window 91 via an adhesive layer, for example. Thereby, the light distribution function is given to the window 91.
- the optical film device 100 can be in a light distribution mode (in other words, a voltage application state) and a transparent mode (in other words, no voltage application state).
- the optical film device 100 can be an intermediate mode between the light distribution mode and the transparent mode. A specific configuration of the optical film device 100 will be described later.
- the illumination system 300 is an illumination system that illuminates the target area 80 based on a control signal output from the control unit 31.
- the illumination system 300 includes a plurality of first light source units 301 and a plurality of second light source units 302.
- the illumination system 300 only needs to include at least one first light source unit 301 and at least one second light source unit 302.
- the first light source unit 301 has a white light source using a light emitting element such as an LED, and emits white light.
- the second light source unit 302 includes a white light source using a light emitting element such as an LED, and emits white light having a color (for example, color temperature) different from the white color emitted by the first light source unit 301.
- the ratio of the melanotropic illuminance to the fotopic illuminance of the target region 80 when the target region 80 is illuminated by the first light source unit 301 (hereinafter also referred to as a first proportional value) is the second light source unit 302. Is smaller than the ratio of the melanotropic illuminance to the photopic illuminance of the target area 80 when the target area 80 is illuminated (hereinafter also referred to as a second proportional value).
- the first light source unit 301 is used when it is desired to increase the photic illuminance among the melanotropic illuminance and the photopic illuminance
- the second light source unit 302 is used when the melanotropic illuminance is desired to be increased among the melanocic illuminance and the photopic illuminance. Used.
- the first proportional value is smaller than the second proportional value
- the color temperature of the white light emitted from the first light source unit 301 is often lower than the color temperature of the white light emitted from the second light source unit 302. It may not be.
- the color temperature is different from the proportional value, there is a common part, but they are different concepts.
- each of the first light source unit 301 and the second light source unit 302 is realized as a single lighting device (specifically, a ceiling light or a spotlight). May be realized as a single lighting device, and each of the first light source unit 301 and the second light source unit 302 may be realized as a light source included in the lighting device.
- the illumination system 300 may be realized as an illumination device capable of adjusting the emission spectrum (in other words, toning) by changing the brightness ratio of the first light source unit 301 and the second light source unit 302. .
- FIG. 6 is a flowchart of an operation example of the daylighting control system 10.
- the daylighting control system 10 performs daylighting control for adjusting the circadian rhythm of the user existing in the target area 80.
- the control part 31 of the drive device 30 determines the predetermined period used as the object of lighting control (S11). In this operation example, the control unit 31 determines a period from the sunrise time to the sunset time as a predetermined period.
- the communication unit 34 of the drive device 30 acquires the information indicating the sunrise time and the sunset time from the server device that manages the information.
- the acquired information is stored in the storage unit 32.
- the control part 31 can determine the period from the time of sunrise to the time of sunset by referring to the memory
- the predetermined period is a period of 13 hours from 5:00 to 18:00.
- the first half of the predetermined period is from 5:00 to 11:30
- the second half of the predetermined period is from 11:30 to 18:00.
- the predetermined period is not limited to the period from sunrise time to sunset time.
- the predetermined period is from the start time to the end time. It may be a period.
- the start time and the end time are stored in the storage unit 32 in advance.
- the predetermined period may be a period from the time when more than half of the employees have come to the office to the time when more than half of the employees have left the company.
- the time when more than half of the employees have left the office and the time when more than half of the employees have left the office, which are determined based on past attendance and leaving history information, are stored in the storage unit 32 in advance.
- the driving device 30 starts the daylighting control at the start time of the predetermined period.
- the driving device 30 drives the optical film device 100 in the light distribution mode in the first half of the predetermined period, and selectively selects only the second light source unit 302 among the first light source unit 301 and the second light source unit 302.
- Light is emitted (S12).
- the control unit 31 of the driving device 30 outputs a control signal for driving the optical film device 100 in the light distribution mode to the voltage application circuit 35, and the voltage application circuit 35 outputs the control signal to the output control signal. Based on this, a voltage is applied to the pair of electrode layers of the optical film device 100.
- the control unit 31 outputs a control signal for selectively causing the second light source unit 302 to emit light to the illumination system 300.
- the driving device 30 improves the melanotropic illuminance of the target region 80 in the first half of the predetermined period.
- the control unit 31 integrates the melanotropic illuminance based on the detection signal output from the sensor 20 during a predetermined period.
- the second integrated value A of melanotropic illuminance A in the first half of the predetermined period is stored in the storage unit 32 (S13).
- the control unit 31 calculates the integrated value B of the melanotropic illuminance of the target area from the start of the second half to the current time (that is, the midway time) (S14). Moreover, the control part 31 specifies the length T of the period from the present time to the end time of a predetermined period based on the time information output from the time measuring part 33 (S15).
- control unit 31 determines whether or not the current melanotropic illuminance is larger than the illuminance determined by (AB) / T (S16). If it is determined that the current melanotropic illuminance is greater than the illuminance determined by (AB) / T (Yes in S16), assuming that the current melanotropic illuminance continues until the end of the predetermined period, the second half of the predetermined period It is considered that it is difficult to make the first integrated value of the melanoscopic illuminance of the target region 80 in FIG.
- the driving device 30 drives the optical film device 100 in the transparent mode, and selectively emits only the first light source unit 301 among the first light source unit 301 and the second light source unit 302 (S17). .
- the control unit 31 outputs a control signal for driving the optical film device 100 in the transparent mode to the voltage application circuit 35, and the voltage application circuit 35 is based on the output control signal. Application of voltage to the pair of electrode layers of 100 is stopped. Further, the control unit 31 outputs a control signal for selectively causing the first light source unit 301 to emit light to the illumination system 300.
- the driving device 30 attempts to reduce the melanotropic illuminance of the target region 80 in the second half of the predetermined period.
- the drive device 30 continues to drive the optical film device 100 in the light distribution mode, and selectively causes the second light source unit 302 to emit light.
- step S17 the control unit 31 determines whether or not it is necessary to further reduce the melanotropic illuminance of the target region 80 (S18). Specifically, the control unit 31 performs the processing of step S15 to step S17 once more, and determines whether or not the current melanopic illuminance is larger than the illuminance determined by (AB) / T.
- the control unit 31 reduces the dimming rate (in other words, brightness) of the first light source unit 301, and in some cases Goes off (S19). Specifically, the control unit 31 outputs a control signal for reducing the dimming rate to the illumination system 300. On the other hand, when it is determined that it is not necessary to further reduce the melanotropic illuminance of the target region 80 (No in S18), the control unit 31 maintains the dimming rate of the first light source unit 301 without being changed.
- the first integrated value of the melanotropic illuminance of the target area 80 in the second half of the predetermined period is smaller than the second integrated value A of the melanotropic illuminance of the target area 80 in the first half of the predetermined period.
- the optical film device 100 and the illumination system 300 are driven as described above.
- the circadian rhythm in order to adjust the circadian rhythm, it is effective to increase the melanotropic illuminance of the target area 80 in the morning and to reduce the melanotropic illuminance of the target area 80 in the afternoon than in the morning.
- the melanotropic illuminance is improved in the first half of the predetermined period, and the melanotropic illuminance is reduced in the second half of the predetermined period.
- the above operation example is an example, and the lighting control system 10 may drive the optical film device 100 and the illumination system 300 in any way as long as the first integrated value is smaller than the second integrated value A.
- the driving device 30 selectively switches the driving mode of the optical film device 100 to either the light distribution mode or the transparent mode.
- the driving device 30 can selectively execute three or more driving modes by changing the voltage applied to the optical film device 100.
- the first integrated value is made smaller than the second integrated value A by appropriately combining switching of the driving modes of three or more stages and dimming of the second light source unit 302.
- the determination in step S16 is performed a plurality of times, and control for reducing melanotropic illuminance based on a combination of switching of three or more driving modes and dimming of the second light source unit 302 is performed. May be performed automatically.
- the transparent mode it may be determined whether or not the transparent mode can be returned to the light distribution mode. That is, it may be determined whether the first integrated value can be made smaller than the second integrated value A even when the transparent mode is returned to the light distribution mode.
- step S16 it may be determined whether or not the current melanotropic illuminance is greater than (AB) / T by a predetermined value (> 0) or more.
- the driving device 30 drives the optical film device 100 in the light distribution mode in the first half of the predetermined period to cause the second light source unit 302 to emit light.
- the first integrated value may be made smaller than the second integrated value A by driving the optical film device 100 in the second half to cause the first light source unit 301 to emit light.
- the driving device 30 may drive the optical film device 100 and the illumination system 200 without using the sensor 20 (without depending on the output of the sensor 20).
- the driving device 30 can also control the refraction angle of light incident on the optical film device 100 in an analog manner by changing the voltage applied to the optical film device 100.
- the drive device 30 may control the refraction angle of light incident on the optical film device 100 in an analog manner so that the first integrated value is smaller than the second integrated value A.
- first light source unit 301 and the second light source unit 302 emit light selectively.
- first half of the predetermined period both the first light source unit 301 and the second light source unit 302 emit light, and the dimming rate of the second light source unit 302 is higher than the dimming rate of the first light source unit 301.
- second half of the predetermined period both the first light source unit 301 and the second light source unit 302 emit light, and the dimming rate of the first light source unit 301 is higher than the dimming rate of the second light source unit 302. May be.
- the daylighting control system 10 includes the refractive index variable layer 132 that can electrically adjust the refractive index of light, the optical film device 100 used for daylighting control on the target region 80, and the target region. And an optical film device so that the first integrated value of the melanotropic illuminance of the target area 80 in the second half of the predetermined period is smaller than the second integrated value A of the melanotropic illuminance of the target area in the first half of the predetermined period. 100 and a driving device 30 that drives the illumination system 300.
- the illumination system 300 includes a first light source unit 301 and a second light source unit 302.
- the ratio of the melanic illuminance to the photopic illuminance of the target area 80 when the target area 80 is illuminated by the first light source unit 301 is the ratio of the target area 80 when the target area 80 is illuminated by the second light source unit 302. Greater than the ratio of melanopic illuminance to photopic illuminance.
- Such a daylighting control system 10 can adjust the circadian rhythm of users existing in the target area 80 by setting the predetermined period so that the first half is mainly morning and the second half is mainly afternoon. Moreover, the lighting control system 10 can ensure the illumination intensity of the target area 80 using the illumination system 300 when it is difficult to ensure the illumination intensity of the target area 80 only by the optical film device 100 in the first half of the predetermined period. .
- the daylighting control system 10 can increase the photopic illuminance while suppressing the increase in melanotropic illuminance by preferentially using the first light source unit 301 over the second light source unit 302 in the latter half of the predetermined period. . That is, the daylighting control system 10 can achieve both of adjusting the circadian rhythm of the user and ensuring the brightness of the target area 80.
- the daylighting control system 10 further includes a sensor 20 that estimates or detects the melanotropic illuminance of the target region 80.
- the driving device 30 drives the optical film device 100 illumination system 300 so that the first integrated value becomes smaller than the second integrated value A based on the 20 outputs of the sensor.
- the first integrated value is more than the second integrated value A based on the measured value of the melanotropic illuminance detected by the sensor 20 or the estimated value of the melanotropic illuminance estimated by the sensor 20.
- the optical film device 100 and the illumination system 300 can be driven to be small.
- the senor 20 includes a band-pass filter 21 and a silicon photodiode 22 on which light transmitted through the band-pass filter 21 is incident.
- Such a daylighting control system 10 uses the optical film device 100 so that the first integrated value becomes smaller than the second integrated value A based on the output of the sensor 20 in which the bandpass filter 21 and the silicon photodiode 22 are combined. And the lighting system 300 can be driven.
- the center wavelength of the bandpass filter 21 is not less than 485 nm and not more than 495 nm.
- the first integrated value is higher than the second integrated value A based on the output of the sensor 20 in which the center wavelength is 485 nm or more and 495 nm or less and the band pass filter 21 and the silicon photodiode 22 are combined.
- the optical film device 100 and the illumination system 300 can be driven to be small.
- the driving device 30 uses the formula (AB) / T so that the first integrated value becomes smaller than the second integrated value at the midpoint of the second half of the predetermined period.
- the lighting system 300 is driven.
- A is a second integrated value
- B is an integrated value of the melanotropic illuminance of the target region 80 from the start point in the latter half of the predetermined period to the midpoint
- T is from the midpoint to the end point of the predetermined period. The length of the period.
- Such a daylighting control system 10 can maintain the drive mode and make the first integrated value smaller than the second integrated value, assuming that the melanotropic illuminance at the midpoint continues until the end of the predetermined period. It can be determined whether or not.
- the predetermined period is a period from the sunrise time to the sunset time.
- Such a daylighting control system 10 can adjust the circadian rhythm of the user existing in the target area 80.
- the predetermined period is a period from the start time to the end time.
- Such a daylighting control system 10 can adjust the circadian rhythm of the user existing in the target area 80.
- the target area 80 is an area used by employees of the company, and is a period from the time when more than half of the employees enter the company to the time when more than half of the employees leave the company.
- Such a daylighting control system 10 can arrange the circadian rhythm of many employees existing in the target area 80.
- the driving device 30 selectively causes the second light source unit 302 of the first light source unit 301 and the second light source unit 302 to emit light in the first half of the predetermined period, and the first light source unit in the second half of the predetermined period.
- the first light source 301 is selectively caused to emit light among the 301 and the second light source 302.
- Such a daylighting control system 10 causes the first light source unit 301 to emit light instead of the second light source unit 302 in the second half of the predetermined period, thereby reducing the melanopic illuminance while ensuring a certain degree of fotopic illuminance.
- the integrated value can be made smaller than the second integrated value A.
- the drive mode of the optical film device 100 includes a transparent mode in which light incident on the optical film device 100 goes straight and a light distribution mode in which light incident on the optical film device is refracted.
- the driving device 30 drives the optical film device 100 in the transparent mode in the second half of the predetermined period.
- Such a daylighting control system 10 can make the first integrated value smaller than the second integrated value A by driving the optical film device 100 in the transparent mode in the latter half of the predetermined period.
- the driving device 30 drives the optical film device 100 so that light incident on the optical film device 100 is directly or indirectly irradiated onto the target region 80 in the first half of the predetermined period.
- Such a daylighting control system 10 drives the optical film device 100 so that the light incident on the optical film device 100 is directly or indirectly irradiated onto the target region 80 in the first half of the predetermined period, whereby the first integration is performed.
- the value can be made smaller than the second integrated value A.
- the drive mode of the optical film device 100 includes a transparent mode in which light incident on the optical film device 100 goes straight and a light distribution mode in which light incident on the optical film device 100 is refracted.
- the driving device 30 drives the optical film device 100 in the light distribution mode in the first half of the predetermined period.
- Such a daylighting control system 10 can make the first integrated value smaller than the second integrated value A by driving the optical film device 100 in the light distribution mode in the first half of the predetermined period.
- FIG. 7 is a cross-sectional view of the optical film device 100.
- FIG. 8 is an enlarged cross-sectional view showing a part of the optical film device 100 in an enlarged manner, and shows an enlarged region VIII surrounded by a one-dot chain line in FIG.
- the optical film device 100 is an optical device that controls light incident on the optical film device 100.
- the optical film device 100 is a light distribution element that can change the traveling direction of light incident on the optical film device 100 (that is, distribute light) and emit the light.
- the optical film device 100 is configured to transmit incident light, and includes a first substrate 110, a second substrate 120, a light distribution layer 130, and a first substrate.
- An electrode layer 140 and a second electrode layer 150 are provided.
- an adhesion layer for closely adhering the first electrode layer 140 and the uneven structure layer 131 of the light distribution layer 130 may be provided on the surface of the first electrode layer 140 on the light distribution layer 130 side.
- the adhesion layer is, for example, a translucent adhesive sheet or a resin material generally called a primer.
- the first electrode layer 140, the light distribution layer 130, and the second electrode layer 150 are disposed in this order along the thickness direction between the paired first substrate 110 and second substrate 120. It is a configuration.
- a plurality of particulate spacers may be dispersed in the plane, or a columnar structure may be formed.
- the optical film device 100 can be realized, for example, as a window with a light distribution function by being installed in the window 91 of the building 90.
- the optical film device 100 is used by being attached to a transparent substrate such as an existing window glass through an adhesive layer, for example.
- the optical film device 100 may be used as the window 91 itself of the building 90.
- the first substrate 110 is on the outdoor side
- the second substrate 120 is on the indoor side
- the first side surface 135 of the convex portion 133 shown in FIG. 8 is on the lower side (floor side).
- the second side surface 136 is arranged so as to face the upper side (ceiling side).
- the refractive index of the refractive index variable layer 132 of the light distribution layer 130 changes according to the voltage applied between the first electrode layer 140 and the second electrode layer 150.
- a difference in refractive index occurs at the interface between the concavo-convex structure layer 131 and the refractive index variable layer 132, and light is distributed using refraction and reflection (total reflection) of light by the interface. For example, at least a part of light incident obliquely downward is emitted obliquely upward by the convex portion 133.
- the optical film device 100 switches between a transparent state and a light distribution state.
- the light distribution direction (traveling direction) of light in the light distribution state changes according to the magnitude of the voltage applied between the first electrode layer 140 and the second electrode layer 150.
- the first substrate 110 and the second substrate 120 are base materials having translucency.
- a glass substrate or a resin substrate can be used as the first substrate 110 and the second substrate 120.
- Examples of the material for the glass substrate include soda glass, alkali-free glass, and high refractive index glass.
- Examples of the material for the resin substrate include resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic (PMMA), and epoxy.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PC polycarbonate
- PMMA acrylic
- the glass substrate has the advantages of high light transmittance and low moisture permeability. On the other hand, the resin substrate has an advantage of less scattering at the time of destruction.
- the first substrate 110 and the second substrate 120 may be made of the same material, or may be made of different materials. Moreover, the 1st board
- the second substrate 120 is a counter substrate facing the first substrate 110 and is disposed at a position facing the first substrate 110.
- the first substrate 110 and the second substrate 120 are arranged in parallel with a predetermined distance of, for example, 1 ⁇ m to 1000 ⁇ m.
- substrate 120 are adhere
- the planar view shape of the first substrate 110 and the second substrate 120 is, for example, a rectangular shape such as a square or a rectangle, but is not limited thereto, and may be a polygon other than a circle or a rectangle, Any shape can be employed.
- the light distribution layer 130 is disposed between the first electrode layer 140 and the second electrode layer 150.
- the light distribution layer 130 has a light-transmitting property and transmits incident light.
- the light distribution layer 130 distributes incident light. That is, when the light passes through the light distribution layer 130, the light distribution layer 130 changes the traveling direction of the light.
- the light distribution layer 130 includes an uneven structure layer 131 and a refractive index variable layer 132.
- light is reflected at the interface between the concavo-convex structure layer 131 and the refractive index variable layer 132, whereby the traveling direction of the light transmitted through the optical film device 100 with respect to the vertical direction is bent.
- the concavo-convex structure layer 131 is a finely shaped layer provided to make the surface (interface) of the refractive index variable layer 132 uneven. As shown in FIG. 8, the concavo-convex structure layer 131 has a plurality of convex portions 133 and a plurality of concave portions 134.
- the concavo-convex structure layer 131 is a concavo-convex structure formed by a plurality of convex portions 133 having a micro-order size. Between the plurality of convex portions 133 are a plurality of concave portions 134. That is, one concave portion 134 is between two adjacent convex portions 133. In the example illustrated in FIG. 8, an example in which the plurality of convex portions 133 are individually separated is illustrated, but the present invention is not limited thereto.
- the plurality of convex portions 133 may be individually connected at the base (on the first electrode layer 140 side).
- a layer (film) -shaped base portion serving as a base of the convex portion 133 may be provided between the plurality of convex portions 133 and the first electrode layer 140.
- the plurality of protrusions 133 are a plurality of protrusions arranged side by side in the z-axis direction parallel to the main surface of the first substrate 110 (the surface on which the first electrode layer 140 is provided). That is, in the optical film device 100, the z-axis direction is an arrangement direction of the plurality of convex portions 133.
- the plurality of convex portions 133 are long convex shapes extending in a direction orthogonal to the arrangement direction. Specifically, the plurality of convex portions 133 are formed in a stripe shape extending in the x-axis direction. Each of the plurality of convex portions 133 extends linearly along the x-axis direction. For example, each of the plurality of convex portions 133 is a triangular prism that is disposed sideways with respect to the first electrode layer 140.
- each of the plurality of convex portions 133 has a shape that tapers from the root to the tip.
- the cross-sectional shape of each of the plurality of convex portions 133 is a tapered shape that tapers along the direction from the first substrate 110 toward the second substrate 120.
- the cross-sectional shape in the yz section of the convex portion 133 is a triangle that tapers along the thickness direction of the optical film device 100, but is not limited thereto.
- the cross-sectional shape of the convex portion 133 may be a trapezoid, other polygons, or a polygon including a curve.
- the shapes of the plurality of convex portions 133 are the same as each other, but may be different.
- trapezoids or triangles include trapezoids or triangles with rounded vertices.
- the trapezoid or the triangle may have a case where each side is not completely straight, for example, slightly bent with a displacement of about several percent of the length of each side, or may include minute unevenness. included.
- each of the plurality of convex portions 133 has a first side surface 135 and a second side surface 136.
- the first side surface 135 and the second side surface 136 are surfaces that intersect the z-axis direction.
- Each of the first side surface 135 and the second side surface 136 is an inclined surface that is inclined at a predetermined inclination angle with respect to the y-axis direction.
- the distance between the first side surface 135 and the second side surface 136, that is, the width of the convex portion 133 gradually decreases from the first substrate 110 toward the second substrate 120.
- the first side surface 135 is, for example, a side surface facing the vertically lower side among the plurality of side surfaces constituting the convex portion 133 when the optical film device 100 is arranged so that the z-axis coincides with the vertical direction.
- the first side surface 135 is a refractive surface that refracts incident light.
- the second side surface 136 is a side surface facing the vertically upper side among the plurality of side surfaces constituting the convex portion 133.
- the second side surface 136 is a reflecting surface that reflects incident light.
- the reflection here is total reflection, and the second side surface 136 functions as a total reflection surface.
- the inclination angle of the first side surface 135 and the inclination angle of the second side surface 136 are, for example, in the range of 0 ° to 25 °.
- the two base angles of the trapezoid or the triangle, which is the cross-sectional shape of the convex portion 133 are 65 ° or more and 90 ° or less, respectively.
- at least one of the two base angles may be smaller than 65 °.
- the inclination angle of the first side surface 135 and the inclination angle of the second side surface 136 may be different from each other or may be equal.
- the width (length in the z-axis direction) of the plurality of convex portions 133 is, for example, 1 ⁇ m to 20 ⁇ m, and preferably 10 ⁇ m or less, but is not limited thereto. Further, the interval between two adjacent convex portions 133 is, for example, 0 ⁇ m to 100 ⁇ m, but is not limited thereto.
- the height of each of the plurality of convex portions 133 is, for example, 2 ⁇ m to 100 ⁇ m, but is not limited thereto.
- the plurality of protrusions 133 may include protrusions having at least one of height and width different from each other.
- the material of the concavo-convex structure layer 131 for example, a resin material having optical transparency such as an acrylic resin, an epoxy resin, or a silicone resin can be used.
- the uneven structure layer 131 is made of, for example, an ultraviolet curable resin material, and can be formed by molding or nanoimprinting.
- the concavo-convex structure layer 131 can form a concavo-convex structure with a trapezoidal cross section by mold pressing using an acrylic resin having a refractive index of 1.5 for green light.
- the plurality of convex portions 133 may extend while meandering along the x-axis direction.
- the plurality of convex portions 133 may be formed in a wavy stripe shape.
- the wavy line is, for example, a sine wave or a triangular wave, but is not limited thereto.
- the wavy line may be a wavy line in which a plurality of arcs or elliptical arcs are connected.
- the refractive index variable layer 132 is provided so as to fill a space between the plurality of convex portions 133 (that is, the concave portion 134). Specifically, the refractive index variable layer 132 is disposed so as to fill a gap formed between the first electrode layer 140 and the second electrode layer 150. As shown in FIG. 8, when the distal end portion of the convex portion 133 and the second electrode layer 150 are separated from each other, the refractive index variable layer 132 includes not only the concave portion 134 but also the distal end portion of the convex portion 133 and the second electrode layer 150. It arrange
- the refractive index of the variable refractive index layer 132 changes according to the voltage applied between the first electrode layer 140 and the second electrode layer 150.
- the refractive index variable layer 132 functions as a refractive index adjustment layer capable of adjusting the refractive index in the visible light band when a voltage is applied between the electrodes.
- a DC voltage is applied between the first electrode layer 140 and the second electrode layer 150 by a control device (not shown) or the like.
- the refractive index variable layer 132 includes an insulating liquid 137 and nanoparticles 138 included in the insulating liquid 137.
- the refractive index variable layer 132 is a nanoparticle dispersion layer in which countless nanoparticles 138 are dispersed in an insulating liquid 137.
- the insulating liquid 137 is a transparent liquid having insulating properties, and is a solvent serving as a dispersion medium in which the nanoparticles 138 are dispersed as a dispersoid.
- a material having a refractive index (solvent refractive index) of about 1.3 to about 1.6 can be used.
- an insulating liquid 137 having a refractive index of about 1.4 is used.
- the kinematic viscosity of the insulating liquid 137 is preferably about 100 mm 2 / s.
- the insulating liquid 137 has a low dielectric constant (for example, less than the dielectric constant of the uneven structure layer 131), non-flammability (for example, a high flash point having a flash point of 250 ° C. or higher), and low volatility. Also good.
- the insulating liquid 137 is a hydrocarbon such as an aliphatic hydrocarbon, naphtha, and other petroleum solvents, a low molecular weight halogen-containing polymer, or a mixture thereof.
- the insulating liquid 137 is a halogenated hydrocarbon such as a fluorinated hydrocarbon. Note that silicone oil or the like can be used as the insulating liquid 137.
- a plurality of nanoparticles 138 are dispersed in the insulating liquid 137.
- the nanoparticles 138 are fine particles having a particle size of nano-order size. Specifically, when the wavelength of incident light is ⁇ , the particle size of the nanoparticles 138 is preferably ⁇ / 4 or less. By setting the particle size of the nanoparticles 138 to ⁇ / 4 or less, light scattering by the nanoparticles 138 can be reduced, and an average refractive index of the nanoparticles 138 and the insulating liquid 137 can be obtained.
- the particle size of the nanoparticles 138 is preferably as small as possible, preferably 100 nm or less, more preferably several nm to several tens nm.
- the nanoparticles 138 are made of, for example, a high refractive index material. Specifically, the refractive index of the nanoparticles 138 is higher than the refractive index of the insulating liquid 137. In the optical film device 100, the refractive index of the nanoparticles 138 is higher than the refractive index of the concavo-convex structure layer 131.
- the nanoparticles 138 for example, metal oxide fine particles can be used.
- the nanoparticles 138 may be made of a material with high transmittance.
- transparent zirconia particles having a refractive index of 2.1 composed of zirconium oxide (ZrO 2 ) are used as the nanoparticles 138.
- the nanoparticles 138 are not limited to zirconium oxide, and may be composed of titanium oxide (TiO 2 : refractive index 2.5) or the like.
- the nanoparticles 138 are charged particles that are charged.
- the nanoparticle 138 can be charged positively (plus) or negatively (minus).
- the nanoparticles 138 are positively (plus) charged.
- the refractive index variable layer 132 configured in this manner, charged nanoparticles 138 are dispersed throughout the insulating liquid 137.
- zirconia particles having a refractive index of 2.1 as nanoparticles 138 and dispersed in an insulating liquid 137 having a solvent refractive index of about 1.4 are dispersed in the refractive index variable layer 132. It is said.
- the overall refractive index (average refractive index) of the refractive index variable layer 132 is set to be approximately the same as the refractive index of the uneven structure layer 131 in a state where the nanoparticles 138 are uniformly dispersed in the insulating liquid 137. In this embodiment, it is about 1.5.
- the overall refractive index of the refractive index variable layer 132 can be changed by adjusting the concentration (amount) of the nanoparticles 138 dispersed in the insulating liquid 137.
- the amount of the nanoparticles 138 is, for example, such that it is buried in the recesses 134 of the uneven structure layer 131. In this case, the concentration of the nanoparticles 138 with respect to the insulating liquid 137 is about 10% to about 30%.
- the nanoparticles 138 dispersed in the insulating liquid 137 are charged, when a voltage is applied between the first electrode layer 140 and the second electrode layer 150, the nanoparticles 138 have a polarity with which the nanoparticles 138 are charged. It migrates in the insulating liquid 137 so as to be attracted to the electrode layer having a polarity different from that of the electrode layer, and is unevenly distributed in the insulating liquid 137. In the present embodiment, since the nanoparticles 138 are positively charged, they are attracted to the electrode layer on the negative electrode side of the first electrode layer 140 and the second electrode layer 150.
- the particle distribution of the nanoparticles 138 in the refractive index variable layer 132 is changed, and the concentration distribution of the nanoparticles 138 can be provided in the refractive index variable layer 132, so that the refractive index in the refractive index variable layer 132 is increased. Distribution changes. That is, the refractive index of the refractive index variable layer 132 changes partially.
- the refractive index variable layer 132 mainly functions as a refractive index adjustment layer that can adjust the refractive index for light in the visible light band.
- the refractive index variable layer 132 includes, for example, outer peripheries of the first substrate 110 on which the first electrode layer 140 and the uneven structure layer 131 are formed and the second substrate 120 on which the second electrode layer 150 is formed. It is formed by injecting a refractive index variable material by a vacuum injection method while being sealed with a seal resin. Alternatively, the refractive index variable layer 132 is formed by dropping the refractive index variable material onto the first electrode layer 140 and the concavo-convex structure layer 131 of the first substrate 110 and then attaching the second substrate 120 on which the second electrode layer 150 is formed. You may form by combining.
- the refractive index variable material is an insulating liquid 137 in which nanoparticles 138 are dispersed.
- An insulating liquid 137 in which nanoparticles 138 are dispersed is sealed between the first substrate 110 and the second substrate 120.
- the thickness of the refractive index variable layer 132 is, for example, 1 ⁇ m to 1000 ⁇ m, but is not limited thereto.
- first electrode layer 140 and the second electrode layer 150 are electrically paired.
- the first electrode layer 140 and the second electrode layer 150 are paired not only electrically but also in arrangement, and are arranged between the first substrate 110 and the second substrate 120 so as to face each other. ing.
- the first electrode layer 140 and the second electrode layer 150 are arranged so as to sandwich the light distribution layer 130.
- the first electrode layer 140 and the second electrode layer 150 are translucent and transmit incident light.
- the first electrode layer 140 and the second electrode layer 150 are, for example, transparent conductive layers.
- a conductor-containing resin made of a resin containing a conductor such as a transparent metal oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), silver nanowires or conductive particles, or A metal thin film such as a silver thin film can be used.
- the 1st electrode layer 140 and the 2nd electrode layer 150 may be these single layer structures, and these laminated structures (for example, laminated structure of a transparent metal oxide and a metal thin film) may be sufficient as them.
- each of the first electrode layer 140 and the second electrode layer 150 is ITO having a thickness of 100 nm.
- the first electrode layer 140 is disposed between the first substrate 110 and the uneven structure layer 131. Specifically, the first electrode layer 140 is formed on the surface of the first substrate 110 on the light distribution layer 130 side.
- the second electrode layer 150 is disposed between the refractive index variable layer 132 and the second substrate 120. Specifically, the second electrode layer 150 is formed on the surface of the second substrate 120 on the light distribution layer 130 side.
- first electrode layer 140 and the second electrode layer 150 are configured to be electrically connected to an external power source, for example.
- electrode pads or the like for connecting to an external power source may be formed on the first substrate 110 and the second substrate 120 by being drawn from each of the first electrode layer 140 and the second electrode layer 150.
- the first electrode layer 140 and the second electrode layer 150 are each formed by forming a conductive film such as ITO by vapor deposition, sputtering, or the like, for example.
- FIG. 9 is an enlarged cross-sectional view for explaining the transparent mode (no voltage applied state) of the optical film device 100.
- the path of the light L incident obliquely on the optical film device 100 is indicated by an arrow.
- no voltage is applied between the first electrode layer 140 and the second electrode layer 150.
- the first electrode layer 140 and the second electrode layer 150 are equipotential to each other.
- the nanoparticles 138 are dispersed throughout the insulating liquid 137.
- the refractive index of the refractive index variable layer 132 in a state where the nanoparticles 138 are dispersed throughout the insulating liquid 137 is about 1.5.
- the refractive index of the convex part 133 of the concavo-convex structure layer 131 is about 1.5. That is, the plurality of convex portions 133 and the refractive index variable layer 132 have the same refractive index. Therefore, the refractive index is uniform throughout the light distribution layer 130.
- the optical film device 100 is in a transparent state that allows the incident light to pass through substantially as it is (without changing the traveling direction).
- the light L is actually incident on the first substrate 110, emitted from the second substrate 120, passed through the interface between the first substrate 110 and the first electrode layer 140, and the second Although it is refracted when the passing medium changes, such as when passing through the interface between the electrode layer 150 and the second substrate 120, it is not shown in FIG. The same applies to FIG. 10 described later.
- FIG. 10 is an enlarged cross-sectional view for explaining the light distribution mode (voltage application state) of the optical film device 100.
- the path of the light L incident on the optical film device 100 obliquely is indicated by a thick arrow.
- a predetermined voltage is applied between the first electrode layer 140 and the second electrode layer 150.
- a voltage having a potential difference of about several tens of volts is applied to the first electrode layer 140 and the second electrode layer 150.
- the charged nanoparticles 138 migrate in the insulating liquid 137 so as to be attracted to the electrode layer having a polarity different from the polarity of the nanoparticles 138. That is, the nanoparticles 138 perform electrophoresis in the insulating liquid 137.
- the second electrode layer 150 is at a higher potential than the first electrode layer 140. For this reason, the positively charged nanoparticles 138 migrate toward the first electrode layer 140 and enter the concave portion 134 of the concave-convex structure layer 131 and accumulate.
- the nanoparticles 138 are unevenly distributed on the uneven structure layer 131 side in the refractive index variable layer 132, whereby the particle distribution of the nanoparticles 138 is changed, and the refractive index distribution in the refractive index variable layer 132 is not uniform. Disappear. Specifically, as shown in FIG. 10, a concentration distribution of nanoparticles 138 is formed in the refractive index variable layer 132.
- the concentration of the nanoparticles 138 is high, and in the second region 132b on the second electrode layer 150 side, the concentration of the nanoparticles 138 is low. Accordingly, a difference in refractive index occurs between the first region 132a and the second region 132b.
- the refractive index of the nanoparticles 138 is higher than the refractive index of the insulating liquid 137.
- the refractive index of the first region 132a having a high concentration of the nanoparticles 138 is higher than the refractive index of the second region 132b having a low concentration of the nanoparticles 138, that is, a high proportion of the insulating liquid 137.
- the refractive index of the first region 132a is greater than about 1.5 to about 1.8 depending on the concentration of the nanoparticles 138.
- the refractive index of the second region 132b is a value less than about 1.4 to less than about 1.5 depending on the concentration of the nanoparticles 138.
- the refractive index of the plurality of convex portions 133 is about 1.5, when a voltage is applied between the first electrode layer 140 and the second electrode layer 150, the convex portion 133 and the first region 132a There is a difference in refractive index between them. For this reason, as shown in FIG. 10, when the light L is incident from an oblique direction, the incident light L is refracted by the first side surface 135 of the convex portion 133 and then totally reflected by the second side surface 136.
- the incident angle and the emission angle of the light L are different in the vertical section.
- the light L incident from obliquely upward to obliquely downward is emitted from the optical film device 100 obliquely upward.
- the optical film device 100 is in a light distribution state in which incident light is transmitted with its traveling direction being bent.
- the degree of aggregation of the nanoparticles 138 can be changed according to the magnitude of the applied voltage.
- the refractive index of the refractive index variable layer 132 changes depending on the degree of aggregation of the nanoparticles 138. For this reason, it is also possible to change the light distribution direction by changing the difference in refractive index between the first side surface 135 and the second side surface 136 (interface) of the convex portion 133.
- the plurality of convex portions 133 may be divided into a plurality of portions in the x-axis direction.
- the plurality of convex portions 133 may be arranged so as to be scattered in a matrix or the like. That is, you may arrange
- the refractive index of the nanoparticles 138 may be lower than the refractive index of the insulating liquid 137.
- a transparent state and a light distribution state can be realized by appropriately adjusting the voltage to be applied according to the refractive index of the nanoparticles 138 and the like.
- the nanoparticles 138 are positively charged, but the present invention is not limited to this. That is, the nanoparticles 138 may be negatively charged.
- a direct voltage is applied between the first electrode layer 140 and the second electrode layer 150 by applying a positive potential to the first electrode layer 140 and applying a negative potential to the second electrode layer 150. Good.
- the plurality of nanoparticles 138 may include a plurality of types of nanoparticles having different optical characteristics.
- a transparent first nanoparticle charged positively and an opaque (black or the like) second nanoparticle charged negatively may be included.
- the optical film device 100 may have a light blocking function by aggregating and unevenly distributing the second nanoparticles.
- an electrophoretic material is used as the refractive index variable material, but the present invention is not limited to this.
- a liquid crystal material may be used as the refractive index variable material.
- the refractive index of the refractive index variable layer changes using the birefringence of the liquid crystal molecules contained in the liquid crystal material.
- the refractive index of the refractive index variable layer changes. Thereby, the transparent state, the light distribution state, and the light distribution direction in the light distribution state can be controlled.
- the light incident on the optical film device is natural light (in other words, sunlight), but the light incident on the optical film device is artificial light emitted by a light emitting device such as a lighting device. There may be.
- the optical film device is not limited to being installed in a building window, and may be installed in a car window, for example.
- the communication method between apparatuses described in the above embodiment is not particularly limited.
- the wireless communication method is, for example, short-range wireless communication such as ZigBee (registered trademark), Bluetooth (registered trademark), or wireless LAN (Local Area Network).
- the wireless communication method may be communication via a wide area communication network such as the Internet.
- wired communication may be performed between devices instead of wireless communication.
- the wired communication is a communication using a power line communication (PLC) or a wired LAN.
- another processing unit may execute a process executed by a specific processing unit. Further, the order of a plurality of processes may be changed, or a plurality of processes may be executed in parallel. Moreover, the distribution of the components included in the daylighting control system to a plurality of devices is an example. For example, another device may include a component included in one device. The daylighting control system may be realized as a single device.
- the processing described in the above embodiments may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good.
- the number of processors that execute the program may be one or more. That is, centralized processing may be performed, or distributed processing may be performed.
- all or a part of the components such as the control unit may be configured by dedicated hardware, or realized by executing a software program suitable for each component. Also good.
- Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
- a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
- the components such as the control unit may be configured by one or a plurality of electronic circuits.
- Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
- the one or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), or the like.
- the IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and may be called system LSI, VLSI (Very Large Scale) Integration), or ULSI (Ultra Large Scale Integration).
- An FPGA Field Programmable Gate Array programmed after manufacturing the LSI can be used for the same purpose.
- the general or specific aspect of the present invention may be realized by a system, apparatus, method, integrated circuit, or computer program. Alternatively, it may be realized by a computer-readable non-transitory recording medium such as an optical disk, HDD, or semiconductor memory in which the computer program is stored. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium. For example, the present invention may be realized as the drive device according to the above embodiment. The present invention may also be realized as a method for driving an optical film device and an illumination system, which is executed by a computer.
- the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Nonlinear Science (AREA)
- Architecture (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
採光制御システム(10)は、電気的に光の屈折率の調整が可能な屈折率可変層を含み、対象領域(80)への採光制御に用いられる光学フィルムデバイス(100)と、対象領域(80)を照らす照明システム(300)と、所定期間の後半における対象領域(80)のメラノピック照度の第一積算値が所定期間の前半における対象領域(80)のメラノピック照度の第二積算値Aよりも小さくなるように光学フィルムデバイス(100)及び照明システム(300)を駆動する駆動装置(30)とを備える。
Description
本発明は、光学フィルムデバイスに入射する光の配光を制御することができる採光制御システム、駆動装置、及び、駆動方法に関する。
部屋の窓から室内に入射する光の配光を制御することができる装置が知られている。このような装置として、例えば、特許文献1には、配光を行うことが可能な光学デバイスが開示されている。
ところで、ヒューマンセントリックな照明空間においては、窓の向き、家具のレイアウト、天候の変動、及び、照明空間に設置された人工光源の明るさなどに起因して、ユーザのサーカディアンリズムが崩れてしまう場合がある。
本発明は、ユーザのサーカディアンリズムを整えることができる採光制御システム、駆動装置、及び、駆動方法を提供する。
本発明の一態様に係る採光制御システムは、電気的に光の屈折率の調整が可能な屈折率可変層を含み、対象領域への採光に用いられる光学フィルムデバイスと、前記対象領域を照らす照明システムと、所定期間の後半における前記対象領域のメラノピック照度の第一積算値が前記所定期間の前半における前記対象領域のメラノピック照度の第二積算値よりも小さくなるように前記光学フィルムデバイス及び照明システムを駆動する駆動装置とを備え、前記照明システムは、第一光源部、及び、第二光源部を含み、前記第一光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比は、前記第二光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比よりも小さい。
本発明の一態様に係る駆動装置は、光学フィルムデバイス及び照明システムを駆動する駆動装置であって、前記光学フィルムデバイスは、電気的に光の屈折率の調整が可能な屈折率可変層を含み、対象領域への採光に用いられ、前記照明システムは、前記対象領域を照らし、所定期間の後半における前記対象領域のメラノピック照度の第一積算値が前記所定期間の前半における前記対象領域のメラノピック照度の第二積算値よりも小さくなるように前記光学フィルムデバイス及び前記照明システムを駆動する制御部を備え、前記照明システムは、第一光源部、及び、第二光源部を含み、前記第一光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比は、前記第二光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比よりも小さい。
本発明の一態様に係る駆動方法は、コンピュータによって実行される、光学フィルムデバイス及び照明システムの駆動方法であって、前記光学フィルムデバイスは、電気的に光の屈折率の調整が可能な屈折率可変層を含み、対象領域への採光に用いられ、前記照明システムは、前記対象領域を照らし、前記駆動方法は、所定期間の後半における前記対象領域のメラノピック照度の第一積算値が前記所定期間の前半における前記対象領域のメラノピック照度の第二積算値よりも小さくなるように前記光学フィルムデバイス及び前記照明システムを駆動し、前記照明システムは、第一光源部、及び、第二光源部を含み、前記第一光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比は、前記第二光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比よりも小さい。
本発明によれば、ユーザのサーカディアンリズムを整えることができる採光制御システム、駆動装置、及び、駆動方法が実現される。
以下、実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
また、本明細書及び図面において、x軸、y軸及びz軸は、三次元直交座標系の三軸を表しており、実施の形態では、z軸方向を鉛直方向とし、z軸に垂直な方向(xy平面に平行な方向)を水平方向としている。x軸及びy軸は、互いに直交し、かつ、いずれもz軸に直交する軸である。なお、z軸方向のプラス方向を鉛直上方としている。また、本明細書において、「平面視」とは、第一基板または第二基板の主面に対して垂直な方向から見たときのことをいう。
(実施の形態)
[全体構成]
まず、実施の形態に係る採光制御システムの構成について、図1及び図2を用いて説明する。図1は、実施の形態に係る採光制御システムの概要を示す図である。図2は、実施の形態に係る採光制御システムの機能構成を示すブロック図である。図1において、光学フィルムデバイス100は、断面が図示されている。
[全体構成]
まず、実施の形態に係る採光制御システムの構成について、図1及び図2を用いて説明する。図1は、実施の形態に係る採光制御システムの概要を示す図である。図2は、実施の形態に係る採光制御システムの機能構成を示すブロック図である。図1において、光学フィルムデバイス100は、断面が図示されている。
採光制御システム10は、光学フィルムデバイス100に入射する光、及び、照明システム300を制御することにより、対象領域80に存在するユーザのサーカディアンリズムを整えることができるシステムである。
光学フィルムデバイス100は、光学フィルムデバイス100に入射する光の進行方向を変更して(つまり配光して)出射させることができる配光制御素子である。光学フィルムデバイス100は、Z-X平面に平行な主面を有するシート状であり、窓91などに取り付けられて使用される。
照明システム300は、互いに発光特性(例えば、発光スペクトル)が異なる第一光源部301及び第二光源部302を含み、対象領域80を照らす。
採光制御システム10は、より具体的には、センサ20と、駆動装置30と、光学フィルムデバイス100と、照明システム300とを備える。
まず、センサ20について説明する。センサ20は、建物90内の対象領域80、または、対象領域80の近傍に配置され、対象領域80のメラノピック照度を推定または検知する。メラノピック照度は、より正確には、メラノピック等価照度と呼ばれ、人間のサーカディアンリズムに影響する光の指標として用いられる。メラノピック照度は、計測対象の光に、図3の実線に示されるような視感度を乗算することで求められる。図3は、メラノピック照度を求めるための視感度を示す図である。なお、メラノピック照度に対して、本明細書中ではフォトピック照度の用語が使用される。フォトピック照度は、一般には、単に、「照度」と呼ばれている。図3では、フォトピック照度を求めるための視感度も破線で図示されている。
センサ20は、具体的には、バンドパスフィルタ21と、シリコンフォトダイオード22と、検知回路23とを備える。
バンドパスフィルタ21は、バンドパスフィルタ21に入射する光に図3に示されるような視感度と実質的に同一の特性を与える光学フィルタである。バンドパスフィルタ21の中心波長は、例えば、485nm以上495nm以下である。
シリコンフォトダイオード22は、バンドパスフィルタ21を透過した光を、当該光の量に応じた電流に変換する光電変換素子である。
検知回路23は、シリコンフォトダイオード22から出力される電流を電圧に変換する回路などによって構成される。検知回路23は、シリコンフォトダイオード22から出力される電流に応じた検知信号を出力する。検知信号は、メラノピック照度を示す信号となる。
なお、以上のようなセンサ20の構成は一例である。センサ20は、メラノピック照度を推定または検知できればよい。センサ20は、例えば、フォトピック照度を検知し、フォトピック照度をメラノピック照度に換算する構成であってもよい。
次に、駆動装置30について説明する。駆動装置30は、光学フィルムデバイス100及び照明システム300を駆動する装置である。駆動装置30は、具体的には、所定期間の後半における対象領域80のメラノピック照度の第一積算値が所定期間の前半における対象領域80のメラノピック照度の第二積算値よりも小さくなるように光学フィルムデバイス100及び照明システム300を駆動する。メラノピック照度の積算値は、言い換えれば、メラノピック照度の時間積分値である。駆動装置30は、制御部31と、記憶部32と、計時部33と、通信部34と、電圧印加回路35とを備える。なお、図示されないが、駆動装置30は、ユーザの操作を受け付ける操作受付部(ユーザインターフェース装置)を備えてもよい。
制御部31は、センサ20(より具体的には、検知回路23)から出力される検知信号、計時部33から出力される時刻情報、及び、通信部34を介して得られる外部情報の少なくとも1つに基づいて、電圧印加回路35及び照明システム300のそれぞれへ制御信号を出力する。制御部31は、マイクロコンピュータまたはプロセッサによって実現される。
記憶部32は、制御部31によって実行される、光学フィルムデバイス100及び照明システム300を駆動するためのプログラムが記憶される記憶装置である。記憶部32は、例えば、半導体メモリによって実現される。
計時部33は、現在時刻を計測し、現在時刻を示す時刻情報を制御部31に出力する。計時部33は、例えば、リアルタイムクロックなどによって実現される。
通信部34は、駆動装置30が他の装置と通信を行うための通信インターフェースである。通信部34は、例えば、無線通信回路であり、無線通信によって他の装置から情報を取得する。通信部34は、有線通信回路であり、有線通信によって他の装置から情報を取得してもよい。
電圧印加回路35は、制御部31によって出力される制御信号に基づいて、光学フィルムデバイス100が備える一対の電極層の間に電圧を印加する。光学フィルムデバイス100の駆動モードには、透明モード、及び、配光モードが含まれる。図4は、透明モードにおける光の進行方向を模式的に示す図である。図4に示されるように、透明モードにおいて、光学フィルムデバイス100は、光学フィルムデバイス100に入射する光(例えば、外光)を直進させる。この結果、外光によって建物90の床面が照らされる。このとき、光学フィルムデバイス100は、例えば、電圧無印加状態となる。
一方、図5は、配光モードにおける光の進行方向を模式的に示す図である。図5に示されるように、配光モードにおいて、光学フィルムデバイス100は、光学フィルムデバイス100に入射する光を屈折させる。この結果、外光によって建物90の天井が照らされ、対象領域80は明るくなる。配光モードにおいて、光学フィルムデバイス100は、例えば、電圧印加状態となる。
なお、光学フィルムデバイス100の構成によっては、配光モードにおいて光学フィルムデバイス100が電圧無印加状態となり、透明モードにおいて光学フィルムデバイス100が電圧印加状態となる場合もある。
電圧印加状態においては、電圧印加回路35は、例えば、光学フィルムデバイス100が備える一対の電極層の間に矩形の波形を有する交流電圧であって周波数が100Hz程度の交流電圧を印加する。電圧印加回路35は、例えば、電力系統から供給される交流電圧を上記矩形の交流電圧に変換して出力する絶縁型の電力変換回路によって実現される。電力変換回路には、可変電圧源及び低周波インバータ回路などが含まれる。
なお、電圧印加状態においては、電圧印加回路35は、一対の電極層の間に正弦波状の波形を有する交流電圧を印加してもよいし、直流電圧を印加してもよい。また、電圧印加回路35は、電圧無印加状態においても微小な交流電圧を印加してもよい。
光学フィルムデバイス100は、電気的に光の屈折率の調整が可能な屈折率可変層を含み、対象領域80への採光に用いられる光学デバイスである。光学フィルムデバイス100は、言い換えれば、配光フィルムデバイスである。光学フィルムデバイス100は、例えば、窓91の室内側に粘着層を介して貼り付けられる。これにより、窓91に配光機能が付与される。
上述のように、光学フィルムデバイス100は、配光モード(言い換えれば、電圧印加状態)及び透明モード(言い換えれば、電圧無印加状態)になりうる。また、光学フィルムデバイス100は、配光モードと透明モードとの中間のモードにもなることができる。光学フィルムデバイス100の具体的な構成については、後で説明する。
照明システム300は、制御部31から出力される制御信号に基づいて、対象領域80を照らす照明システムである。照明システム300は、複数の第一光源部301と、複数の第二光源部302とを含む。照明システム300は、少なくとも1つの第一光源部301及び少なくとも1つの第二光源部302が含まれればよい。
第一光源部301は、LED等の発光素子が用いられた白色光源を有し、白色光を発する。第二光源部302は、LED等の発光素子が用いられた白色光源を有し、第一光源部301が発する白色とは色味(例えば、色温度)が異なる白色光を発する。
ここで、第一光源部301によって対象領域80が照らされているときの対象領域80のフォトピック照度に対するメラノピック照度の比(以下、第一比例値とも記載される)は、第二光源部302によって対象領域80が照らされているときの対象領域80のフォトピック照度に対するメラノピック照度の比(以下、第二比例値とも記載される)よりも小さい。つまり、第一光源部301は、メラノピック照度及びフォトピック照度のうちフォトピック照度を高めたい場合に用いられ、第二光源部302は、メラノピック照度及びフォトピック照度のうちメラノピック照度を高めたい場合に用いられる。第一比例値が第二比例値よりも小さい場合、第一光源部301が発する白色光の色温度は、第二光源部302が発する白色光の色温度よりも低くなることが多いが、そうでない場合もある。色温度が異なることと、比例値が異なることとは、共通する部分もあるが、異なる概念である。
なお、採光制御システム10では、第一光源部301、及び、第二光源部302のそれぞれが単体の照明装置(具体的には、シーリングライトまたはスポットライトなど)として実現されるが、照明システム300が単体の照明装置として実現され、第一光源部301及び第二光源部302のそれぞれは、照明装置が有する光源として実現されてもよい。例えば、照明システム300は、第一光源部301及び第二光源部302の明るさの比を変更することで発光スペクトルの調整(言い換えれば、調色)が可能な照明装置として実現されてもよい。
[動作例]
次に、採光制御システム10の動作例について説明する。図6は、採光制御システム10の動作例のフローチャートである。
次に、採光制御システム10の動作例について説明する。図6は、採光制御システム10の動作例のフローチャートである。
上述のように、採光制御システム10は、対象領域80に存在するユーザのサーカディアンリズムを整えるための採光制御を行う。まず、駆動装置30の制御部31は、採光制御の対象となる所定期間を決定する(S11)。本動作例では、制御部31は、日の出の時刻から日の入の時刻までの期間を所定期間として決定する。
例えば、駆動装置30の通信部34は、日の出の時刻及び日の入の時刻を示す情報を管理するサーバ装置から取得する。取得された情報は、記憶部32に記憶される。これにより、制御部31は、記憶部32を参照することで日の出の時刻から日の入の時刻までの期間を所定期間として決定することができる。日の出の時刻が5時であり、日の入りの時刻が18時である場合、所定期間は5時~18時までの13時間の長さの期間である。この場合、所定期間の前半は、5時~11時30分まで、所定期間の後半は、11時30分~18時までとなる。
なお、所定期間は、日の出の時刻から日の入の時刻までの期間に限定されない。例えば、建物90が企業によって使用される建物であり、対象領域80が上記企業の従業員が使用する領域(例えば、座席エリア)であるような場合、所定期間は、始業時間から終業時間までの期間であってもよい。この場合、始業時間、及び、終業時間があらかじめ記憶部32に記憶される。
また、所定期間は、従業員の半数以上が出社した時刻から従業員の半数以上が退社した時刻までの期間であってもよい。この場合、例えば、過去の出勤及び退勤の履歴情報に基づいて定められる、従業員の半数以上が出社した時刻、及び、従業員の半数以上が退社した時刻があらかじめ記憶部32に記憶される。
駆動装置30は、所定期間の開始時刻になると採光制御を開始する。駆動装置30は、所定期間の前半において、配光モードで光学フィルムデバイス100を駆動し、かつ、第一光源部301、及び、第二光源部302のうち第二光源部302のみを選択的に発光させる(S12)。具体的には、駆動装置30の制御部31は、光学フィルムデバイス100を配光モードで駆動するための制御信号を電圧印加回路35に出力し、電圧印加回路35は、出力された制御信号に基づいて光学フィルムデバイス100の一対の電極層に電圧を印加する。また、制御部31は、第二光源部302を選択的に発光させるための制御信号を照明システム300に出力する。このように、駆動装置30は、所定期間の前半において対象領域80のメラノピック照度の向上を図る。
制御部31は、所定期間中は、センサ20から出力される検知信号に基づいてメラノピック照度の積算を行う。所定期間の前半が終了すると、所定期間の前半におけるメラノピック照度の第二積算値Aが記憶部32に記憶される(S13)。
所定期間の後半の途中時点において、制御部31は、後半の開始時点から現時点(つまり、上記途中時点)までの対象領域のメラノピック照度の積算値Bを算出する(S14)。また、制御部31は、計時部33から出力される時刻情報に基づいて、現時点から所定期間の終了時点までの期間の長さTを特定する(S15)。
そして、制御部31は、現在のメラノピック照度が(A-B)/Tによって定められる照度よりも大きいか否かを判定する(S16)。現在のメラノピック照度が(A-B)/Tによって定められる照度よりも大きいと判定される場合(S16でYes)、現在のメラノピック照度が所定期間の終了時点まで継続すると仮定すると、所定期間の後半における対象領域80のメラノピック照度の第一積算値を第二積算値Aよりも小さくすることが難しいと考えられる。
そこで、駆動装置30は、透明モードで光学フィルムデバイス100を駆動し、かつ、第一光源部301、及び、第二光源部302のうち第一光源部301のみを選択的に発光させる(S17)。具体的には、制御部31は、光学フィルムデバイス100を透明モードで駆動するための制御信号を電圧印加回路35に出力し、電圧印加回路35は、出力された制御信号に基づいて光学フィルムデバイス100の一対の電極層への電圧の印加を停止する。また、制御部31は、第一光源部301を選択的に発光させるための制御信号を照明システム300に出力する。このように、駆動装置30は、所定期間の後半において対象領域80のメラノピック照度の低減を図る。
一方、現在のメラノピック照度が(A-B)/Tによって定められる照度以下であると判定される場合(S16でNo)、現在のメラノピック照度が所定期間の終了時点まで継続すると仮定すると、所定期間の後半における対象領域80のメラノピック照度の第一積算値は第二積算値Aよりも小さくなると考えられる。したがって、駆動装置30は、光学フィルムデバイス100を引き続き配光モードで駆動し、第二光源部302を選択的に発光させる。
ステップS17の後、制御部31は、対象領域80のメラノピック照度をさらに下げる必要があるか否かを判定する(S18)。制御部31は、具体的には、ステップS15~ステップS17の処理をもう一度行い、現在のメラノピック照度が(A-B)/Tによって定められる照度よりも大きいか否かを判定する。
制御部31は、対象領域80のメラノピック照度をさらに下げる必要があると判定されると(S18でYes)、第一光源部301の調光率(言い換えれば、明るさ)を低下させ、場合によっては消灯する(S19)。制御部31は、具体的には、調光率を下げるための制御信号を照明システム300に出力する。一方、制御部31は、対象領域80のメラノピック照度をさらに下げる必要がないと判定されると(S18でNo)、第一光源部301の調光率を変更せずに維持する。
以上説明した動作例において、駆動装置30は、所定期間の後半における対象領域80のメラノピック照度の第一積算値が所定期間の前半における対象領域80のメラノピック照度の第二積算値Aよりも小さくなるように光学フィルムデバイス100及び照明システム300を駆動する。
一般に、サーカディアンリズムを整えるためには、午前中に対象領域80のメラノピック照度を高め、かつ、午後における対象領域80のメラノピック照度を午前中よりも減らすことが効果的である。上記動作例では、所定期間の前半にメラノピック照度の向上が図られ、かつ、所定期間の後半にメラノピック照度の低減が図られるため、対象領域80に存在するユーザのサーカディアンリズムを整える効果が得られる。
[変形例]
上記動作例は一例であり、採光制御システム10は、第一積算値が第二積算値Aよりも小さくなるのであれば、どのように光学フィルムデバイス100及び照明システム300を駆動してもよい。
上記動作例は一例であり、採光制御システム10は、第一積算値が第二積算値Aよりも小さくなるのであれば、どのように光学フィルムデバイス100及び照明システム300を駆動してもよい。
例えば、上記動作例では、駆動装置30は、光学フィルムデバイス100の駆動モードを配光モード及び透明モードのいずれかに選択的に切り替えた。しかしながら、駆動装置30は、光学フィルムデバイス100に印加される電圧を変更することにより、3段階以上の駆動モードを選択的に実行することも可能である。
この場合、所定期間の後半においては、3段階以上の駆動モードの切り替え、及び、第二光源部302の調光が適宜組み合わせられることによって、第一積算値が第二積算値Aよりも小さくされればよい。例えば、所定期間の後半において、ステップS16の判定が複数回行われ、3段階以上の駆動モードの切り替え、及び、第二光源部302の調光の組み合わせに基づくメラノピック照度の低減を図る制御が段階的に行われてもよい。
また、配光モードが透明モードに変更された後に、透明モードを配光モードに戻せるか否かの判定が行われてもよい。つまり、透明モードを配光モードに戻しても第一積算値を第二積算値Aよりも小さくできるかどうかの判定が行われてもよい。
また、上記ステップS16では、現在のメラノピック照度が(A-B)/Tよりも所定値(>0)以上大きいか否かの判定が行われてもよい。これにより、所定期間の前半及び所定期間の後半の間のメラノピック照度の積算値の差が広げられるため、サーカディアンリズムを整える効果を高めることができる。
また、上記動作例では、式(A-B)/Tが用いられたが、式(A-B)/Tが用いられることは必須ではない。駆動装置30は、例えば、式(A-B)/Tを使用せずに、所定期間の前半に配光モードで光学フィルムデバイス100を駆動して第二光源部302を発光させ、所定期間の後半に透明モードで光学フィルムデバイス100を駆動して第一光源部301を発光させることにより第一積算値を第二積算値Aよりも小さくしてもよい。言い換えれば、駆動装置30は、センサ20を用いずに(センサ20の出力に依存せずに)光学フィルムデバイス100及び照明システム200を駆動してもよい。
また、駆動装置30は、光学フィルムデバイス100に印加される電圧を変更することにより、光学フィルムデバイス100に入射する光の屈折角をアナログ的に制御することもできる。駆動装置30は、第一積算値が第二積算値Aよりも小さくなるように光学フィルムデバイス100に入射する光の屈折角をアナログ的に制御してもよい。
また、第一光源部301及び第二光源部302が選択的に発光することは必須ではない。例えば、所定期間の前半においては、第一光源部301及び第二光源部302の両方が発光しつつ、第二光源部302の調光率が第一光源部301の調光率よりも高くてもよい。同様に、所定期間の後半においては、第一光源部301及び第二光源部302の両方が発光しつつ、第一光源部301の調光率が第二光源部302の調光率よりも高くてもよい。
[効果など]
以上説明したように、採光制御システム10は、電気的に光の屈折率の調整が可能な屈折率可変層132を含み、対象領域80への採光制御に用いられる光学フィルムデバイス100と、対象領域80を照らす照明システム300と、所定期間の後半における対象領域80のメラノピック照度の第一積算値が所定期間の前半における対象領域のメラノピック照度の第二積算値Aよりも小さくなるように光学フィルムデバイス100及び照明システム300を駆動する駆動装置30とを備える。照明システム300は、第一光源部301、及び、第二光源部302を含む。第一光源部301によって対象領域80が照らされているときの対象領域80のフォトピック照度に対するメラノピック照度の比は、第二光源部302によって対象領域80が照らされているときの対象領域80のフォトピック照度に対するメラノピック照度の比よりも大きい。
以上説明したように、採光制御システム10は、電気的に光の屈折率の調整が可能な屈折率可変層132を含み、対象領域80への採光制御に用いられる光学フィルムデバイス100と、対象領域80を照らす照明システム300と、所定期間の後半における対象領域80のメラノピック照度の第一積算値が所定期間の前半における対象領域のメラノピック照度の第二積算値Aよりも小さくなるように光学フィルムデバイス100及び照明システム300を駆動する駆動装置30とを備える。照明システム300は、第一光源部301、及び、第二光源部302を含む。第一光源部301によって対象領域80が照らされているときの対象領域80のフォトピック照度に対するメラノピック照度の比は、第二光源部302によって対象領域80が照らされているときの対象領域80のフォトピック照度に対するメラノピック照度の比よりも大きい。
このような採光制御システム10は、前半が主として午前であり後半が主として午後であるように所定期間が定められることで、対象領域80に存在するユーザのサーカディアンリズムを整えることができる。また、採光制御システム10は、所定期間の前半に光学フィルムデバイス100だけで対象領域80の照度を確保することが難しい場合に、照明システム300を用いて対象領域80の照度を確保することができる。
また、採光制御システム10は、所定期間の後半において第一光源部301を第二光源部302よりも優先的に使用することで、メラノピック照度の増加を抑制しつつフォトピック照度を高めることができる。つまり、採光制御システム10は、ユーザのサーカディアンリズムを整えることと、対象領域80の明るさを確保することの両立を図ることができる。
また、例えば、採光制御システム10は、さらに、対象領域80のメラノピック照度を推定または検知するセンサ20を備える。駆動装置30は、センサの20出力に基づいて、第一積算値が第二積算値Aよりも小さくなるように光学フィルムデバイス100照明システム300を駆動する。
このような採光制御システム10は、センサ20によって検知されたメラノピック照度の実測値、または、センサ20によって推定されたメラノピック照度の推定値に基づいて、第一積算値が第二積算値Aよりも小さくなるように光学フィルムデバイス100及び照明システム300を駆動することができる。
また、例えば、センサ20は、バンドパスフィルタ21と、バンドパスフィルタ21を透過した光が入射するシリコンフォトダイオード22とを含む。
このような採光制御システム10は、バンドパスフィルタ21及びシリコンフォトダイオード22が組み合わされたセンサ20の出力に基づいて、第一積算値が第二積算値Aよりも小さくなるように光学フィルムデバイス100及び照明システム300を駆動することができる。
また、例えば、バンドパスフィルタ21の中心波長は、485nm以上495nm以下である。
このような採光制御システム10は、中心波長が485nm以上495nm以下のバンドパスフィルタ21及びシリコンフォトダイオード22が組み合わされたセンサ20の出力に基づいて、第一積算値が第二積算値Aよりも小さくなるように光学フィルムデバイス100及び照明システム300を駆動することができる。
また、例えば、駆動装置30は、所定期間の後半の途中時点において、(A-B)/Tの式を用いて、第一積算値が第二積算値よりも小さくなるように光学フィルムデバイス100及び照明システム300を駆動する。Aは、第二積算値であり、Bは、所定期間の後半の開始時点から途中時点までの対象領域80のメラノピック照度の積算値であり、Tは、途中時点から所定期間の終了時点までの期間の長さである。
このような採光制御システム10は、途中時点におけるメラノピック照度が所定期間の終了時点まで継続すると仮定した場合に、駆動モードを維持して第一積算値を第二積算値よりも小さくすることができるか否かを判定することができる。
また、例えば、所定期間は、日の出の時刻から日の入の時刻までの期間である。
このような採光制御システム10は、対象領域80に存在するユーザのサーカディアンリズムを整えることができる。
また、例えば、所定期間は、始業時間から終業時間までの期間である。
このような採光制御システム10は、対象領域80に存在するユーザのサーカディアンリズムを整えることができる。
また、例えば、対象領域80は、会社の従業員が使用する領域であり、従業員の半数以上が出社した時刻から従業員の半数以上が退社した時刻までの期間である。
このような採光制御システム10は、対象領域80に存在する多くの従業員のサーカディアンリズムを整えることができる。
また、例えば、駆動装置30は、所定期間の前半において、第一光源部301及び第二光源部302のうち第二光源部302を選択的に発光させ、所定期間の後半において、第一光源部301及び第二光源部302のうち第一光源部301を選択的に発光させる。
このような採光制御システム10は、所定期間の後半において、第二光源部302に代えて第一光源部301を発光させることにより、フォトピック照度をある程度確保しつつメラノピック照度を低下させて第一積算値を第二積算値Aよりも小さくすることができる。
また、例えば、光学フィルムデバイス100の駆動モードには、光学フィルムデバイス100に入射する光を直進させる透明モード、及び、前記光学フィルムデバイスに入射する光を屈折させる配光モードが含まれる。駆動装置30は、所定期間の後半において、光学フィルムデバイス100を透明モードで駆動する。
このような採光制御システム10は、所定期間の後半において、光学フィルムデバイス100を透明モードで駆動することにより、第一積算値を第二積算値Aよりも小さくすることができる。
また、例えば、駆動装置30は、所定期間の前半において、光学フィルムデバイス100に入射する光が対象領域80に直接または間接に照射されるように光学フィルムデバイス100を駆動する。
このような採光制御システム10は、所定期間の前半において、光学フィルムデバイス100に入射する光が対象領域80に直接または間接に照射されるように光学フィルムデバイス100を駆動することにより、第一積算値を第二積算値Aよりも小さくすることができる。
また、例えば、光学フィルムデバイス100の駆動モードには、光学フィルムデバイス100に入射する光を直進させる透明モード、及び、光学フィルムデバイス100に入射する光を屈折させる配光モードが含まれる。駆動装置30は、所定期間の前半において、光学フィルムデバイス100を配光モードで駆動する。
このような採光制御システム10は、所定期間の前半において、光学フィルムデバイス100を配光モードで駆動することにより、第一積算値を第二積算値Aよりも小さくすることができる。
[補足:光学フィルムデバイスの構成]
続いて、光学フィルムデバイス100の具体的な構成について、図7及び図8を用いて補足する。
続いて、光学フィルムデバイス100の具体的な構成について、図7及び図8を用いて補足する。
図7は、光学フィルムデバイス100の断面図である。図8は、光学フィルムデバイス100の一部を拡大して示す拡大断面図であり、図7の一点鎖線で囲まれる領域VIIIを拡大して示している。
光学フィルムデバイス100は、光学フィルムデバイス100に入射する光を制御する光学デバイスである。具体的には、光学フィルムデバイス100は、光学フィルムデバイス100に入射する光の進行方向を変更して(つまり、配光して)出射させることができる配光素子である。
図7及び図8に示されるように、光学フィルムデバイス100は、入射する光を透過するように構成されており、第一基板110と、第二基板120と、配光層130と、第一電極層140と、第二電極層150とを備える。
なお、第一電極層140の配光層130側の面には、第一電極層140と配光層130の凹凸構造層131とを密着させるための密着層が設けられていてもよい。密着層は、例えば、透光性の接着シート、又は、一般的にプライマーと称される樹脂材料などである。
光学フィルムデバイス100は、対をなす第一基板110及び第二基板120の間に、第一電極層140、配光層130及び第二電極層150がこの順で厚み方向に沿って配置された構成である。なお、第一基板110と第二基板120との間の距離を保つために、粒子状の複数のスペーサが面内に分散されていてもよく、柱状の構造が形成されてもよい。
光学フィルムデバイス100は、例えば建物90の窓91に設置することで、配光機能付き窓として実現することができる。光学フィルムデバイス100は、例えば、粘着層を介して既存の窓ガラスなどの透明基材に貼り付けられて使用される。あるいは、光学フィルムデバイス100は、建物90の窓91そのものとして利用されてもよい。光学フィルムデバイス100は、例えば、第一基板110が屋外側で、第二基板120が屋内側になり、かつ、図8に示される凸部133の第一側面135が下側(床側)に面し、第二側面136が上側(天井側)に面するように配置されている。
光学フィルムデバイス100では、第一電極層140及び第二電極層150間に印加される電圧によって、配光層130の屈折率可変層132の屈折率が変化する。これにより、凹凸構造層131と屈折率可変層132との界面に屈折率の差が生じ、当該界面による光の屈折及び反射(全反射)を利用して光が配光される。例えば、斜め下方に向けて入射する光の少なくとも一部は、凸部133によって斜め上方に向けて出射される。
第一電極層140及び第二電極層150間に印加される電圧の大きさに応じて、光学フィルムデバイス100は、透明状態及び配光状態が切り替わる。また、光学フィルムデバイス100は、第一電極層140及び第二電極層150間に印加される電圧の大きさに応じて、配光状態における光の配光方向(進行方向)が変化する。
以下、光学フィルムデバイス100の各構成部材について、図7及び図8を参照して詳細に説明する。
<第一基板及び第二基板>
第一基板110及び第二基板120は、透光性を有する基材である。第一基板110及び第二基板120としては、例えばガラス基板又は樹脂基板を用いることができる。
第一基板110及び第二基板120は、透光性を有する基材である。第一基板110及び第二基板120としては、例えばガラス基板又は樹脂基板を用いることができる。
ガラス基板の材料としては、ソーダガラス、無アルカリガラス又は高屈折率ガラスなどが挙げられる。樹脂基板の材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル(PMMA)又はエポキシなどの樹脂材料が挙げられる。ガラス基板は、光透過率が高く、かつ、水分の透過性が低いという利点がある。一方、樹脂基板は、破壊時の飛散が少ないという利点がある。
第一基板110と第二基板120とは、同じ材料で構成されていてもよく、あるいは、異なる材料で構成されていてもよい。また、第一基板110及び第二基板120は、リジッド基板に限るものではなく、可撓性を有するフレキシブル基板でもよい。光学フィルムデバイス100において、第一基板110及び第二基板120は、PET樹脂からなる透明樹脂基板である。
第二基板120は、第一基板110に対向する対向基板であり、第一基板110に対向する位置に配置される。第一基板110と第二基板120とは、例えば、1μm~1000μmなどの所定距離を空けて平行に配置されている。第一基板110と第二基板120とは、互いの端部外周に額縁状に形成された接着剤などのシール樹脂によって接着されている。
なお、第一基板110及び第二基板120の平面視形状は、例えば、正方形又は長方形などの矩形状であるが、これに限るものではなく、円形又は四角形以外の多角形であってもよく、任意の形状が採用され得る。
<配光層>
図7及び図8に示されるように、配光層130は、第一電極層140と第二電極層150との間に配置される。配光層130は、透光性を有しており、入射した光を透過させる。また、配光層130は、入射した光を配光する。つまり、配光層130は、配光層130を光が通過する際に、その光の進行方向を変更する。
図7及び図8に示されるように、配光層130は、第一電極層140と第二電極層150との間に配置される。配光層130は、透光性を有しており、入射した光を透過させる。また、配光層130は、入射した光を配光する。つまり、配光層130は、配光層130を光が通過する際に、その光の進行方向を変更する。
配光層130は、凹凸構造層131と、屈折率可変層132とを有する。光学フィルムデバイス100においては、凹凸構造層131と屈折率可変層132との界面で光が反射されることにより、光学フィルムデバイス100を透過する光の、鉛直方向に対する進行方向が曲げられる。
<凹凸構造層>
凹凸構造層131は、屈折率可変層132の表面(界面)を凹凸にするために設けられた微細形状層である。凹凸構造層131は、図8に示されるように、複数の凸部133と、複数の凹部134とを有する。
凹凸構造層131は、屈折率可変層132の表面(界面)を凹凸にするために設けられた微細形状層である。凹凸構造層131は、図8に示されるように、複数の凸部133と、複数の凹部134とを有する。
具体的には、凹凸構造層131は、マイクロオーダーサイズの複数の凸部133によって構成された凹凸構造体である。複数の凸部133の間が、複数の凹部134である。すなわち、隣り合う2つの凸部133の間が、1つの凹部134である。図8に示される例では、複数の凸部133が個々に分離された例を示しているが、これに限らない。複数の凸部133は根元(第一電極層140側)で個々に接続されていてもよい。また、例えば、複数の凸部133と第一電極層140との間に凸部133の基台となる層(膜)状の基台部が設けられていてもよい。
複数の凸部133は、第一基板110の主面(第一電極層140が設けられた面)に平行なz軸方向に並んで配置された複数の凸部である。すなわち、光学フィルムデバイス100においては、z軸方向は、複数の凸部133の並び方向である。
光学フィルムデバイス100においては、複数の凸部133は、その並び方向に直交する方向に延在する長尺の凸状である。具体的には、複数の凸部133は、x軸方向に延びたストライプ状に形成されている。複数の凸部133の各々は、x軸方向に沿って直線状に延びている。例えば、複数の凸部133の各々は、第一電極層140に対して横倒しに配置された三角柱である。
図8に示されるように、複数の凸部133の各々は、根元から先端にかけて先細る形状を有する。具体的には、複数の凸部133の各々の断面形状は、第一基板110から第二基板120に向かう方向に沿って先細りのテーパ形状である。光学フィルムデバイス100においては、凸部133のyz断面における断面形状は、光学フィルムデバイス100の厚み方向に沿って先細る三角形であるが、これに限らない。凸部133の断面形状は、台形でもよく、その他の多角形、又は、カーブを含む多角形などでもよい。複数の凸部133の形状は、互いに同じであるが、異なっていてもよい。
なお、台形又は三角形には、頂点が丸みを帯びた台形又は三角形も含まれる。また、台形又は三角形には、各辺が完全に直線ではない場合、例えば、各辺の長さの数%程度の変位で僅かに屈曲している場合、又は、微小な凹凸が含まれる場合も含まれる。
光学フィルムデバイス100においては、図8に示されるように、複数の凸部133の各々は、第一側面135及び第二側面136を有する。第一側面135及び第二側面136は、z軸方向に交差する面である。第一側面135及び第二側面136の各々は、y軸方向に対して所定の傾斜角で傾斜する傾斜面である。第一側面135及び第二側面136の間隔、すなわち、凸部133の幅は、第一基板110から第二基板120に向かって漸次小さくなっている。
第一側面135は、例えば、z軸が鉛直方向に一致するように光学フィルムデバイス100を配置した場合に、凸部133を構成する複数の側面のうち、鉛直下方側に面する側面である。第一側面135は、入射光を屈折させる屈折面である。
第二側面136は、例えば、z軸が鉛直方向に一致するように光学フィルムデバイス100を配置した場合に、凸部133を構成する複数の側面のうち、鉛直上方側に面する側面である。第二側面136は、入射光を反射させる反射面である。ここでの反射は、全反射であり、第二側面136は、全反射面として機能する。
第一側面135の傾斜角及び第二側面136の傾斜角は、例えば0°以上25°以下の範囲である。言い換えると、凸部133の断面形状である台形又は三角形の2つの底角はそれぞれ、65°以上90°以下である。あるいは、2つの底角の少なくとも一方は、65°より小さくてもよい。第一側面135の傾斜角と第二側面136の傾斜角とは、互いに異なっていてもよく、等しくてもよい。
複数の凸部133の幅(z軸方向の長さ)は、例えば1μm~20μmであり、好ましくは10μm以下であるが、これに限らない。また、隣り合う2つの凸部133の間隔は、例えば、0μm~100μmであるが、これに限らない。複数の凸部133の各々の高さは、例えば2μm~100μmであるが、これに限らない。複数の凸部133には、高さ及び幅の少なくとも一方が互いに異なる凸部が含まれていてもよい。
凹凸構造層131の材料としては、例えばアクリル樹脂、エポキシ樹脂又はシリコーン樹脂などの光透過性を有する樹脂材料を用いることができる。凹凸構造層131は、例えば、紫外線硬化樹脂材料から形成され、モールド成形又はナノインプリントなどによって形成することができる。凹凸構造層131は、例えば、緑色光に対する屈折率が1.5のアクリル樹脂を用いて断面が台形の凹凸構造を、モールド型押しにより形成することができる。
なお、複数の凸部133は、x軸方向に沿って蛇行しながら延びていてもよい。例えば、複数の凸部133は、波線のストライプ状に形成されていてもよい。波線は、例えば、正弦波又は三角波であるが、これに限らない。例えば、波線は、複数の円弧又は楕円弧が連結された波線であってもよい。
<屈折率可変層>
屈折率可変層132は、複数の凸部133の間(すなわち、凹部134)を充填するように設けられている。具体的には、屈折率可変層132は、第一電極層140と第二電極層150との間に形成される隙間を埋めるように配置されている。なお、図8に示されるように、凸部133の先端部と第二電極層150とが離れている場合、屈折率可変層132は、凹部134だけでなく、凸部133の先端部と第二電極層150との間の隙間を埋めるように配置される。
屈折率可変層132は、複数の凸部133の間(すなわち、凹部134)を充填するように設けられている。具体的には、屈折率可変層132は、第一電極層140と第二電極層150との間に形成される隙間を埋めるように配置されている。なお、図8に示されるように、凸部133の先端部と第二電極層150とが離れている場合、屈折率可変層132は、凹部134だけでなく、凸部133の先端部と第二電極層150との間の隙間を埋めるように配置される。
屈折率可変層132は、第一電極層140及び第二電極層150間に印加される電圧に応じて屈折率が変化する。具体的には、屈折率可変層132は、電極間に電圧が与えられることによって可視光帯域での屈折率が調整可能な屈折率調整層として機能する。例えば、制御装置(図示せず)などによって、第一電極層140と第二電極層150との間には直流電圧が印加される。
図8に示されるように、屈折率可変層132は、絶縁性液体137と、絶縁性液体137に含まれるナノ粒子138とを有する。屈折率可変層132は、無数のナノ粒子138が絶縁性液体137に分散されたナノ粒子分散層である。
絶縁性液体137は、絶縁性を有する透明な液体であり、分散質としてナノ粒子138が分散される分散媒となる溶媒である。絶縁性液体137としては、例えば、屈折率(溶媒屈折率)が約1.3~約1.6の材料を用いることができる。光学フィルムデバイス100においては、屈折率が約1.4の絶縁性液体137を用いている。
なお、絶縁性液体137の動粘度は、100mm2/s程度であるとよい。また、絶縁性液体137は、低誘電率(例えば、凹凸構造層131の誘電率以下)で、非引火性(例えば、引火点が250℃以上の高引火点)及び低揮発性を有してもよい。具体的には、絶縁性液体137は、脂肪族炭化水素、ナフサ、及びその他の石油系溶剤などの炭化水素、低分子量ハロゲン含有ポリマー、又は、これらの混合物などである。一例として、絶縁性液体137は、フッ化炭化水素などのハロゲン化炭化水素である。なお、絶縁性液体137としては、シリコーンオイルなどを用いることもできる。
ナノ粒子138は、絶縁性液体137に複数分散されている。ナノ粒子138は、粒径がナノオーダサイズの微粒子である。具体的には、入射光の波長をλとすると、ナノ粒子138の粒径は、λ/4以下であるとよい。ナノ粒子138の粒径をλ/4以下にすることで、ナノ粒子138による光散乱を少なくして、ナノ粒子138と絶縁性液体137との平均的な屈折率を得ることができる。ナノ粒子138の粒径は、小さい程よく、好ましくは100nm以下、より好ましくは、数nm~数十nmである。
ナノ粒子138は、例えば、高屈折率材料によって構成されている。具体的には、ナノ粒子138の屈折率は、絶縁性液体137の屈折率よりも高い。光学フィルムデバイス100において、ナノ粒子138の屈折率は、凹凸構造層131の屈折率よりも高い。
ナノ粒子138としては、例えば、金属酸化物微粒子を用いることができる。また、ナノ粒子138は、透過率が高い材料で構成されていてもよい。本実施の形態では、ナノ粒子138として、酸化ジルコニウム(ZrO2)によって構成された屈折率が2.1の透明なジルコニア粒子を用いている。なお、ナノ粒子138は、酸化ジルコニウムに限らず、酸化チタン(TiO2:屈折率2.5)などによって構成されていてもよい。
また、ナノ粒子138は、帯電している荷電粒子である。例えば、ナノ粒子138の表面を修飾することで、ナノ粒子138を正(プラス)又は負(マイナス)に帯電させることができる。本実施の形態において、ナノ粒子138は、正(プラス)に帯電している。
このように構成された屈折率可変層132では、帯電したナノ粒子138が絶縁性液体137の全体に分散されている。本実施の形態では、一例として、ナノ粒子138として屈折率が2.1のジルコニア粒子を用いて、溶媒屈折率が約1.4の絶縁性液体137に分散させたものを屈折率可変層132としている。
また、屈折率可変層132の全体の屈折率(平均屈折率)は、ナノ粒子138が絶縁性液体137内に均一に分散された状態において、凹凸構造層131の屈折率と略同一に設定されており、本実施の形態では、約1.5である。なお、屈折率可変層132の全体の屈折率は、絶縁性液体137に分散するナノ粒子138の濃度(量)を調整することによって変えることができる。詳細は後述するが、ナノ粒子138の量は、例えば、凹凸構造層131の凹部134に埋まる程度である。この場合、絶縁性液体137に対するナノ粒子138の濃度は、約10%~約30%である。
絶縁性液体137中に分散するナノ粒子138は帯電しているので、第一電極層140及び第二電極層150間に電圧が印加された場合、ナノ粒子138は、ナノ粒子138が帯びた極性とは異なる極性の電極層に引き寄せられるように絶縁性液体137中を泳動し、絶縁性液体137内で偏在する。本実施の形態では、ナノ粒子138は、プラスに帯電しているので、第一電極層140及び第二電極層150のうち負極側の電極層に引き寄せられる。
これにより、屈折率可変層132内のナノ粒子138の粒子分布が変化して屈折率可変層132内にナノ粒子138の濃度分布を持たせることができるので、屈折率可変層132内の屈折率分布が変化する。つまり、屈折率可変層132の屈折率が部分的に変化する。このように、屈折率可変層132は、主に可視光帯域の光に対する屈折率を調整することができる屈折率調整層として機能する。
屈折率可変層132は、例えば、第一電極層140及び凹凸構造層131が形成された第一基板110と、第二電極層150が形成された第二基板120との各々の端部外周をシール樹脂で封止した状態で、屈折率可変材料を真空注入法で注入することで形成される。あるいは、屈折率可変層132は、第一基板110の第一電極層140及び凹凸構造層131上に屈折率可変材料を滴下した後に、第二電極層150が形成された第二基板120を貼り合わせることで形成されてもよい。本実施の形態では、屈折率可変材料は、ナノ粒子138が分散された絶縁性液体137である。ナノ粒子138が分散された絶縁性液体137が第一基板110と第二基板120との間に封止されている。屈折率可変層132の厚さは、例えば1μm~1000μmであるが、これに限らない。
<第一電極層及び第二電極層>
図7及び図8に示されるように、第一電極層140及び第二電極層150は、電気的に対となっている。第一電極層140と第二電極層150とは、電気的だけではなく配置的にも対になっており、第一基板110と第二基板120との間に、互いに対向するように配置されている。具体的には、第一電極層140及び第二電極層150は、配光層130を挟むように配置されている。
図7及び図8に示されるように、第一電極層140及び第二電極層150は、電気的に対となっている。第一電極層140と第二電極層150とは、電気的だけではなく配置的にも対になっており、第一基板110と第二基板120との間に、互いに対向するように配置されている。具体的には、第一電極層140及び第二電極層150は、配光層130を挟むように配置されている。
第一電極層140及び第二電極層150は、透光性を有し、入射した光を透過する。第一電極層140及び第二電極層150は、例えば透明導電層である。透明導電層の材料としては、ITO(Indium Tin Oxide)若しくはIZO(Indium Zinc Oxide)などの透明金属酸化物、銀ナノワイヤ若しくは導電性粒子などの導電体を含有する樹脂からなる導電体含有樹脂、又は、銀薄膜などの金属薄膜などを用いることができる。なお、第一電極層140及び第二電極層150は、これらの単層構造でよく、これらの積層構造(例えば透明金属酸化物と金属薄膜との積層構造)でもよい。本実施の形態では、第一電極層140及び第二電極層150はそれぞれ、厚さ100nmのITOである。
第一電極層140は、第一基板110と凹凸構造層131との間に配置されている。具体的には、第一電極層140は、第一基板110の配光層130側の面に形成されている。
一方、第二電極層150は、屈折率可変層132と第二基板120との間に配置されている。具体的には、第二電極層150は、第二基板120の配光層130側の面に形成されている。
なお、第一電極層140及び第二電極層150は、例えば、外部電源との電気接続が可能となるように構成されている。例えば、外部電源に接続するための電極パッドなどが、第一電極層140及び第二電極層150の各々から引き出されて第一基板110及び第二基板120に形成されていてもよい。
第一電極層140及び第二電極層150はそれぞれ、例えば、蒸着、スパッタリングなどにより、ITOなどの導電膜を成膜することで形成される。
<光学フィルムデバイスの駆動モード>
続いて、光学フィルムデバイス100の駆動モードについて説明する。まず、透明モード(電圧無印加状態)について図9を用いて説明する。図9は、光学フィルムデバイス100の透明モード(電圧無印加状態)を説明するための拡大断面図である。また、図9には、光学フィルムデバイス100に対して斜めに入射する光Lの経路を矢印で示している。
続いて、光学フィルムデバイス100の駆動モードについて説明する。まず、透明モード(電圧無印加状態)について図9を用いて説明する。図9は、光学フィルムデバイス100の透明モード(電圧無印加状態)を説明するための拡大断面図である。また、図9には、光学フィルムデバイス100に対して斜めに入射する光Lの経路を矢印で示している。
図9において、第一電極層140及び第二電極層150間には電圧が印加されていない。具体的には、第一電極層140と第二電極層150とは、互いに等電位となっている。この場合、ナノ粒子138は、いずれの電極層にも引き寄せられないので、絶縁性液体137の全体に亘って分散された状態となる。
ナノ粒子138が絶縁性液体137の全体に分散された状態の屈折率可変層132の屈折率は、上述したように、約1.5である。また、凹凸構造層131の凸部133の屈折率は、約1.5である。つまり、複数の凸部133と、屈折率可変層132とは、屈折率が同等になる。したがって、配光層130の全体で、屈折率が均一になる。
このため、図9に示されるように、斜め上方から斜め下方に向けて光Lが入射した場合、屈折率可変層132と凹凸構造層131との界面には屈折率差がないので、光が真っ直ぐに進行する。つまり、yz断面において、光Lの入射角と出射角とは、実質的に同じになる。
このように、光学フィルムデバイス100は、入射した光を実質的にそのまま(進行方向を変えることなく)透過させる透明状態になる。
なお、光Lは、実際には、第一基板110に入射するとき、第二基板120から出射するとき、第一基板110と第一電極層140との界面を通過するとき、及び、第二電極層150と第二基板120との界面を通過するとき、などの通過する媒体が変化するときに屈折するが、図9には図示していない。後述する図10においても同様である。
次に、配光モード(電圧印加状態)について説明する。図10は、光学フィルムデバイス100の配光モード(電圧印加状態)を説明するための拡大断面図である。また、図10には、光学フィルムデバイス100に対して斜めに入射する光Lの経路を太線の矢印で示している。
図10において、第一電極層140及び第二電極層150間に所定の電圧が印加されている。例えば、第一電極層140と第二電極層150とには、数十V程度の電位差の電圧が印加されている。これにより、屈折率可変層132では、帯電したナノ粒子138が、ナノ粒子138が帯びた極性とは異なる極性の電極層に引き寄せられるように絶縁性液体137内を泳動する。つまり、ナノ粒子138は、絶縁性液体137内を電気泳動する。
図10に示す例では、第二電極層150は、第一電極層140よりも高電位になっている。このため、プラスに帯電したナノ粒子138は、第一電極層140に向かって泳動し、凹凸構造層131の凹部134に入り込んで集積していく。
このように、ナノ粒子138が屈折率可変層132内の凹凸構造層131側に偏在することで、ナノ粒子138の粒子分布が変化し、屈折率可変層132内の屈折率分布が一様ではなくなる。具体的には、図10に示されるように、屈折率可変層132内でナノ粒子138の濃度分布が形成される。
例えば、凹凸構造層131側の第一領域132aでは、ナノ粒子138の濃度が高くなり、第二電極層150側の第二領域132bでは、ナノ粒子138の濃度が低くなる。したがって、第一領域132aと第二領域132bとには、屈折率差が生じる。
本実施の形態では、ナノ粒子138の屈折率が絶縁性液体137の屈折率よりも高い。このため、ナノ粒子138の濃度が高い第一領域132aの屈折率は、ナノ粒子138の濃度が低い、すなわち、絶縁性液体137の割合が多い第二領域132bの屈折率よりも高くなる。例えば、第一領域132aの屈折率は、ナノ粒子138の濃度に応じて約1.5より大きい値~約1.8になる。第二領域132bの屈折率は、ナノ粒子138の濃度に応じて約1.4~約1.5より小さい値になる。
複数の凸部133の屈折率が約1.5であるので、第一電極層140と第二電極層150との間に電圧が印加されている場合、凸部133と第一領域132aとの間には、屈折率差が生じる。このため、図10に示すように、斜め方向から光Lが入射した場合、入射した光Lは、凸部133の第一側面135で屈折した後、第二側面136で全反射される。
これにより、図10に示されるように、垂直断面において、光Lの入射角と出射角とが異なる。例えば、斜め上方から斜め下方に向けて入射した光Lは、斜め上方に向けて光学フィルムデバイス100から出射される。
このように、第一電極層140と第二電極層150との間に所定の電圧が印加された場合に、複数の凸部133の各々と屈折率可変層132との界面に屈折率差が発生し、配光層130に入射する光の進行方向が曲げられる。つまり、光学フィルムデバイス100は、入射した光を、その進行方向を曲げて透過させる配光状態になる。
また、印加する電圧の大きさによってナノ粒子138の凝集の程度を変化させることができる。ナノ粒子138の凝集の程度によって屈折率可変層132の屈折率が変化する。このため、凸部133の第一側面135及び第二側面136(界面)における屈折率の差を変化させることで、配光方向を変化させることも可能である。
<光学フィルムデバイスの変形例>
例えば、複数の凸部133は、x軸方向において複数に分割されていてもよい。例えば、複数の凸部133は、マトリクス状などに点在するように配置されていてもよい。つまり、複数の凸部133を、ドット状に点在するように配置してもよい。
例えば、複数の凸部133は、x軸方向において複数に分割されていてもよい。例えば、複数の凸部133は、マトリクス状などに点在するように配置されていてもよい。つまり、複数の凸部133を、ドット状に点在するように配置してもよい。
また、例えば、光学フィルムデバイス100において、ナノ粒子138の屈折率は、絶縁性液体137の屈折率より低くてもよい。ナノ粒子138の屈折率などに応じて印加する電圧を適宜調整することで、透明状態及び配光状態を実現することができる。
また、例えば、光学フィルムデバイス100においては、ナノ粒子138はプラスに帯電させたが、これに限らない。つまり、ナノ粒子138をマイナスに帯電させてもよい。この場合、第一電極層140にはプラス電位を印加し、第二電極層150にはマイナス電位を印加することで、第一電極層140と第二電極層150との間に直流電圧を印加するとよい。
また、複数のナノ粒子138には、光学特性の異なる複数種類のナノ粒子が含まれてもよい。例えば、プラスに帯電させた透明の第一ナノ粒子と、マイナスに帯電させた不透明(黒色など)の第二ナノ粒子とを含んでもよい。例えば、第二ナノ粒子を凝集させて偏在させることで、光学フィルムデバイス100に遮光機能を持たせてもよい。
また、例えば、光学フィルムデバイス100においては、屈折率可変材料として電気泳動材料が利用されたが、これに限らない。例えば、屈折率可変材料として、液晶材料を利用してもよい。この場合、液晶材料に含まれる液晶分子の複屈折性を利用して、屈折率可変層の屈折率が変化する。屈折率可変層に与えられる電界に応じて液晶分子の配向を変化させることにより、屈折率可変層の屈折率が変化する。これにより、透明状態及び配光状態、並びに、配光状態における配光方向を制御することができる。
(その他の実施の形態)
以上、実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではない。
以上、実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではない。
例えば、上記の実施の形態では、光学フィルムデバイスに入射する光は、自然光(言い換えれば、太陽光)であるが、光学フィルムデバイスに入射する光は、照明装置などの発光装置が発する人工光であってもよい。
また、例えば、光学フィルムデバイスは、建物の窓に設置する場合に限るものではなく、例えば車の窓などに設置してもよい。
また、上記実施の形態で説明した装置間の通信方法については特に限定されるものではない。装置間で無線通信が行われる場合、無線通信の方式(通信規格)は、例えば、ZigBee(登録商標)、Bluetooth(登録商標)、又は、無線LAN(Local Area Network)などの近距離無線通信である。あるいは、無線通信の方式(通信規格)は、インターネットなどの広域通信ネットワークを介した通信でもよい。また、装置間においては、無線通信に代えて、有線通信が行われてもよい。有線通信は、具体的には、電力線搬送通信(PLC:Power Line Communication)又は有線LANを用いた通信などである。
また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよく、あるいは、複数の処理が並行して実行されてもよい。また、採光制御システムが備える構成要素の複数の装置への振り分けは、一例である。例えば、一の装置が備える構成要素を他の装置が備えてもよい。また、採光制御システムは、単一の装置として実現されてもよい。
例えば、上記実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。
また、上記実施の形態において、制御部などの構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、HDD(Hard Disk Drive)又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
また、制御部などの構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)などが含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。
また、本発明の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。あるいは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリなどのコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。例えば、本発明は、上記実施の形態に係る駆動装置として実現されてもよい。また、本発明は、コンピュータによって実行される、光学フィルムデバイス及び照明システムの駆動方法として実現されてもよい。
その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
10 採光制御システム
20 センサ
21 バンドパスフィルタ
22 シリコンフォトダイオード
30 駆動装置
31 制御部
80 対象領域
100 光学フィルムデバイス
132 屈折率可変層
300 照明システム
301 第一光源部
302 第二光源部
20 センサ
21 バンドパスフィルタ
22 シリコンフォトダイオード
30 駆動装置
31 制御部
80 対象領域
100 光学フィルムデバイス
132 屈折率可変層
300 照明システム
301 第一光源部
302 第二光源部
Claims (11)
- 電気的に光の屈折率の調整が可能な屈折率可変層を含み、対象領域への採光に用いられる光学フィルムデバイスと、
前記対象領域を照らす照明システムと、
所定期間の後半における前記対象領域のメラノピック照度の第一積算値が前記所定期間の前半における前記対象領域のメラノピック照度の第二積算値よりも小さくなるように前記光学フィルムデバイス及び照明システムを駆動する駆動装置とを備え、
前記照明システムは、第一光源部、及び、第二光源部を含み、
前記第一光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比は、前記第二光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比よりも小さい
採光制御システム。 - さらに、前記対象領域のメラノピック照度を推定または検知するセンサを備え、
前記駆動装置は、前記センサの出力に基づいて、前記第一積算値が前記第二積算値よりも小さくなるように前記光学フィルムデバイス及び照明システムを駆動する
請求項1に記載の採光制御システム。 - 前記センサは、バンドパスフィルタと、前記バンドパスフィルタを透過した光が入射するシリコンフォトダイオードとを含む
請求項2に記載の採光制御システム。 - 前記バンドパスフィルタの中心波長は、485nm以上495nm以下である
請求項3に記載の採光制御システム。 - 前記駆動装置は、前記所定期間の後半の途中時点において、(A-B)/Tの式を用いて、前記第一積算値が前記第二積算値よりも小さくなるように前記光学フィルムデバイス及び照明システムを駆動し、
前記Aは、前記第二積算値であり、
前記Bは、前記所定期間の後半の開始時点から前記途中時点までの前記対象領域のメラノピック照度の積算値であり、
前記Tは、前記途中時点から前記所定期間の終了時点までの期間の長さである
請求項1~4のいずれか1項に記載の採光制御システム。 - 前記所定期間は、日の出の時刻から日の入の時刻までの期間である
請求項1~5のいずれか1項に記載の採光制御システム。 - 前記所定期間は、始業時間から終業時間までの期間である
請求項1~5のいずれか1項に記載の採光制御システム。 - 前記対象領域は、会社の従業員が使用する領域であり、
前記従業員の半数以上が出社した時刻から前記従業員の半数以上が退社した時刻までの期間である
請求項1~5のいずれか1項に記載の採光制御システム。 - 前記駆動装置は、
前記所定期間の前半において、前記第一光源部及び前記第二光源部のうち前記第二光源部を選択的に発光させ、
前記所定期間の後半において、前記第一光源部及び前記第二光源部のうち前記第一光源部を選択的に発光させる
請求項1~8のいずれか1項に記載の採光制御システム。 - 光学フィルムデバイス及び照明システムを駆動する駆動装置であって、
前記光学フィルムデバイスは、電気的に光の屈折率の調整が可能な屈折率可変層を含み、対象領域への採光に用いられ、
前記照明システムは、前記対象領域を照らし、
所定期間の後半における前記対象領域のメラノピック照度の第一積算値が前記所定期間の前半における前記対象領域のメラノピック照度の第二積算値よりも小さくなるように前記光学フィルムデバイス及び前記照明システムを駆動する制御部を備え、
前記照明システムは、第一光源部、及び、第二光源部を含み、
前記第一光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比は、前記第二光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比よりも小さい
駆動装置。 - コンピュータによって実行される、光学フィルムデバイス及び照明システムの駆動方法であって、
前記光学フィルムデバイスは、電気的に光の屈折率の調整が可能な屈折率可変層を含み、対象領域への採光に用いられ、
前記照明システムは、前記対象領域を照らし、
前記駆動方法は、所定期間の後半における前記対象領域のメラノピック照度の第一積算値が前記所定期間の前半における前記対象領域のメラノピック照度の第二積算値よりも小さくなるように前記光学フィルムデバイス及び前記照明システムを駆動し、
前記照明システムは、第一光源部、及び、第二光源部を含み、
前記第一光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比は、前記第二光源部によって前記対象領域が照らされているときの前記対象領域のフォトピック照度に対するメラノピック照度の比よりも小さい
駆動方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018100933 | 2018-05-25 | ||
JP2018-100933 | 2018-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019225247A1 true WO2019225247A1 (ja) | 2019-11-28 |
Family
ID=68616435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/016835 WO2019225247A1 (ja) | 2018-05-25 | 2019-04-19 | 採光制御システム、駆動装置、及び、駆動方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019225247A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021167100A1 (ja) * | 2020-02-19 | 2021-08-26 | 京セラ株式会社 | 照明装置、照明システム及び照明制御方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006210045A (ja) * | 2005-01-26 | 2006-08-10 | Matsushita Electric Works Ltd | 照明システム |
JP2013182820A (ja) * | 2012-03-02 | 2013-09-12 | Panasonic Corp | 照明制御装置、およびこれを用いた照明装置 |
JP2016532995A (ja) * | 2013-10-09 | 2016-10-20 | フィリップス ライティング ホールディング ビー ヴィ | 白色光のcriに近いcriを有する、メラトニンを抑制しない光源 |
JP2017219554A (ja) * | 2014-10-22 | 2017-12-14 | パナソニックIpマネジメント株式会社 | 光学デバイス及びその製造方法 |
US20180073689A1 (en) * | 2016-09-12 | 2018-03-15 | Lumileds Llc | Lighting system having reduced melanopic spectral content |
-
2019
- 2019-04-19 WO PCT/JP2019/016835 patent/WO2019225247A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006210045A (ja) * | 2005-01-26 | 2006-08-10 | Matsushita Electric Works Ltd | 照明システム |
JP2013182820A (ja) * | 2012-03-02 | 2013-09-12 | Panasonic Corp | 照明制御装置、およびこれを用いた照明装置 |
JP2016532995A (ja) * | 2013-10-09 | 2016-10-20 | フィリップス ライティング ホールディング ビー ヴィ | 白色光のcriに近いcriを有する、メラトニンを抑制しない光源 |
JP2017219554A (ja) * | 2014-10-22 | 2017-12-14 | パナソニックIpマネジメント株式会社 | 光学デバイス及びその製造方法 |
US20180073689A1 (en) * | 2016-09-12 | 2018-03-15 | Lumileds Llc | Lighting system having reduced melanopic spectral content |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021167100A1 (ja) * | 2020-02-19 | 2021-08-26 | 京セラ株式会社 | 照明装置、照明システム及び照明制御方法 |
JPWO2021167100A1 (ja) * | 2020-02-19 | 2021-08-26 | ||
JP7300691B2 (ja) | 2020-02-19 | 2023-06-30 | 京セラ株式会社 | 照明装置、照明システム及び照明制御方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018100957A1 (ja) | 採光システム | |
WO2019225245A1 (ja) | 採光制御システム、駆動装置、及び、駆動方法 | |
US20180373082A1 (en) | Optical device, and window with light distribution function | |
WO2019225247A1 (ja) | 採光制御システム、駆動装置、及び、駆動方法 | |
WO2018150673A1 (ja) | 光学デバイス | |
JP2020003643A (ja) | 光学デバイス | |
JP2019190071A (ja) | 採光制御装置、採光システム及び採光制御方法 | |
JP2020160096A (ja) | 光学デバイス | |
JP2020052178A (ja) | 光学デバイス | |
JP2019191220A (ja) | 光学デバイス | |
JP2019183506A (ja) | 採光制御装置、採光制御システム及び採光制御方法 | |
WO2019130913A1 (ja) | 配光制御デバイス | |
JP2019191407A (ja) | 配光制御デバイス | |
JP2020016860A (ja) | 配光制御デバイス及びその製造方法 | |
JP2019183503A (ja) | 採光制御装置、採光制御システム及び採光制御方法 | |
JP2020064084A (ja) | 光学デバイス及び光学システム | |
JPWO2017119021A1 (ja) | 光学デバイス及び配光機能付き窓 | |
JP2019204064A (ja) | 光学デバイス | |
WO2019167489A1 (ja) | 配光制御システム、制御装置及び配光制御方法 | |
WO2019064844A1 (ja) | 採光システム | |
WO2019163377A1 (ja) | 配光制御デバイス | |
WO2019188191A1 (ja) | 配光制御デバイス | |
JP2019168573A (ja) | 光学デバイス | |
JP2021004907A (ja) | 配光デバイスの制御装置、配光制御システム及び配光制御方法 | |
WO2019167542A1 (ja) | 配光制御デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19806639 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19806639 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |