WO2019223033A1 - 一种α-烯烃氢甲酰化反应制备醛的多相反应器及制备方法 - Google Patents

一种α-烯烃氢甲酰化反应制备醛的多相反应器及制备方法 Download PDF

Info

Publication number
WO2019223033A1
WO2019223033A1 PCT/CN2018/090838 CN2018090838W WO2019223033A1 WO 2019223033 A1 WO2019223033 A1 WO 2019223033A1 CN 2018090838 W CN2018090838 W CN 2018090838W WO 2019223033 A1 WO2019223033 A1 WO 2019223033A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube bundle
shell
side cylinder
reaction
reactor
Prior art date
Application number
PCT/CN2018/090838
Other languages
English (en)
French (fr)
Inventor
安丽华
Original Assignee
An Lihua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by An Lihua filed Critical An Lihua
Publication of WO2019223033A1 publication Critical patent/WO2019223033A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor

Definitions

  • the present application relates to a heterogeneous reactor for preparing an aldehyde by an alpha-olefin hydroformylation reaction and a method for preparing an aldehyde by using the alpha-olefin hydroformylation reaction of the multi-phase reactor, and belongs to the field of chemical material preparation and chemical engineering equipment. field.
  • reactors In the traditional aldehyde synthesis process, most of the reactors are stirred tank reactors or tower reactors.
  • the above-mentioned reactors are all back-mixed reactors. Although they can achieve industrial production, due to the inherent disadvantages of the reactor, such as The olefins, catalysts, hydrogen and carbon monoxide are not uniformly dispersed, and the mass and heat transfer effects are poor, resulting in low reaction efficiency and poor selectivity of target products.
  • the catalyst dissolved in water is the water phase
  • the reaction raw materials such as ⁇ -olefins are the organic phase
  • carbon monoxide and hydrogen are in the gas phase, and the materials can only be mixed by the bubbling of the gas.
  • This situation makes this kind of The reaction is controlled and limited by the mass and heat transfer rates at the gas-liquid two-phase interface. Therefore, for the hydroformylation reaction equipment of olefins, enhancing mass and heat transfer are the key factors to improve the reaction efficiency.
  • a heterogeneous reactor for preparing an aldehyde by hydroformylation of an ⁇ -olefin.
  • the raw materials, catalyst, hydrogen and carbon monoxide can be highly uniformly dispersed in the reactor With superior mass and heat transfer effects, it can shorten and simplify the process flow, improve yield and product quality, achieve continuous production of strong exothermic reactions of this type, and make the reaction process with high selectivity and high conversion rate.
  • the reactor includes a shell-side cylinder and a tube bundle
  • the tube bundle is located inside the shell-side barrel, and the internal space of the tube bundle and the internal space of the shell-side barrel are not connected with each other;
  • the two ends of the tube bundle respectively have a feeding port and a feeding port, and the feeding port and the feeding port are in communication with the outside of the shell-side cylinder;
  • the shell-side cylinder is provided with a baffle.
  • the at least one baffle plate is disposed in the shell side cylinder.
  • an operating medium I flows in the shell-side cylinder, and the operating medium I is a cooling liquid
  • An operating medium II flows in the tube bundle; the operating medium II is introduced into the tube bundle through the feeding port, and the tube bundle is led out through the discharging port.
  • the reactor is a multi-phase reactor; preferably, the reactor is a gas-liquid-liquid three-phase reactor.
  • multiphase refers to two or more phases (or liquid phases) that are immiscible or only partially miscible with each other, such as, but not limited to, liquid phase (inorganic liquid phase, organic liquid phase), gas phase, and solid phase. .
  • the shell-side cylinder is provided with a coolant inlet, a coolant outlet, and 2-50 baffles;
  • cooling liquid inlet and the cooling liquid outlet are disposed on an outer wall of the shell-side cylinder.
  • the baffles are horizontally arranged on the inner wall of the shell-side cylinder, and the baffles are arranged in parallel, and the distance between the baffles is 10-1000 mm.
  • the cooling fluid circulating in the shell-side cylinder can quickly remove heat, thereby improving the selectivity of the reaction product aldehyde.
  • the outer wall of the shell-side cylinder is provided with a coolant inlet, a coolant outlet, and 2-50 baffles, such as 2, 5, 10, 20, 25 Block, 30 block, 35 block, 40 block, 45 block, 50 block, and any point value in the range consisting of any two of the above point values.
  • the role of the baffle is to increase the cooling fluid flow rate and enhance the heat transfer efficiency.
  • the distance between each baffle is 10-1000mm, such as 10mm, 100mm, 200mm, 500mm, 1000mm, and any point value in a range consisting of any two of the above point values.
  • the spacing between the baffles may be equal or different. Preferably, the spacing between the baffles is equal.
  • a small hole is provided on the baffle plate, the hole diameter of the small hole is 1-100mm, the arrangement is regular triangle, square or any combination of the two, and the opening ratio is 0.1% -20%.
  • the hole diameter of the small hole on the baffle plate is 1-100 mm, for example, 1 mm, 10 mm, 20 mm, 50 mm, 100 mm, and any two of the above points.
  • the arrangement is regular triangle, square or any combination of the two, and the opening rate is 0.1% -20%.
  • the diameter of the tube bundle is 5-500mm and the length is 500-10000mm;
  • the tube bundle includes 1-1000 reaction tubes, and the arrangement of the reaction tubes in the tube bundle is selected from at least one of a regular triangle, a square, and a single row.
  • the tube bundle includes 1-1000 reaction tubes, for example, 1, 10, 100, 500, 1000, and a range of any two of the above points. Other point values in.
  • a dispersion component is provided in the reaction tube, and the number of dispersion components in each reaction tube is 1-1000;
  • the specific surface area of the dispersion component is 100-1000 m 2 / m 3 , the porosity is between 0.01-0.1, and the length is between 10-1000 mm.
  • the tube bundle is provided with dispersing components, and the number of dispersing components in each reaction tube is 1-1000, such as 1, 10, 100, 500, 1000, and Any other point value in the range consisting of any two of the above point values.
  • the combined application of the tube bundle and the dispersing component can achieve uniform dispersion of the reactants to the greatest extent, improve the defects of the traditional reactor, and improve the conversion rate and selectivity of the product aldehyde.
  • the use temperature of the reactor is 50-180 ° C, and the use pressure is 0.5-5MPa.
  • the cooling liquid is selected from at least one of water, saline, or an ethylene glycol aqueous solution.
  • the operation medium II includes raw materials CO, hydrogen, ⁇ -olefins, an aqueous catalyst solution containing rhodium and its ligand, and a reaction product aldehyde.
  • the multi-phase reactor is a tubular reactor.
  • a method for preparing an aldehyde by hydroformylation of an ⁇ -olefin characterized in that the raw materials of the method include C2-C20 ⁇ -olefin, CO, and hydrogen, and rhodium
  • the aqueous solution of the ligand is an aqueous solution of the catalyst, and a heterogeneous reactor for preparing an aldehyde by using any of the ⁇ -olefin hydroformylation reactions described above is prepared to obtain an aldehyde.
  • the reaction temperature of the method is 50-180 ° C., and the reaction pressure is 0.5-5 MPa; the volume ratio of the ⁇ -olefin to the catalyst aqueous solution is 1: 5-100.
  • the multi-phase reactor provided by this application can meet the characteristics of hydroformylation using ⁇ -olefin as a raw material under the action of a catalyst, and realize the continuous production of strong exothermic reactions of this type, which overcomes the traditional The reactor raw materials, catalyst and hydrogen, carbon monoxide is not uniformly dispersed, the mass transfer effect is poor, and the heat transfer efficiency is low.
  • the method for preparing an aldehyde by using the multi-phase reactor provided by the present application can shorten and simplify the process flow, improve the yield and product quality, and achieve high product selectivity and high conversion of raw materials.
  • FIG. 1 is a schematic structural diagram of a production equipment in an embodiment of the present application.
  • FIG. 2 to FIG. 5 are schematic structural diagrams of the dispersive components of the production equipment in one embodiment of the present application, in which FIG. 2 is an I-type dispersive component, FIG. 3 is an II-type dispersive component, FIG. 4 is an III-type dispersive component, and FIG. 5 is Type IV dispersion assembly.
  • Multi-phase reactor 2. Mixture material inlet; 3. Mixture material outlet; 4. Coolant inlet; 5. Coolant outlet; 6. Shell-side cylinder; 7. Tube bundle; 8. Dispersion component ; 9, baffle; 10, head.
  • FIG. 1 is a schematic structural diagram of an aldehyde multi-phase reactor of the present application.
  • the multi-phase reactor is a tubular reactor.
  • the catalyst dissolved in water is charged into the tube of the reactor in advance.
  • the reaction raw materials in the liquid phase are imported from the liquid material, and the reaction raw materials in the gas phase are imported from the gas phase material.
  • the multi-phase reactor 1 includes a shell-side cylinder 6, a tube bundle 7, and a head 10, wherein an operating medium of the shell-side cylinder 6 is a cooling liquid, and the cooling liquid may be One of water, brine or ethylene glycol aqueous solution, the operating medium of the tube bundle 7 includes ⁇ -olefin, catalyst aqueous solution, hydrogen and carbon monoxide and reaction product aldehyde; both ends of the tube bundle 7 are respectively connected with the head 10 The feeding inlet and the discharging outlet provided on the connection are connected.
  • the cooling liquid circulating in the shell-side cylinder 6 can realize rapid heat removal, thereby improving the selectivity of the reaction product aldehyde.
  • the shell-side cylinder 6 is provided with a cooling liquid inlet 4, a cooling liquid outlet 5 and 2-50 baffles 9, such as 2, 5, 10, and 20 baffles. , 25 blocks, 30 blocks, 35 blocks, 40 blocks, 45 blocks, 50 blocks, and any point value in the range consisting of any two points.
  • baffle plate 9 The function of the baffle plate 9 is to increase the flow rate of the cooling liquid and strengthen the heat transfer efficiency.
  • the cooling liquid inlet 4 and the cooling liquid outlet 5 are provided on the outer wall of the reactor shell cylinder 6; the cooling liquid inlet 4 is provided on the lower part of the shell-side cylinder 6; the cooling liquid It enters the shell-side cylinder 6 from the coolant inlet 5 and flows in the shell-side cylinder 6 to achieve the cooling reaction system, and finally flows out from the coolant outlet 5 provided on the upper part of the shell-side cylinder 6.
  • the baffle plates 9 are horizontally disposed on the inner wall of the reactor shell cylinder 6, and the baffle plates 9 are arranged in parallel with each other, and the distance between the baffle plates 9 is parallel. It is 10-1000mm, for example, 10mm, 100mm, 200mm, 500mm, 1000mm, and any point value in a range consisting of any two of the above point values.
  • the spacing between the baffles 9 may be equal or different. Preferably, the spacing between the baffles 9 is equal.
  • the baffle plate 9 is provided with a small hole, and the hole diameter of the small hole is 1-100mm, for example, 1mm, 10mm, 20mm, 50mm, 100mm and above.
  • the other point values in the range of any two components are arranged in a regular triangle, a square, or any combination of the two, and the opening ratio is 0.1% -20%.
  • the mixture feed inlet 2 introduces the reaction raw material catalyst aqueous solution, ⁇ -olefin, hydrogen, and carbon monoxide, and the discharge outlet 3 discharges the reaction mixture.
  • the tube bundle 7 includes 1-1000 reaction tubes, for example, 1, 10, 100, 500, 1000, and any two of the above points. At other points in the range, the diameter of the tube bundle 7 is 5-500 mm and the length is 500-10000 mm.
  • the arrangement of the reaction tubes in the tube bundle 7 is selected from at least one of a regular triangle, a square, and a single column.
  • the tube bundle 7 is provided with a dispersing component 8 therein, and the number of the dispersing component 8 in each reaction tube is 1-1000, for example, 1, 10, 100, 500, 1000 And other point values in the range of any two of the above point values; the specific surface area of the dispersing component 8 is 100-1000m 2 / m 3 , the porosity is 0.01-0.1, and the length is 10-1000mm .
  • the combined application of the tube bundle 7 and the dispersing module 8 can maximize the uniform dispersion of the reactants, improve the defects of the traditional reactor, and increase the conversion rate and the selectivity of the product aldehyde.
  • the multi-phase reactor 1 shown in FIG. 1 is adopted, and its structure is:
  • Multiphase reactor shell-side cylinder 6 cylinder height 1000mm, diameter 50mm, baffle spacing 100mm, number of 8 pieces;
  • Multiphase reactor tube bundle 7 the number of tube bundles is 1, the length is 1000mm, the diameter of the tube bundle is 20mm, the number of dispersed components in the tube bundle is 10, the specific surface area is 500m 2 / m 3 , the void ratio is 0.05%; the length is 100mm;
  • the catalyst aqueous solution adopts the composition ratio of Example 1 in published patent number CN101462932A;
  • reaction temperature 80 ° C, reaction pressure is 2.5 MPa (A);
  • Feeding parameters at 2 feed inlets are Feeding parameters at 2 feed inlets:
  • Catalyst aqueous solution feed flow 10m 3 / hour;
  • a process of preparing propionaldehyde by the hydroformylation reaction of ethylene hydrocarbon is realized with a high ethylene conversion rate of 98% and a high propionaldehyde selectivity of 98%.
  • the multi-phase reactor 1 shown in FIG. 1 is adopted, and its structure is:
  • Multiphase reactor shell-side cylinder 6 cylinder height 1000mm, diameter 50mm, baffle spacing 100mm, number of 8 pieces;
  • Multiphase reactor tube bundle 7 the number of tube bundles is 1, the length is 1000mm, the diameter of the tube bundle is 20mm, the number of dispersed components in the tube bundle is 10, the specific surface area is 500m 2 / m 3 , the void ratio is 0.05%; the length is 100mm;
  • the catalyst aqueous solution adopts the composition ratio of Example 5 in published patent number CN101462932A;
  • reaction temperature 110 ° C
  • reaction pressure 2.5MPa (A)
  • Feeding parameters at 2 feed inlets are Feeding parameters at 2 feed inlets:
  • Catalyst aqueous solution feed flow 10m 3 / hour;
  • a production process of preparing n-butyraldehyde by a hydroformylation reaction of propylene hydrocarbons is realized with a high propylene conversion rate of 98% and a high n-butyraldehyde selectivity.
  • the multi-phase reactor 1 shown in FIG. 1 is adopted, and its structure is:
  • Multiphase reactor shell-side cylinder 6 cylinder height 1000mm, diameter 50mm, baffle spacing 100mm, number of 8 pieces;
  • Multiphase reactor tube bundle 7 the number of tube bundles is 1, the length is 1000mm, the diameter of the tube bundle is 20mm, the number of dispersed components in the tube bundle is 10, the specific surface area is 500m 2 / m 3 , the void ratio is 0.05%; the length is 100mm;
  • the catalyst aqueous solution was composed of the proportion of Example 10 in published patent number CN101462932A.
  • reaction temperature 120 ° C
  • reaction pressure 3.0 MPa (A)
  • Feeding parameters at 2 feed inlets are Feeding parameters at 2 feed inlets:
  • Catalyst aqueous solution feed flow 10m 3 / hour;
  • a 1-butene hydroformylation reaction to produce n-valeraldehyde is achieved with a high 1-butene conversion of 97% and a high n-valeraldehyde selectivity of 97%.
  • the multi-phase reactor 1 shown in FIG. 1 is adopted, and its structure is:
  • Multiphase reactor shell-side cylinder 6 cylinder height 1000mm, diameter 50mm, baffle spacing 100mm, number of 8 pieces;
  • Multiphase reactor tube bundle 7 the number of tube bundles is 1, the length is 1000mm, the diameter of the tube bundle is 20mm, the number of dispersed components in the tube bundle is 10, the specific surface area is 500m 2 / m 3 , the void ratio is 0.05%; the length is 100mm;
  • the catalyst aqueous solution is composed of the proportion of Example 32 in published patent number CN106000470.
  • reaction temperature 80 ° C, reaction pressure is 2.0 MPa (A);
  • Feeding parameters at 2 feed inlets are Feeding parameters at 2 feed inlets:
  • Catalyst aqueous solution feed flow 10m 3 / hour;
  • 1-octene feed flow 100kg / hour
  • N-nonanal: isononanal 50: 1 (molar ratio).
  • a 1-octene hydroformylation reaction to produce n-nonanal is achieved with a high 1-octene conversion of 97.2% and a high n-nonanal selectivity of 95%.
  • FIG. 2 to FIG. 5 show different structural forms of the decentralized component 8.
  • the decentralized component structure of the production equipment of the present application can be selected according to actual needs by using at least one of the I, II, III, and IV structures in FIGS. 2 to 5. Species
  • the I-type dispersing component shown in FIG. 2 is adopted as the dispersing component, and other process parameters are the same as those in the embodiment 4.
  • the catalyst aqueous solution is composed of the proportion of Example 32 in published patent number CN106000470.
  • reaction temperature 80 ° C, reaction pressure is 2.0 MPa (A);
  • Feeding parameters at 2 feed inlets are Feeding parameters at 2 feed inlets:
  • Catalyst aqueous solution feed flow 10m 3 / hour;
  • 1-octene feed flow 100kg / hour
  • N-nonanal: isononanal 50: 1 (molar ratio).
  • a 1-octene hydroformylation reaction to produce n-nonanal is achieved with a high 1-octene conversion of 98.2% and a high n-nonanal selectivity of 98%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种α-烯烃氢甲酰化反应制备醛的多相反应器和制备方法,所述反应器包括壳程筒体和管束;所述管束位于所述壳程筒体内部,且所述管束的内部空间与所述壳程筒体的内部空间互不相通;所述管束的两端分别具有进料口和出料口,所述进料口和所述出料口与所述壳程筒体外部相通;所述壳程筒体设有折流板。采用该多相反应器可同时实现原料、催化剂、H 2及CO在反应器中高度均匀分散,传质、传热效果优越,能够缩短并简化工艺流程,提高产品产量和质量,实现该类反应强放热的连续化生产,并具有高选择性和高转化率。

Description

一种α-烯烃氢甲酰化反应制备醛的多相反应器及制备方法 技术领域
本申请涉及一种α-烯烃氢甲酰化反应制备醛的多相反应器及应用该多相反应器的α-烯烃氢甲酰化反应制备醛的方法,属于化工材料制备领域和化学工程设备领域。
背景技术
在传统醛的合成工艺过程中,多数采用釜式带搅拌的反应器或塔式反应器,上述反应器都属于返混型反应器,虽然能够实现工业化生产,但由于反应器的固有缺点,如烯烃、催化剂和氢气及一氧化碳分散不均匀,传质、传热效果差,造成反应效率低,目标产物选择性差。
在特定反应条件下,溶解于水中的催化剂为水相,反应原料如α-烯烃为有机相,而一氧化碳及氢气为气相且只能借助气体的鼓泡使物料得以混合,这种状况使得该类反应受气液两相界面的传质速率、传热速率控制和局限。因此,对于烯烃的氢甲酰化反应设备来说,强化传质、传热是提高反应效率的关键因素。
发明内容
根据本申请的一个方面,提供了一种α-烯烃氢甲酰化反应制备醛的多相反应器,采用该多相反应器可同时实现原料、催化剂、氢气及一氧化碳在反应器中高度均匀分散,传质、传热效果优越,能够缩短并简化工艺流程,提高产量和产品质量,实现了该类反应强放热的连续化生产,并使反应过程具有高选择性和高转化率。
所述反应器包括壳程筒体和管束;
所述管束位于所述壳程筒体内部,且所述管束的内部空间与所述壳程筒体的内部空间互不相通;
所述管束的两端分别具有进料口和出料口,所述进料口和所述出料口与所述壳程筒体外部相通;
所述壳程筒体设有折流板。
可选地,所述至少一块折流板设于壳程筒体内。
可选地,所述壳程筒体内流动有操作介质I,所述操作介质I为冷却液;
所述管束内流动有操作介质II;所述操作介质II通过所述进料口引入所述管束,通过所述出料口引出所述管束。
可选地,所述反应器为多相反应器;优选地,所述反应器为气-液-液三相反应器。
本申请中,多相是指互不溶混或仅部分溶混的两个或多个相(或流相),例如但不限于液相(无机液相、有机液相)、气相、固相等。
可选地,所述壳程筒体设有冷却液进口、冷却液出口和2-50块折流板;
其中,所述冷却液进口和冷却液出口设置在所述壳程筒体的外壁上。
可选地,所述折流板水平地设置在所述壳程筒体的内壁上,各折流板平行设置,各折流板的间距为10-1000mm。
本申请中,通过所述壳程筒体中循环流动的冷却液可以实现快速去热,进而提高反应产物醛的选择性。
在本发明的一个优选实施方式中,所述壳程筒体外壁上设有冷却液进口,冷却液出口和2-50块折流板,例如2块、5块、10块、20块、25块、30块、35块、40块、45块、50块以及以上各点值中任意两个组成的范围中的任意点值。
本申请中,所述折流板的作用在于增加冷却液流速,强化移热效率。各折流板的间距为10-1000mm,例如10mm,100mm,200mm,500mm,1000mm,以及以上点值中任意两个组成的范围中的任意点值。各折流板之间的间距可以相等也可以不等,优选情况下,各折流板之间的间距相等。
可选地,所述折流板上设有小孔,所述小孔的孔径为1-100mm,排列方式为正三角形、正方形或二者任意组合,开孔率为0.1%-20%。
在本发明的一个优选实施方式中,所述折流板上小孔的孔径为1-100mm,例如1mm,10mm,20mm,50mm,100mm以及以上各点值中的任意两个组成的范围中的其他点值,排列方式为正三角形、正方形或二者任意组合,开孔率为0.1%-20%。
可选地,所述管束的直径为5-500mm,长度为500-10000mm;
所述管束包括1-1000根反应管,所述管束内各反应管的排列方式选自正三角形、正方形和单列中的至少一种。
在本发明的一个优选实施方式中,所述管束包括1-1000根反应管,例如1根、10根、100根、500根、1000根,以及以上各点值中的任意两个组成的范围中的其他点值。
可选地,所述反应管内设有分散组件,每根反应管内分散组件的数量为1-1000个;
所述分散组件的比表面积为100-1000m 2/m 3,空隙率在0.01-0.1之间;长度在10-1000mm之间。
在本发明的一个优选实施方式中,所述管束内设有分散组件,每根反应管内分散组件的数量为1-1000个,例如1个、10个、100个、500个、1000个,以及以上各点值中的任意两个组成的范围中的其他点值。
本申请中,所述管束和所述分散组件的结合应用能够最大程度地实现反应物的均匀分散,改善传统反应器的缺陷并能够提高转化率和产物醛的选择性。
可选地,所述反应器的使用温度为50-180℃,使用压力为0.5-5MPa。
可选地,所述冷却液选自水、盐水或乙二醇水溶液的至少一种。
可选地,所述操作介质II包括原料CO、氢气、α-烯烃、含铑及其配体的催化剂水溶液及反应产物醛。
可选地,所述多相反应器为列管式反应器。
根据本申请的另一个方面,提供了一种α-烯烃氢甲酰化反应制备醛的方法,其特征在于,所述方法的原料包括C2~C20的α-烯烃、CO和氢气,以含铑及其配体的水溶液为催化剂水溶液,使用上述任一α-烯烃氢甲酰化反应制备醛的多相反应器,制备得到醛。
可选地,所述方法的反应温度为50-180℃,反应压力为0.5-5MPa;所述α-烯烃和所述催化剂水溶液的体积比为1:5~100。
本申请能产生的有益效果至少包括:
1)本申请所提供的多相反应器,可以满足采用以α-烯烃为原料在催化剂作用下进行氢甲酰化反应的特点,实现了该类反应强放热的连续化生产,克服了传统反应器原料、催化剂和氢气,一氧化碳分散不均匀,传质效果差、传热效率低的缺点。
2)采用本申请所提供的多相反应器制备醛的方法,能够缩短并简化工艺流程,提高产量和产品质量,实现产物的高选择性及原料的高转化率。
附图说明
图1为本申请一种实施方式中生产设备的结构示意图。
图2~图5为本申请一种实施方式中生产设备的分散组件结构示意图,其中,图2为I型分散组件,图3为II型分散组件,图4为III型分散组件,图5为IV型分散组件。
部件和附图标记说明:
1、多相反应器;2、混合物料进料口;3、混合物料出料口;4、冷却液进口;5、冷却液出口;6、壳程筒体;7、管束;8、分散组件;9、折流板;10、封头。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
本申请的实施例中,α-烯烃的转化率以及产物醛的选择性计算方法如下:
Figure PCTCN2018090838-appb-000001
图1本申请的醛的多相反应器的结构示意图。
所述多相反应器为列管式反应器。
溶解于水的催化剂预先装入反应器的管程中,液相的反应原料由液体物料进口,气相的反应原料由气相物料进口。
在本申请的一个优选实施方式中,所述多相反应器1包括壳程筒体6、管束7和封头10,其中所述壳程筒体6的操作介质为冷却液,冷却液可以为水、盐水或乙二醇水溶液的其中之一,所述管束7的操作介质包括α-烯烃、催化剂水溶液、氢气和一氧化碳及反应产物醛;所述管束7的两端分别与所述封头10上设置的进料口和出料口连接。
通过壳程筒体6中循环流动的冷却液可以实现快速去热,进而提高反应产物醛的选择性。
在本申请的一个优选实施方式中,所述壳程筒体6设有冷却液进口4,冷却液出口5和2-50块折流板9,例如2块、5块、10块、20块、25块、30块、35块、40块、45块、50块以及以上各点值中任意两个组成的范围中的任意点值。
折流板9的作用在于增加冷却液流速,强化移热效率。
在本申请的一个优选实施方式中,所述冷却液进口4和冷却液出口5设置在反应器壳体筒体6的外壁上;冷却液进口4设置在壳程筒体6的下部,冷却液由冷却液进口5进入壳程筒体6,并在壳程筒体6内流动,达到冷却反应体系的作用,最终从设置在壳程筒体6上部的冷却液出口5处流出。
在本申请的一个优选实施方式中,所述折流板9水平地设置在所述反应器壳体筒体6的内壁上,各折流板9之间平行设置,各折流板9的间距为10-1000mm,例如10mm,100mm,200mm,500mm,1000mm,以及以上点值中任意两个组成的范围中的任意点值。各折流板9之间的间距可以相等也可以不等,优选情况下,各折流板9之间的间距相等。
在本申请的一个优选实施方式中,所述折流板9上设有小孔,所述小孔的孔径为1-100mm,例如1mm,10mm,20mm,50mm,100mm以及以上各点值中的任意两个组成的范围中的其他点值,排列方式为正三角形、正方形或二者任意组合,开孔率为0.1%-20%。
在本申请的一个优选实施方式中,所述管束中7,混合物料进料口2引入反应原料催化剂水溶液、α-烯烃、氢气及一氧化碳,出料口3将反应 混合物排出。
在本申请的一个优选实施方式中,所述管束7包括1-1000根反应管,例如1根、10根、100根、500根、1000根,以及以上各点值中的任意两个组成的范围中的其他点值,所述管束7的直径为5-500mm,长度为500-10000mm,所述管束7内各反应管的排列方式选自正三角形、正方形和单列中的至少一种。
在本申请的一个优选实施方式中,所述管束7内设有分散组件8,每根反应管内分散组件8的数量为1-1000个,例如1个、10个、100个、500个、1000个,以及以上各点值中的任意两个组成的范围中的其他点值;所述分散组件8的比表面积为100-1000m 2/m 3,空隙率在0.01-0.1;长度在10-1000mm。
管束7和分散组件8的结合应用能够最大程度地实现反应物的均匀分散,改善传统反应器的缺陷并能够提高转化率和产物醛的选择性。
实施例1
采用附图1所示的多相反应器1,其结构为:
多相反应器壳程筒体6:筒体高度1000mm,直径为50mm,折流板间距为100mm,数量为8块;
多相反应器管束7:管束数量为1根,长度为1000mm,管束直径为20mm,管束内分散组件,数量为10,比表面积为500m 2/m 3,空隙率为0.05%;长度在100mm;
工艺条件如下:
催化剂水溶液采用已公开专利号CN101462932A中实施例1的配比组成;
反应温度:80℃,反应压力为2.5MPa(A);
进料口2处各进料参数:
催化剂水溶液进料流量:10m 3/小时;
乙烯进料流量:25Nm 3/小时;
CO+H 2进料流量:50Nm 3/小时;
CO:H 2=1:1(摩尔比);
出料口3处出料结果:
乙烯转化率:98%;
丙醛收率:98%。
本实施例以98%的高乙烯转化率和98%的高丙醛选择性实现了乙烯烃氢甲酰化反应制备丙醛的生产过程。
实施例2
采用附图1所示的多相反应器1,其结构为:
多相反应器壳程筒体6:筒体高度1000mm,直径为50mm,折流板间距为100mm,数量为8块;
多相反应器管束7:管束数量为1根,长度为1000mm,管束直径为20mm,管束内分散组件,数量为10,比表面积为500m 2/m 3,空隙率为0.05%;长度在100mm;
工艺条件如下:
催化剂水溶液采用已公开专利号CN101462932A中实施例5的配比组成;
反应温度:110℃,反应压力为2.5MPa(A);
进料口2处各进料参数:
催化剂水溶液进料流量:10m 3/小时;
丙烯进料流量:50kg/小时;
CO+H 2进料流量:50Nm 3/小时;
CO:H 2=1:1(摩尔比);
出料口3处出料结果:
丙烯转化率:98%;
正丁醛收率:97%;
正丁醛:异丁醛=40:1(摩尔比)。
本实施例以98%的高丙烯转化率和97%的高正丁醛选择性实现了丙烯烃氢甲酰化反应制备正丁醛的生产过程。
实施例3
采用附图1所示的多相反应器1,其结构为:
多相反应器壳程筒体6:筒体高度1000mm,直径为50mm,折流板间距为100mm,数量为8块;
多相反应器管束7:管束数量为1根,长度为1000mm,管束直径为20mm,管束内分散组件,数量为10,比表面积为500m 2/m 3,空隙率为0.05%;长度在100mm;
工艺条件如下:
催化剂水溶液采用已公开专利号CN101462932A中实例10的配比组成。
反应温度:120℃,反应压力为3.0MPa(A);
进料口2处各进料参数:
催化剂水溶液进料流量:10m 3/小时;
1-丁烯进料流量:60kg/小时;
CO+H 2进料流量:50Nm 3/小时;
CO:H 2=1:1(摩尔比);
出料口3处出料结果:
1-丁烯转化率:97%;
正戊醛收率:97%;
正戊醛:异戊醛=60:1(摩尔比)。
本实施例以97%的高1-丁烯转化率和97%的高正戊醛选择性实现了1-丁烯烃氢甲酰化反应制备正戊醛的生产过程。
实施例4
采用附图1所示的多相反应器1,其结构为:
多相反应器壳程筒体6:筒体高度1000mm,直径为50mm,折流板间距为100mm,数量为8块;
多相反应器管束7:管束数量为1根,长度为1000mm,管束直径为20mm,管束内分散组件,数量为10,比表面积为500m 2/m 3,空隙率为0.05%;长度在100mm;
工艺条件如下:
催化剂水溶液采用已公开专利号CN106000470中实施例32的配比组成。
反应温度:80℃,反应压力为2.0MPa(A);
进料口2处各进料参数:
催化剂水溶液进料流量:10m 3/小时;
1-辛烯进料流量:100kg/小时;
CO+H 2进料流量:50Nm 3/小时;
CO:H 2=1:1(摩尔比);
出料口3处出料结果:
1-辛烯转化率:97.2%;
正壬醛收率:95%;
正壬醛:异壬醛=50:1(摩尔比)。
本实施例以97.2%的高1-辛烯转化率和95%的高正壬醛选择性实现了1-辛烯烃氢甲酰化反应制备正壬醛的生产过程。
实施例5
图2~图5为分散组件8的不同结构形式,本申请生产设备的分散组件结构可根据实际需要,选择采用图2~图5中I型、II型、III型、IV型结构的至少一种
本实施例中分散组件采用图2中所示的I型分散组件,其他工艺参数与实施例4相同。
工艺条件如下:
催化剂水溶液采用已公开专利号CN106000470中实施例32的配比组成。
反应温度:80℃,反应压力为2.0MPa(A);
进料口2处各进料参数:
催化剂水溶液进料流量:10m 3/小时;
1-辛烯进料流量:100kg/小时;
CO+H 2进料流量:50Nm 3/小时;
CO:H 2=1:1(摩尔比);
出料口3处出料结果:
1-辛烯转化率:98.2%;
正壬醛收率:98%;
正壬醛:异壬醛=50:1(摩尔比)。
本实施例以98.2%的高1-辛烯转化率和98%的高正壬醛选择性实现了1-辛烯烃氢甲酰化反应制备正壬醛的生产过程。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (12)

  1. 一种α-烯烃氢甲酰化反应制备醛的多相反应器,其特征在于,所述反应器包括壳程筒体和管束;
    所述管束位于所述壳程筒体内部,且所述管束的内部空间与所述壳程筒体的内部空间互不相通;
    所述管束的两端分别具有进料口和出料口,所述进料口和所述出料口与所述壳程筒体外部相通;
    所述壳程筒体设有折流板。
  2. 根据权利要求1所述的多相反应器,其特征在于,所述壳程筒体内流动有操作介质I,所述操作介质I为冷却液;
    所述管束内流动有操作介质II;所述操作介质II通过所述进料口引入所述管束,通过所述出料口引出所述管束。
  3. 根据权利要求1所述的多相反应器,其特征在于,所述壳程筒体设有冷却液进口、冷却液出口和2-50块折流板;
    其中,所述冷却液进口和冷却液出口设置在所述壳程筒体的外壁上。
  4. 根据权利要求3所述的多相反应器,其特征在于,所述冷却液选自水、盐水或乙二醇水溶液的至少一种。
  5. 根据权利要求3所述的多相反应器,其特征在于,所述折流板水平地设置在所述壳程筒体的内壁上,各折流板平行设置,各折流板的间距为10-1000mm。
  6. 根据权利要求5所述的多相反应器,其特征在于,所述折流板上设有小孔,所述小孔的孔径为1-100mm,排列方式为正三角形、正方形或二者任意组合,开孔率为0.1%-20%。
  7. 根据权利要求1所述的多相反应器,其特征在于,所述管束的直径为5-500mm,长度为500-10000mm;
    所述管束内包括1-1000根反应管,所述管束内各反应管的排列方式选 自正三角形、正方形和单列中的至少一种。
  8. 根据权利要求1所述的多相反应器,其特征在于,所述反应管内设有分散组件,每根反应管内分散组件的数量为1-1000个;
    所述分散组件的比表面积为100-1000m 2/m 3,空隙率在0.01-0.1之间;长度在10-1000mm之间。
  9. 根据权利要求2所述的多相反应器,其特征在于,所述操作介质II包括原料CO、氢气、α-烯烃、含铑及其配体的催化剂水溶液及反应产物醛。
  10. 根据权利要求1所述的多相反应器,其特征在于,所述反应器为列管式反应器。
  11. 一种α-烯烃氢甲酰化反应制备醛的方法,其特征在于,所述方法的原料包括C2~C20的α-烯烃、CO和氢气,以含铑及其配体的水溶液为催化剂水溶液,使用权利要求1至10中任意一项所述的α-烯烃氢甲酰化反应制备醛的多相反应器,制备得到醛。
  12. 根据权利要求11所述的方法,其特征在于,所述方法的反应温度为50-180℃,反应压力为0.5-5MPa;
    所述α-烯烃和所述催化剂水溶液的体积比为1:5~100。
PCT/CN2018/090838 2018-05-25 2018-06-12 一种α-烯烃氢甲酰化反应制备醛的多相反应器及制备方法 WO2019223033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810517208.9A CN110523348A (zh) 2018-05-25 2018-05-25 一种α-烯烃氢甲酰化反应制备醛的多相反应器及制备方法
CN201810517208.9 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019223033A1 true WO2019223033A1 (zh) 2019-11-28

Family

ID=68615652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090838 WO2019223033A1 (zh) 2018-05-25 2018-06-12 一种α-烯烃氢甲酰化反应制备醛的多相反应器及制备方法

Country Status (2)

Country Link
CN (1) CN110523348A (zh)
WO (1) WO2019223033A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB742931A (en) * 1952-11-19 1956-01-04 British Petroleum Co Improvements in or relating to reactors
CN2764474Y (zh) * 2005-01-20 2006-03-15 中国寰球工程公司 一种用于环氧乙烷制备的列管式固定床反应器
CN102372566A (zh) * 2010-08-23 2012-03-14 中国石油化工股份有限公司 乙醇脱水制乙烯的方法
CN102686308A (zh) * 2009-12-28 2012-09-19 国际壳牌研究有限公司 底部具有气体分配系统的反应器
CN206435170U (zh) * 2016-11-16 2017-08-25 中国科学院山西煤炭化学研究所 一种用于强放热反应的固定床反应器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204365246U (zh) * 2014-11-21 2015-06-03 中国石油天然气股份有限公司 催化剂进料雾化喷嘴及气相流化床反应器、聚烯烃生产装置
CN206273355U (zh) * 2016-11-25 2017-06-23 兰州兰石集团有限公司 绕管换热式烷基化反应器
CN208554115U (zh) * 2018-05-25 2019-03-01 安丽华 一种α-烯烃氢甲酰化反应制备醛的多相反应器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB742931A (en) * 1952-11-19 1956-01-04 British Petroleum Co Improvements in or relating to reactors
CN2764474Y (zh) * 2005-01-20 2006-03-15 中国寰球工程公司 一种用于环氧乙烷制备的列管式固定床反应器
CN102686308A (zh) * 2009-12-28 2012-09-19 国际壳牌研究有限公司 底部具有气体分配系统的反应器
CN102372566A (zh) * 2010-08-23 2012-03-14 中国石油化工股份有限公司 乙醇脱水制乙烯的方法
CN206435170U (zh) * 2016-11-16 2017-08-25 中国科学院山西煤炭化学研究所 一种用于强放热反应的固定床反应器

Also Published As

Publication number Publication date
CN110523348A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
KR102081172B1 (ko) 피셔-트롭쉬 공정에서 촉매 활성화 방법, 반응기 및 탄화수소를 얻는 방법
CN108473406B (zh) 圆柱状反应器及其用于连续氢甲酰化的用途
AU2011210031A1 (en) Process for producing synthetic liquid hydrocarbons and reactor for Fischer-Tropsch synthesis
CN111302917B (zh) 一种烯烃氢甲酰化装置及方法
CN110526807B (zh) 一种氢甲酰化反应制备醛的连续反应装置和方法
CN112321409A (zh) 一种二氧化碳加氢制甲酸的反应系统及方法
CN113522192B (zh) 制备聚α-烯烃的装置和方法
CN112705120B (zh) 一种重质油加工装置及加工方法
WO2019223033A1 (zh) 一种α-烯烃氢甲酰化反应制备醛的多相反应器及制备方法
CN111013511B (zh) 一种微反应器和系统及石油烃生产低碳烯烃的方法
CN208554115U (zh) 一种α-烯烃氢甲酰化反应制备醛的多相反应器
CN109679684B (zh) 一种液相加氢反应系统及方法
CN109382050B (zh) 一种烷基化反应器及烷基化反应方法
CN105037070A (zh) 一种甲醇催化脱水制丙烯的反应装置和方法
CN215353341U (zh) 一种石油烃流化催化转化反应器
CN205235936U (zh) 一种组合式固定床反应器及由其形成的装置
CN116020350A (zh) 一种合成碳酸酯的反应器、合成碳酸酯的系统以及方法
RU2674950C1 (ru) Каталитический реактор
CN109382049B (zh) 烷基化多级反应器及烷基化反应方法
CN112007598A (zh) 分隔式低聚反应器
US2638407A (en) Apparatus for close temperature control of catalyzed gas reactions
CN115650833B (zh) 一种微气泡流强化烯烃氢甲酰化的工艺方法
US20230364572A1 (en) Catalyst mixing device
CN111889037B (zh) 移动床反应器及适用于热量耦合或反应耦合的反应方法
CN1017971B (zh) 在有外部中间调温的多级反应区中进行加压化学反应的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920129

Country of ref document: EP

Kind code of ref document: A1