WO2019223720A1 - 自动工作系统和自移动设备控制方法 - Google Patents

自动工作系统和自移动设备控制方法 Download PDF

Info

Publication number
WO2019223720A1
WO2019223720A1 PCT/CN2019/087973 CN2019087973W WO2019223720A1 WO 2019223720 A1 WO2019223720 A1 WO 2019223720A1 CN 2019087973 W CN2019087973 W CN 2019087973W WO 2019223720 A1 WO2019223720 A1 WO 2019223720A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
self
mobile device
base station
docking
Prior art date
Application number
PCT/CN2019/087973
Other languages
English (en)
French (fr)
Inventor
多尔夫·达维德
康蒂·伊曼纽尔
泰斯托林·费德里科
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to CN201980006069.6A priority Critical patent/CN112189173A/zh
Publication of WO2019223720A1 publication Critical patent/WO2019223720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the invention relates to the field of robots, in particular to an automatic working system and a method for controlling a self-moving device.
  • the self-mobile device fails to charge due to inaccurate docking, and then repeats the docking operation multiple times, which causes unnecessary time and energy waste.
  • the docking accuracy is often not high, or complex algorithms are required to improve the docking accuracy.
  • the problem to be solved by the present invention is to provide an automatic working system and a self-moving device control method which have more accurate charging docking performance and can be implemented without complicated algorithms.
  • An automatic working system includes: a self-mobile device and a base station, the self-mobile device can be docked with the base station; the base station includes a bottom plate; Partly docked on the bottom plate; the self-moving device includes: a casing; a walking device that drives the self-moving device to move; a control device that controls the walking device to drive the self-moving device to move; At least two positioning marks; the self-mobile device further includes: at least two positioning devices for detecting the positioning marks on the bottom plate and outputting a detection signal; when the self-mobile device is docked with the base station, the self-mobile device The projection of the positioning device on the working plane is aligned with the projection of the positioning mark on the base plate on the working plane; the control device includes an evaluation unit for evaluating whether the detection signals output by at least two of the positioning devices meet a preset Condition to determine whether the projection of the positioning device on the working plane is the same as the projection of the positioning mark on the base plate on the working plane. Aligned, thereby
  • the positioning mark is a pattern formed by sequentially connecting clockwise or counterclockwise directions on the bottom plate, so that the self-mobile device has at least one docking direction to dock with the base station.
  • the pattern formed by connecting the positioning marks in a clockwise or counterclockwise direction on the base plate includes an “L” shape, a “rectangular” shape, or a “diamond shape”.
  • the self-mobile device includes a first charging interface
  • the base station includes a second charging interface.
  • the first charging interface and the second charging interface Butt When the self-mobile device is docked, the first charging interface and the second charging interface Butt.
  • the first charging interface includes a wireless charging receiving end
  • the second charging interface includes a wireless charging transmitting end.
  • the wireless charging receiving end communicates with the wireless charging receiving end.
  • the wireless charging transmitter is aligned.
  • the wireless charging transmitting end is located at a center position of a pattern composed of the positioning marks connected in a clockwise or counterclockwise direction on the bottom plate in sequence.
  • the self-mobile device has at least two docking directions to dock with the base station.
  • the first charging interface includes a first conductive terminal
  • the second charging interface includes a second conductive terminal.
  • the self-mobile device has only one docking direction to dock with the base station.
  • the positioning mark is a magnetic element
  • the positioning device detects the positioning mark by sensing a magnetic field of the positioning mark, and outputs a detection signal according to a magnetic field strength.
  • the positioning device includes a positioning element, the positioning element and the positioning mark are both electromagnets, or one of them is a permanent magnet and the other is an electromagnet.
  • the positioning device further includes a detection unit connected to the positioning element, and the detection unit detects a magnetic field intensity sensed by the positioning element and outputs a detection signal.
  • the positioning device includes a magnetic detection sensor.
  • the preset condition includes that a value of a detection signal output by the positioning device is within a preset range.
  • the preset condition includes that an intensity of a detection signal output by the positioning device reaches or is greater than a preset value.
  • the control device controls the self-mobile device to stop moving.
  • the control device controls the self-mobile device to move in a preset mode.
  • controlling the mobile device to move in a preset mode includes: if none of the detection signals output by the positioning device meet the preset condition, the control device controls the mobile device to press Move in the original direction.
  • controlling the mobile device to move in a preset mode includes: if a detection signal output by one of the positioning devices meets the preset condition, the control device controls the mobile device to rotate , While detecting the detection signals output by the remaining positioning devices, when the output detection signal gradually increases, it continues to rotate in that direction; when the output detection signal gradually decreases, it turns to the opposite direction until the remaining positioning The detection signal output by the device satisfies the preset condition.
  • the self-mobile device includes at least two positioning devices for detecting a positioning mark on a base plate of a base station and outputting a detection signal.
  • the self-mobile device includes a regression mode, and the self-mobile device is in a regression mode.
  • the self-moving The device control method includes the steps of: starting a positioning device in a regression mode; detecting a positioning mark on a base plate of a base station; and evaluating whether a detection signal output by the positioning device meets a preset condition to determine a projection of the positioning device on a work plane Whether it is aligned with the projection of the positioning mark on the base plate on the working plane, so as to determine whether the self-mobile device has completed docking with the base station.
  • the positioning mark is a pattern formed by sequentially connecting clockwise or counterclockwise directions on the bottom plate, so that the self-mobile device has at least one docking direction to dock with the base station.
  • the pattern formed by connecting the positioning marks in a clockwise or counterclockwise direction on the base plate includes an “L” shape, a “rectangular” shape, or a “diamond shape”.
  • the self-mobile device includes a first charging interface
  • the base station includes a second charging interface.
  • the first charging interface and the second charging interface Butt When the self-mobile device is docked, the first charging interface and the second charging interface Butt.
  • the first charging interface includes a wireless charging receiving end
  • the second charging interface includes a wireless charging transmitting end.
  • the wireless charging receiving end communicates with the wireless charging receiving end.
  • the wireless charging transmitter is aligned.
  • the wireless charging transmitting end is located at a center position of a pattern composed of the positioning marks connected in a clockwise or counterclockwise direction on the bottom plate in sequence.
  • the self-mobile device has at least two docking directions to dock with the base station.
  • the first charging interface includes a first conductive terminal
  • the second charging interface includes a second conductive terminal.
  • the self-mobile device has only one docking direction to dock with the base station.
  • the preset condition includes that a value of a detection signal output by the positioning device is within a preset range.
  • the preset condition includes that an intensity of a detection signal output by the positioning device reaches or is greater than a preset value.
  • the self-mobile device stops moving.
  • the self-mobile device if the self-mobile device and the base station have not completed docking, the self-mobile device is controlled to move in a preset mode.
  • controlling the self-mobile device to move in a preset mode includes controlling the self-mobile device to move in the original direction if the detection signals output by the positioning device do not satisfy the preset condition.
  • controlling the self-mobile device to move in a preset mode includes, if a detection signal output by one of the positioning devices meets the preset condition, controlling the self-mobile device to rotate while detecting the rest
  • the output detection signal gradually increases, the detection signal output by the positioning device continues to rotate in the direction; when the output detection signal gradually decreases, it rotates in the opposite direction until the detection output by the remaining positioning devices is detected.
  • the signal satisfies the preset condition.
  • the positioning mark is a magnetic element
  • the positioning device detects the positioning mark by sensing a magnetic field of the positioning mark, and outputs a detection signal according to a magnetic field strength.
  • the positioning device includes a positioning element, the positioning element and the positioning mark are both electromagnets, or one of them is a permanent magnet and the other is an electromagnet.
  • the positioning device further includes a detection unit connected to the positioning element, and the detection unit detects a magnetic field intensity sensed by the positioning element and outputs a detection signal.
  • the positioning device includes a magnetic detection sensor.
  • the mobile device when the mobile device arrives at the base station when returning to charging, it is determined whether the projection of the positioning device on the working plane and the positioning mark on the base plate are determined according to whether the output signal of the positioning device meets a preset condition.
  • the projections on the working plane are aligned to determine whether the self-mobile device has completed docking with the base station.
  • the docking accuracy is not high, or complex algorithms are needed to achieve docking. This solution has more accurate charging docking performance, and does not need the beneficial effects of complex algorithms.
  • Embodiment 1 is a schematic diagram of a specific example of an automatic working system in Embodiment 1 of the present invention
  • FIG. 2 is a block diagram of the self-mobile device shown in FIG. 1;
  • Embodiment 3 is a schematic diagram of a specific example of an automatic working system in Embodiment 2 of the present invention.
  • Embodiment 4 is a schematic diagram of a specific example of an automatic working system in Embodiment 3 of the present invention.
  • Embodiment 4 of the present invention is a schematic diagram of a specific example of an automatic working system in Embodiment 4 of the present invention.
  • FIG. 6 is a schematic diagram of another specific example of the automatic working system in Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of another specific example of the automatic working system in Embodiment 4 of the present invention.
  • FIG. 8 is a flowchart of a method for controlling a self-mobile device according to the present invention.
  • First positioning device 200 Second positioning device
  • the third positioning device 701. The first positioning mark.
  • orientations or positional relationships indicated by the terms “center”, “front”, “rear”, “left”, and “right” are based on the orientations or positional relationships shown in the drawings. , Is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, structure and operation in a specific orientation, so it cannot be understood as a limitation on the present invention.
  • the terms “first”, “second”, “third”, etc. are used for descriptive purposes only and should not be construed to indicate or imply relative importance.
  • connection should be understood in a broad sense unless explicitly stated and limited otherwise.
  • they may be fixed connections or removable.
  • Connection, or integral connection can be mechanical or electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal connection of two elements, it can be wireless or wired connection.
  • connection or integral connection; can be mechanical or electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal connection of two elements, it can be wireless or wired connection.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the term “docking” should be understood in a broad sense.
  • it can be a physical connection, such as the pairing of electrodes; it can be “connected” by inducing magnetic signals, such as a magnetic field. Match; they can be in contact with each other or overlap.
  • an autonomous mobile robot system includes an autonomous mobile device 1 and a base station 2. Since the mobile device 1 moves in the work area, a base station 2 is set in the area. The base station 2 may be a charging station, etc. When the mobile device 1 is insufficient, it can return to the base station 2 for charging to work in a loop.
  • the base station 2 includes a base plate 70, and the self-mobile device 1 can be docked with the base station 2. When the self-mobile device 1 is docked with the base station 2, the self-mobile device 1 at least partially rests on the base plate 70.
  • the fact that the self-mobile device 1 is at least partially docked on the base plate 70 means that when the self-mobile device 1 is docked on the base plate 70, the projection of the self-mobile device 1 perpendicular to the base plate 70 can completely fall on the base plate 70, or it can partially fall on On the bottom plate 70.
  • the size of the bottom of the mobile device 1 is smaller than or equal to the size of the base plate 70.
  • the bottom size of the self-mobile device 1 is larger than the size of the base plate 70.
  • the mobile device 1 mainly includes a positioning device 10, a power supply device 20, a control device 30, a walking device 40, a work device 50, and a fuselage 60.
  • the positioning device 10 includes a positioning element 11 and a detection unit 12 connected to the positioning element;
  • the power supply device 20 provides working energy for each device of the mobile device 1.
  • the control device 30 is the control center of the mobile device 1 and is connected to other devices, receives information from other devices, and controls the mobile device 1 to perform various actions or tasks such as walking, working, returning to the base station 2 and charging.
  • the control device 30 specifically includes an evaluation unit 31, a memory 32, and the like,
  • the walking device 40 includes a motor located in the self-propelled device 1 and a roller driven by the motor, and is used for receiving instructions from the control device, and is provided with power by a power supply device to drive the self-propelled device 1 to automatically walk on the ground or other working surfaces.
  • the walking device 40 specifically includes two driving wheels located on both sides of the self-mobile device 1, two driving motors respectively connected to the two driving wheels, and one or two on the front of the self-mobile device 1. Support wheels. Such a setting can control the running speed and direction of the walking device 40 by controlling the speed and speed difference of the two driving wheels, so that the walking and steering of the mobile device 1 are flexible and accurate.
  • the running device 40 may have other components, for example, it may be a driving wheel and an independent driving motor and an independent steering motor connected to it; it may also be other types such as a crawler type.
  • the working device 50 is used to perform specific tasks that the mobile device 1 is responsible for.
  • the work device 50 generally includes a work motor and a work unit driven by the work motor. If the self-moving device 1 is a vacuum cleaner, the work unit is a dust-removing component such as a dust suction port, a fan, and a vacuum chamber. If the self-moving device 1 is a lawn mower, the work unit is a cutting device. Cutting parts such as output shaft, cutter head, blade, etc. are not repeated here.
  • the first positioning device includes a first positioning element and a first detection unit
  • the second positioning device 200 includes a second positioning element and a second detection unit.
  • the base station 2 includes a bottom plate 70 and a back plate 80, wherein a first positioning mark 701 and a second positioning mark 702 are provided on the bottom plate 70.
  • the positioning marks 701 and 702 are magnetic components, such as magnets or magnetic steel; the positioning devices 100 and 200 measure the magnetic field strength of the positioning marks 701 and 702 and output a detection signal.
  • the first and second positioning elements and the first and second positioning marks 701 and 702 are all electromagnets, or one of them is a permanent magnet, and the other is an electromagnet; or the positioning device includes a magnetic detection sensor, such as a Hall Sensors, etc.
  • the first positioning device 100 and the second positioning device 200 are disposed on the fuselage 60, and are configured to detect the first and second positioning marks 701 and 702 on the base station substrate 70 and output detection signals.
  • An evaluation unit 31 is configured to evaluate whether the detection signals output by the first and second positioning devices 100 and 200 meet a preset condition to determine whether the projection of the positioning device on the working plane from the mobile device 1 and the positioning on the base plate 70 The projections of the markers on the working plane are aligned, so as to determine whether the mobile device 1 has completed docking with the base station 2.
  • the preset condition is that the values of the detection signals output by the first and second positioning devices 100 and 200 are within a preset range.
  • the value of the detection signal output here may be the strength of the detection signal output by the positioning device to detect the positioning mark, such as being reflected as a current, a voltage value, or the like. It may also be a digital value obtained by the positioning device after detecting the detection signal output by the positioning mark, such as after analog-to-digital conversion.
  • the preset condition is that the intensity of the detection signals output by the first and second positioning devices 100 and 200 reaches or is greater than a preset value.
  • the preset value may be a maximum value of the intensity of the detection signal obtained in advance from the mobile device 1 with respect to the positioning mark detected by the positioning device on the base plate. The intensity of the detection signal output by the first and second positioning devices 100 and 200 When the maximum value is reached, it is determined that the projection of the positioning device on the mobile device 1 on the working plane is aligned with the projection of the positioning mark on the base plate 70 on the working plane, so that it is determined that the mobile device 1 and the base station 2 have completed docking.
  • the preset value may also be a certain threshold value preset from the mobile device 1 regarding the strength of the detection signal obtained by the positioning device detecting the positioning mark on the base plate.
  • the intensity of the detection signal output at 200 reaches or exceeds the threshold, it is judged that the projection of the positioning device on the mobile device 1 on the work plane is aligned with the projection of the positioning mark on the base plate 70 on the work plane, thereby determining the self-mobile device 1 completes docking with base station 2.
  • the self-mobile device 1 includes a regression mode.
  • the mobile device 1 searches for the base station 2 and interfaces with the base station 2.
  • the first and second positioning devices 100 and 200 are activated.
  • the action of starting the positioning device may occur when the mobile device starts to return, or when the mobile device returns, or when the mobile device arrives at the base station.
  • the first and second positioning devices 100 and 200 are activated, and the mobile device 1 continues to move toward the base station 2 while detecting the first and second positioning on the base station substrate 70.
  • Markers 701 and 702 output detection signals.
  • the evaluation unit 31 evaluates whether the values of the output signals of the positioning device are all within a preset range, and if both are within the preset range, it determines that the mobile device 1 and the base station 2 have completed docking, and at this time, the mobile device 1 stops moving. If not, the control device 30 controls the mobile device 1 to move in a preset mode until the output signal values of the two positioning devices are within a preset range.
  • Controlling the movement of the self-mobile device 1 in a preset mode is mainly to control the positioning device to align with its corresponding positioning mark, that is, the first positioning device 100 is aligned with the first positioning mark 701, and the second positioning device 200 is aligned with the second positioning mark 702
  • the projection of the positioning device on the mobile device 1 on the working plane and the projection of the positioning mark on the base plate 70 on the working plane are aligned, so that the mobile device 1 and the base station 2 are docked.
  • the two positioning devices provided on the body 60 of the self-mobile device are aligned with the corresponding positioning marks on the base plate 70 of the base station, so that the self-mobile device finds a position where the positioning device is aligned with the positioning marks.
  • accurate docking can be achieved, the installation of the positioning device and the positioning mark is simple, the cost is low, and the detection principle is simple, so it is easy to implement and does not require complicated algorithms.
  • the positioning device may also be an acousto-magnetic sensor, and the positioning mark is an acousto-magnetic label, or the positioning device is a light sensor, and the positioning mark is a light-emitting device.
  • the self-mobile device 1 of this embodiment includes a first charging interface 90, and the base station backplane 80 includes a second charging interface 91.
  • the first charging interface 90 is docked with the second charging interface 91.
  • the first charging interface 90 of this embodiment includes a wireless charging receiving module 92
  • the second charging interface 91 includes a wireless transmitting terminal 93.
  • the wireless charging receiving The terminal 92 is aligned with the wireless charging transmitting terminal 93.
  • the first charging interface 90 in this embodiment includes a first conductive terminal
  • the second charging interface 91 includes a second conductive terminal.
  • the first conductive terminal Align with a second conductive terminal, where the first conductive terminal includes a charging connector and the second conductive terminal includes a charging pole piece; or the first conductive terminal includes a charging connector and the second conductive terminal includes a charging rod and the like.
  • control device 30 controls the mobile device 1 to move in a preset mode specifically includes:
  • the mobile device continues to move along the original walking direction.
  • the control device 30 controls the walking device 40 to drive the mobile device to rotate clockwise or counterclockwise. At the same time, the output signal of the second positioning device 200 is detected. If the output signal value gradually increases, it continues to rotate in the original rotation direction; if the output signal value gradually decreases, it stops rotating in the original rotation direction and turns in the opposite direction of the original rotation direction until The output signal value of the second positioning device 200 is within a preset range.
  • the control device 30 controls the walking device 40 to drive the self-moving device to rotate clockwise or counterclockwise. At the same time, the output signal of the first positioning device 100 is detected. If the output signal value gradually increases, it continues to rotate in the original rotation direction; if the output signal value gradually decreases, it stops rotating in the original rotation direction and changes to the opposite direction of the original rotation direction until The output signal value of the first positioning device 100 is within a preset range.
  • the mobile device body 60 in this embodiment further includes a longitudinal line and a transverse line, and the first and second positioning devices 100 and 200 are symmetrical about the transverse line or the longitudinal line or about the longitudinal line and The center of the intersection of the horizontal lines is symmetrical; as another optional implementation, in this embodiment, one of the first and second positioning devices 100 and 200 is located at the front of the fuselage 60 of the mobile device, and one is located at the rear of the fuselage 60 .
  • the mobile robot system includes a mobile device 1 and a base station 2.
  • the first positioning device 100 includes a first positioning element and a first detection unit
  • the second positioning device 200 includes a second positioning element and a second detection unit
  • the third positioning device 300 includes a third positioning element and a third detection unit.
  • the base plate 70 of the base station 2 is provided with a first positioning mark 701, a second positioning mark 702, and a third positioning mark 70.
  • the pattern formed by sequentially connecting the positioning marks on the bottom plate 70 in a clockwise or counterclockwise direction may be " ⁇ ", As shown in Figure 3.
  • the pattern formed by connecting the positioning marks in a clockwise or counterclockwise direction can be other graphics such as "L" shape, " ⁇ " shape, “>” shape, and “V” "Shape and so on.
  • the self-mobile device 1 has only one docking direction. In this embodiment, it is the direction in which the self-mobile device 1 is opposite to the base station 2 and is docked with the base station 2. In order to prevent the self-mobile device 1 from being “incorrectly docked” with the base station base plate 70 in other directions, in this embodiment, the pattern formed by successively connecting the positioning marks on the base plate 70 in a clockwise or counterclockwise direction is not an equilateral triangle.
  • the projections of the first, second, and third positioning devices 100, 200, and 300 on the working plane are respectively working with the three positioning marks 701, 702, and 703 on the base plate.
  • the projections on the plane are aligned.
  • the first, second, and third positioning marks 701, 702, and 703 are magnetic components, such as magnets or magnetic steel; the positioning devices 100, 200, and 300 sense the magnetic field strength of the positioning marks 701, 702, and 703, and output detection signals. .
  • the first, second, and third positioning elements and the first, second, and third positioning marks 701, 702, and 703 are all electromagnets, or one of them is a permanent magnet, and the other is an electromagnet; or a positioning device Including magnetic detection sensors, such as Hall sensors.
  • the first positioning device 100, the second positioning device 200, and the third positioning device 300 are disposed on the fuselage 60, and are used to detect the first, second, and third positioning marks 701, 702, and 703 on the base station base plate 70, and output Detection signal.
  • An evaluation unit 31 is configured to evaluate whether the values of the detection signals output by the first, second, and third positioning devices meet a preset condition, so as to determine whether the projection of the positioning device on the working plane and the positioning marks on the base plate 70 are on the working plane.
  • the projections on the camera are aligned to determine whether the mobile device 1 has completed docking with the base station 2.
  • the preset conditions are that the detection signals output by the first, second, and third positioning devices 100, 200, and 300 are all within Within the preset range.
  • the preset condition is that the intensity of the detection signals output by the first, second, and third positioning devices 100, 200, and 300 is equal to or greater than a preset value.
  • the positioning devices 100, 200, and 300 are activated.
  • the mobile device continues to move toward the base station, and simultaneously detects the first, second, and third positioning marks 701, 702, and 703 on the base plate 70 and outputs Detection signal.
  • the evaluation unit 31 evaluates whether the output signal values of the positioning devices are all within the preset range. If the output signal values of the three positioning devices are all within the preset range, it is determined that the mobile device 1 and the base station 2 have completed docking, and the mobile device is stopped at this time. 1 moves; otherwise, the control device 30 controls the mobile device 1 to move in a preset mode until the output signal values of the positioning device are within a preset range.
  • Controlling the mobile device 1 to move in a preset mode is mainly to control the positioning device to align with its corresponding positioning mark, that is, the first positioning device 100 is aligned with the first positioning mark 701, and the second positioning device 200 is aligned with the second positioning mark 702.
  • the third positioning device 300 is aligned with the third positioning mark 703 so as to align the projection of the positioning device on the working plane with the projection of the positioning mark on the base plate 70 on the working plane to align the self-moving device 1 Complete docking with base station 2.
  • control device 30 controls the mobile device 1 to move in a preset mode specifically includes:
  • the mobile device continues to move along the original walking direction.
  • the control device 30 controls the walking device 40 to drive the self-mobile device to clockwise Or rotate counterclockwise, and simultaneously detect the output signals of the second and third positioning devices 200 and 300. If the output signal value gradually increases, continue to rotate in the original rotation direction; if the output signal value gradually decreases, stop rotating in the original rotation direction, change To rotate in the opposite direction to the original rotation direction, until the output signal values of the second and third positioning devices 200 and 300 are within a preset range.
  • the control device 30 controls the walking device 40 to drive the mobile device to clockwise or Turn counterclockwise, and simultaneously detect the output signals of the first and third positioning devices 100 and 300. If the output signal value gradually increases, continue to rotate in the original rotation direction; if the output signal value gradually decreases, stop rotating in the original rotation direction, change to Turn in the opposite direction of the original rotation direction until the output signal values of the first and third positioning devices 100 and 300 are within a preset range.
  • the control device 30 controls the walking device 40 to drive the self-mobile device to clockwise Or rotate counterclockwise, and simultaneously detect the output signals of the first and second positioning devices 100 and 200. If the output signal value gradually increases, continue to rotate in the original rotation direction; if the output signal value gradually decreases, stop rotating in the original rotation direction, change to Turn in the opposite direction of the original rotation direction until the output signal values of the first and second positioning devices 100 and 200 are within a preset range.
  • At least one of the first, second, and third positioning devices 100, 200, and 300 is located at the front of the fuselage 60 of the mobile device, and one is located at the rear of the fuselage 60.
  • the self-mobile robot system of another embodiment includes a self-mobile device 1 and a base station 2.
  • the two positioning devices 200, the third positioning device 300, and the fourth positioning device 400 are a first positioning device 100 and a first detection unit
  • the second positioning device 200 includes a second positioning element and a second detection unit
  • the third positioning device 300 includes a third positioning element and a third detection unit.
  • the four positioning device 400 includes a fourth positioning element and a fourth detection unit.
  • the base station 2 includes a base plate 70 and a back plate 80.
  • the base plate 70 is provided with a first positioning mark 701, a second positioning mark 702, a third positioning mark 703, and a third positioning mark 704.
  • the pattern formed by connecting the positioning marks in a clockwise or counterclockwise direction on the base plate 70 may be rectangular, as shown in FIG. 4; of course, according to the setting position of adjacent positioning marks, the positioning marks will be rotated clockwise or counterclockwise.
  • the pattern formed by successively connecting the positioning marks can be other graphics such as diamond, trapezoid, "Z", etc.
  • the self-mobile device 1 has only one docking direction. In this embodiment, it is the direction in which the self-mobile device 1 is opposite to the base station 2 and is docked with the base station 2.
  • the positioning mark on the base plate 70 is connected to the positioning marks in a clockwise or counterclockwise direction, and the pattern is not square. .
  • the projections of the first, second, third, and fourth positioning devices 100, 200, 300, and 400 on the working plane are respectively the first, second, and third on the base plate 70. 3. Projection alignment of the fourth positioning marks 701, 702, 703, and 704 on the work plane.
  • the first positioning device 100, the second positioning device 200, the third positioning device 300, and the fourth positioning device 400 are disposed on the fuselage 60, and are respectively used to detect a positioning mark on the base station substrate 70 and output a detection signal.
  • An evaluation unit 31 is configured to evaluate whether the detection signals output by the first, second, third, and fourth positioning devices meet preset conditions, so as to determine whether the projection of the positioning device on the work plane is in operation with the positioning marks on the base plate 70. The projections on the plane are aligned so as to determine whether the mobile device 1 has completed docking with the base station 2.
  • the preset conditions are those output by the first, second, third, and fourth positioning devices 100, 200, 300, and 400.
  • the values of the detection signals are all within a preset range.
  • the preset condition is that the intensity of the detection signals output by the first, second, third, and fourth positioning devices 100, 200, 300, and 400 reaches or is greater than a preset value.
  • the positioning element and the positioning mark are both electromagnets, or one of them is a permanent magnet, and the other is an electromagnet; or the positioning device includes a magnetic detection sensor, such as a Hall sensor, and the positioning mark is a magnetic component, such as a magnet or magnetic Steel etc.
  • the first, second, third, and fourth positioning devices 100, 200, 300, and 400 are activated.
  • the mobile device 1 continues to move toward the base station 2 while detecting the first A positioning mark 701, a second positioning mark 702, a third positioning mark 703, and a third positioning mark 704, and output a detection signal.
  • the evaluation unit 31 evaluates whether the values of the output signals of the positioning device are all within a preset range, and if both are within the preset range, it determines that the mobile device 1 and the base station 2 have completed docking, and at this time, the mobile device 1 stops moving. If not, the control device 30 controls the mobile device 1 to move in a preset mode until the values of the output signals of the positioning device are within a preset range.
  • Controlling the movement of the self-mobile device 1 in a preset mode is mainly to control the positioning device to align with its corresponding positioning mark, that is, the first positioning device 100 is aligned with the first positioning mark 701, and the second positioning device 200 is aligned with the second positioning mark 702.
  • the three positioning devices 300 are aligned with the third positioning mark 703, and the fourth positioning device 400 is aligned with the fourth positioning mark 704, so that the projection of the positioning device on the working plane from the mobile device 1 and the positioning mark on the base plate 70 work.
  • the projections on the plane are aligned, so that the self-mobile device 1 and the base station 2 complete docking.
  • control device 30 controls the mobile device 1 to move in a preset mode specifically includes:
  • the The walking direction continues to move.
  • the control device 30 controls the walking device 40 to drive the The mobile device rotates clockwise or counterclockwise, and simultaneously detects the output signals of the second, third, and fourth positioning devices 200, 300, and 400. If the output signal value gradually increases, it continues to rotate in the original rotation direction; if the output signal value gradually When it decreases, it stops rotating in the original rotation direction, and instead turns in the opposite direction of the original rotation direction, until the output signal values of the second, third, and fourth positioning devices 200, 300, and 400 are within a preset range.
  • the control device 30 controls the walking device 40 to drive the self-mobile device Turn clockwise or counterclockwise, and simultaneously detect the output signals of the first, third, and fourth positioning devices 100, 300, and 400. If the output signal value gradually increases, continue to rotate in the original direction of rotation; if the output signal value gradually decreases, stop Rotate in the original rotation direction and change it in the opposite direction of the original rotation direction until the output signal values of the first, third, and fourth positioning devices 100, 300, and 400 are within a preset range.
  • the control device 30 controls the walking device 40 to drive the The mobile device rotates clockwise or counterclockwise, and simultaneously detects the output signals of the first, second, and fourth positioning devices 100, 200, and 400. If the output signal value gradually increases, it continues to rotate in the original rotation direction; if the output signal value gradually When it decreases, it stops rotating in the original rotation direction, and instead turns in the opposite direction of the original rotation direction, until the output signal values of the first, second, and fourth positioning devices 100, 200, and 400 are within a preset range.
  • a self-mobile robot system includes a self-mobile device 1 and a base station 2.
  • the second charging interface is provided on the base station bottom plate 70.
  • the second charging interface includes a wireless charging transmitting terminal 93.
  • the first charging interface is provided on the mobile device 1.
  • the first charging interface includes a wireless charging receiving terminal 92.
  • the wireless charging transmitting terminal 93 It is located at the center of the pattern formed by positioning the mark on the bottom plate 70 in a clockwise or counterclockwise sequence.
  • the positioning marks are connected in a clockwise or counterclockwise pattern on the base plate 70. According to the number of adjacent positioning marks, the distance between the positioning marks, and the installation position, the pattern can be a regular shape, a rhombus, a hexagon, etc. Etc., different patterns make the mobile device 1 have different docking directions to dock with the base station 2.
  • a first positioning mark 701, a second positioning mark 702, a third positioning mark 703, and a fourth positioning mark 704 are provided on the base station bottom plate 70, and the positioning marks are sequentially clockwise or counterclockwise on the base plate 70.
  • the pattern formed by the connections is square.
  • the first positioning device 100 includes a first positioning element and a first detection unit
  • the second positioning device 200 includes a second positioning element and a second detection unit
  • the third positioning device 300 includes a third positioning element and a third detection unit.
  • the four positioning device 400 includes a fourth positioning element and a fourth detection unit.
  • the self-mobile device 1 has four docking directions of front, back, left, and right to dock with the base station 2.
  • the first, second, third, and fourth positionings The projections of the devices 100, 200, 300, and 400 on the working plane are respectively aligned with the projections of the first, second, third, and fourth positioning marks 701, 702, 703, and 704 on the working plane on the base plate 70;
  • the projections of the third, fourth, first, and second positioning devices 300, 400, 100, and 200 on the working plane are respectively the first and the third on the base plate 70.
  • the projections of the second, third, and fourth positioning marks 701, 702, 703, and 704 on the work plane are aligned; when the mobile device 1 is docked with the base station 2 from the left docking direction, the second, third, fourth, and third The projections of a positioning device 200, 300, 400, and 100 on the working plane are respectively aligned with the projections of the first, second, third, and fourth positioning marks 701, 702, 703, and 704 on the working plane on the base plate 70; When the mobile device 1 is docked with the base station 2 from the docking direction on the right, The projections of the first, second, and third positioning devices 400, 100, 200, and 300 on the working plane are respectively working with the first, second, third, and fourth positioning marks 701, 702, 703, and 704 on the base plate 70. The projections on the plane are aligned.
  • a first positioning mark 701, a second positioning mark 702, a third positioning mark 703, and a fourth positioning mark 704 are provided on the base plate 70 of the base station, and the positioning marks are sequentially clockwise or counterclockwise on the base plate 70.
  • the pattern formed by the connections is diamond-shaped.
  • the first positioning device 100 includes a first positioning element and a first detection unit
  • the second positioning device 200 includes a second positioning element and a second detection unit
  • the third positioning device 300 includes a third positioning element and a third detection unit.
  • the four positioning device 400 includes a fourth positioning element and a fourth detection unit.
  • the self-mobile device 1 has two front and rear docking directions for docking with the base station 2.
  • the first, second, third, and fourth positioning devices 100, 200 The projections of 300, 300, and 400 on the working plane are respectively aligned with the projections of the first, second, third, and fourth positioning marks 701, 702, 703, and 704 on the working plane on the base plate 70;
  • the projections of the third, fourth, first, and second positioning devices 300, 400, 100, and 200 on the working plane are respectively the first, second, and third on the base plate 70. 3.
  • the projection of the fourth positioning marks 701, 702, 703, and 704 on the work plane is aligned.
  • the wireless charging receiving end 92 of the mobile device receives the wireless charging transmitting end 93 of the base station.
  • the principle or method of adjusting the movement mode of the self-mobile device is the same as the above embodiment, and will not be repeated here.
  • the mobile device 1 when the wireless charging transmitting end 93 is located at a non-center position of the pattern formed by the positioning marks connected in a clockwise or counterclockwise sequence on the base plate 70, the mobile device 1 only has the front-side docking direction and the base station 2 Butt.
  • the base station base plate 70 is provided with a first positioning mark 701, a second positioning mark 702, a third positioning mark 703, a fourth positioning mark 704, and a fifth positioning mark 705, and the positioning marks are sequentially clockwise or counterclockwise on the base plate 70.
  • the pattern formed by the connections is "W" shaped.
  • the first positioning device 100 includes a first positioning element and a first detection unit
  • the second positioning device 200 includes a second positioning element and a second detection unit
  • the third positioning device 300 includes a third positioning element and a third detection unit.
  • the four positioning device 400 includes a fourth positioning element and a fourth detection unit
  • the fifth positioning device 500 includes a fifth positioning element and a fifth detection unit.
  • the self-mobile device 1 only has the front-side docking direction to dock with the base station 2.
  • the first, second, third, fourth, and fifth positioning devices 100, 200, 300, 400
  • the projections of 500 on the work plane are aligned with the projections of the first, second, third, fourth, and fifth positioning marks 701, 702, 703, 704, and 705 on the work plane, respectively.
  • Regarding the adjustment principle or manner of the mobile mode of the self-mobile device is the same as the first embodiment, the second embodiment, and the third embodiment, and details are not described herein again.
  • FIG. 8 it is a flowchart of a method for controlling a self-mobile device according to the present invention.
  • This embodiment provides a method for controlling a self-mobile device, which is used to control the self-mobile device described in Embodiment 1 of the present invention.
  • the self-mobile device includes at least two positioning devices for detecting a positioning mark on a baseboard of a base station and outputting the positioning mark.
  • a detection signal; the self-mobile device includes a regression mode, and the self-mobile device searches for a base station and docks with the base station in the regression mode; when the self-mobile device is docked with the base station, a projection of the positioning device on a working plane is consistent with the projection
  • the projection marks on the working plane of the base station baseplate are aligned. It includes the following steps:
  • step S300 Evaluate whether the detection signal output by the positioning device meets a preset condition. If yes, go to step S400; if not, go to step S500;
  • S500 Control the self-mobile device to move in a preset mode.
  • step S100 to save energy, when the mobile device arrives at the base station, the positioning device is turned on.
  • step S200 the positioning device on the mobile device detects a positioning mark on the baseboard of the base station, and detects the magnetic field strength of the bit mark to output a detection signal.
  • the preset condition includes that a value of a detection signal output by the positioning device is within a preset range.
  • the preset condition is that the intensity of the detection signal output by the positioning device reaches or is greater than a preset value.
  • step S400 that is, the movement of the self-mobile device is stopped.
  • the projection of the positioning device on the body of the mobile device on the working plane is aligned with the projection of the positioning mark on the base plate on the working plane, so that when the mobile device is completely docked or partially docked at the preset position of the base station It can achieve precise docking, so it is easy to implement and does not require complicated algorithms.
  • step S500 in the embodiment of the present invention specifically includes:
  • the mobile device If the detection signals output by the positioning device do not meet the preset conditions, the mobile device is controlled to move in the original direction; if the detection signals output by one of the positioning devices meet the preset conditions, the mobile device is controlled to rotate, and Detect the detection signals output by the remaining positioning devices, and when the output detection signals gradually increase, continue to rotate in that direction; when the output detection signals gradually decrease, turn to the opposite direction until the remaining positioning devices output The detected signal satisfies the preset condition.
  • the self-mobile device can recognize different positioning marks, thereby aligning the positioning device with the corresponding positioning marks.
  • the self-mobile device 1 further includes a mark recognition sensor, and at least two positioning marks on the bottom plate 70 of the base station 2 are provided with positioning tags, where the positioning tags may be color tags, RFID tags, and the like.
  • the mark recognition sensor is a color sensor, which detects the reflected light of the color label, and after filtering and signal processing, converts different colors into electrical signals and transmits them to the control device 30 from the mobile device 1.
  • the control device 30 of the mobile device 1 learns the color of the color label according to the received electrical signal, and can roughly determine the corresponding positioning mark, thereby driving the mobile device 1 to move toward the corresponding positioning mark; when the positioning label is an RFID tag
  • the tag identification sensor is an RFID positioning sensor. After the sensor transmits a radio frequency signal to the RFID tag, the RFID tag feedback signal to the RFID positioning sensor, that is, the radio frequency signal is used to automatically identify the position of the tag, and then confirm the position of the positioning mark, thereby driving the mobile device. 1Move toward the corresponding positioning mark.
  • the mark recognition sensor is first activated to identify the position of the positioning tag, so as to initially locate the position of the positioning mark, and then the mark recognition sensor is turned off to prevent signal interference, and the positioning device is started to detect The positioning mark on the bottom plate, when the detection signal output by the positioning device meets a preset condition, it is determined that the projection of the positioning device on the working surface is aligned with the projection of the positioning mark on the bottom plate on the working plane, thereby determining that the mobile device 1 and the The base station 2 completes the docking.
  • the self-mobile device due to the presence of the positioning tag, the self-mobile device has only one docking direction to dock with the base station. At the same time, due to the presence of the positioning tag, the self-mobile device achieves accurate docking while improving its docking efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自动工作系统和自移动设备控制方法,包括自移动设备(1)和基站(2)。基站(2)包括底板(70),其底板(70)上布置至少两个定位标记。自移动设备(1)包括:机壳;行走装置(40),带动自移动设备(1)移动;控制装置(30),控制行走装置(40)带动自移动设备(1)移动;至少两个定位装置(10),用于检测底板上的定位标记;控制装置(30)包括评估单元(31),用于评估定位装置(10)输出的检测信号是否满足预设条件,以判断自移动设备(1)是否与基站(2)完成对接。本申请具有更加精确的充电对接性能,无需复杂算法即可实现精准对接。

Description

自动工作系统和自移动设备控制方法 技术领域
本发明涉及机器人领域,特别是涉及自动工作系统和自移动设备控制方法。
背景技术
随着科学技术的发展,智能的自移动设备为人们所熟知,由于自移动设备可以自动预先设置的程序执行预先设置的相关任务,无须人为的操作与干预,因此在工业应用及家居产品上的应用非常广泛。工业上的应用如执行各种功能的机器人,家居产品上的应用如割草机、吸尘器等,这些智能设备极大地节省了人们的时间,给工业生产及家居生活都带来了极大的便利。但这些自移动设备由于采用电池供电,当电池的电量被用尽后,这些自移动设备就无法工作了,所以一般设定当自移动设备的电量低于某一个设定的值,程序可选择的控制自移动设备回归充电站为电池充电。通常,自移动设备在回归充电过程中,自移动设备由于对接不准导致机器充电失败,然后多次重复对接动作,带来不必要的时间和能量浪费。现有技术中,往往对接精度不高,或需要复杂的算法提高对接的精度。
发明内容
为克服现有技术的缺陷,本发明所要解决的问题是提供一种具有更加精确的充电对接性能,同时无需复杂的算法即可实现的自动工作系统和自移动设备控制方法。
一种自动工作系统,包括:自移动设备和基站,所述自移动设备能够与所述基站对接;所述基站包括底板,所述自移动设备与所述基站对接时,所述自移动设备至少部分停靠在所述底板上;所述自移动设备包括:机壳;行走装置,带动所述自移动设备移动;控制装置,控制所述行走装置带动所述自移动设备移动;所述底板上布置至少两个定位标记;所述自移动设备还包括:至少两个定位装置,用于检测所述底板上的定位标记,并输出检测信号;所述自移动设备与所述基站对接时,所述定位装置在工作平面上的投影与所述底板上的定位标记在工作平面上的投影对齐;所述控制装置包括评估单元,用于评估至少两个所述定位装置输出的检测信号是否满足预设条件,以判断所述定位装置在工作平面上的投影是否与所述底板上的定位标记在工作平面上的投影对齐,从而判断自移动设备是否与基站完成对接。
在其中一个实施例中,所述定位标记在所述底板上按顺时针或者逆时针方向依次连线所组成的图案,使得所述自移动设备具有至少一个对接方向与所述基站对接。
在其中一个实施例中,所述定位标记在所述底板上按顺时针或者逆时针方向依次连线所组成的图案包括“L”形或“矩形”或“菱形”。
在其中一个实施例中,所述自移动设备包括第一充电接口,所述基站包括第二充电接口,当所述自移动设备完成对接时,所述第一充电接口与所述第二充电接口对接。
在其中一个实施例中,所述第一充电接口包括无线充电接收端,所述第二充电接口包括无线充电发射端,当所述自移动设备完成对接时,所述无线充电接收端与所述无线充电发射端对齐。
在其中一个实施例中,所述无线充电发射端位于所述定位标记在所述底板上按顺时针或者逆时针方向依次连线所组成的图案的中心位置。
在其中一个实施例中,所述自移动设备具有至少两个对接方向与所述基站对接。
在其中一个实施例中,所述第一充电接口包括第一导电端子,所述第二充电接口包括第二导电端子,当所述自移动设备完成对接时,所述第一导电端子与所述第二导电端子连接。
在其中一个实施例中,所述自移动设备仅具有一个对接方向与所述基站对接。
在其中一个实施例中,所述定位标记为磁性元件,所述定位装置通过感测所述定位标记的磁场检测所述定位标记,并根据磁场强度输出检测信号。
在其中一个实施例中,所述定位装置包括定位元件,所述定位元件和所述定位标记均为电磁铁,或其中之一为永磁体,其中另一为电磁铁。
在其中一个实施例中,所述定位装置还包括与所述定位元件连接的检测单元,所述检测单元检测所述定位元件感测到的磁场强度,并输出检测信号。
在其中一个实施例中,所述定位装置包括磁检测传感器。
在其中一个实施例中,所述预设条件包括所述定位装置输出的检测信号的值在预设范围内。
在其中一个实施例中,所述预设条件包括所述定位装置输出的检测信号的强度达到或者大于预设值。
在其中一个实施例中,若判断所述自移动设备与所述基站完成对接,则所述控制装置控制所述自移动设备停止移动。
在其中一个实施例中,若判断所述自移动设备与所述基站未完成对接,则所述控制装置控制所述自移动设备按预设模式移动。
在其中一个实施例中,控制所述自移动设备按预设模式移动包括,若所述定位装置输出的检测信号均不满足所述预设条件,则所述控制装置控制所述自移动设备按原方向移动。
在其中一个实施例中,控制所述自移动设备按预设模式移动包括,若其中一个所述定位装置输出的检测信号满足所述预设条件,则所述控制装置控制所述自移动设备转动,同时检测其余所述定位装置输出的检测信号,当输出的检测信号逐渐增大则继续朝该方向转动;当输出的检测信号逐渐减小则改为朝反方向转动,直至其余的所述定位装置输出的检测信号满足所述预设条件。
一种自移动设备控制方法,所述自移动设备包括至少两个定位装置,用于检测基站底板上的定位标记,并输出检测信号;所述自移动设备包括回归模式,回归模式下自移动设备寻找基站并与基站对接;所述自移动设备与所述基站对接时,所述定位装置在工作平面上的投影与所述基站底板上的定位标记在工作平面上的投影对齐;所述自移动设备的控制方法包括步骤:回归模式下,启动定位装置;检测基站底板上的定位标记;评估所述定位装置输出的检测信号是否满足预设条 件,以判断所述定位装置在工作平面上的投影是否与所述底板上的定位标记在工作平面上的投影对齐,从而判断自移动设备是否与基站完成对接。
在其中一个实施例中,所述定位标记在所述底板上按顺时针或者逆时针方向依次连线所组成的图案,使得所述自移动设备具有至少一个对接方向与所述基站对接。
在其中一个实施例中,所述定位标记在所述底板上按顺时针或者逆时针方向依次连线所组成的图案包括“L”形或“矩形”或“菱形”。
在其中一个实施例中,所述自移动设备包括第一充电接口,所述基站包括第二充电接口,当所述自移动设备完成对接时,所述第一充电接口与所述第二充电接口对接。
在其中一个实施例中,所述第一充电接口包括无线充电接收端,所述第二充电接口包括无线充电发射端,当所述自移动设备完成对接时,所述无线充电接收端与所述无线充电发射端对齐。
在其中一个实施例中,所述无线充电发射端位于所述定位标记在所述底板上按顺时针或者逆时针方向依次连线所组成的图案的中心位置。
在其中一个实施例中,所述自移动设备具有至少两个对接方向与所述基站对接。
在其中一个实施例中,所述第一充电接口包括第一导电端子,所述第二充电接口包括第二导电端子,当所述自移动设备完成对接时,所述第一导电端子与所述第二导电端子连接。
在其中一个实施例中,所述自移动设备仅具有一个对接方向与所述基站对接。
在其中一个实施例中,所述预设条件包括所述定位装置输出的检测信号的值在预设范围内。
在其中一个实施例中,所述预设条件包括所述定位装置输出的检测信号的强度达到或者大于预设值。
在其中一个实施例中,若所述自移动设备与所述基站完成对接,则停止所述自移动设备移动。
在其中一个实施例中,若所述自移动设备与所述基站未完成对接,则控制所述自移动设备按预设模式移动。
在其中一个实施例中,控制所述自移动设备按预设模式移动包括,若所述定位装置输出的检测信号均不满足所述预设条件,则控制所述自移动设备按原方向移动。
在其中一个实施例中,控制所述自移动设备按预设模式移动包括,若其中一个所述定位装置输出的检测信号满足所述预设条件,则控制所述自移动设备转动,同时检测其余所述定位装置输出的检测信号,当输出的检测信号逐渐增大则继续朝该方向转动;当输出的检测信号逐渐减小则改为朝反方向转动,直至其余的所述定位装置输出的检测信号满足所述预设条件。
在其中一个实施例中,所述定位标记为磁性元件,所述定位装置通过感测所述定位标记的磁场检测所述定位标记,并根据磁场强度输出检测信号。
在其中一个实施例中,所述定位装置包括定位元件,所述定位元件和所述定 位标记均为电磁铁,或其中之一为永磁体,其中另一为电磁铁。
在其中一个实施例中,所述定位装置还包括与所述定位元件连接的检测单元,所述检测单元检测所述定位元件感测到的磁场强度,并输出检测信号。
在其中一个实施例中,所述定位装置包括磁检测传感器。
根据本发明实施例,当回归充电时自移动设备到达基站时,根据其定位装置的输出信号是否满足预设条件,判断所述定位装置在工作平面上的投影是否与所述底板上的定位标记在工作平面上的投影对齐,从而判断自移动设备是否与基站完成对接。相对于现有技术中对接精度不高,或需要复杂的算法实现对接,本方案具有更加精确的充电对接性能,且无需复杂算法的有益效果。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中自动工作系统的一个具体示例的示意图;
图2为图1所示的自移动设备的模块图;
图3为本发明实施例2中自动工作系统的一个具体示例的示意图;
图4为本发明实施例3中自动工作系统的一个具体示例的示意图;
图5为本发明实施例4中自动工作系统的一个具体示例的示意图;
图6为本发明实施例4中自动工作系统的另一个具体示例的示意图;
图7为本发明实施例4中自动工作系统的另一个具体示例的示意图;
图8为本发明的自移动设备控制方法的流程图。
其中,相关元件对应编号如下:
1、自移动设备                2、基站
10、定位装置                 20、电源装置
30、控制装置                 40、行走装置
50、工作装置                 60、机身
11、定位元件                 12、检测单元
31、评估单元                 32、存储器
70、底板                     80、背板
90、第一充电接口             91、第二充电接口
100、第一定位装置            200、第二定位装置
300、第三定位装置            701、第一定位标记
702、第二定位标记            703、第三定位标记
400、第四定位装置            704、第四定位标记
500、第五定位装置            705、第五定位标记
92、无线充电接收端           93、无线充电发射端
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要说明的是,术语“对接”,应做广义理解,例如,可以是物理上的连接,如电极两两配合;可以是通过感应磁信号相“连接”,如磁场相配;在位置上可以是相互接触,也可以是交叠。
如图1所示,一实施例的自移动机器人系统包括自移动设备1和基站2。自移动设备1在工作区域内移动,区域内设置有基站2,基站2可以是充电站等,自动行走设备1在电量不足时,可以返回至基站2进行充电,以循环工作。其中基站2包括底板70,自移动设备1能够与基站2对接,且当自移动设备1与基站2对接时,自移动设备1至少部分停靠在底板70上。其中自移动设备1至少部分停靠在底板70上,是指当自移动设备1停靠在底板70上时,自移动设备1垂直于底板70的投影可以完全落在底板70上,也可以部分落在底板70上。在一实施例中,自移动设备1的底部尺寸小于或者等于底板70的尺寸,当自移动设备1与基站2对接时,自移动设备1完全停靠在底板70上;在另一实施例中,自移动设备1的底部尺寸大于底板70的尺寸,当自移动设备1与基站2对接时,自移动设备1部分停靠在底板70上。
结合图2,自移动设备1主要包括定位装置10、电源装置20、控制装置30、行走装置40、工作装置50、机身60。
定位装置10包括定位元件11和与定位元件连接的检测单元12;
电源装置20为自移动设备1的各个装置提供工作的能量。
控制装置30是自移动设备1的控制中枢,与其他各个装置相连接,接收其他各个装置发来的信息,并控制自移动设备1执行行走、工作、返回基站2以及充电等各类动作或任务。控制装置30具体包括评估单元31、存储器32等,
行走装置40包括位于自移动设备1内的马达和由所述马达驱动的滚轮,用于接收控制装置的指令,由电源装置提供能量,带动自移动设备1在地面或者其他工作表面自动行走。在本实施例中,行走装置40具体包括位于自移动设备1两侧的两个驱动轮,分别连接在两个驱动轮上的两个驱动马达,以及位于自移动设备 1前部的一个或两个支撑轮。这样的设置能够通过控制两个驱动轮的速度和速度差,来控制行走装置40的行驶速度和方向,使得自移动设备1的行走和转向灵活而准确。行走装置40可以有其他的组成形式,例如其可以为驱动轮以及与之连接的独立驱动马达和独立转向马达;还可以为履带式等其他形式。
工作装置50用于执行自移动设备1所负责的具体工作。工作装置50通常包括工作马达和被工作马达驱动的工作单元。若自移动设备1为吸尘器,则工作单元为执行吸尘工作的吸尘部件如:吸尘口、风扇和真空室等;若自移动设备1为割草机,则工作单元为执行切割工作的切割部件如:输出轴和刀盘、刀片等,在此不再赘述。
在本实施例中,自移动设备1的定位装置有两个,分别为第一定位装置100和第二定位装置200。其中第一定位装置包括第一定位元件和第一检测单元,第二定位装置200包括第二定位元件和第二检测单元。基站2包括底板70和背板80,其中底板70上设置第一定位标记701和第二定位标记702。自移动设备1与基站2对接时,第一、第二定位装置100、200在工作平面上的投影分别与底板70上的两个定位标记701、702在工作平面上的投影对齐。定位标记701、702为磁性元件,如磁铁或者磁钢等;定位装置100、200通过感测定位标记701、702的磁场强度,输出检测信号。其中第一、第二定位元件和第一、第二定位标记701、702均为电磁铁,或其中之一为永磁体,其中另一为电磁铁;或定位装置包括磁检测传感器,例如霍尔传感器等。
第一定位装置100和第二定位装置200设置在机身60上,用于检测基站底板70上的第一、第二定位标记701、702,并输出检测信号。评估单元31,用于评估第一、第二定位装置100、200输出的检测信号是否满足预设条件,以判断自移动设备1上的定位装置在工作平面上的投影是否与底板70上的定位标记在工作平面上的投影对齐,从而判断自移动设备1是否与基站2完成对接。本实施例中,预设条件为第一、第二定位装置100、200输出的检测信号的值均在预设范围内。此处输出的检测信号的值可以是定位装置检测定位标记输出的检测信号强度的大小,比如反映为电流、电压值等。也可以是定位装置检测定位标记输出的检测信号经信号处理后,比如模数转换后,得到的数字量的值。
在一实施例中,预设条件为第一、第二定位装置100、200输出的检测信号的强度达到或大于预设值。其中该预设值可以是自移动设备1预先设置的关于定位装置检测底板上的定位标记得到的检测信号的强度的最大值,当第一、第二定位装置100、200输出的检测信号的强度达到该最大值时,则判断自移动设备1上的定位装置在工作平面上的投影与底板70上的定位标记在工作平面上的投影对齐,从而判断自移动设备1与基站2完成对接。当然可以理解地是,该预设值也可以是自移动设备1预先设置的关于定位装置检测底板上的定位标记得到的检测信号的强度的某一阈值,当第一、第二定位装置100、200输出的检测信号的强度达到或者大于该阈值时,则判断自移动设备1上的定位装置在工作平面上的投影与底板70上的定位标记在工作平面上的投影对齐,从而判断自移动设备1与基站2完成对接。
如图1所示,所述自移动设备1包括回归模式,回归模式下自移动设备1寻 找基站2并与基站2对接。在回归模式下,启动第一、第二定位装置100、200。此处启动定位装置的动作可以发生在自移动设备启动回归时,或自移动设备回归过程中,或者自移动设备到达基站时。本实施例中,自移动设备1到达基站2时,启动第一、第二定位装置100、200,自移动设备1继续朝着基站2移动,同时检测基站底板70上的第一、第二定位标记701、702,并输出检测信号。评估单元31评估定位装置输出信号的值是否均在预设范围内,若均在预设范围内,则判断自移动设备1与基站2完成对接,此时停止自移动设备1移动。若不满足,则控制装置30控制自移动设备1按预设模式移动,直至两个定位装置的输出信号值均在预设范围内。控制自移动设备1按预设模式移动主要是控制定位装置与其对应的定位标记对齐,即第一定位装置100与第一定位标记701对齐,同时第二定位装置200与第二定位标记702相对齐,从而使自移动设备1上的定位装置在工作平面上的投影与底板70上的定位标记在工作平面上的投影对齐,从而使自移动设备1与基站2完成对接。
根据本发明实施例,通过在自移动设备的机身60上设置的两个定位装置,与基站底板70上相对应的定位标记对齐,使得自移动设备寻找到使定位装置与定位标记对齐的位置时即可实现精准对接,定位装置和定位标记的安装简单,成本低且检测原理简单,因此容易实现且无需复杂的算法。
可以理解的是,在其他实施例中,定位装置也可以是声磁传感器,定位标记为声磁标签,或者定位装置是光传感器,定位标记为光发射装置。
作为一种可选的实施方式,本实施例的自移动设备1包括第一充电接口90,基站背板80包括第二充电接口91,当所述自移动设备1完成对接时,第一充电接口90与第二充电接口91对接。
作为一种可选的实施方式,本实施例的第一充电接口90包括无线充电接收模块92,第二充电接口91包括无线发射端93,当所述自移动设备1完成对接时,无线充电接收端92与无线充电发射端93对齐。
作为一种可选的实施方式,本实施例的第一充电接口90包括第一导电端子,第二充电接口91包括第二导电端子,当所述自移动设备1完成对接时,第一导电端子与第二导电端子对齐,其中第一导电端子包括充电接头,第二导电端子包括充电极片;或者第一导电端子包括充电接头,第二导电端子包括充电棒等。
本发明实施例中,关于控制装置30控制自移动设备1按预设模式移动具体包括:
若第一定位装置100的输出信号值及第二定位装置200的输出信号值均小于预设值,则沿着原行走方向继续移动。
若第一定位装置100的输出信号值在预设范围内,第二定位装置200的输出信号值小于预设值,则控制装置30控制行走装置40带动自移动设备以顺时针或逆时针转动,同时检测第二定位装置200的输出信号,若输出信号值逐渐增大则继续向原转动方向转动;若输出信号值逐渐减小则停止向原转动方向转动,改为朝原转动方向的反方向转动,直至第二定位装置200的输出信号值在预设范围内。
若第二定位装置200的输出信号值在预设范围内,第一定位装置100的输出信号值小于预设值,则控制装置30控制行走装置40带动自移动设备以顺时针或 逆时针转动,同时检测第一定位装置100的输出信号,若输出信号值逐渐增大则继续向原转动方向转动;若输出信号值逐渐减小则停止向原转动方向转动,改为朝原转动方向的反方向转动,直至第一定位装置100的输出信号值在预设范围内。
为了使得自移动设备1能够更加可靠的完全停靠或者部分停靠在基站2上,进一步提高对接效率和精度。作为另一种可选的实施方式,本实施例中自移动设备机身60还包括纵向线和横向线,第一、第二定位装置100、200关于横向线或者纵向线对称或关于纵向线和横向线的交点中心对称;作为另一种可选的实施方式,本实施例中第一、第二定位装置100、200一个位于自移动设备的机身60前部,一个位于机身60后部。
如图3所示,另一实施例的自移动机器人系统包括自移动设备1和基站2。本实施例中自移动设备1的定位装置有三个,分别为第一定位装置100、第二定位装置200和第三定位装置300。其中第一定位装置100包括第一定位元件和第一检测单元,第二定位装置200包括第二定位元件和第二检测单元,第三定位装置300包括第三定位元件和第三检测单元。基站2的底板70上设置第一定位标记701、第二定位标记702和第三定位标记70,该定位标记在底板70上按顺时针或者逆时针方向依次连线所组成的图案可以为“△”形,如图3所示。当然根据相邻定位标记设置位置的不同,按顺时针或者逆时针方向将定位标记依次连线所组成的图案可以为其他图形如“L”形,“<”形,“>”形,“V”形等。自移动设备1仅具有一个对接方向,在本实施例中为自移动设备1与基站2正对的方向,与基站2对接。为了防止自移动设备1在其他方向与基站底板70“误对接”,本实施例中,该定位标记在底板70上按顺时针或者逆时针方向依次连线所组成的图案不为等边三角形。当自移动设备1与基站2对接时,第一、第二、第三定位装置100、200、300在工作平面上的投影分别与所述底板上的三个定位标记701、702、703在工作平面上的投影对齐。第一、第二、第三定位标记701、702、703为磁性元件,如磁铁或磁钢等;定位装置100、200、300通过感测定位标记701、702、703的磁场强度,输出检测信号。其中第一、第二和第三定位元件和第一、第二和第三定位标记701、702、703均为电磁铁,或其中之一为永磁体,其中另一为电磁铁;或定位装置包括磁检测传感器,例如霍尔传感器等。
第一定位装置100、第二定位装置200和第三定位装置300设置在机身60上,用于检测基站底板70上的第一、第二、第三定位标记701、702、703,并输出检测信号。评估单元31,用于评估第一、第二和第三定位装置输出的检测信号的值是否满足预设条件,以判断定位装置在工作平面上的投影是否与底板70上的定位标记在工作平面上的投影对齐,从而判断自移动设备1是否与基站2完成对接,本实施例中,预设条件为第一、第二和第三定位装置100、200、300输出的检测信号的值均在预设范围内。在一实施例中,预设条件为第一、第二和第三定位装置100、200、300输出的检测信号的强度达到或者大于预设值。
自移动设备到达基站时,启动定位装置100、200、300,自移动设备继续朝着基站移动,同时检测基站底板70上的第一、第二、第三定位标记701、702、703,并输出检测信号。评估单元31评估定位装置输出信号值是否均在预设范围内,若三个定位装置输出信号值均在预设范围内,则判断自移动设备1与基站2 完成对接,此时停止自移动设备1移动;否则,则控制装置30控制自移动设备1按预设模式移动,直至定位装置的输出信号值均在预设范围内。控制自移动设备1按预设模式移动,主要是控制定位装置与其对应的定位标记对齐,即第一定位装置100与第一定位标记701对齐,第二定位装置200与第二定位标记702对齐,第三定位装置300与第三定位标记703对齐,从而使自移动设备1上的定位装置在工作平面上的投影与底板70上的定位标记在工作平面上的投影对齐,从而使自移动设备1与基站2完成对接。
本发明实施例中,关于控制装置30控制自移动设备1按预设模式移动具体包括:
若第一定位装置100的输出信号值、第二定位装置200的输出信号值及第三定位装置300的输出信号值均小于预设值,则沿着原行走方向继续移动。
若第一定位装置100的输出信号值在预设范围内,第二、第三定位装置200、300的输出信号值小于预设值,则控制装置30控制行走装置40带动自移动设备以顺时针或逆时针转动,同时检测第二、第三定位装置200、300的输出信号,若输出信号值逐渐增大则继续向原转动方向转动;若输出信号值逐渐减小则停止向原转动方向转动,改为朝原转动方向的反方向转动,直至第二和第三定位装置200、300的输出信号值均在预设范围内。
若第二定位装置200的输出信号值在预设范围内,第一、三定位装置100、300的输出信号值小于预设值,则控制装置30控制行走装置40带动自移动设备以顺时针或逆时针转动,同时检测第一、第三定位装置100、300的输出信号,若输出信号值逐渐增大则继续向原转动方向转动;若输出信号值逐渐减小则停止向原转动方向转动,改为朝原转动方向的反方向转动,直至第一和第三定位装置100、300的输出信号值均在预设范围内。
若第三定位装置300的输出信号值在预设范围内,第一、第二定位装置100、200的输出信号值小于预设值,则控制装置30控制行走装置40带动自移动设备以顺时针或逆时针转动,同时检测第一、二定位装置100、200的输出信号,若输出信号值逐渐增大则继续向原转动方向转动;若输出信号值逐渐减小则停止向原转动方向转动,改为朝原转动方向的反方向转动,直至第一和第二定位装置100、200的输出信号值均在预设范围内。
作为另一种可选的实施方式,本实施例中第一、第二、第三定位装置100、200、300至少一个位于自移动设备的机身60前部,一个位于机身60后部。
如图4所示,另一实施例的自移动机器人系统包括自移动设备1和基站2,在本实施例中,自移动设备1的定位装置有四个,分别为第一定位装置100、第二定位装置200、第三定位装置300和第四定位装置400。其中第一定位装置100包括第一定位元件和第一检测单元,第二定位装置200包括第二定位元件和第二检测单元,第三定位装置300包括第三定位元件和第三检测单元,第四定位装置400包括第四定位元件和第四检测单元。基站2包括底板70和背板80,其中底板70上设置第一定位标记701、第二定位标记702、第三定位标记703和第三定位标记704。该定位标记在底板70上按顺时针或者逆时针方向依次连线所组成的图案可以为矩形,如图4所示;当然根据相邻定位标记设置位置的不同,按顺时针 或者逆时针方向将定位标记依次连线所组成的图案可以为其他图形如菱形,梯形,“Z”形等。自移动设备1仅具有一个对接方向,在本实施例中为自移动设备1与基站2正对的方向,与基站2对接。为了防止自移动设备1在其他方向与基站底板70“误对接”,本实施例中,该定位标记在底板70上按顺时针或者逆时针方向将定位标记依次连线所组成的图案不为正方形。当自移动设备1与基站2对接时,第一、第二、第三、第四定位装置100、200、300、400在工作平面上的投影分别与底板70上的第一、第二、第三、第四定位标记701、702、703、704在工作平面上的投影对齐。
第一定位装置100、第二定位装置200、第三定位装置300和第四定位装置400设置在机身60上,分别用于检测基站底板70上的定位标记,并输出检测信号。评估单元31,用于评估第一、第二、第三、第四定位装置输出的检测信号是否满足预设条件,以判断定位装置在工作平面上的投影是否与底板70上的定位标记在工作平面上的投影对齐,从而判断自移动设备1是否与基站2完成对接,本实施例中,预设条件为第一、第二、第三、第四定位装置100、200、300、400输出的检测信号的值均在预设范围内。在一实施例中,预设条件为第一、第二、第三、第四定位装置100、200、300、400输出的检测信号的强度达到或者大于预设值。其中定位元件和定位标记均为电磁铁,或其中之一为永磁体,其中另一为电磁铁;或定位装置包括磁检测传感器,如霍尔传感器等,定位标记为磁性元件,如磁铁或磁钢等。
自移动设备1到达基站2时,启动第一、第二、第三、第四定位装置100、200、300、400,自移动设备1继续朝着基站2移动,同时检测基站底板70上的第一定位标记701、第二定位标记702、第三定位标记703和第三定位标记704,并输出检测信号。评估单元31评估定位装置输出信号的值是否均在预设范围内,若均在预设范围内,则判断自移动设备1与基站2完成对接,此时停止自移动设备1移动。若不满足,则控制装置30控制自移动设备1按预设模式移动,直至定位装置的输出信号的值均在预设范围内。控制自移动设备1按预设模式移动主要是控制定位装置与其对应的定位标记对齐,即第一定位装置100与第一定位标记701对齐,第二定位装置200与第二定位标记702对齐,第三定位装置300与第三定位标记703对齐,第四定位装置400与第四定位标记704对齐,从而使自移动设备1上的定位装置在工作平面上的投影与底板70上的定位标记在工作平面上的投影对齐,从而使自移动设备1与基站2完成对接。
本发明实施例中,关于控制装置30控制自移动设备1按预设模式移动具体包括:
若第一定位装置100的输出信号值、第二定位装置200的输出信号值、第三定位装置300的输出信号值及第四定位装置400的输出信号值均小于预设值,则沿着原行走方向继续移动。
若第一定位装置100的输出信号值在预设范围内,第二、第三、第四定位装置200、300、400的输出信号值小于预设值,则控制装置30控制行走装置40带动自移动设备以顺时针或逆时针转动,同时检测第二、第三、第四定位装置200、300、400的输出信号,若输出信号值逐渐增大则继续向原转动方向转动;若输出 信号值逐渐减小则停止向原转动方向转动,改为朝原转动方向的反方向转动,直至第二、第三、第四定位装置200、300、400的输出信号值均在预设范围内。
若第二定位装置200的输出信号值在预设范围内,第一、三、四定位装置100、300、400的输出信号值小于预设值,则控制装置30控制行走装置40带动自移动设备以顺时针或逆时针转动,同时检测第一、三、四定位装置100、300、400的输出信号,若输出信号值逐渐增大则继续向原转动方向转动;若输出信号值逐渐减小则停止向原转动方向转动,改为朝原转动方向的反方向转动,直至第一、三、四定位装置100、300、400的输出信号值均在预设范围内。
若第三定位装置300的输出信号值在预设范围内,第一、第二、第四定位装置100、200、400的输出信号值小于预设值,则控制装置30控制行走装置40带动自移动设备以顺时针或逆时针转动,同时检测第一、第二、第四定位装置100、200、400的输出信号,若输出信号值逐渐增大则继续向原转动方向转动;若输出信号值逐渐减小则停止向原转动方向转动,改为朝原转动方向的反方向转动,直至第一、第二、第四定位装置100、200、400的输出信号值均在预设范围内。
如图5所示,为另一实施例的自移动机器人系统包括自移动设备1和基站2。第二充电接口设置在基站底板70,第二充电接口包括无线充电发射端93,第一充电接口设置在自移动设备1上,第一充电接口包括无线充电接收端92,其中无线充电发射端93位于定位标记在底板70上沿顺时针或者逆时针依次连接所组成的图案的中心位置。定位标记在底板70上沿顺时针或者逆时针依次连接所组成的图案,根据相邻定位标记的个数、间隔距离及安装位置的不同,所组成图案可以是正边形,菱形,六边形等等,不同的图案使得自移动设备1具有不同的对接方向与基站2对接。
如图5所示,基站底板70上设置有第一定位标记701、第二定位标记702、第三定位标记703、第四定位标记704,且定位标记在底板70上沿顺时针或者逆时针依次连接所组成的图案为正方形。自移动设备1的定位装置有四个,分别为第一定位装置100、第二定位装置200、第三定位装置300和第四定位装置400。其中第一定位装置100包括第一定位元件和第一检测单元,第二定位装置200包括第二定位元件和第二检测单元,第三定位装置300包括第三定位元件和第三检测单元,第四定位装置400包括第四定位元件和第四检测单元。此时自移动设备1具有前、后、左、右四个对接方向与基站2对接,当自移动设备1从前侧对接方向与基站2对接时,第一、第二、第三、第四定位装置100、200、300、400在工作平面上的投影分别与底板70上的第一、第二、第三、第四定位标记701、702、703、704在工作平面上的投影对齐;当自移动设备1从后侧对接方向与基站2对接时,第三、第四、第一、第二定位装置300、400、100、200在工作平面上的投影分别与底板70上的第一、第二、第三、第四定位标记701、702、703、704在工作平面上的投影对齐;当自移动设备1从左侧对接方向与基站2对接时,第二、第三、第四、第一定位装置200、300、400、100在工作平面上的投影分别与底板70上的第一、第二、第三、第四定位标记701、702、703、704在工作平面上的投影对齐;当自移动设备1从右侧对接方向与基站2对接时,第四、第一、第二、第三定位装置400、100、200、300在工作平面上的投影分别与底板70上 的第一、第二、第三、第四定位标记701、702、703、704在工作平面上的投影对齐。
如图6所示,基站底板70上设置有第一定位标记701、第二定位标记702、第三定位标记703、第四定位标记704,且定位标记在底板70上沿顺时针或者逆时针依次连接所组成的图案为菱形。自移动设备1的定位装置有四个,分别为第一定位装置100、第二定位装置200、第三定位装置300、第四定位装置400。其中第一定位装置100包括第一定位元件和第一检测单元,第二定位装置200包括第二定位元件和第二检测单元,第三定位装置300包括第三定位元件和第三检测单元,第四定位装置400包括第四定位元件和第四检测单元。此时自移动设备1具有前、后两个对接方向与基站2对接,当自移动设备1从前侧对接方向与基站2对接时,第一、第二、第三、第四定位装置100、200、300、400在工作平面上的投影分别与底板70上的第一、第二、第三、第四定位标记701、702、703、704在工作平面上的投影对齐;当自移动设备1从后侧对接方向与基站2对接时,第三、第四、第一、第二定位装置300、400、100、200在工作平面上的投影分别与底板70上的第一、第二、第三、第四定位标记701、702、703、704在工作平面上的投影对齐。
当自移动设备1上的定位装置在工作平面上的投影与底板70上的定位标记在工作平面上的投影对齐时,自移动设备的无线充电接收端92接收基站的无线充电发射端93发送的信号进行充电,关于自移动设备的移动方式的调整原理或方式同上述实施例,在此不再赘述。
如图7所示,当无线充电发射端93位于定位标记在底板70上沿顺时针或者逆时针依次连接所组成的图案的非中心位置时,自移动设备1仅具有前侧对接方向与基站2对接。
基站底板70上设置有第一定位标记701、第二定位标记702、第三定位标记703、第四定位标记704和第五定位标记705,且定位标记在底板70上沿顺时针或者逆时针依次连接所组成的图案为“W”形。自移动设备1的定位装置有五个,分别为第一定位装置100、第二定位装置200、第三定位装置300、第四定位装置400和第五定位装置500。其中第一定位装置100包括第一定位元件和第一检测单元,第二定位装置200包括第二定位元件和第二检测单元,第三定位装置300包括第三定位元件和第三检测单元,第四定位装置400包括第四定位元件和第四检测单元,第五定位装置500包括第五定位元件和第五检测单元。自移动设备1仅具有前侧对接方向与基站2对接,当自移动设备1与基站2对接时,第一、第二、第三、第四、第五定位装置100、200、300、400、500在工作平面上的投影分别与底板70上的第一、第二、第三、第四、第五定位标记701、702、703、704、705在工作平面上的投影对齐。关于自移动设备的移动方式的调整原理或方式同实施例一、实施例二、实例三,在此不再赘述。
如图8所示,为本发明的自移动设备控制方法的流程图。本实施例提供一种自移动设备控制方法,用于控制本发明实施例1中所述的自移动设备,自移动设备包括至少两个定位装置,用于检测基站底板上的定位标记,并输出检测信号;所述自移动设备包括回归模式,回归模式下自移动设备寻找基站并与基站对接; 所述自移动设备与所述基站对接时,所述定位装置在工作平面上的投影与所述基站底板上的定位标记在工作平面上的投影对齐。具体包括以下步骤:
S100:回归模式下,启动定位装置;
S200:检测基站底板上的定位标记;
S300:评估所述定位装置输出的检测信号是否满足预设条件。若满足,执行步骤S400;若不满足,执行步骤S500;
S400:停止所述自移动设备移动;
S500:控制所述自移动设备按预设模式移动。
在一实施例中,在步骤S100中,为节约能量,当自移动设备到达基站时,开启定位装置。
在步骤S200中,自移动设备上的定位装置检测基站底板上的定位标记,并通过感测定位标记的磁场强度,输出检测信号。
在步骤S300中,所述预设条件包括所述定位装置输出的检测信号的值在预设范围内。在一实施例中,所述预设条件为定位装置输出的检测信号的强度达到或者大于预设值。
若所述定位装置输出信号值在预设范围内,则判断定位装置在工作平面上的投影与底板上的定位标记在工作平面上的投影对齐,从而判断自移动设备与基站完成对接。此时进入步骤S400中,即停止所述自移动设备移动。
根据本发明实施例,自移动设备机身上的定位装置在工作平面上的投影与底板上的定位标记在工作平面上的投影对齐,使得自移动设备完全停靠或者部分停靠在基站预设位置时即可实现精准对接,因此容易实现且无需复杂的算法。
在其中一个实施例中,本发明实施例的步骤S500具体包括:
若定位装置输出的检测信号均不满足所述预设条件,则控制自移动设备按原方向移动;若其中一个定位装置输出的检测信号满足预设条件,则控制所述自移动设备转动,同时检测其余所述定位装置输出的检测信号,当输出的检测信号逐渐增大则继续朝该方向转动;当输出的检测信号逐渐减小则改为朝反方向转动,直至其余的所述定位装置输出的检测信号满足所述预设条件。
在其中一个实施例中,自移动设备能够识别不同的定位标记,从而使定位装置与相应的定位标记对齐。具体地,自移动设备1还包括标记识别传感器,基站2的底板70上的至少两个定位标记旁设置有定位标签,其中定位标签可为颜色标签,RFID标签等。其中当定位标签为颜色标签时,标记识别传感器为色彩传感器,侦测颜色标签的反射光,经过过滤和信号处理,将不同色彩转化为电信号,传送给自移动设备1的控制装置30。自移动设备1的控制装置30依据接收到的电信号,获知颜色标签的色彩,可大致判断对应的定位标记,从而驱动自移动设备1朝着对应的定位标记移动;当定位标签为RFID标签时,标记识别传感器为RFID定位传感器,该传感器发射射频信号至RFID标签后,RFID标签反馈信号至RFID定位传感器,即通过射频信号识别自动识别标签位置,进而确认定位标记的位置,从而驱动自移动设备1朝着对应的定位标记移动。
具体地,当自移动设备1到达基站2时,首先启动标记识别传感器识别出定位标签的位置,从而初步定位出定位标记的位置,然后关闭标记识别传感器,以 防止信号干扰,启动定位装置以检测底板上的定位标记,当定位装置的输出的检测信号满足预设条件时,判断定位装置在工作表面上的投影与底板上的定位标记在工作平面上的投影对齐,从而判断自移动设备1与基站2完成对接。本实施例中,因定位标签的存在,使得自移动设备具有仅具有一个对接方向与基站对接。同时,因定位标签的存在,使得自移动设备实现精准对接的同时,提高了其对接的效率。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (34)

  1. 一种自动工作系统,包括自移动设备和基站,所述自移动设备能够与所述基站对接,其中:
    所述基站包括底板,所述自移动设备与所述基站对接时,所述自移动设备至少部分停靠在所述底板上;
    所述自移动设备,包括:机壳;行走装置,带动所述自移动设备移动;
    控制装置,控制所述行走装置带动所述自移动设备移动;
    其特征在于:
    所述底板上布置至少两个定位标记;
    所述自移动设备还包括:至少两个定位装置,用于检测所述底板上的定位标记,并输出检测信号;所述自移动设备与所述基站对接时,所述定位装置在工作平面上的投影与所述底板上的定位标记在工作平面上的投影对齐;
    所述控制装置包括评估单元,用于评估所述定位装置输出的检测信号是否满足预设条件,以判断所述定位装置在工作平面上的投影是否与所述底板上的定位标记在工作平面上的投影对齐,从而判断自移动设备是否与基站完成对接。
  2. 根据权利要求1所述的自动工作系统,其特征在于:所述自移动设备包括第一充电接口,所述基站包括第二充电接口,当所述自移动设备完成对接时,所述第一充电接口与所述第二充电接口对接。
  3. 根据权利要求2所述的自动工作系统,其特征在于:所述第一充电接口包括无线充电接收端,所述第二充电接口包括无线充电发射端,当所述自移动设备完成对接时,所述无线充电接收端与所述无线充电发射端对齐。
  4. 根据权利要求3所述的自动工作系统,其特征在于:所述无线充电发射端位于所述定位标记在所述底板上按顺时针或者逆时针方向依次连线所组成的图案的中心位置。
  5. 根据权利要求4所述的自动工作系统,其特征在于:所述自移动设备具有至少两个对接方向与所述基站对接。
  6. 根据权利要求2所述的自动工作系统,其特征在于:所述第一充电接口包括第一导电端子,所述第二充电接口包括第二导电端子,当所述自移动设备完成对接时,所述第一导电端子与所述第二导电端子连接。
  7. 根据权利要求6所述的自动工作系统,其特征在于:所述自移动设备仅具有一个对接方向与所述基站对接。
  8. 根据权利要求1所述的自动工作系统,其特征在于:所述定位标记为磁性元件,所述定位装置通过感测所述定位标记的磁场检测所述定位标记,并根据磁场强度输出检测信号。
  9. 根据权利要求8所述的自动工作系统,其特征在于:所述定位装置包括定位元件,所述定位元件和所述定位标记均为电磁铁,或其中之一为永磁体,其中另一为电磁铁。
  10. 根据权利要求9所述的自动工作系统,其特征在于:所述定位装置还包括与所述定位元件连接的检测单元,所述检测单元检测所述定位元件感测到的磁 场强度,并输出检测信号。
  11. 根据权利要求8所述的自动工作系统,其特征在于:所述定位装置包括磁检测传感器。
  12. 根据权利要求1所述的自动工作系统,其特征在于:所述预设条件包括所述定位装置输出的检测信号的值在预设范围内。
  13. 根据权利要求12所述的自动工作系统,其特征在于:所述预设条件包括所述定位装置输出的检测信号的强度达到或者大于预设值。
  14. 根据权利要求1所述的自动工作系统,其特征在于:若判断所述自移动设备与所述基站完成对接,则所述控制装置控制所述自移动设备停止移动。
  15. 根据权利要求1所述的自动工作系统,其特征在于:若判断所述自移动设备与所述基站未完成对接,则所述控制装置控制所述自移动设备按预设模式移动。
  16. 根据权利要求15所述的自动工作系统,其特征在于:控制所述自移动设备按预设模式移动包括,若所述定位装置输出的检测信号均不满足所述预设条件,则所述控制装置控制所述自移动设备按原方向移动。
  17. 根据权利要求15所述的自动工作系统,其特征在于:控制所述自移动设备按预设模式移动包括,若其中一个所述定位装置输出的检测信号满足所述预设条件,则所述控制装置控制所述自移动设备转动,同时检测其余所述定位装置输出的检测信号,当输出的检测信号逐渐增大则继续朝该方向转动;当输出的检测信号逐渐减小则改为朝反方向转动,直至其余的所述定位装置输出的检测信号满足所述预设条件。
  18. 一种自移动设备控制方法,所述自移动设备包括至少两个定位装置,用于检测基站底板上的定位标记,并输出检测信号;所述自移动设备包括回归模式,回归模式下自移动设备寻找基站并与基站对接;所述自移动设备与所述基站对接时,所述定位装置在工作平面上的投影与所述基站底板上的定位标记在工作平面上的投影对齐;其特征在于,所述自移动设备的控制方法包括步骤:
    回归模式下,启动定位装置;
    检测基站底板上的定位标记;
    评估所述定位装置输出的检测信号是否满足预设条件,以判断所述定位装置在工作平面上的投影是否与所述底板上的定位标记在工作平面上的投影对齐,从而判断自移动设备是否与基站完成对接。
  19. 根据权利要求18所述的自移动设备控制方法,其特征在于:所述自移动设备包括第一充电接口,所述基站包括第二充电接口,当所述自移动设备完成对接时,所述第一充电接口与所述第二充电接口对接。
  20. 根据权利要求19所述的自移动设备控制方法,其特征在于:所述第一充电接口包括无线充电接收端,所述第二充电接口包括无线充电发射端,当所述自移动设备完成对接时,所述无线充电接收端与所述无线充电发射端对齐。
  21. 根据权利要求20所述的自移动设备控制方法,其特征在于:所述无线充电发射端位于所述定位标记在所述底板上按顺时针或者逆时针方向依次连线所组成的图案的中心位置。
  22. 根据权利要求21所述的自移动设备控制方法,其特征在于:所述自移动设备具有至少两个对接方向与所述基站对接。
  23. 根据权利要求19所述的自移动设备控制方法,其特征在于:所述第一充电接口包括第一导电端子,所述第二充电接口包括第二导电端子,当所述自移动设备完成对接时,所述第一导电端子与所述第二导电端子连接。
  24. 根据权利要求23所述的自移动设备控制方法,其特征在于:所述自移动设备仅具有一个对接方向与所述基站对接。
  25. 根据权利要求18所述的自移动设备控制方法,其特征在于:所述预设条件包括所述定位装置输出的检测信号的值在预设范围内。
  26. 根据权利要求25所述的自移动设备控制方法,其特征在于:所述预设条件包括所述定位装置输出的检测信号的强度达到或者大于预设值。
  27. 根据权利要求18所述的自移动设备控制方法,其特征在于:若所述自移动设备与所述基站完成对接,则停止所述自移动设备移动。
  28. 根据权利要求18所述的自移动设备控制方法,其特征在于:若所述自移动设备与所述基站未完成对接,则控制所述自移动设备按预设模式移动。
  29. 根据权利要求28所述的自移动设备控制方法,其特征在于:控制所述自移动设备按预设模式移动包括,若所述定位装置输出的检测信号均不满足所述预设条件,则控制所述自移动设备按原方向移动。
  30. 根据权利要求28所述的自移动设备控制方法,其特征在于:控制所述自移动设备按预设模式移动包括,若其中一个所述定位装置输出的检测信号满足所述预设条件,则控制所述自移动设备转动,同时检测其余所述定位装置输出的检测信号,当输出的检测信号逐渐增大则继续朝该方向转动;当输出的检测信号逐渐减小则改为朝反方向转动,直至其余的所述定位装置输出的检测信号满足所述预设条件。
  31. 根据权利要求18所述的自移动设备控制方法,其特征在于:所述定位标记为磁性元件,所述定位装置通过感测所述定位标记的磁场检测所述定位标记,并根据磁场强度输出检测信号。
  32. 根据权利要求31所述的自移动设备控制方法,其特征在于:所述定位装置包括定位元件,所述定位元件和所述定位标记均为电磁铁,或其中之一为永磁体,其中另一为电磁铁。
  33. 根据权利要求32所述的自移动设备控制方法,其特征在于:所述定位装置还包括与所述定位元件连接的检测单元,所述检测单元检测所述定位元件感测到的磁场强度,并输出检测信号。
  34. 根据权利要求31所述的自移动设备控制方法,其特征在于:所述定位装置包括磁检测传感器。
PCT/CN2019/087973 2018-05-22 2019-05-22 自动工作系统和自移动设备控制方法 WO2019223720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980006069.6A CN112189173A (zh) 2018-05-22 2019-05-22 自动工作系统和自移动设备控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810493778 2018-05-22
CN201810493778.9 2018-05-22

Publications (1)

Publication Number Publication Date
WO2019223720A1 true WO2019223720A1 (zh) 2019-11-28

Family

ID=68617224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087973 WO2019223720A1 (zh) 2018-05-22 2019-05-22 自动工作系统和自移动设备控制方法

Country Status (2)

Country Link
CN (1) CN112189173A (zh)
WO (1) WO2019223720A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4083741A1 (en) 2021-04-30 2022-11-02 Husqvarna Ab Method and system for charging a robotic work tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055859A (zh) * 2021-02-26 2021-06-29 科沃斯机器人股份有限公司 自动移动设备与基站的配对方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129704A1 (en) * 1995-06-29 2008-06-05 Pryor Timothy R Multipoint, virtual control, and force based touch screen applications
CN106403941A (zh) * 2016-08-29 2017-02-15 上海智臻智能网络科技股份有限公司 一种定位方法及装置
CN106802658A (zh) * 2017-03-21 2017-06-06 厦门大学 一种全自动高精度室内快速定位方法
CN206775195U (zh) * 2017-05-31 2017-12-19 北京小米移动软件有限公司 自主充电系统、自主移动设备以及充电桩
CN206812968U (zh) * 2017-05-15 2017-12-29 上海蔚来汽车有限公司 自动导引型换电机器人及充换电站
CN107861509A (zh) * 2017-10-26 2018-03-30 广州科语机器人有限公司 一种锚点坐标校正方法及用于提高机器人定位精度的方法
CN107928566A (zh) * 2017-12-01 2018-04-20 深圳市沃特沃德股份有限公司 视觉扫地机器人及障碍物检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105539186B (zh) * 2016-01-20 2017-07-07 厦门新页科技有限公司 一种汽车无线充电对准匹配系统及方法
CN106097341A (zh) * 2016-06-13 2016-11-09 华讯方舟科技有限公司 一种机器人自主充电的方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129704A1 (en) * 1995-06-29 2008-06-05 Pryor Timothy R Multipoint, virtual control, and force based touch screen applications
CN106403941A (zh) * 2016-08-29 2017-02-15 上海智臻智能网络科技股份有限公司 一种定位方法及装置
CN106802658A (zh) * 2017-03-21 2017-06-06 厦门大学 一种全自动高精度室内快速定位方法
CN206812968U (zh) * 2017-05-15 2017-12-29 上海蔚来汽车有限公司 自动导引型换电机器人及充换电站
CN206775195U (zh) * 2017-05-31 2017-12-19 北京小米移动软件有限公司 自主充电系统、自主移动设备以及充电桩
CN107861509A (zh) * 2017-10-26 2018-03-30 广州科语机器人有限公司 一种锚点坐标校正方法及用于提高机器人定位精度的方法
CN107928566A (zh) * 2017-12-01 2018-04-20 深圳市沃特沃德股份有限公司 视觉扫地机器人及障碍物检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4083741A1 (en) 2021-04-30 2022-11-02 Husqvarna Ab Method and system for charging a robotic work tool

Also Published As

Publication number Publication date
CN112189173A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
US20210221246A1 (en) Autonomous Mobile Device and Wireless Charging System Thereof
KR100420171B1 (ko) 로봇 청소기와 그 시스템 및 제어방법
RU2283750C1 (ru) Способ коррекции координат робота-уборщика и автоматическая система уборки с использованием этого способа
US7133746B2 (en) Autonomous machine for docking with a docking station and method for docking
WO2019223720A1 (zh) 自动工作系统和自移动设备控制方法
US7239105B2 (en) Method compensating gyro sensor for robot cleaner
JP4171753B2 (ja) ロボット掃除機の外部充電復帰装置及び復帰方法
US8660736B2 (en) Autonomous mobile device and method for navigating the same to a base station
SE528905C2 (sv) Robotrengörarsystem med yttre återuppladdningsanordning samt förfarande för dockning av robotrengörare med yttre återuppladdningsanordning
WO2021212738A1 (zh) 自动设备的控制方法、系统、自动设备及可读存储介质
CN210016300U (zh) 自移动设备和充电对接系统
WO2020037584A1 (zh) 一种分段式自主充电对接方法及移动设备、充电站
WO2020228262A1 (zh) 自移动机器人的控制方法及自移动机器人系统
KR20100066134A (ko) 로봇 청소기 시스템
JP2016045598A (ja) 自律走行体装置
CN107037807B (zh) 自移动机器人位姿校准系统和方法
US20240184310A1 (en) Self-Moving Robot Charging System and Self-Moving Robot Charging Method
WO2021232650A1 (zh) 自移动设备与充电站对接方法、装置、自移动设备、系统及可读存储介质
KR20110090307A (ko) 자동청소시스템 및 자동청소시스템의 제어방법
JP2016045599A (ja) 自律走行体装置
JP2002222013A (ja) 移動作業ロボット
WO2019206282A1 (zh) 自动返回装置、系统及自动行走设备自动返回方法
CN112256013A (zh) 自动工作系统、自动行走设备及其控制方法
WO2022099756A1 (zh) 机器人自动充电方法、系统,机器人及存储介质
US20220348098A1 (en) Method and system for charging a robotic work tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808201

Country of ref document: EP

Kind code of ref document: A1