WO2019224863A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2019224863A1 WO2019224863A1 PCT/JP2018/019439 JP2018019439W WO2019224863A1 WO 2019224863 A1 WO2019224863 A1 WO 2019224863A1 JP 2018019439 W JP2018019439 W JP 2018019439W WO 2019224863 A1 WO2019224863 A1 WO 2019224863A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- converter
- power
- value
- voltage
- current
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/125—Avoiding or suppressing excessive transient voltages or currents
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
- H02M1/143—Arrangements for reducing ripples from dc input or output using compensating arrangements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16533—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
- G01R19/16538—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
- G01R19/16547—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies voltage or current in AC supplies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R21/00—Arrangements for measuring electric power or power factor
- G01R21/06—Arrangements for measuring electric power or power factor by measuring current and voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0012—Control circuits using digital or numerical techniques
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/2176—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
Definitions
- the present application relates to a power conversion device that converts an AC voltage into a DC voltage, and particularly relates to a power conversion device having a capacitor that smoothes the output.
- power converters often have a small potential difference between a capacitor voltage and an AC power supply voltage during operation.
- the reason for this is that the higher the withstand voltage, the more expensive and larger the capacitor, so it is necessary to select a capacitor with a low withstand voltage in order to reduce the size and cost, and the capacitor voltage ripple does not exceed the withstand voltage of the capacitor. This is because the capacitor voltage during operation must be a voltage close to the AC power supply voltage.
- the reference value can only be set to a value close to the maximum value of the AC power supply voltage or less than the maximum value of the AC power supply voltage, and signal transmission from the detection of a decrease in the capacitor voltage until the load is stopped.
- the capacitor voltage falls below the maximum value of the input voltage at the time of power recovery, and it is impossible to prevent the occurrence of a large inrush current. If the generation of a large inrush current cannot be prevented, it is necessary to use a semiconductor element having a high current resistance in consideration of the magnitude of the inrush current, and generally SiC, GaN or diamond having a low current withstand capability. Therefore, it becomes difficult to use an element made of a wide band gap semiconductor material such as a power conversion device, which causes a problem that it impedes the realization of a small-sized and low-cost power conversion device.
- This application discloses the technique for solving the above-mentioned subject, and aims at providing a power converter with a high degree of freedom which does not have a problem even if it uses the element of a wide band gap semiconductor material. is there.
- a power converter disclosed in the present application is a power converter provided between an AC power supply and a load, and includes a power converter, a capacitor connected to an output terminal of the power converter, and the power converter.
- a power detector that detects input power to the power detector, detects a change in the input power based on a detection value of the power detector, predicts a voltage drop of the capacitor due to the change in the input power, and the power converter And a control unit for stopping the operation.
- a change in input power is detected to predict a voltage drop of the capacitor, and the operation of the power converter is stopped before the voltage of the capacitor becomes smaller than the input voltage. Therefore, an inrush current can be prevented, an element made of a semiconductor material with low current resistance can be used, and a power converter with a high degree of freedom can be obtained. Moreover, since it is not necessary to give a semiconductor element current resistance, when compared with the same semiconductor material, a power conversion device can be configured in a small size and at low cost.
- FIG. 1 is a configuration diagram illustrating a configuration of a power conversion device according to a first embodiment. It is a wave form diagram of the voltage of the capacitor of the power converter by Embodiment 1, and the voltage of AC power supply. It is a wave form diagram of the voltage of the capacitor of the power converter of a comparative example, and the voltage of AC power supply. It is explanatory drawing explaining the setting of the reference voltage value in the power converter device by Embodiment 1.
- FIG. FIG. 3 is a flowchart showing a control procedure in the power conversion device according to the first embodiment. It is a block diagram which shows the structure of the hardware of a control part.
- FIG. 1 is a configuration diagram illustrating a schematic configuration of a power conversion device 100 according to the first embodiment.
- the power conversion device 100 is connected between an AC power source 101 such as a commercial power source of a power system and a load 105.
- the power conversion apparatus 100 includes an AC / DC converter 102 configured by a semiconductor element, a capacitor 103 connected to an output terminal of the AC / DC converter 102, a semiconductor element, and the like, and the AC / DC converter And a DC / DC converter 104 that converts the output power of 102 into an arbitrary DC voltage. That is, the load 105 is connected to the output terminal of the DC / DC converter 104.
- a voltage detection unit 108 that detects an input voltage of the AC / DC converter 102, a current detection unit 107 that detects an input current, an AC / DC converter control unit 106a that controls the AC / DC converter 102, and a DC / DC converter
- a control unit 106 including a DC / DC converter control unit 106 b that controls the operation of 104, a capacitor voltage detection unit 109 that detects the voltage of the capacitor 103, a current limiting resistor 110, and a switching unit 111 are provided.
- the AC / DC converter 102 is a step-up converter, and has a function of converting to an arbitrary direct current while improving the power factor of the power supplied from the connected AC power supply 101 such as a commercial power supply.
- the capacitor 103 connected to the output terminal of the DC converter 102 has a function of smoothing the output voltage of the AC / DC converter 102.
- the DC / DC converter 104 has a function of converting the output power of the AC / DC converter 102 into an arbitrary DC voltage and supplying it to the load 105 while insulating the output power. Note that the switching means 111 is ON when the AC / DC converter 102 and the DC / DC converter 104 are operating.
- FIG. 2 shows an example of the waveform of the voltage of the capacitor 103 and the voltage of the AC power supply 101 at the time of instantaneous interruption and instantaneous interruption when the countermeasure of the present application is implemented.
- a waveform A ⁇ b> 1 represents a change in the voltage value of the capacitor 103
- a waveform B ⁇ b> 1 represents a change in the output voltage of the AC power supply 101. That is, paying attention to the output voltage of the AC power supply 101, an instantaneous interruption and instantaneous interruption occur at time t1, and then power is restored at time t2.
- a period T1 from time t1 to time t2 is an instantaneous interruption and instantaneous interruption period. In the case shown in FIG.
- the instantaneous interruption and instantaneous interruption occur during the half cycle of the AC power supply 101.
- the present application when a power failure, instantaneous interruption, or instantaneous interruption occurs in the AC power supply 101, before the voltage of the capacitor 103 drops below the maximum value Vp of the voltage when the AC power supply 101 is restored. , Detecting a power failure, instantaneous interruption, or instantaneous interruption using the detection value of the voltage detection unit 108 or the current detection unit 107, and stopping the operation of the power conversion device at time t3 to prevent the voltage drop of the capacitor 103, Generation
- FIG. 3 shows an example of the voltage waveform of FIG. 3 as a comparative example.
- a waveform A2 represents a change in the voltage value of the capacitor 103
- a waveform B2 represents a change in the output voltage of the AC power supply 101. That is, it can be seen that the output voltage of the AC power supply 101 is instantaneously interrupted and stopped at time t1 and then restored at time t2, as shown in FIG.
- a period T1 from time t1 to time t2 is a momentary interruption and momentary interruption period.
- the period T2 represents the discharge time by the capacitor 103, that is, the capacitor discharge time. By discharging over the capacitor discharge time T2, the voltage of the capacitor 103 decreases as shown in FIG. Become.
- the input voltage is changed after time t1.
- the DC / DC converter 104 outputs the electric charge of the capacitor 103 to the load 105 in a state where the capacitor 103 is not charged from the AC / DC converter 102. Therefore, the voltage of the capacitor 103 decreases mainly depending on the magnitude of the output power and the capacity of the capacitor, and the decreased voltage of the capacitor 103 is lower than the maximum voltage Vp of the AC power supply 101 at the time of power recovery at time t2.
- an IGBT Insulated Gate Bipolar Transistor
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- the switching element may be composed of a semiconductor using Si (silicon), SiC (silicon carbide), GaN (gallium nitride), Ga2O3 (gallium oxide), diamond or similar wide band gap semiconductor material. It can comprise with the element of.
- the absolute value of the detection value of the voltage detection unit 108 continues below the reference voltage value for the capacitor discharge allowable time T21, and the absolute value of the detection value of the current detection unit 107 is below the reference current value. Is stopped for the capacitor discharge allowable time T21, the operations of the AC / DC converter 102 and the DC / DC converter 104 are stopped.
- the absolute value of the detection value is used for determination below the reference voltage value and below the reference current value.
- the reference value can be set only to a value close to the maximum value of the AC power supply voltage or less than the maximum value of the AC power supply voltage, thereby suppressing the occurrence of inrush current.
- the operation is stopped when the voltage of the capacitor 103 has not substantially decreased, and the voltage of the capacitor 103 is decreased. It is possible to prevent and suppress the occurrence of inrush current.
- the detection values of the voltage detection unit 108 and the current detection unit 107 detect the instantaneous voltage value and current value of the sine wave output from the AC power supply 101, the detection value is a sine even at the steady output voltage of the AC power supply 101. Below the reference voltage or current value near the zero cross of the wave. Therefore, if the capacitor discharge allowable time T21 is set short and the reference voltage value is set too small, the AC / DC converter 102 and the DC / DC converter 104 are stopped at the steady output voltage of the AC power supply 101. Therefore, in this application, in order to detect an alternating voltage and an alternating current, it is necessary to pay attention to the capacitor discharge allowable time T21, the reference voltage value, and the set value of the reference current value.
- the voltage of the AC power supply 101 input to the AC / DC converter 102 does not cause a power outage, momentary interruption, or instantaneous interruption, and the voltage in the range specified as the product is AC. Assume that the power supply 101 is outputting.
- Capacitor discharge time T2 is expressed by equation (1) where C is the capacity of capacitor 103, P is the output power, V0 is the initial capacitor voltage, and V1 is the capacitor voltage after discharge (the maximum value of the power supply voltage upon power recovery). Therefore, the capacitor discharge time T2 is derived using the equation (1), and the capacitor discharge allowable time T21 is shorter than the capacitor discharge time T2.
- T (1/2) C ⁇ (V0 2 ⁇ V1 2 ) ⁇ P (1)
- the capacitor discharge time T2 is set to 1 ms (milliseconds) as an example. It should be noted that a simulation and a real test apparatus may be used for deriving the capacitor discharge allowable time T21. As a result, discharge factors other than the output power such as the phase of the voltage ripple of the capacitor and the discharge resistance that occur in practice can be taken into consideration, so that the discharge time T of the capacitor can be derived more accurately. Therefore, since the power converter is not stopped excessively quickly, the power converter can be operated as much as possible, and more power can be converted in a short time.
- the maximum value V1 of the power supply voltage at the time of power recovery of the AC power supply 101 cannot be assumed at the time of a power failure, it is defined as a product of AC voltage input to the AC / DC converter assuming that the capacitor discharge time T2 is the shortest.
- the peak value is a maximum value of 280 Vrms. Note that 280 Vrms is merely an example.
- the output power P is the maximum output of the power converter 100
- the capacitor capacity C is the minimum capacity considering the initial capacity deviation, temperature variation, and aging degradation
- the initial capacitor voltage V0 is the minimum during operation of the power converter.
- the capacitor discharge time T2 is estimated with the capacitor voltage.
- the capacitor discharge allowable time T21 may be any value as long as it is shorter than the capacitor discharge time T2.
- the capacitor discharge allowable time T21 is set to a value shorter than the capacitor discharge time T2.
- the operation of the AC / DC converter 102 and the DC / DC converter 104 is stopped after the control unit detects a power failure, instantaneous interruption, or instantaneous interruption.
- the capacitor discharge allowable time T21 is assumed to be 500 us (microseconds), which is a half of 1 ms, as an example.
- the capacitor discharge time T2 is approximately 1 ms from equation (1). Therefore, if the capacitor discharge allowable time T21 is set to 500 us or less, which is half of 1 ms, the inrush current can be prevented in the power conversion device 100 connected to the commercial power source, and the above-described effect can be obtained.
- the detected values of the voltage and current are small near the zero cross of the AC power supply voltage and current, and the set values of the reference voltage value, the reference current value, and the capacitor discharge allowable time T21 are near the zero cross of the sine wave. Therefore, it is necessary to set the value so that the operation of the power conversion apparatus 100 is not erroneously stopped.
- FIG. 4 shows a schematic diagram of how to set the reference voltage value so as not to stop.
- the reference voltage value when the phase value of a half time (250 us) of 500 us as the allowable capacitor discharge time T21 from the zero cross point of the sine wave voltage of the AC power supply 101 is the upper limit value Va of the reference voltage, the reference voltage The value may be any value below the upper limit value Va of the reference voltage.
- the reason why the reference voltage value is set to be equal to or lower than the upper limit value of the reference voltage is because it is necessary to consider voltage detection error, detection delay, and the like. The same applies to the case of the reference current value and the upper limit value of the reference current.
- the detection value of the voltage does not continuously become equal to or less than the reference voltage value during the capacitor discharge allowable time T21 at the steady output voltage of the AC power supply 101. It is possible to prevent the operation of the AC / DC converter 102 and the DC / DC converter 104 from being erroneously stopped.
- the capacitor discharge allowable time T21, the reference voltage value, and the reference current value as described above, the AC / DC converter 102 and the DC / DC converter 102 change the AC voltage so that the capacitor voltage does not decrease below the capacitor discharge allowable voltage.
- the DC converter 104 can continue to operate.
- the reference voltage value is set to 0 in order to detect a power failure, it may not be possible to detect that there is no AC voltage even if a power failure occurs due to a sensor reading error.
- the upper limit value of the reference voltage is set, and the reference voltage value is set to a value lower than the upper limit value of the reference voltage and higher than 0 V, whereby the AC / DC converter 102 and the steady output voltage of the AC power supply 101 are set.
- the DC / DC converter 104 can be stopped without stopping when the voltage of the AC power supply 101 is lowered. This effect is the same in the case of the reference current value.
- the time function V (t) of the output voltage of the AC power supply 101 is expressed by Expression (2), where time is t and the effective value of the AC power supply voltage is Vs.
- V (t) ⁇ 2 ⁇ Vs ⁇ sin (2 ⁇ ft) (2)
- the voltage value at the phase of the capacitor discharge allowable time T21 that is a half of 500 us (250 us) is the effective value Vs of the voltage of the AC power supply from the equation (2). It turns out that it depends on.
- the reference voltage value is set as a ratio from the effective value of the voltage of the AC power supply 101 (input voltage of the AC / DC converter 102) detected by the voltage detection unit.
- the power supply frequency is 42.5 Hz and the time t is a time 250 us which is a half of the capacitor discharge allowable time T21, ⁇ 2 ⁇ sin (2 ⁇ ft) on the right side of the equation (2) is obtained as 0.047.
- the upper limit value of the voltage is 4.7% of the effective value of the output voltage Vs of the AC power supply 101. Therefore, here, as an example, the reference voltage value is 3%, which is 4.7% or less of the upper limit value of the reference voltage.
- the reference voltage value is set at a ratio to the effective value of the voltage of the AC power supply 101.
- the reference voltage value is set at a ratio to the peak value ( ⁇ 2 ⁇ Vs) of the voltage of the AC power supply 101. May be.
- the setting of the allowable capacitor discharge time T21, the reference current value, and the reference current upper limit value using the detection value of the current detection unit 107 is the same as in the case of the allowable capacitor discharge time T21, the reference voltage value, and the reference voltage upper limit value.
- the reference voltage value and the reference current value are set to values corresponding to the effective value of the voltage or the effective value of the current, respectively.
- the reference voltage value and the reference current value can be set according to.
- the reference voltage value is small so that the AC / DC converter 102 and the DC / DC converter 104 are not erroneously stopped at the steady output voltage of the AC power supply 101. In some cases, it is necessary to set the reference voltage value small. However, in such a case, when the AC voltage value is large, for example, if a power failure occurs, the stoppage is delayed, the capacitor voltage decreases to the limit, and there is a risk that an inrush current will occur due to unexpected things happening. is there. Therefore, when the reference voltage value is determined by calculation from the effective value, the AC / DC converter 102 and the DC / DC converter 104 are stopped according to the magnitude of the AC voltage value, which is safe. This effect is the same in the case of the reference current value.
- the reference voltage value when the reference voltage value is set to 3% of the effective value, the reference voltage value increases as the effective value increases. Therefore, for example, when the value of 3% of the effective value is equal to or greater than the predetermined voltage value, the reference voltage value is set to the predetermined voltage value, and when the value is less than the predetermined voltage value, the reference voltage value is set to the AC voltage. / A value obtained by calculation using the effective value of the input current of the DC converter 102. The setting of the reference current value based on the detection value of the current detection unit 107 is the same as in the case of the reference voltage value.
- the power conversion device 100 Since the power conversion device 100 is desired to convert as much power as possible in a short time, the power conversion device 100 is kept operating as much as possible when it is operable.
- the reference voltage value By providing an upper limit for the reference voltage value as described above, it is possible to prevent the reference voltage value from becoming unnecessarily stopped when the reference voltage value becomes too large and the AC power supply voltage decreases. This effect is the same in the case of the reference current value.
- the voltage reference value and the current reference value are set by calculation from the effective value.
- one of the voltage reference value and the current reference value or Both may be set to a constant value. Thereby, inrush current can be prevented with a simpler system configuration.
- the reference current value based on the detection value of the current detection unit 107 is the input current of the AC / DC converter 102 included in the AC / DC converter control unit 106a in the control unit 106 when the output power and input power of the power converter 100 are small. Since the target value is small, the input current is small. Therefore, the detection value of the current detection unit 107 becomes a small value even when it is not a power failure, instantaneous interruption, or instantaneous interruption, and the detection value may be equal to or less than the reference current value during the capacitor discharge allowable time T21.
- the reference current value is the target value of the input current of the AC / DC converter 102 of the AC / DC converter control unit 106a in order to detect that the input current is small due to power failure, instantaneous interruption, and instantaneous interruption.
- a predetermined value may be subtracted from the value.
- the voltage of the AC power supply 101 is regulated to a value with a certain minimum voltage value in the voltage range of the AC power supply 101 prescribed by the product, but the power conversion device 100 needs to continue operation even with a small current value. Therefore, it is necessary to set a reference current value corresponding to the target value of the input current of the AC / DC converter 102.
- the absolute value of the detection value of the voltage detection unit 108 continues below the reference voltage value for the capacitor discharge allowable time T21, and the absolute value of the detection value of the current detection unit 107 is below the reference current value. Is continued for the capacitor discharge allowable time T21, the operation of the AC / DC converter 102 and the DC / DC converter 104 is stopped.
- the absolute value of the detection value of the current detection unit 107 is small and the reference current value or less continues for the capacitor discharge allowable time T21, the absolute value of the detection value of the voltage detection unit 108 is less than or equal to the reference voltage value. If the operation is not continued for the capacitor discharge allowable time T21, the operation can be continued.
- the operation can be continued. If there is an input current or an input voltage, the capacitor 103 can be charged and the voltage of the capacitor 103 does not decrease, and the power conversion device 100 can output power. Therefore, this is possible when the power conversion device 100 is operable. Can work as long as possible.
- the absolute value of at least one detected value of the voltage detection unit 108 and the current detection unit 107 is between the capacitor discharge allowable time T21.
- the control unit 106 may stop the operations of the AC / DC converter 102 and the DC / DC converter 104 when the voltage becomes equal to or lower than the reference voltage value or the reference current value, respectively. As a result, when either or both of the input current and input voltage are lost, the operation can be stopped earlier, the capacitor voltage does not decrease, and the operation can be stopped in a safe state that prevents inrush current. it can.
- the absolute value of at least one of the detection values of the voltage detection unit 108 and the current detection unit 107 is a reference voltage value or a reference current during the capacitor discharge allowable time T21, respectively.
- the operation can be stopped more quickly depending on the situation, so that the capacitor voltage does not decrease and it can be stopped in a safe state that can prevent inrush current.
- the detection value of the voltage detector 108 is used for determination, it is possible to prevent inrush current with a simpler system. To become.
- control unit 106 restarts the AC / DC converter 102 and the DC / DC converter 104
- the control unit 106 used to control the AC / DC converter 102 and the DC / DC converter 104. It will be restarted after initializing the constants.
- control constant such as an integral term in the control unit 106 used at the time of stop or immediately before the stop
- the control becomes unstable due to the responsiveness after the restart. This is because the voltage of the capacitor 103 fluctuates, and in some cases, an inrush current may be generated when the capacitor voltage falls below the AC power supply voltage.
- the capacitor voltage detection unit 109 is used to detect that the voltage of the capacitor 103 is equal to or higher than a predetermined voltage, and the AC / DC converter 102 and the DC / DC converter 104 are started in a startup sequence at the start of operation. Will be restarted.
- the AC / DC converter 102 in order to determine a power failure, not only the detection value of the voltage detection unit 108 but also the detection value of the current detection unit 107 is used because there is an input current, and the AC / DC converter 102 is connected to the capacitor 103. This is to keep the operation as long as possible while power can be supplied. Therefore, when the detection value of the current detection unit 107 is not used and the absolute value of the detection value of the voltage detection unit 108 continues below the reference voltage value for the capacitor discharge allowable time T21, the AC / DC converter 102 The operation of the DC / DC converter 104 may be stopped.
- the power conversion device 100 can be made compact. There is a point that efficiency can be improved.
- the control frequency and the clock frequency of the control performed in the control unit 106 are set high. Therefore, when the present application is applied using a switching element made of a wide band gap semiconductor material, since the control frequency and the clock frequency are set high, the AC / DC converter is more immediately available when the conditions for stopping are complete. 102 and the DC / DC converter 104 can be stopped, and it is possible to obtain an effect that the inrush current can be more easily prevented.
- step ST2 the allowable discharge time of the capacitor, the reference voltage value of the power converter, and the reference current value of the power converter are set. Then, from the detected values by the current detection unit and the voltage detection unit of the power converter, a power failure, instantaneous interruption, and instantaneous interruption of the AC power supply are detected in step ST3, and an abnormality in the AC power supply is detected.
- a voltage drop value is predicted, and in step ST5, it is determined whether or not the abnormality of the AC power supply has continued for the capacitor discharge allowable time or longer. If it continues, the operation of the power converter is stopped and continued in step ST6. If not, the detection of the voltage and current of the AC power supply is continued again in step ST7, and the detection in step ST3 is performed. In step ST6, even after the operation of the power conversion device is stopped, confirmation of the status of the AC power supply is continued.
- the reference voltage value set in step ST2 is a half of the capacitor discharge allowable time T21 from the zero cross point of the AC power supply voltage. It is less than the absolute value of the AC power supply voltage in phase.
- the reference current value is the absolute value of the AC power source current in a phase that is one half of the capacitor discharge allowable time T21 from the zero cross point of the AC power source current. Below the value. Further, a value determined by calculation using an effective value of the input voltage of the AC / DC converter can be used as the reference voltage value, and a value determined by calculation using the effective value of the input voltage of the AC / DC converter is predetermined.
- the reference voltage value can be set to a predetermined voltage value.
- the reference current value can also be a value determined by calculation using the effective value of the input current of the AC / DC converter, and a value determined by calculation using the effective value of the input current of the AC / DC converter. If the current value is equal to or greater than the predetermined current value, the reference current value can be set to the predetermined current value.
- step ST6 when the AC power is restored after the control unit stops the operation of the AC / DC converter and the DC / DC converter, the control unit operates the AC / DC converter and the DC / DC converter again. .
- the control unit has control constants for controlling the AC / DC converter and the DC / DC converter when operating the power converter, and the control unit stopped the operation of the AC / DC converter and the DC / DC converter.
- the control unit can operate the AC / DC converter and the DC / DC converter again after initializing the control constant. In this case, the control unit operates the AC / DC converter and the DC / DC converter again in a predetermined activation sequence at the start of the operation.
- the control unit 106 includes a processor 501 and a storage device 502 as shown in FIG. 6 as an example of a hardware configuration.
- the storage device 502 includes a volatile storage device such as a random access memory and a nonvolatile auxiliary storage device such as a flash memory.
- the processor 501 executes a program input from the storage device 502. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory. In this case, a program is input from the auxiliary storage device to the processor 501 via the volatile storage device. Further, the processor 501 may output data such as a calculation result to the volatile storage device of the storage device 502, or may store the data in the auxiliary storage device via the volatile storage device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Inverter Devices (AREA)
Abstract
交流電源(101)と負荷(105)との間に設けられた電力変換装置(100)において、交流電源(101)の電圧が一旦低下した後に復旧した場合、電力変換装置(100)のコンデンサ(103)の電圧が低下して、復電時の交流電源(101)の電圧の最大値より低くなり、突入電流が発生するという問題に対して、電力変換部(102)の入力電圧または入力電流が低下したことを検知し、コンデンサ(103)の電圧の変化を予測して、交流電源(101)の最大電圧値以下に低下する前に、電力変換部(102)、(104)の動作を停止させ、突入電流の発生を抑制する。
Description
本願は、交流電圧を直流電圧に変換する電力変換装置に関するもので、特に出力を平滑化するコンデンサを有する電力変換装置に関するものである。
交流電源から供給される電力の力率を改善しつつ直流に変換して負荷に直流の電力を供給する電力変換装置において、交流電源の停電、瞬断、瞬停が発生した場合には、電力変換装置への入力電力が全く無い状態、あるいは入力電力が小さい状態で動作を継続する。このため、電力変換装置内の出力端に設けられているコンデンサの電荷が、引き抜かれ続け、コンデンサ電圧が低下する。その後、交流電源の復電が起こると、復電時の交流電源電圧よりもコンデンサ電圧が小さい場合には突入電流が発生し、電力変換装置内の半導体スイッチング素子を破壊するという問題を発生する。
この突入電流が発生する要因は、コンデンサ電圧が交流電源電圧より低くなることにあり、突入電流の大きさは短時間停電、瞬断、瞬停からの復電時の入力電圧の大きさと復電時のコンデンサ電圧の差に依存している。そのため、特許文献1では、コンデンサ電圧が所定の基準値以下になったら、負荷の動作を停止させることでコンデンサの電圧低下を抑制し、復電時の突入電流を抑制している。
一般的に、電力変換装置は、動作時にはコンデンサ電圧と交流電源電圧の電位差が小さい場合が多い。その理由としては、コンデンサは耐圧が高い程、高価で大型であるため、小型・低コスト化のためには耐圧が低いコンデンサを選定する必要があり、コンデンサ電圧のリップルがコンデンサの耐圧を超過しないように設計しようとすると、動作時のコンデンサ電圧は交流電源電圧に近い電圧にならざるを得ないからである。
特許文献1のように、復電時の突入電流を抑制するためには、瞬時停電から復電する直前のコンデンサの両端電圧と、瞬時停電からの復電時にコンバータに入力される交流電圧との差を小さく抑えることが適切であり、これを実現するために、コンデンサの両端の電圧を検出して、この検出した電圧が、コンバータを構成する半導体素子の突入電流耐性に基づく基準電圧以下になったと判定した場合には、電力変換装置に接続されている負荷の動作を停止させるように制御することで十分であった。
しかし、コンデンサ電圧が低下する速度は、コンデンサから電荷を引き抜く出力の大きさとコンデンサ容量に依存する。また、電力変換装置の小型化および低コスト化を目指すには余剰なコンデンサ容量の削減が行われる傾向にあり、電力変換装置の高出力化により、停電、瞬断、瞬停時のコンデンサ電圧低下の速度が速い傾向にある。そのため、特許文献1に示された技術のように、コンデンサ電圧が基準電圧値以下になったのを検知してから、負荷を停止させるのでは、定常動作時のコンデンサ電圧と交流電源電圧の電位差が小さい場合には、基準値を交流電源電圧の最大値に近い値もしくは交流電源電圧の最大値以下でしか設定できず、コンデンサ電圧の低下を検知してから負荷を停止させるまでの信号の伝達および情報処理による時間遅れの間に、コンデンサ電圧が復電時の入力電圧の最大値を下回り、大きな突入電流が発生することを防ぐことができないという問題が生じる。
大きな突入電流の発生を防ぐことができなければ、その突入電流の大きさを考慮した耐電流性の高い半導体素子を使用することが必要になり、一般的に電流耐量が少ないSiC、GaNまたはダイヤモンド等のワイドバンドギャップ半導体材料の素子を電力変換装置に用いることが難しくなるため、小型、低コストの電力変換装置を実現することに対して妨げになるという課題が生じる。
大きな突入電流の発生を防ぐことができなければ、その突入電流の大きさを考慮した耐電流性の高い半導体素子を使用することが必要になり、一般的に電流耐量が少ないSiC、GaNまたはダイヤモンド等のワイドバンドギャップ半導体材料の素子を電力変換装置に用いることが難しくなるため、小型、低コストの電力変換装置を実現することに対して妨げになるという課題が生じる。
本願は、前述の課題を解決するための技術を開示するものであり、ワイドバンドギャップ半導体材料の素子を用いても問題の無い自由度の高い電力変換装置を提供することを目的とするものである。
本願に開示される電力変換装置は、交流電源と負荷との間に設けられる電力変換装置であって、電力変換部と、前記電力変換部の出力端に接続されたコンデンサと、前記電力変換部への入力電力を検出する電力検出部と、前記電力検出部の検出値に基づいて前記入力電力の変化を検知し、前記入力電力の変化による前記コンデンサの電圧低下を予測し、前記電力変換部の動作を停止させる制御部とを備えたことを特徴とするものである。
本願に開示される電力変換装置によれば、入力電力の変化を検出してコンデンサの電圧低下を予測して、コンデンサの電圧が入力電圧よりも小さくなる前に電力変換装置の動作を停止させることによって、突入電流を防止でき、耐電流性の低い半導体材料の素子を使用することができ、自由度の高い電力変換装置を得ることができる。また、半導体素子に耐電流性を持たせる必要がないため、同じ半導体材料で比較した場合、小型、低コストで電力変換装置構成が可能となる。
実施の形態1.
図1は、実施の形態1による電力変換装置100の概略構成を示す構成図である。図に示すように、電力変換装置100は、電力系統の商用電源等の交流電源101と負荷105の間に接続されている。そして、電力変換装置100は、半導体素子等で構成されているAC/DCコンバータ102と、AC/DCコンバータ102の出力端に接続されるコンデンサ103と、半導体素子等で構成され、AC/DCコンバータ102の出力電力を任意の直流電圧に変換するDC/DCコンバータ104とを備えている。すなわち、DC/DCコンバータ104の出力端に負荷105が接続されている。さらに、AC/DCコンバータ102の入力電圧を検出する電圧検出部108と、入力電流を検出する電流検出部107と、AC/DCコンバータ102を制御するAC/DCコンバータ制御部106aおよびDC/DCコンバータ104の動作を制御するDC/DCコンバータ制御部106bを含む制御部106と、コンデンサ103の電圧を検出するコンデンサ電圧検出部109と、電流制限抵抗110と、スイッチング手段111とを備えている。
図1は、実施の形態1による電力変換装置100の概略構成を示す構成図である。図に示すように、電力変換装置100は、電力系統の商用電源等の交流電源101と負荷105の間に接続されている。そして、電力変換装置100は、半導体素子等で構成されているAC/DCコンバータ102と、AC/DCコンバータ102の出力端に接続されるコンデンサ103と、半導体素子等で構成され、AC/DCコンバータ102の出力電力を任意の直流電圧に変換するDC/DCコンバータ104とを備えている。すなわち、DC/DCコンバータ104の出力端に負荷105が接続されている。さらに、AC/DCコンバータ102の入力電圧を検出する電圧検出部108と、入力電流を検出する電流検出部107と、AC/DCコンバータ102を制御するAC/DCコンバータ制御部106aおよびDC/DCコンバータ104の動作を制御するDC/DCコンバータ制御部106bを含む制御部106と、コンデンサ103の電圧を検出するコンデンサ電圧検出部109と、電流制限抵抗110と、スイッチング手段111とを備えている。
AC/DCコンバータ102は昇圧型のコンバータであり、接続されている商用電源等の交流電源101から供給される電力の力率を改善しつつ任意の直流に変換する機能を有し、このAC/DCコンバータ102の出力端に接続されているコンデンサ103は、AC/DCコンバータ102の出力電圧を平滑する機能を持つ。DC/DCコンバータ104は、AC/DCコンバータ102の出力電力を絶縁しつつ、任意の直流電圧に変換し、負荷105に供給する機能を有する。
なお、AC/DCコンバータ102およびDC/DCコンバータ104が動作しているときにはスイッチング手段111はONとなっている。
なお、AC/DCコンバータ102およびDC/DCコンバータ104が動作しているときにはスイッチング手段111はONとなっている。
本願の対策を実施した場合の、瞬断、瞬停時のコンデンサ103の電圧と交流電源101の電圧の波形の一例を図2に示す。
図2において、波形A1はコンデンサ103の電圧値の変化を表しており、波形B1は、交流電源101の出力電圧の変化を表している。すなわち、交流電源101の出力電圧に着目すると、時刻t1において瞬断、瞬停が発生し、その後、時刻t2において復電している。時刻t1から時刻t2までの期間T1は瞬断、瞬停期間であり、図2に示した場合では、交流電源101の半周期の間、瞬断、瞬停している。交流電源101は、本願では、交流電源101の停電、瞬断、瞬停が発生した場合に、コンデンサ103の電圧が、交流電源101の復電時の電圧の最大値Vp以下に低下する前に、電圧検出部108または電流検出部107の検出値を使用して停電または瞬断、瞬停を検知し、電力変換装置の動作を時刻t3で停止させることで、コンデンサ103の電圧低下を防ぎ、突入電流の発生および、電力変換装置100を構成する部品の破壊を防止している。
図2において、波形A1はコンデンサ103の電圧値の変化を表しており、波形B1は、交流電源101の出力電圧の変化を表している。すなわち、交流電源101の出力電圧に着目すると、時刻t1において瞬断、瞬停が発生し、その後、時刻t2において復電している。時刻t1から時刻t2までの期間T1は瞬断、瞬停期間であり、図2に示した場合では、交流電源101の半周期の間、瞬断、瞬停している。交流電源101は、本願では、交流電源101の停電、瞬断、瞬停が発生した場合に、コンデンサ103の電圧が、交流電源101の復電時の電圧の最大値Vp以下に低下する前に、電圧検出部108または電流検出部107の検出値を使用して停電または瞬断、瞬停を検知し、電力変換装置の動作を時刻t3で停止させることで、コンデンサ103の電圧低下を防ぎ、突入電流の発生および、電力変換装置100を構成する部品の破壊を防止している。
この実施の形態1に対して、瞬断、瞬停時にAC/DCコンバータ102およびDC/DCコンバータ104の動作を継続し続ける場合の、瞬断、瞬停時のコンデンサ103の電圧と交流電源101の電圧の波形の一例を比較例として図3に示す。
図3において、波形A2はコンデンサ103の電圧値の変化を表しており、波形B2は、交流電源101の出力電圧の変化を表している。すなわち、交流電源101の出力電圧は、図2に示したと同様に、時刻t1に瞬断、瞬停が発生し、その後、時刻t2に復電していることがわかる。時刻t1から時刻t2までの期間T1は瞬断、瞬停期間であり、図3では交流電源101の半周期の間、瞬断、瞬停している。なお、期間T2はコンデンサ103による放電時間、すなわちコンデンサ放電時間を表しており、このコンデンサ放電時間T2を超えて放電が行われることによって、図3に示すようにコンデンサ103の電圧が低下することになる。
図3のコンデンサ103の電圧に着目すると、瞬断、瞬停が時刻t1で発生してもAC/DCコンバータ102およびDC/DCコンバータ104が動作を継続するため、時刻t1以後において、入力電圧がなく、AC/DCコンバータ102からコンデンサ103に充電されない状態で、DC/DCコンバータ104はコンデンサ103の電荷を負荷105に出力する。そのため、コンデンサ103の電圧は主に出力電力の大きさおよびコンデンサの容量に依存して低下し、低下したコンデンサ103の電圧が、時刻t2の復電の際の交流電源101の最大電圧Vpを下回っているため、時刻t2の復電時に、ΔVの大きさに依存した突入電流が交流電源101からコンデンサ103に流れ込む。よって、交流電源101からコンデンサ103の間の電流経路にあるAC/DCコンバータ102を構成している電流耐性の比較的弱い半導体素子が破壊されることになる。
AC/DCコンバータ102およびDC/DCコンバータ104のスイッチング素子には、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等が用いられる。なお、スイッチング素子は、Si(シリコン)を用いた半導体で構成してもよいし、SiC(シリコンカーバイド)、GaN(ガリウムナイトライド)、Ga2O3(酸化ガリウム)、ダイヤモンドあるいは同類のワイドバンドギャップ半導体材料の素子で構成することができる。
コンデンサ103の電圧が、交流電源101の復電時の電圧の最大値以下に低下する前に、停電または瞬断、瞬停したことを、電圧検出部108または電流検出部107で検出するために、本願の実施の形態では電圧検出部108の検出値の絶対値が基準電圧値以下をコンデンサ放電許容時間T21の間継続し、かつ、電流検出部107の検出値の絶対値が基準電流値以下をコンデンサ放電許容時間T21の間継続した時に、AC/DCコンバータ102とDC/DCコンバータ104の動作を停止させることとする。
なお、電圧検出部108および電流検出部107の検出値は負の値も取り得るため、基準電圧値以下および、基準電流値以下の判定には検出値の絶対値を用いる。
コンデンサ103の電圧と交流電源101の電圧の電位差が小さい場合には、基準値を交流電源電圧の最大値に近い値もしくは交流電源電圧の最大値以下でしか設定できず、突入電流の発生を抑制できない可能性が高いが、本願では入力電圧および入力電流を検知しているため、極端に言えば、コンデンサ103の電圧がほぼ低下していない段階で、動作を停止し、コンデンサ103の電圧低下を防ぎ、突入電流の発生を抑制することが可能となる。
コンデンサ103の電圧と交流電源101の電圧の電位差が小さい場合には、基準値を交流電源電圧の最大値に近い値もしくは交流電源電圧の最大値以下でしか設定できず、突入電流の発生を抑制できない可能性が高いが、本願では入力電圧および入力電流を検知しているため、極端に言えば、コンデンサ103の電圧がほぼ低下していない段階で、動作を停止し、コンデンサ103の電圧低下を防ぎ、突入電流の発生を抑制することが可能となる。
AC/DCコンバータ102への突入電流を防ぎ、交流電源101の定常出力電圧時に誤って電力変換装置100の動作を停止させない、基準電圧値と基準電流値およびコンデンサ放電許容時間T21の設定の方法を説明する。
本願では電圧検出部108および電流検出部107の検出値は交流電源101が出力する正弦波の瞬時の電圧値および電流値を検出するため、交流電源101の定常出力電圧時でも検出値は、正弦波のゼロクロス付近において基準電圧値または基準電流値を下回る。そのため、コンデンサ放電許容時間T21を短く設定し、基準電圧値を小さく設定し過ぎると、交流電源101の定常出力電圧時にAC/DCコンバータ102とDC/DCコンバータ104を停止させてしまうことになる。そのため、本願では交流電圧、交流電流を検知するため、コンデンサ放電許容時間T21、基準電圧値、基準電流値の設定値に注意が必要である。
交流電源101の定常出力電圧時とはAC/DCコンバータ102に入力される交流電源101の電圧に停電、瞬断、瞬停が発生していない状態でしかも製品として規定される範囲の電圧を交流電源101が出力している状態とする。
まず、コンデンサ放電許容時間T21の設定の方法について説明する。
図2の波形に示すように、突入電流を防ぐためには、コンデンサ103の電圧が、交流電源101の復電時の最大電圧値Vp以下に低下する前に、AC/DCコンバータ102とDC/DCコンバータ104の動作を停止させる必要がある。
図2の波形に示すように、突入電流を防ぐためには、コンデンサ103の電圧が、交流電源101の復電時の最大電圧値Vp以下に低下する前に、AC/DCコンバータ102とDC/DCコンバータ104の動作を停止させる必要がある。
コンデンサ放電時間T2は、コンデンサ103の容量をC、出力電力をP、初期のコンデンサ電圧をV0、放電後のコンデンサ電圧(復電時の電源電圧の最大値)をV1としたとき、式(1)で導出できるため、コンデンサ放電時間T2は、式(1)を用いて導出し、コンデンサ放電許容時間T21は、コンデンサ放電時間T2より短い値とする。
T=(1/2)C・(V02-V12)÷P (1)
T=(1/2)C・(V02-V12)÷P (1)
本実施の形態では一例としてコンデンサ放電時間T2を1ms(ミリ秒)とする。なお、コンデンサ放電許容時間T21の導出にはシミュレーションおよび実物の試験装置等を用いても良い。これにより、実際には起こるコンデンサの電圧リプルの位相および放電抵抗等の出力電力以外の放電要素も考慮できるため、より正確にコンデンサの放電時間Tを導出することができる。そのため、余分に早く電力変換装置を停止させることがないため、できる限り電力変換装置を動作でき、短い時間でより多くの電力を変換できる。
交流電源101の復電時の電源電圧の最大値V1は、停電時には想定できないため、コンデンサ放電時間T2が最短となる場合を想定して、AC/DCコンバータに入力される交流電圧の製品として規定する最大値280Vrmsのピーク値とする。なお、280Vrmsはあくまで一例である。また、出力電力Pは電力変換装置100の最大の出力、コンデンサ容量Cは初期容量偏差および温度ばらつき、経年劣化を考慮した最低の容量とし、初期のコンデンサ電圧V0は、電力変換装置動作時の最低のコンデンサ電圧でコンデンサ放電時間T2を見積もる。これにより、電力変換装置100の動作状態において、規定された範囲の交流電圧が、停電、瞬断、瞬停後に復帰しても突入電流を防止することができる。
また、シミュレーションでコンデンサの放電時間を導出する際にも、前述と同様に、より突入電流が発生し易い、厳しい条件でシミュレーションを行うこととする。これにより、様々な電力変換装置の動作状態において、規定された範囲の交流電圧が、停電、瞬断、瞬停後に復帰しても突入電流を防止することができる。
コンデンサ放電許容時間T21は、コンデンサ放電時間T2より小さければ、どのような値でも良い。コンデンサ放電許容時間T21をコンデンサ放電時間T2より小さい値とするのは、停電または瞬断、瞬停したことを制御部が検知してからAC/DCコンバータ102およびDC/DCコンバータ104の動作を停止させるまでの時間遅れを考慮するためであり、ここでは、一例としてコンデンサ放電許容時間T21は、コンデンサ放電時間T2を1msの半分である500us(マイクロ秒)とする。
電力変換装置100において、一般的に出力電力Pが大きいほどコンデンサ容量Cも大きくなるため、C÷Pはほぼ一定である。また、V0は電力系統の商用電源の最大値、V1は動作時の一般的なコンデンサ電圧の最小値とすると式(1)より、コンデンサ放電時間T2は、概ね1msとなる。そのため、コンデンサ放電許容時間T21を1msの半分の500us以下とすれば、商用電源に接続される電力変換装置100において突入電流を防止可能することができ、前述の効果が得られる。
次に基準電圧値、基準電流値の設定の方法について説明する。電圧および電流の検出値が小さくなるのは交流電源の電圧および電流の正弦波のゼロクロス付近であり、基準電圧値と基準電流値およびコンデンサ放電許容時間T21の設定値は、正弦波のゼロクロス付近であって、誤って電力変換装置100の動作を停止させることのないような値に設定する必要がある。
交流電源101の正弦波電圧のゼロクロス付近の小さい電圧の期間において、検出値が基準電圧値または基準電流値を下回ることで、停電または瞬断、瞬停でないときに誤って電力変換装置の動作を停止させないための、基準電圧値の設定の仕方についての概略図を図4に示す。
図4において、交流電源101の正弦波電圧のゼロクロスの点からコンデンサ放電許容時間T21である500usの2分の1の時間(250us)の位相の値を基準電圧の上限値Vaとすると、基準電圧値は基準電圧の上限値Va以下のどのような値でも良い。基準電圧値を基準電圧の上限値以下とするのは電圧の検出誤差および検出の遅延等を考慮する必要があるためである。基準電流値、基準電流の上限値の場合も上記と同様である。
図4において、交流電源101の正弦波電圧のゼロクロスの点からコンデンサ放電許容時間T21である500usの2分の1の時間(250us)の位相の値を基準電圧の上限値Vaとすると、基準電圧値は基準電圧の上限値Va以下のどのような値でも良い。基準電圧値を基準電圧の上限値以下とするのは電圧の検出誤差および検出の遅延等を考慮する必要があるためである。基準電流値、基準電流の上限値の場合も上記と同様である。
基準電圧値を基準電圧の上限値Va以下とすることで、交流電源101の定常出力電圧時において、電圧の検出値はコンデンサ放電許容時間T21の間で継続して基準電圧値以下とならないため、誤ってAC/DCコンバータ102とDC/DCコンバータ104の動作を停止させることを防止できる。前述のようにコンデンサ放電許容時間T21、基準電圧値、基準電流値を設定することで、コンデンサ電圧がコンデンサ放電許容電圧以下に低下しないほどの、交流電圧の変化ではAC/DCコンバータ102およびDC/DCコンバータ104は動作を継続することができる。
また、例えば、停電を検知するために基準電圧値を0とすると、センサの読み取り誤差により、停電が発生していても、交流電圧がないことを検知できない可能性がある。前述のように基準電圧の上限値を設定し、基準電圧値を基準電圧の上限値以下で、0Vより高い値に設定することで、交流電源101の定常出力電圧にはAC/DCコンバータ102およびDC/DCコンバータ104を停止させず、交流電源101の電圧が低下した時には停止させることができる。本効果は基準電流値の場合においても同様である。
交流電源101の出力電圧の時間の関数V(t)は時間をt、交流電源の電圧の実効値をVsとすると式(2)で表される。
V(t)=√2×Vs×sin(2πft) (2)
交流電源101の正弦波電圧のゼロクロスの点からコンデンサ放電許容時間T21を500usの2分の1の時間(250us)の位相での電圧値は式(2)より、交流電源の電圧の実効値Vsに依存することがわかる。交流電源101に商用電源を想定した場合、交流電源101の電圧の実効値は国によって異なり、また変動することが想定される。そのため、基準電圧値は電圧検出部によって検出した交流電源101の電圧(AC/DCコンバータ102の入力電圧)の実効値からの割合で設定することとする。
V(t)=√2×Vs×sin(2πft) (2)
交流電源101の正弦波電圧のゼロクロスの点からコンデンサ放電許容時間T21を500usの2分の1の時間(250us)の位相での電圧値は式(2)より、交流電源の電圧の実効値Vsに依存することがわかる。交流電源101に商用電源を想定した場合、交流電源101の電圧の実効値は国によって異なり、また変動することが想定される。そのため、基準電圧値は電圧検出部によって検出した交流電源101の電圧(AC/DCコンバータ102の入力電圧)の実効値からの割合で設定することとする。
電源周波数を一例として42.5Hz、時刻tをコンデンサ放電許容時間T21の2分の1の時間250usとすると式(2)の右辺の√2×sin(2πft)は0.047と求まるため、基準電圧の上限値は、交流電源101の出力電圧Vsの実効値の4.7%の値とわかる。よって、ここでは一例として基準電圧値は基準電圧の上限値の4.7%以下の値である3%とする。検出した交流電源101の電圧の実効値の3%を基準電圧値とすることで、交流電源101の出力電圧が変化しても、誤ってAC/DCコンバータ102とDC/DCコンバータ104の動作を停止させることを防止できる。
周波数fを42.5Hzとしたのは、周波数が低い程、基準電圧の上限値は低くなり誤った動作の停止を防ぐことができるためであり、商用周波数50Hzの-15%を考慮した値である。
なお、本実施の形態では、交流電源101の電圧の実効値に対する割合で基準電圧値を設定したが、交流電源101の電圧の波高値(√2×Vs)に対する割合で基準電圧値を設定しても良い。
電流検出部107の検出値を用いたコンデンサ放電許容時間T21と基準電流値、基準電流上限値の設定に関しても、コンデンサ放電許容時間T21と基準電圧値、基準電圧上限値の場合と同様である。
なお、本実施の形態では、交流電源101の電圧の実効値に対する割合で基準電圧値を設定したが、交流電源101の電圧の波高値(√2×Vs)に対する割合で基準電圧値を設定しても良い。
電流検出部107の検出値を用いたコンデンサ放電許容時間T21と基準電流値、基準電流上限値の設定に関しても、コンデンサ放電許容時間T21と基準電圧値、基準電圧上限値の場合と同様である。
前述のように基準電圧値および基準電流値を、それぞれ電圧の実効値または電流の実効値に応じた値に設定することで、様々な交流電圧、交流電流でも、交流電圧、交流電流の大きさに応じて基準電圧値および基準電流値を設定できる。
仮に、基準電圧値を実効値からの演算で決めない場合には、交流電源101の定常出力電圧時に誤ってAC/DCコンバータ102およびDC/DCコンバータ104を停止させないために、交流電圧値が小さい場合を想定して、基準電圧値を小さく設定する必要がある。しかし、そうした場合、交流電圧値が大きいときに、例えば停電すると、停止が遅くなり、コンデンサ電圧が限界まで低下してしまい、想定外のことが起こることによって突入電流が発生してしまう危険性がある。そのため、基準電圧値を実効値からの演算で決めた場合、交流電圧値の大きさに応じてAC/DCコンバータ102およびDC/DCコンバータ104を停止させるため、安全である。本効果は基準電流値の場合においても同様である。
また、実効値の3%に基準電圧値を設定する場合、実効値が大きいほど基準電圧値も大きくなる。そのため、例えば、実効値の3%の値が所定電圧値以上の場合には、前記基準電圧値を前記所定電圧値に設定し、所定電圧値未満の場合には、前記基準電圧値を前記AC/DCコンバータ102の入力電流の実効値を用いた演算によって求めた値とする。電流検出部107の検出値による基準電流値の設定に関しても、基準電圧値の場合と同様である。
電力変換装置100は短い時間で出来るだけ大きな電力を変換することが望まれるため、動作可能なときにはできるだけ、電力変換装置100を動作させ続けることとする。前述のように基準電圧値に上限を設けることで、基準電圧値が大きくなりすぎて、交流電源電圧が低下した場合、必要以上に停止することを防ぐことができる。本効果は基準電流値の場合においても同様である。
本実施の形態では実効値からの演算によって電圧基準値および電流基準値を設定しているが、センサ誤差および交流電源101の電圧範囲等を考慮して、電圧基準値と電流基準値の片方もしくは両方を一定値に設定してもよい。これにより、より簡易なシステム構成により突入電流を防止することができる。
電流検出部107の検出値による基準電流値は、電力変換装置100の出力電力および入力電力が小さい場合に、制御部106内のAC/DCコンバータ制御部106aがもつAC/DCコンバータ102の入力電流の目標値が小さいため、入力電流は小さくなる。そのため、電流検出部107の検出値は停電、瞬断、瞬停でないときにも小さい値になり、検知値がコンデンサ放電許容時間T21の間、基準電流値以下となる可能性がある。
そのため、停電、瞬断、瞬停が要因で入力電流が小さくなっていることを検知するために、基準電流値はAC/DCコンバータ制御部106aがもつAC/DCコンバータ102の入力電流の目標値に所定値を減算した値としてもよい。
交流電源101の電圧は、製品により規定される交流電源101の電圧範囲において、最小電圧値がある程度大きな値に規定されているが、電流が小さい値でも電力変換装置100は動作を継続する必要があるため、AC/DCコンバータ102の入力電流の目標値に応じた基準電流値を設定する必要がある。
交流電源101の電圧は、製品により規定される交流電源101の電圧範囲において、最小電圧値がある程度大きな値に規定されているが、電流が小さい値でも電力変換装置100は動作を継続する必要があるため、AC/DCコンバータ102の入力電流の目標値に応じた基準電流値を設定する必要がある。
また、本実施の形態では電圧検出部108の検出値の絶対値が基準電圧値以下をコンデンサ放電許容時間T21の間継続し、かつ、電流検出部107の検出値の絶対値が基準電流値以下をコンデンサ放電許容時間T21の間継続した時に、AC/DCコンバータ102とDC/DCコンバータ104の動作を停止させる。
そのため、電流検出部107の検出値の絶対値が小さく、基準電流値以下をコンデンサ放電許容時間T21の間継続した場合であっても、電圧検出部108の検出値の絶対値が基準電圧値以下をコンデンサ放電許容時間T21の間継続していなければ、動作継続可能となる。
逆に、交流電源101の電圧が低下し、電圧検出部108の検出値の絶対値が基準電圧値以下をコンデンサ放電許容時間T21の間継続していても、入力電流があれば電流検出部107の検出値の絶対値が基準電流値以下をコンデンサ放電許容時間T21の間継続しないため動作を継続できる。入力電流または入力電圧があればコンデンサ103は充電できコンデンサ103の電圧は低下せず、電力変換装置100は電力を出力可能であるため、これにより、電力変換装置100は動作可能なときは可能な限り動作することができる。
なお、前記AC/DCコンバータ102および前記DC/DCコンバータ104が動作中において、電圧検出部108と電流検出部107のうち少なくとも一つ以上の検出値の絶対値が、コンデンサ放電許容時間T21の間、それぞれ基準電圧値または基準電流値以下となる場合に前記制御部106がAC/DCコンバータ102およびDC/DCコンバータ104の動作を停止させることとしてもよい。これにより、入力電流、入力電圧のどちらかもしくは両方がなくなった時に停止させるため、より早く動作を停止させることでき、よりコンデンサ電圧が低下しない、より突入電流が防げる安全な状態で停止させることができる。
また、電流検出部107の検出値に関係なく、電圧検出部108の検出値の絶対値が基準電圧値以下をコンデンサ放電許容時間T21の間継続した場合に、AC/DCコンバータ102およびDC/DCコンバータ104の動作を停止させることとした場合、電圧検出部108と電流検出部107のうち少なくとも一つ以上の検出値の絶対値が、コンデンサ放電許容時間T21の間、それぞれ基準電圧値または基準電流値以下となる場合に停止させることとした場合に比べて、状況により、より早く動作を停止させることができるため、よりコンデンサ電圧が低下しない、より突入電流が防げる安全な状態で停止させることができると共に、電圧検出部108の検出値しか判定に使用しないため、より簡単なシステムで突入電流の防止が可能となる。
交流電源101の電圧が低下したことで電力変換装置100を停止させた後、交流電源101の電圧が復電した場合の動作について説明する。
交流電源101が停電または瞬断、瞬停したことで電力変換装置100を停止させた後、交流電源101の電圧が復電した場合、電力変換装置100は動作可能であるため、電圧検出部108を用いて交流電源101の電圧があることを検出したら、制御部106がAC/DCコンバータ102およびDC/DCコンバータ104を再起動させることとする。
交流電源101が停電または瞬断、瞬停したことで電力変換装置100を停止させた後、交流電源101の電圧が復電した場合、電力変換装置100は動作可能であるため、電圧検出部108を用いて交流電源101の電圧があることを検出したら、制御部106がAC/DCコンバータ102およびDC/DCコンバータ104を再起動させることとする。
これは、電力変換装置100は短い時間で出来るだけ大きな電力を変換することが望まれるため、動作可能なときには直ちに動作することとする。
但し、制御部106がAC/DCコンバータ102およびDC/DCコンバータ104を再起動させる際には、制御部106がAC/DCコンバータ102およびDC/DCコンバータ104を制御する際に使用していた制御定数を初期化した後に再起動させることとする。
これは、再起動させた際、例えば、停止時または停止直前に使用されていた制御部106の内部の積分項等の制御定数を用いると、再起動後の応答性によって、制御が不安定になり、コンデンサ103の電圧が変動し、場合によってはコンデンサ電圧が交流電源電圧を下回ることで突入電流が発生する場合があるからである。
更に、交流電源101の電圧が停電、瞬断、瞬停等で低下し、AC/DCコンバータ102およびDC/DCコンバータ104の動作を停止させた場合には、AC/DCコンバータ102およびDC/DCコンバータ104が動作時にONとしていたスイッチング手段111を直ちにOFFに切り替え、電流制限抵抗110を交流電源101とAC/DCコンバータ102間の電流経路に挿入することで復電時の突入電流を防止することとする。
これは、例えば交流電源101が停電してから復電するまでの時間が長い場合、AC/DCコンバータおよびDC/DCコンバータを停止させたとしても、放電抵抗等によりコンデンサ103の電圧が低下し、コンデンサ103の電圧が低下している状態で交流電源101が復電すると大きな突入電流が発生する恐れがあるためである。
再起動する際には、コンデンサ電圧検出部109を用いてコンデンサ103の電圧が所定電圧以上あることを検知することを行い、動作開始時の起動シーケンスでAC/DCコンバータ102およびDC/DCコンバータ104を再起動させることとする。
これは、コンデンサ電圧が通常より低下した状態で動作を始めた場合、制御の応答性によってはコンデンサ電圧が交流電源電圧を下回り、突入電流が発生する可能性があるからである。また起動時のシーケンスを使用することで、電力変換装置100の動作を単純化することが可能となる。
実施の形態において、停電を判定するために、電圧検出部108の検出値だけでなく、電流検出部107の検出値を使用するのは、入力電流があり、AC/DCコンバータ102がコンデンサ103に電力を供給できる間であれば、できるだけ動作を継続させるためである。
そのため、電流検出部107の検出値を使用せずに、電圧検出部108の検出値の絶対値が基準電圧値以下をコンデンサ放電許容時間T21の間、継続した場合には、AC/DCコンバータ102とDC/DCコンバータ104の動作を停止させてもよい。
そのため、電流検出部107の検出値を使用せずに、電圧検出部108の検出値の絶対値が基準電圧値以下をコンデンサ放電許容時間T21の間、継続した場合には、AC/DCコンバータ102とDC/DCコンバータ104の動作を停止させてもよい。
本願では、半導体素子の材料に例えばSiC、GaN、ダイヤモンドまたはそれらと同類のワイドバンドギャップ半導体を用いた構成が可能である。
これは、本願では突入電流の発生を防止しているため、AC/DCコンバータ102およびDC/DCコンバータ104を構成している半導体素子に高い耐電流性を持たせる必要が無いため、耐電流性が小さいワイドバンドギャップ半導体であっても使用可能となる。
これは、本願では突入電流の発生を防止しているため、AC/DCコンバータ102およびDC/DCコンバータ104を構成している半導体素子に高い耐電流性を持たせる必要が無いため、耐電流性が小さいワイドバンドギャップ半導体であっても使用可能となる。
また、電力変換装置100にワイドバンドギャップ半導体材料の素子を使用する利点として、ワイドバンドギャップ半導体材料の素子以外のスイッチング素子に比べて、スイッチンング周波数を速くできるため、電力変換装置100の小型、高効率化が可能となる点がある。スイッチング周波数を速くするために、制御部106内で行っている制御の制御周波数およびクロック周波数が高く設定されている。そのため、ワイドバンドギャップ半導体材料のスイッチング素子を使用して、本願を適用した場合、制御周波数およびクロック周波数が高く設定されているために、停止させる条件が揃った場合に、より直ちにAC/DCコンバータ102およびDC/DCコンバータ104を停止でき、より突入電流を防止し易い構成にできるという効果を得ることができる。
本実施の形態の電力変換装置100における制御の手順について図5に基づいて説明する。図5のステップST1において制御がスタートすると、ステップST2において、前述のとおりコンデンサの放電許容時間の設定、電力変換装置の基準電圧値の設定、電力変換装置の基準電流値の設定を行う。そして、電力変換装置の電流検出部および電圧検出部による検出値から、ステップST3において交流電源の停電、瞬断、瞬停を検知し、交流電源の異常を検知すると、ステップST4において時間経過におけるコンデンサ電圧の低下値を予測し、ステップST5において、交流電源の異常がコンデンサ放電許容時間以上継続したか否かを判断し、継続する場合には、ステップST6において電力変換装置の動作を停止し、継続しない場合には、ステップST7において再び交流電源の電圧及び電流の検出を継続し、ステップST3における検知を実施する。また、ステップST6において、電力変換装置の動作を停止した後も、交流電源の状況の確認を継続することになる。
ここで、ステップST2において設定される基準電圧値は、図4において説明しているように、基準電圧値は交流電源の電圧のゼロクロス点から前記コンデンサ放電許容時間T21の2分の1の時間の位相での交流電源の電圧の絶対値以下である。また、基準電流値は、同様に図4において説明しているように、交流電源の電流のゼロクロス点から前記コンデンサ放電許容時間T21の2分の1の時間の位相での交流電源の電流の絶対値以下である。また、基準電圧値を、AC/DCコンバータの入力電圧の実効値を用いた演算によって決まる値を使用することもでき、AC/DCコンバータの入力電圧の実効値を用いた演算によって決まる値が所定電圧値以上の場合には、基準電圧値を所定電圧値に設定することもできる。また、基準電流値についても、AC/DCコンバータの入力電流の実効値を用いた演算によって決まる値を使用することができ、AC/DCコンバータの入力電流の実効値を用いた演算によって決まる値が所定電流値以上の場合には、基準電流値を所定電流値に設定することもできる。
また、ステップST6において、制御部がAC/DCコンバータおよびDC/DCコンバータの動作を停止させた後、交流電源が復電した場合、制御部がAC/DCコンバータおよびDC/DCコンバータを再度動作させる。これによって、電力変換装置が再度定常の運転を行うことになる。また、電力変換装置を動作させる際にAC/DCコンバータおよびDC/DCコンバータを制御するための制御定数を制御部が持ち、制御部がAC/DCコンバータおよびDC/DCコンバータの動作を停止させた後に交流電源が復電した場合に、制御部はこの制御定数を初期化した後に、AC/DCコンバータおよびDC/DCコンバータを再度動作させることができる。この場合、制御部は動作開始時の所定の起動シーケンスでAC/DCコンバータおよびDC/DCコンバータを再度動作させることになる。
なお、制御部106は、ハードウエアの構成の一例を図6に示すように、プロセッサ501と記憶装置502から構成される。記憶装置502の内容は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを備えている。プロセッサ501は、記憶装置502から入力されたプログラムを実行する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を備えてもよい。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ501にプログラムが入力される。また、プロセッサ501は、演算結果等のデータを記憶装置502の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
本願は、例示的な実施の形態が記載されているが、実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。
100 電力変換装置、101 交流電源、102 AC/DCコンバータ、103 コンデンサ、104 DC/DCコンバータ、105 負荷、106 制御部、106a AC/DCコンバータ制御部、106b DC/DCコンバータ制御部、107 電流検出部、108 電圧検出部、109 コンデンサ電圧検出部、110 電流制限抵抗、111 スイッチング手段、501 プロセッサ、502 記憶装置
Claims (18)
- 交流電源と負荷との間に設けられる電力変換装置であって、電力変換部と、前記電力変換部の出力端に接続されたコンデンサと、前記電力変換部への入力電力を検出する電力検出部と、前記電力検出部の検出値に基づいて前記入力電力の変化を検知し、前記入力電力の変化による前記コンデンサの電力の低下を予測し、前記電力変換部の動作を停止させる制御部とを備えたことを特徴とする電力変換装置。
- 前記電力変換部が、半導体素子によって構成され、前記交流電源から供給される電力を直流に変換するAC/DCコンバータと、半導体素子によって構成され、前記AC/DCコンバータの出力電力を直流電圧に変換するDC/DCコンバータとであって、前記コンデンサが、前記AC/DCコンバータの出力端に接続されていることを特徴とする請求項1に記載の電力変換装置。
- 前記電力検出部が、前記AC/DCコンバータの入力電圧を検出する電圧検出部と、前記AC/DCコンバータの入力電流を検出する電流検出部であって、前記制御部は基準電圧値または基準電流値を有し、前記AC/DCコンバータおよび前記DC/DCコンバータが動作中、前記電圧検出部と前記電流検出部のうちいずれか一方の検出値の絶対値が所定時間で基準電圧値以下または基準電流値以下となる場合に前記AC/DCコンバータおよび前記DC/DCコンバータの動作を停止させることを特徴とする請求項2に記載の電力変換装置。
- 前記電力検出部が、前記AC/DCコンバータの入力電圧を検出する電圧検出部と、前記AC/DCコンバータの入力電流を検出する電流検出部であって、前記制御部は基準電圧値および基準電流値を有し、前記AC/DCコンバータおよび前記DC/DCコンバータが動作中、前記電圧検出部と前記電流検出部の両方の検出値の絶対値が、所定時間の間、基準電圧値以下または基準電流値以下となる場合に、前記AC/DCコンバータおよび前記DC/DCコンバータの動作を停止させることを特徴とする請求項2に記載の電力変換装置。
- 前記基準電圧値は、前記交流電源の電圧のゼロクロス点から前記所定時間の2分の1の時間の位相での交流電源の電圧の絶対値以下であることを特徴とする請求項3または4に記載の電力変換装置。
- 前記基準電流値は、前記交流電源の電流のゼロクロス点から前記所定時間の2分の1の時間の位相での交流電源の電流の絶対値以下であることを特徴とする請求項3または4に記載の電力変換装置。
- 前記基準電圧値が、前記AC/DCコンバータの入力電圧の実効値を用いた演算によって決まる値であることを特徴とする請求項3または4に記載の電力変換装置。
- 前記基準電圧値において、前記AC/DCコンバータの入力電圧の実効値を用いた演算によって決まる値が所定電圧値以上の場合には、前記基準電圧値を前記所定電圧値に設定することを特徴とする請求項7に記載の電力変換装置。
- 前記基準電流値が、前記AC/DCコンバータの入力電流の実効値を用いた演算によって決まる値であることを特徴とする請求項3または4に記載の電力変換装置。
- 前記基準電流値において、前記AC/DCコンバータの入力電流の実効値を用いた演算によって決まる値が所定電流値以上の場合には、前記基準電流値を前記所定電流値に設定することを特徴とする請求項9に記載の電力変換装置。
- 前記制御部は前記AC/DCコンバータを制御するための入力電流の目標値を持ち、前記基準電流値は、前記目標値から所定値を減算した値であることを特徴とする請求項3または4に記載の電力変換装置。
- 前記電力変換装置において、前記所定時間は、前記交流電源の電圧が低下した時刻から、前記コンデンサの電圧が前記交流電源の最大値以下になるまでよりも短い時間であることを特徴とする請求項3から11のいずれか一項に記載の電力変換装置。
- 前記所定時間を設定する演算には、出力電力P、前記コンデンサの容量C、前記交流電源の電圧が低下した時刻の交流電源の電圧V0、復電時の交流電源の電圧の最大値V1を使用し、前記出力電力Pは前記電力変換装置の最大の出力電力であり、前記コンデンサの容量Cはコンデンサの初期容量偏差、温度ばらつき、経年劣化を考慮した最低の容量であり、前記電圧V0は前記電力変換装置が動作時の最低の前記コンデンサの電圧であり、前記復電時の交流電源の電圧の最大値V1は前記電力変換装置が製品として規定される入力電圧の最大値であることを特徴とする請求項12に記載の電力変換装置。
- 前記所定時間は500マイクロ秒以下であることを特徴とする請求項12に記載の電力変換装置。
- 前記制御部が前記AC/DCコンバータおよび前記DC/DCコンバータの動作を停止させた後、前記交流電源が復電した場合、前記制御部が前記AC/DCコンバータおよび前記DC/DCコンバータを再度動作させることを特徴とする請求項2から14のいずれか一項に記載の電力変換装置。
- 前記電力変換装置を動作させる際に前記AC/DCコンバータおよび前記DC/DCコンバータを制御するための制御定数を前記制御部が持ち、前記制御部が前記AC/DCコンバータおよび前記DC/DCコンバータの動作を停止させた後に前記交流電源が復電した場合に、前記制御部は前記制御定数を初期化した後に、前記AC/DCコンバータおよび前記DC/DCコンバータを再度動作させることを特徴とする請求項15に記載の電力変換装置。
- 前記制御部が前記AC/DCコンバータおよび前記DC/DCコンバータの動作を停止させた後に
前記交流電源が復電した場合、前記制御部は動作開始時の所定の起動シーケンスで前記AC/DCコンバータおよび前記DC/DCコンバータを再度動作させることを特徴とする請求項15に記載の電力変換装置。 - 前記半導体素子の材料にはワイドバンドギャップ半導体材料が使用されていることを特徴とする請求項2から17のいずれか一項に記載の電力変換装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18919543.1A EP3799288A4 (en) | 2018-05-21 | 2018-05-21 | POWER CONVERSION DEVICE |
JP2020520863A JP7008811B2 (ja) | 2018-05-21 | 2018-05-21 | 電力変換装置 |
US17/051,015 US11368102B2 (en) | 2018-05-21 | 2018-05-21 | Power conversion device |
CN201880093386.1A CN112154598B (zh) | 2018-05-21 | 2018-05-21 | 功率转换装置 |
PCT/JP2018/019439 WO2019224863A1 (ja) | 2018-05-21 | 2018-05-21 | 電力変換装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/019439 WO2019224863A1 (ja) | 2018-05-21 | 2018-05-21 | 電力変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019224863A1 true WO2019224863A1 (ja) | 2019-11-28 |
Family
ID=68616845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019439 WO2019224863A1 (ja) | 2018-05-21 | 2018-05-21 | 電力変換装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11368102B2 (ja) |
EP (1) | EP3799288A4 (ja) |
JP (1) | JP7008811B2 (ja) |
CN (1) | CN112154598B (ja) |
WO (1) | WO2019224863A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7094469B1 (ja) * | 2021-06-21 | 2022-07-01 | 三菱電機株式会社 | 電力変換装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3992133B1 (en) * | 2020-10-28 | 2024-03-13 | KONE Corporation | Method for detecting loss or undervoltage condition of phase of electric converter unit, conveyor control unit, and conveyor system |
JP7130024B2 (ja) * | 2020-11-12 | 2022-09-02 | 三菱電機株式会社 | 電力変換装置 |
US20220176838A1 (en) * | 2020-12-09 | 2022-06-09 | Lear Corporation | Method and System for Controlling On-Board Battery Charger of Electric Vehicle to Accommodate Transients in Supply Voltage |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007041271A (ja) * | 2005-08-03 | 2007-02-15 | Canon Inc | 画像形成装置 |
JP5460838B2 (ja) | 2012-12-10 | 2014-04-02 | 三菱電機株式会社 | 電力変換装置 |
JP2015192527A (ja) * | 2014-03-28 | 2015-11-02 | オムロンオートモーティブエレクトロニクス株式会社 | 電力供給装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4031463A (en) * | 1976-03-01 | 1977-06-21 | Control Data Corporation | Power brown-out detector |
US4558275A (en) * | 1981-04-21 | 1985-12-10 | The Superior Electric Company | Line voltage monitor system |
JPS6323567A (ja) | 1986-07-14 | 1988-01-30 | Meidensha Electric Mfg Co Ltd | コンバ−タの制御装置 |
JP2000197347A (ja) * | 1998-12-25 | 2000-07-14 | Hitachi Ltd | 電源装置 |
GB2407218B (en) * | 2003-03-17 | 2005-11-02 | Mitsubishi Electric Corp | Inverter device |
TWI279961B (en) * | 2003-03-31 | 2007-04-21 | Fuji Electric Co Ltd | Uninterruptible power supply system |
US7298120B2 (en) * | 2005-05-11 | 2007-11-20 | Radio Shack Corporation | Apparatus, and associated method, for converting electrical power into form for powering a load device |
JP5274579B2 (ja) * | 2008-12-01 | 2013-08-28 | 三菱電機株式会社 | 交流直流変換装置、電動機駆動装置 |
US8975785B2 (en) * | 2009-08-26 | 2015-03-10 | Panasonic Corporation | Load control device |
JP5279796B2 (ja) * | 2010-10-29 | 2013-09-04 | 三菱電機株式会社 | 電力変換装置 |
JP5447413B2 (ja) * | 2011-03-16 | 2014-03-19 | 株式会社ダイフク | 無接触給電設備の2次側受電回路 |
JP5648017B2 (ja) * | 2012-05-16 | 2015-01-07 | 東芝テック株式会社 | 電力変換装置 |
WO2014196013A1 (ja) * | 2013-06-04 | 2014-12-11 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
DE102015101766A1 (de) * | 2015-02-06 | 2016-08-11 | Woodward Kempen Gmbh | Filterüberwachung |
SG11201705208UA (en) * | 2015-03-11 | 2017-09-28 | Mitsubishi Electric Corp | Power supply device |
-
2018
- 2018-05-21 CN CN201880093386.1A patent/CN112154598B/zh active Active
- 2018-05-21 WO PCT/JP2018/019439 patent/WO2019224863A1/ja unknown
- 2018-05-21 JP JP2020520863A patent/JP7008811B2/ja active Active
- 2018-05-21 US US17/051,015 patent/US11368102B2/en active Active
- 2018-05-21 EP EP18919543.1A patent/EP3799288A4/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007041271A (ja) * | 2005-08-03 | 2007-02-15 | Canon Inc | 画像形成装置 |
JP5460838B2 (ja) | 2012-12-10 | 2014-04-02 | 三菱電機株式会社 | 電力変換装置 |
JP2015192527A (ja) * | 2014-03-28 | 2015-11-02 | オムロンオートモーティブエレクトロニクス株式会社 | 電力供給装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3799288A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7094469B1 (ja) * | 2021-06-21 | 2022-07-01 | 三菱電機株式会社 | 電力変換装置 |
WO2022269662A1 (ja) * | 2021-06-21 | 2022-12-29 | 三菱電機株式会社 | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7008811B2 (ja) | 2022-01-25 |
EP3799288A4 (en) | 2021-05-19 |
US11368102B2 (en) | 2022-06-21 |
CN112154598A (zh) | 2020-12-29 |
CN112154598B (zh) | 2024-04-16 |
US20210135592A1 (en) | 2021-05-06 |
EP3799288A1 (en) | 2021-03-31 |
JPWO2019224863A1 (ja) | 2021-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019224863A1 (ja) | 電力変換装置 | |
CN109660180B (zh) | 电动机驱动装置 | |
US7719812B2 (en) | Power converters with rate of change monitoring for fault prediction and/or detection | |
JP5464851B2 (ja) | インバータ装置 | |
US7719808B2 (en) | Power converters with operating efficiency monitoring for fault detection | |
JP6366815B2 (ja) | 電源装置 | |
JP2012095511A (ja) | 電力変換装置 | |
JP6352967B2 (ja) | 停電検出条件設定機能を有するモータ制御装置 | |
JP2016123262A (ja) | インバータ用保護回路およびインバータシステム | |
US20170366043A1 (en) | Power converting device and control method thereof | |
JP2007129875A (ja) | 突入電流防止回路 | |
JP2005328589A (ja) | スイッチングレギュレータ制御回路及びスイッチングレギュレータ | |
WO2008139285A2 (en) | Power converters with component stress monitoring for fault prediction | |
JP6539354B2 (ja) | 電力変換装置 | |
TWI487231B (zh) | 過電壓防護之控制方法以及用於電源控制器之控制電路 | |
JP6665653B2 (ja) | 電源装置 | |
WO2017195370A1 (ja) | 電力変換装置 | |
CN111480288A (zh) | 电力转换系统 | |
TWI669874B (zh) | 異常電壓保護裝置及其操作方法 | |
JP3144673U (ja) | スイッチング電源の過電流保護 | |
JP6630424B2 (ja) | インバータ制御方法 | |
JP2005073339A (ja) | バックアップ電源装置 | |
JP6682003B2 (ja) | 電力変換装置 | |
JP2004140896A (ja) | 電力変換装置 | |
JP2007129876A (ja) | 直流電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18919543 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020520863 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018919543 Country of ref document: EP Effective date: 20201221 |