WO2019221554A1 - 브레이크 시스템 - Google Patents

브레이크 시스템 Download PDF

Info

Publication number
WO2019221554A1
WO2019221554A1 PCT/KR2019/005938 KR2019005938W WO2019221554A1 WO 2019221554 A1 WO2019221554 A1 WO 2019221554A1 KR 2019005938 W KR2019005938 W KR 2019005938W WO 2019221554 A1 WO2019221554 A1 WO 2019221554A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
regenerative braking
electronic control
hydraulic
control device
Prior art date
Application number
PCT/KR2019/005938
Other languages
English (en)
French (fr)
Inventor
전남주
Original Assignee
주식회사 만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 만도 filed Critical 주식회사 만도
Priority to US17/056,169 priority Critical patent/US20210213836A1/en
Priority to KR1020207032928A priority patent/KR102631078B1/ko
Publication of WO2019221554A1 publication Critical patent/WO2019221554A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/04Vehicle reference speed; Vehicle body speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/10ABS control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18108Braking
    • B60Y2300/18125Regenerative braking

Definitions

  • the present invention relates to a brake system capable of performing regenerative braking using an electric motor even in a hydraulic braking device.
  • One aspect provides a brake system for performing regenerative braking using an electric motor even in a vehicle to which a hydraulic braking device is applied.
  • the hydraulic braking device for generating a braking force by the hydraulic pressure; And a regenerative braking device for generating a regenerative braking force by the electric motor, wherein the hydraulic braking device comprises: a master cylinder for generating hydraulic pressure corresponding to the displacement of the brake pedal by discharging the pressurized medium; A plurality of valves disposed in a flow path connecting the plurality of wheel cylinders and the master cylinder; An accumulator disposed in the flow path; And an electronic control device that determines a required braking force corresponding to the displacement amount of the brake pedal and controls the plurality of valves, wherein the electronic control device discharges from the master cylinder when sensing the displacement amount of the brake pedal.
  • the plurality of valves are controlled so that the pressurized medium is stored in the accumulator, and a request signal for generating the regenerative braking force is transmitted to the regenerative braking device.
  • the plurality of valves may include an outlet valve disposed at an outlet side of the plurality of wheel cylinders, and the electronic controller may control the pressurized medium discharged from the master cylinder by switching the outlet valve to an open state. It can be stored in the accumulator.
  • the electronic control apparatus may control the plurality of valves such that the pressurized medium stored in the accumulator is transferred to the plurality of wheel cylinders when the vehicle speed is equal to or less than a predetermined reference value.
  • the plurality of valves may include a traction control valve disposed between the master cylinder and the wheel cylinder, and the electronic controller may change the pressure medium stored in the accumulator by switching the traction control valve to a closed state. It can be delivered to the plurality of wheel cylinders.
  • the hydraulic pump for providing a pressure medium stored in the accumulator to the plurality of wheel cylinder; And a motor for driving the hydraulic pump, wherein the electronic control device may transmit the pressurized medium stored in the accumulator to the plurality of wheel cylinders by turning on the hydraulic pump and the motor.
  • the electronic control device may switch the outlet valve to an open state if the displacement amount of the brake pedal is equal to or greater than a predetermined threshold value.
  • the electronic control device may switch the outlet valve to the closed state before the regenerative braking force corresponding to the required braking force reaches the maximum regenerative braking force.
  • the electronic control apparatus may determine a mode conversion regenerative braking force based on the maximum regenerative braking force, and when the regenerative braking force corresponding to the requested braking force reaches the determined mode change regenerative braking force, the outlet valve is switched to the closed state. can do.
  • the electronic control apparatus may determine a value obtained by applying a predetermined weight to the maximum regenerative braking force as the mode conversion regenerative braking force, and the predetermined weight may be greater than 0 and less than or equal to 1.
  • the electronic control apparatus may determine a target regenerative braking force based on the required braking force, and transmit the request signal to the regenerative braking device so that the determined target regenerative braking force is generated.
  • the electronic control apparatus may determine a braking force obtained by subtracting a braking force by hydraulic pressure from the requested braking force as the target regenerative braking force.
  • the hydraulic braking device for generating a braking force by the hydraulic pressure; And a regenerative braking device for generating a regenerative braking force by the electric motor, wherein the hydraulic braking device comprises: a master cylinder for generating hydraulic pressure corresponding to the displacement of the brake pedal by discharging the pressurized medium; An outlet valve provided at an outlet side of the plurality of wheel cylinders; A traction control valve provided between the inlet valve provided at the inlet side of the plurality of wheel cylinders and the master cylinder; An accumulator connected to the outlet valve; And an electronic control device that determines a required braking force corresponding to the displacement amount of the brake pedal and controls the plurality of valves, wherein the electronic control device discharges from the master cylinder when sensing the displacement amount of the brake pedal.
  • the outlet valve is controlled such that the pressurized medium is stored in the accumulator, and when the vehicle speed is equal to or less than a predetermined reference value, the traction control valve is controlled so that the pressurized medium stored in the accumulator is transferred to the plurality of wheel cylinders.
  • the electronic control apparatus may store the pressurized medium discharged from the master cylinder in the accumulator by switching the outlet valve to an open state.
  • the electronic control device may transfer the pressurized medium stored in the accumulator to the plurality of wheel cylinders by switching the traction control valve to a closed state when the vehicle speed is equal to or less than a predetermined reference value.
  • the electronic control device may switch the outlet valve to an open state if the displacement amount of the brake pedal is equal to or greater than a predetermined threshold value.
  • the electronic control device may switch the outlet valve to the closed state before the regenerative braking force corresponding to the required braking force reaches the maximum regenerative braking force.
  • the electronic control apparatus may determine a mode conversion regenerative braking force based on the maximum regenerative braking force, and when the regenerative braking force corresponding to the requested braking force reaches the determined mode change regenerative braking force, the outlet valve is switched to the closed state. can do.
  • the electronic control apparatus may determine a target regenerative braking force based on the required braking force, and transmit a request signal for generating the determined target regenerative braking force to the regenerative braking apparatus.
  • the hydraulic braking device for generating a braking force by the hydraulic pressure; And a regenerative braking device for generating a regenerative braking force by the electric motor, wherein the hydraulic braking device determines a difference between the required braking force determined according to the displacement amount of the brake pedal and the braking force by the hydraulic pressure as the target regenerative braking force,
  • the request signal for generating the determined target regenerative braking force is transmitted to the regenerative braking device.
  • the brake system it is possible to perform regenerative braking even in a vehicle to which the hydraulic braking device is applied, and to compensate the regenerative braking force due to the hydraulic braking force loss due to the difference in the required amount compared to the electronic braking device of the hydraulic braking device. It can improve the total braking force.
  • FIG. 1 is a simplified conceptual diagram of a brake system according to an exemplary embodiment.
  • FIG. 2 is a hydraulic circuit diagram of a brake system according to an embodiment.
  • FIG. 3 is a graph illustrating regenerative braking force and hydraulic braking force during braking of a brake system according to an exemplary embodiment.
  • FIG. 4 is a diagram showing the operation and state of the valve, hydraulic pump, low pressure accumulator during braking of the brake system according to an embodiment.
  • 5A is a hydraulic circuit diagram illustrating an operating state of a regeneration initial mode of a brake system according to an exemplary embodiment.
  • 5B is a hydraulic circuit diagram illustrating an operating state of a regenerative cooperative mode of a brake system according to an exemplary embodiment.
  • 5C is a hydraulic circuit diagram illustrating an operating state of a regenerative fade-out mode of a brake system according to an exemplary embodiment.
  • 5D is a hydraulic circuit diagram illustrating an operating state of a regenerative release mode of a brake system according to an exemplary embodiment.
  • FIG. 6 is a graph for explaining the relationship between the required liquid amount and the braking force of a general brake system.
  • FIG. 7A is a graph illustrating the regenerative braking force and the hydraulic braking force during braking of the brake system according to an exemplary embodiment.
  • 7B is a graph illustrating the regenerative braking force and the hydraulic braking force during braking of the brake system according to another embodiment.
  • FIGS. 8 and 9 are flowcharts illustrating a regenerative braking method of a brake system according to an exemplary embodiment.
  • FIG. 1 is a simplified conceptual diagram of a brake device according to an embodiment of the present invention.
  • a brake system 1 includes a hydraulic braking system 1000 and a regenerative braking system 2000.
  • the hydraulic braking system 1000 may perform braking of the vehicle by providing a hydraulic braking force.
  • the hydraulic braking device 10 of the hydraulic braking system 1000 is provided to generate and provide a hydraulic braking force excluding the regenerative braking force by the electric motor 200 in the required braking force based on the driver's brake pedal stepping amount or displacement amount.
  • the hydraulic braking device 10 may include an electronic stability control (ESC) device 100.
  • ESC electronic stability control
  • the ESC device 100 may calculate the driver's required braking force based on the pressure of the master cylinder, the amount of pedal pedal depression or the amount of displacement.
  • the ESC device 100 may include an electronic control unit (ECU) 11, and the electronic control device 11 may include the regenerative braking force by the electric motor 200 at the calculated driver's required braking force. Braking force except for may be determined as the hydraulic braking force by the pressurized medium.
  • the electronic control device 11 may generate a control signal for providing the hydraulic braking force to the wheel cylinder and transmit the generated control signal to at least one component inside the hydraulic braking device 10.
  • the ESC device 100 may further include an anti-lock brake system (ABS).
  • ABS anti-lock brake system
  • the regenerative braking apparatus 20 of the regenerative braking system 2000 may perform braking of the vehicle by providing the regenerative braking force.
  • the regenerative braking device 20 of the regenerative braking system 2000 may include an electric motor 200 that rotates the wheels of the vehicle with electrical energy, and generates regenerative braking force generated by the electric motor 200. Do this.
  • the electric motor 200 may drive the vehicle by providing power to the wheels on which the wheel cylinders are mounted.
  • the electric motor 200 may function as a generator or a generator to convert the kinetic energy of the vehicle into electrical energy, and store the converted electrical energy in a battery or a capacitor.
  • a braking force is generated on each wheel, and this braking force is called a regenerative braking force.
  • the braking force applied to all the wheels is equal to the sum of the regenerative braking force by the electric motor 200 of the regenerative braking device 20 and the hydraulic braking force by the hydraulic braking device 10. do.
  • the thermal energy to be released as heat during the brake operation may be generated by the electric motor 200 of the regenerative braking device 20.
  • the amount of power that can be generated will vary depending on the speed of the vehicle and the amount of battery charge. Therefore, referring to the braking force required by the driver as the combined force of the regenerative braking force and the hydraulic braking force, in order to satisfy the driver's braking intention, the hydraulic braking device 10 is developed by the electric motor 200 at the braking force requested by the driver. Generates hydraulic braking force of a size other than the amount of regenerative braking force.
  • the hydraulic braking device 10 and the regenerative braking device 20 may transmit and receive various information for braking.
  • the hydraulic braking device 10 may transmit information related to the driver's requested braking force to the regenerative braking device 20.
  • the information related to the driver's requested braking force may include a driver's requested braking amount such as a pressure of the master cylinder (101 in FIG. 2), a brake pedal pedal effort amount or a displacement amount, and a driver's requested braking torque calculated therefrom.
  • the hydraulic braking device 10 may transmit various signals for controlling the regenerative braking device 20.
  • various signals for controlling the regenerative braking device 20 may include a regenerative braking request signal or a regenerative braking release signal for generating the regenerative braking force.
  • the regenerative braking request signal includes information on regenerative braking requirements such as target regenerative braking force, information on total braking force corresponding to driver's requested braking force, information on braking force excluding hydraulic braking force from total braking force corresponding to driver's requested braking force, and maximum regenerative power. It may include at least one of the information on the regenerative braking force determined based on the braking force.
  • the hydraulic braking device 10 may receive information on the regenerative braking from the regenerative braking device 20.
  • the information on the regenerative braking may mean information on the regenerative braking amount, and may include the regenerative braking force, the maximum regenerative braking force, or the regenerative braking torque.
  • the transmission of various information and signals to the regenerative braking device 20 may be performed by the electronic control device 11.
  • the regenerative braking device 20 may transmit the above-described information on the regenerative braking to the hydraulic braking device 10, and perform the regenerative braking based on the signal received from the hydraulic braking device 10.
  • the hydraulic braking device 10 and the regenerative braking device 20 may transmit and receive information using various communication networks.
  • the hydraulic braking device 10 and the regenerative braking device 20 may transmit and receive information using a CAN (Controller Area Network) network.
  • CAN Controller Area Network
  • the present invention is not limited thereto, and various wired communication networks or wireless communication networks such as FlexRay, LIN (Local Interconnect Network), MOST (Media Oriented System Transport) based network or Ethernet based network can be used. It may be.
  • each of the hydraulic braking device 10 and the regenerative braking device 20 is a memory (not shown) for storing the data for the algorithm or algorithm for reproducing the algorithm for controlling the operation of the components of the regenerative braking system, and the memory It may be implemented to include a processor (not shown) to perform the above-described operation using the data stored in the. In this case, the memory and the processor may be implemented as separate chips. Alternatively, the memory and the processor may be implemented in a single chip.
  • the electronic control device 11 of the hydraulic braking device 10 may be implemented to include the aforementioned memory (not shown) and processor (not shown).
  • At least one component may be added or deleted corresponding to the performance of the components of the brake system 1 shown in FIG. 1.
  • the mutual position of the components may be changed corresponding to the performance or structure of the system.
  • each component illustrated in FIG. 1 refers to hardware components such as software and / or a field programmable gate array (FPGA) and an application specific integrated circuit (ASIC).
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • FIG. 2 is a hydraulic circuit diagram of a brake system according to an embodiment.
  • a booster is operated by a pressure of the brake pedal 101 to generate hydraulic pressure of a pressurized medium such as brake fluid.
  • a plurality of wheel cylinders Wfr, Wrl, Wfl, and Wrr connected to the master cylinder 102 through a plurality of hydraulic lines to receive a pressurized medium from the master cylinder 102.
  • the master cylinder 102 may have two chambers.
  • the first chamber 103 of the master cylinder 102 is connected to the wheel cylinders Wfr and Wrl installed on the front wheel right wheel FR and the rear wheel left wheel RL, respectively, and the second chamber 104 is the front wheel left wheel. It is connected to the wheel cylinders Wfl and Wrr which are respectively installed at the FL and the rear wheel right wheel RR.
  • a normal open type traction control valve 131 In the hydraulic line between the first chamber 103 and the wheel cylinders Wfr and Wrl respectively installed at the front wheel right wheel FR and the rear wheel left wheel RL, a normal open type traction control valve 131 is provided.
  • the normal open traction control valve 131 controls the pressurized medium transmitted from the master cylinder 102 to the wheel cylinders Wfr and Wrl of each wheel.
  • a normal open type traction control valve 132 In the hydraulic line between the second chamber 104 and the wheel cylinders Wfl and Wrr respectively installed in the front wheel left wheel FL and the rear wheel right wheel RR, a normal open type traction control valve 132 is provided.
  • the normal open traction control valve 132 controls the pressurized medium transmitted from the master cylinder 102 to the wheel cylinders Wfl and Wrr of the respective wheels FL and RR.
  • normal open inlet valves 111 and 112 are provided, and the normal open type traction control valve 132 and each Normally open inlet valves 113 and 114 are provided in the hydraulic line between the wheel cylinders Wfl and Wrr of the wheels FL and RR.
  • Normally closed outlet valves 121 and 122 are provided on the outlet side of the wheel cylinders Wfr and Wrl of the respective wheels FR and RL. Normally closed outlet valves 121 and 122 are provided on the outlet side of the wheel cylinders Wfl and Wrr of each wheel FL and RR. Type outlet valves 123 and 124 are provided.
  • a low pressure accumulator 151 for temporarily storing the pressurized medium discharged from the wheel cylinders Wfr and Wrl of each wheel FR and RL is provided.
  • the low pressure accumulator 152 for temporarily storing the pressurized medium discharged from the wheel cylinders Wfl and Wrr of the wheels FL and RR is provided at the outlet sides of the 123 and 124.
  • the pressurized medium stored in the low pressure accumulators 151 and 152 may be pressurized by a pair of hydraulic pumps 161 and 162, respectively, and transferred to the wheel cylinders Wfr, Wrl, Wfl, and Wrr.
  • the pair of hydraulic pumps 161 and 162 may be provided with a driving force by the motor 13.
  • Normally closed electronic shuttle valves 141 and 142 are provided in the auxiliary hydraulic line between the suction side of the pair of hydraulic pumps 161 and 162 and the respective chambers 103 and 104 of the master cylinder 102. Accordingly, when the normal closed electronic shuttle valves 141 and 142 are opened, the auxiliary hydraulic line between the master cylinder 102 and the hydraulic pumps 161 and 162 is opened, and when the normal closed electronic shuttle valves 141 and 142 are closed, the master cylinder is closed. An auxiliary hydraulic line between the 102 and the hydraulic pumps 161 and 162 is closed.
  • the respective components are configured in the same way as the hydraulic circuit of the front wheel right wheel FR and the rear wheel left wheel RL.
  • NO Normal Open
  • NC Normally closed
  • Normally open traction control valves (131, 132), normally closed electronic shuttle valves (141, 142), normal open inlet valve (111-114), normal closed outlet valve (121-124), hydraulic pump (161, 162) of FIG.
  • the motor 13 is operated by the electronic control device 11 performing the braking mode.
  • the traction control valves 131 and 132, the electronic shuttle valves 141 and 142, the inlet valves 111 and 114, and the outlet valves 121 and 124 may be implemented as normal open valves or normal closed valves. It is not limited to the example.
  • the traction control valves 131 and 132 are normally open, the electronic shuttle valves 141 and 142 are normally closed, the inlet valves 111 to 114 are normally open, and the outlet valves 121 to 124 are normally closed. An example will be described.
  • the wheel speed sensors WS1 to WS4 provided at the front left and right wheels FL and FR and the rear left and right wheels RL and RR are electrically connected to the electronic control device 11 so as to provide wheel speed information of the detected wheels. It is connected.
  • the electronic control apparatus 11 may receive wheel speed information from the wheel speed sensors WS1-WS4, and use the same as a control basis.
  • the pressure sensor P / V provided to detect the pressure of the master cylinder 102 and the pressure of each wheel cylinder (for example, Wfr, Wfl) can provide the detected pressure information. Is electrically connected to
  • the pedal travel sensor PTS installed near the brake pedal 101 is electrically connected to the electronic control device 11 so as to provide the detected brake pedal operation information in order to grasp the driver's braking intention.
  • Normally open traction control valves (131,132), normally closed electronic shuttle valves (141,142), normally open inlet valves (111,112,113,114), normal closed outlet valves (121,122,123,124) and hydraulic pumps (161,162) of the ESC device 100.
  • the motor 13 can be controlled to be operated by the electronic control device 11.
  • a plurality of pressure sensors for measuring the hydraulic pressure of the master cylinder 102 and the hydraulic pressure applied to at least one of the wheel cylinders FL, FR, RR, RL, and FR may be disposed.
  • FIG. 3 is a graph showing regenerative braking force and hydraulic braking force during braking of a brake system according to an embodiment
  • FIG. 4 is a diagram showing operation and states of a valve, a hydraulic pump, and a low pressure accumulator during braking of a brake system according to an embodiment.
  • 5A is a hydraulic circuit diagram illustrating an operating state of a regenerative initial mode of a brake system according to an embodiment
  • FIG. 5B is a hydraulic circuit diagram illustrating an operating state of a regenerative cooperative mode of a brake system according to an embodiment.
  • FIG. 5D is a hydraulic circuit diagram showing an operating state of the regenerative fade out mode of the brake system according to the embodiment.
  • FIG. 5D is a hydraulic circuit diagram showing an operating state of the regenerative release mode of the brake system according to one embodiment.
  • 6 is a graph for explaining the relationship between the required liquid amount and the braking force of a general brake system.
  • the regenerative braking mode is divided into several modes for each braking period.
  • the first braking period 1 is a period in which the regenerative initial mode is performed.
  • the regenerative initial mode is a mode that generates the regenerative braking force without generating the hydraulic braking force at the beginning of braking.
  • the electronic control apparatus 11 may perform the regenerative initial mode when the value corresponding to the driver's braking intention is equal to or greater than a preset value. In this case, the entry into the regenerative initial mode may be performed regardless of the regenerative braking force. For example, the electronic control device 11 may enter the regenerative initial mode when the value corresponding to the braking intention of the driver is greater than or equal to a preset threshold regardless of the maximum regenerative braking force Rmax.
  • the electronic control apparatus 11 may determine a value corresponding to the driver's braking intention through the displacement amount of the brake pedal 101.
  • the electronic control device 11 may enter the regenerative initial mode when the displacement amount of the brake pedal 101 is equal to or greater than a predetermined threshold value.
  • the electronic control device 11 may transmit a control signal to the regenerative braking device 20 so that a regenerative braking force corresponding to the driver's requested braking force is generated by the driver pressing the brake pedal 101.
  • the pressurized medium discharged from the master cylinder 102 is transferred to the low pressure accumulators 151 and 152, and each wheel cylinder FR, RL, FL, and RR are electric motors. Braking of the vehicle may be performed only by the regenerative braking force by 200.
  • the electronic control device 11 maintains the normal open traction control valves 131 and 132 in an open state when the vehicle brakes, and maintains the normal open inlet valves 111, 112, 113, and 114 in an open state.
  • the normal closed outlet valves 121, 122, 123, and 124 may be controlled to be switched to an open state.
  • the pressurized medium discharged from the master cylinder 102 is normally open traction control valves (131, 132), normal open inlet valves (111, 112, 113, 114), normal closed outlet valves (121, 122, 123, 124 is sequentially transmitted to the low pressure accumulators 151 and 152, and each wheel cylinder FR, RL, FL, and RR decelerates the vehicle by performing braking of the vehicle only with regenerative braking force by the electric motor 200. Can be.
  • the electronic control device 11 may control the hydraulic pumps 161 and 162 and the motor 13 to maintain the non-driven state.
  • the electronic control device 11 controls the opening and closing of at least one valve or the on / off of at least one pump in order to dump the pressurized medium to the low pressure accumulators 151 and 152 in the regenerative initial mode. can do.
  • the electronic control device 11 is selected from among the traction control valves 131 and 132, the inlet valves 111, 112, 113 and 114, and the outlet valves 121, 122, 123 and 124.
  • the pressurized medium can be discharged to the low pressure accumulators 151 and 152.
  • the electronic control apparatus 11 has the normal open traction control valves 131 and 132 turned off, and the normal open inlet valves 111, 112, and 113. , 114 may be in an off state, and the normal closed outlet valves 121, 122, 123, and 124 may be controlled to be in an on state.
  • the electronic control apparatus 11 can control the hydraulic pumps 161 and 162 and the motor 13 to be in an off state.
  • the switching from the first braking period 1 to the second braking period 2 is determined by the regenerative braking force.
  • the electronic control device 11 regenerates the braking mode when the regenerative braking force corresponding to the driver's requested braking force is smaller than the maximum regenerative braking force Rmax, that is, before the regenerative braking force corresponding to the driver's requested braking force reaches the maximum regenerative braking force Rmax.
  • the second braking period 2 and the third braking section 3 are periods during which a mode for generating hydraulic braking force and regenerative braking force is performed according to the driver's required braking force.
  • the second braking period 2 generates both hydraulic braking force and regenerative braking force, but increases the regenerative braking force to the maximum regenerative braking force and initiates and increases the occurrence of the hydraulic braking force so that the total braking force sums the regenerative braking force and the hydraulic braking force. This is the period during which the regenerative cooperation mode for controlling to reach the required braking force is performed.
  • the electronic control device 11 may control not only the regenerative braking force but also the hydraulic braking force to be generated when the driver's required braking force gradually increases as the amount of displacement of the brake pedal 101 increases.
  • the normal open traction control valves 131 and 132 remain open while the regenerative cooperative mode is performed, that is, during the second braking period 2, and the normal open inlet valves 111, 112, and 113. , 114 is maintained in the open state, the normal closed outlet valve 121, 122, 123, 124 is switched to the closed state. Accordingly, the pressurized medium discharged from the master cylinder 102 passes through the normal open type traction control valves 131 and 132 and the normal open inlet valves 111, 112, 113, and 114 in order, and then each wheel cylinder FR, RL, FL.
  • RR may provide hydraulic braking force, and at the same time, perform braking of the vehicle by regenerative braking force by the electric motor 200 to decelerate the vehicle.
  • the hydraulic pumps 161 and 162 and the motor 13 remain in a non-driven state (off state).
  • the electronic control device 11 includes inlet valves 111, 112, 113, 114, outlet valves 121, 122, 123, 124, traction control valves 131, 132, and hydraulic pumps 161, 162.
  • the hydraulic braking force can be generated by supplying the pressurized medium of the master cylinder 102 to the wheel cylinders FR, RL, FL, and RR.
  • the electronic control apparatus 11 includes the normal open traction control valves 131 and 132, the normal open inlet valves 111, 112, 113, and 114, and the normal close. Each valve may be controlled such that the type outlet valves 121, 122, 123, and 124 are all turned off. In addition, the electronic control apparatus 11 can control the hydraulic pumps 161 and 162 and the motor 13 to be in an off state.
  • the amount of brake required as the driver presses the brake pedal 101 may increase in the form of the first graph (G1).
  • the generated hydraulic braking force may increase in the form of the second graph G2. That is, unlike the amount of brake required, which increases at a relatively constant level from the beginning of braking, the hydraulic braking force increases slowly and gradually increases at the beginning of braking.
  • the electronic control device 11 may control the regenerative braking force generated by the regenerative braking device 20 to be changed based on the required amount of the pressurized medium.
  • the electronic control apparatus 11 may check the hydraulic braking force corresponding to the brake required amount determined based on the displacement amount of the brake pedal 101, and determine the first target regenerative braking force based on the identified hydraulic braking force. .
  • the electronic control apparatus 11 may determine the braking force except the hydraulic braking force identified in the total requested braking force corresponding to the driver's braking force as the first target regenerative braking force.
  • the electronic control apparatus 11 may control the regenerative braking as much as the first target regenerative braking force to be performed by transmitting the determined information on the first target regenerative braking force to the regenerative braking apparatus 20.
  • the electronic control apparatus 11 may compensate for the gap between the driver's required braking force and the hydraulic braking force that is actually generated by using the regenerative braking force by reflecting the brake required amount of liquid characteristic. As the total braking force can be generated in accordance with the driver's required braking force, more efficient braking is possible.
  • both the hydraulic braking force and the regenerative braking force are generated, but the total braking force obtained by adding the regenerative braking force and the hydraulic braking force is increased by reducing the regenerative braking force from the maximum regenerative braking force and increasing the hydraulic braking force according to the driver's required braking force.
  • a period during which the regenerative fade-out mode of controlling to reach the driver's required braking force is performed.
  • the electronic control apparatus 11 may perform the regeneration fade-out mode. That is, the switching from the regenerative cooperation mode to the regenerative fade out mode may be performed when the speed of the vehicle is equal to or less than a predetermined threshold.
  • the electronic control device 11 reduces the regenerative braking force but increases the hydraulic braking force to increase the regenerative fade-out mode. Can be done.
  • the normal open inlet valves 111, 112, 113, and 114 remain open while the regenerative fade-out mode is performed, that is, during the third braking period 3. 121, 122, 123, and 124 remain closed, but the normal open traction control valves 131 and 132 are switched to the closed state.
  • the pressurized medium discharged from the master cylinder 102 passes through the check valve and the normal open inlet valves 111, 112, 113, and 114 to the respective wheel cylinders FR, RL, FL, and RR, thereby providing hydraulic braking force.
  • the vehicle can be braked by the regenerative braking force by the electric motor 200 to decelerate the vehicle.
  • the regenerative braking force by the electric motor 200 is gradually reduced, so that the electronic control device 11 can maintain the required braking force corresponding to the braking intention of the driver, so as to compensate for the regenerative braking force that is reduced. Can be increased.
  • the electronic control device 11 drives the motor 13 to pressurize the pressurized medium stored in the low pressure accumulators 151 and 152 by the hydraulic pumps 161 and 162 to normally open inlet valves 111, 112, and 113. , 114) side.
  • the electronic control device 11 may receive information on the regenerative braking force from the regenerative braking device 20 and control the hydraulic braking force to increase by the amount of the regenerative braking force.
  • the electronic control apparatus 11 may enter the regenerative fade-out mode, and operate the hydraulic pumps 161 and 162 before stopping the vehicle to store them in the low pressure accumulators 151 and 152.
  • the hydraulic braking force can be increased by the reduced regenerative braking force.
  • the electronic control apparatus 11 includes an inlet valve 111, 112, 113, 114, an outlet valve 121, 122, 123, 124, and a traction control valve 131, 132.
  • the hydraulic braking force may be increased by opening only the 113 and 114 and operating the hydraulic pumps 161 and 162.
  • the electronic control apparatus 11 includes the normal open inlet valves 111, 112, 113, and 114 and the normal closed outlet valves 121, 122,. 123 and 124 are in an off state, and the normal open traction control valves 131 and 132, the hydraulic pumps 161 and 162 and the motor 13 can control their respective configurations so as to be in an on state.
  • the electronic control apparatus 11 may determine the second target regenerative braking force based on the increased hydraulic braking force, and transmit information on the determined second target regenerative braking force to the regenerative braking apparatus 20. As a result, regenerative braking as much as the second target regenerative braking force may be performed.
  • the electronic control apparatus 11 may determine the braking force except the increased hydraulic braking force as the second target regenerative braking force from the total requested braking force corresponding to the driver's requested braking force. That is, the second target regenerative braking force determined in the third braking period 3 may have a smaller value than the first target regenerative braking force determined in the second braking period 2. As a result, the regenerative braking force in the third braking period 3 decreases.
  • the fourth braking period (4) is a period in which the regenerative release mode for stopping the generation of the regenerative braking force and generating only the hydraulic braking force corresponding to the driver's requested braking force is performed.
  • the normal open traction control valves 131 and 132 remain closed while the regenerative release mode is performed, that is, during the fourth braking period 4, and the normal open inlet valves 111, 112, and 113. , 114 maintains an open state, and the normally closed outlet valves 121, 122, 123, and 124 maintain a closed state.
  • the pressurized medium discharged from the master cylinder 102 passes through the check valve and the normal open inlet valves 111, 112, 113, and 114 to the respective wheel cylinders FR, RL, FL, and RR, thereby providing hydraulic braking force. Can provide only. Through this, braking of the vehicle is terminated and the vehicle is stopped.
  • the electronic control apparatus 11 may stop the generation of the regenerative braking force by transmitting a control signal for stopping the generation of the regenerative braking force to the regenerative braking device 20.
  • the electronic control apparatus 11 includes the inlet valves 111, 112, 113, 114, the outlet valves 121, 122, 123, 124, and the traction control valves 131, 132. It is possible to maintain only the hydraulic braking force by controlling only 113 and 114 to remain open and turning off the hydraulic pumps 161 and 162.
  • the electronic control apparatus 11 includes the normal open inlet valves 111, 112, 113, 114, and the normal closed outlet valves 121, 122, 123,. 124, the hydraulic pumps 161 and 162 and the motor 13 may be turned off, and the normal open traction control valves 131 and 132 may be controlled to be turned on.
  • the graph shown in Figure 3 shows the ideal change in the regenerative braking force and the hydraulic braking force during braking
  • the change in the regenerative braking force and the hydraulic braking force during actual braking may not be represented as a linear graph, a graph having a curved form It can be expressed as.
  • FIG. 7A is a graph illustrating the regenerative braking force and the hydraulic braking force when braking the brake system according to one embodiment
  • FIG. 7B is a graph illustrating the regenerative braking force and the hydraulic braking force of the brake system according to another embodiment.
  • the brake system 1 may perform the regeneration initial mode at a time before a time Ta at which the regenerative braking force reaches the maximum regenerative braking force Rmax.
  • the electronic control device 11 is at least one valve, hydraulic pump (151, 152) and the motor 13 so that the pressurized medium discharged from the master cylinder 102 is stored in the low pressure accumulator (151, 152). At least one of the on and off can be controlled. Detailed description thereof is the same as described above with reference to FIG. 3.
  • the electronic control apparatus 11 may switch the regenerative initial mode to the regenerative cooperative mode. That is, when the regenerative braking force of the maximum regenerative braking force is required, the regenerative cooperative mode of stopping the regenerative initial mode generating the regenerative braking force and generating the hydraulic braking force can be executed.
  • the greater the maximum regenerative braking force the greater the difference between the driver's required torque and the regenerative braking torque of the regenerative braking control according to the operation of the brake pedal 101. This is because the greater the maximum regenerative braking force, the greater the difference in the required amount.
  • the brake system 1 In order to compensate for the difference between the driver's required torque and the regenerative braking torque of the regenerative braking control, as shown in FIG. 7B, the brake system 1 according to another embodiment provides a time point at which the regenerative cooperation mode is performed.
  • the regenerative braking force may be advanced to a time point Tb before the time Ta that reaches the maximum regenerative braking force Rmax.
  • the electronic control device 11 may determine the mode switching regenerative braking force Rs based on the maximum regenerative braking force Rmax, and reaches the mode switching regenerative braking force Rs in which the regenerative braking force corresponding to the driver's requested braking force is determined. At the time Tb, the braking mode can be switched from the regenerative initial mode to the regenerative cooperative mode.
  • the electronic control device 11 may compare the regenerative braking force corresponding to the driver's requested braking force with the maximum regenerative braking force Rmax of the regenerative braking device 20 in real time.
  • the electronic control apparatus 11 may determine a value smaller than the maximum regenerative braking force Rmax as the mode switching regenerative braking force Rs. Specifically, the electronic control apparatus 11 may determine the value obtained by applying the weight k to the maximum regenerative braking force Rmax as the mode switching regenerative braking force Rs, and the mode switching regenerative braking force Rs is expressed by Equation 1 below. Can be determined.
  • the mode switching regenerative braking force Rs determined by Equation 1 may have a value smaller than the maximum regenerative braking force Rmax.
  • the electronic control device 11 can compensate for the difference between the driver's required torque and the regenerative braking torque of the regenerative braking control according to the operation of the brake pedal 101, and more efficient braking is possible.
  • the electronic control device 11 determines that the regenerative braking force generated by the regenerative braking device 20 is based on the actual hydraulic braking force. You can control it to change.
  • the electronic control apparatus 11 may determine the braking force except the hydraulic braking force identified in the total requested braking force corresponding to the driver's braking force as the first target regenerative braking force.
  • the electronic control apparatus 11 may control the regenerative braking as much as the first target regenerative braking force to be performed by transmitting the determined information on the first target regenerative braking force to the regenerative braking apparatus 20.
  • the electronic control apparatus 11 may determine the first target regenerative braking force in real time during the time Ta at which the regenerative braking force reaches the maximum regenerative braking force Rmax at the time Tb at which the hydraulic braking force starts to be provided. Accordingly, the control signal may be transmitted to the regenerative braking device 20.
  • the electronic control apparatus 11 may compensate for the gap between the driver's required braking force and the hydraulic braking force that is actually generated by using the regenerative braking force by reflecting the brake required amount of liquid characteristic. As the total braking force can be generated in accordance with the driver's required braking force, more efficient braking is possible.
  • FIG. 8 is a flowchart of a regenerative braking method of a brake system according to an exemplary embodiment.
  • the electronic control apparatus 11 may determine whether a pedal displacement is detected (710), and when a pedal displacement is detected (an example of 710), based on the detected pedal displacement.
  • the driver's required braking force may be determined (720).
  • the electronic control apparatus 11 may confirm whether or not the driver's required braking force is greater than or equal to a predetermined threshold (730), and when the driver's required braking force is greater than or equal to the predetermined threshold (730), the outlet valves 121, 122, 123, and 124 ) Can be opened (740) and can operate in a regenerative initial mode (750).
  • the predetermined threshold value may be a value set regardless of the maximum regenerative braking force Rmax. That is, the entry into the regenerative initial mode may be performed when the value corresponding to the braking intention of the driver is greater than or equal to a preset threshold regardless of the maximum regenerative braking force.
  • the electronic control apparatus 11 may determine a value corresponding to the driver's braking intention through the displacement amount of the brake pedal 101.
  • the electronic control device 11 may enter the regenerative initial mode when the displacement amount of the brake pedal 101 is equal to or greater than a predetermined threshold value.
  • the outlet valves 121, 122, 123, and 124 are normal closed outlet valves, and the electronic control device 11 controls the outlet valves 121, 122, 123, and 124 to be in an on state. , 122, 123, 124 can be opened.
  • FIG. 9 is a flowchart illustrating a regenerative braking method of a brake system according to an exemplary embodiment.
  • the electronic control apparatus 11 may determine the mode switching regenerative braking force Rs (810).
  • the mode switching regenerative braking force (Rs) refers to the regenerative braking force which is a reference for switching from the regenerative initial mode to the regenerative cooperation mode, and may have a value smaller than the maximum regenerative braking force (Rmax).
  • the electronic control apparatus 11 may determine the value obtained by applying the weight k to the maximum regenerative braking force Rmax as the mode switching regenerative braking force Rs, and the mode switching regenerative braking force Rs may be the above-mentioned [Equation 1]. Can be determined by.
  • the electronic control apparatus 11 may determine whether the regenerative braking force corresponding to the driver's requested braking force has a value greater than the mode switching regenerative braking force Rs (820).
  • the normal closed outlet valves 121, 122, 123, and 124 may be closed (830). Thereafter, the electronic control apparatus 11 may operate in the regenerative cooperation mode (840). That is, the electronic control device 11 may switch the braking mode from the regenerative initial mode to the regenerative cooperative mode when the regenerative braking force corresponding to the driver's requested braking force becomes larger than the mode switching regenerative braking force Rs.
  • the electronic control apparatus 11 can switch to the regenerative cooperative mode before the regenerative braking force corresponding to the driver's required braking force reaches the maximum regenerative braking force, thereby preventing a decrease in braking force due to a difference in the required liquid amount. can do.
  • the regenerative braking can be performed even in a vehicle to which the hydraulic braking device is applied, and the hydraulic braking force loss due to the difference in the required amount of liquid compared to the electronic braking device of the hydraulic braking device can be compensated by the regenerative braking force to improve the total braking force. Can be. Therefore, the user's convenience and driving safety can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Regulating Braking Force (AREA)

Abstract

개시된 발명의 일 실시예에 따른 브레이크 시스템은, 유압에 의한 제동력을 생성하는 유압 제동 장치; 및 전기모터에 의한 회생 제동력을 생성하는 회생 제동 장치를 포함하고, 유압 제동 장치는, 가압매체를 토출함으로써 브레이크 페달의 변위량에 대응하는 유압을 생성하는 마스터 실린더; 복수의 휠 실린더와 마스터 실린더를 연결하는 유로에 배치되는 복수의 밸브; 유로에 배치되는 어큐뮬레이터; 및 브레이크 페달의 변위량에 대응하는 요구 제동력을 결정하고, 복수의 밸브를 제어하는 전자 제어 장치;를 포함하고, 전자 제어 장치는, 브레이크 페달의 변위량을 감지하면, 마스터 실린더로부터 토출되는 가압매체가 어큐뮬레이터에 저장되도록 복수의 밸브를 제어하고, 회생 제동력의 생성을 위한 요청 신호를 회생 제동 장치로 전달한다.

Description

브레이크 시스템
본 발명은 유압식 제동장치에서도 전기모터를 이용한 회생 제동을 수행할 수 있는 브레이크 시스템에 관한 것이다.
전기모터를 이용한 회생제동 제어시스템의 대부분은 전자식 제동장치가 장착된 차량에 한해서 적용되고 있다.
그러나 운전자의 제동의지 없이는 제동력의 제어가 불가능한 유압식 제동장치(일 예로, ESC(Electronic Stability Control), ABS(Anti-lock Brake System) 등)가 적용된 차량에서의 회생제동 제어방법에 대하여는 아직 알려진 기술이 없다.
일 측면은 유압식 제동장치가 적용된 차량에서도 전기 모터를 이용한 회생 제동을 수행하기 위한 브레이크 시스템을 제공한다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 일 측면에 따른 브레이크 시스템은, 유압에 의한 제동력을 생성하는 유압 제동 장치; 및 전기모터에 의한 회생 제동력을 생성하는 회생 제동 장치를 포함하고, 상기 유압 제동 장치는, 가압매체를 토출함으로써 브레이크 페달의 변위량에 대응하는 유압을 생성하는 마스터 실린더; 복수의 휠 실린더와 상기 마스터 실린더를 연결하는 유로에 배치되는 복수의 밸브; 상기 유로에 배치되는 어큐뮬레이터; 및 상기 브레이크 페달의 변위량에 대응하는 요구 제동력을 결정하고, 상기 복수의 밸브를 제어하는 전자 제어 장치;를 포함하고, 상기 전자 제어 장치는, 상기 브레이크 페달의 변위량을 감지하면, 상기 마스터 실린더로부터 토출되는 가압매체가 상기 어큐뮬레이터에 저장되도록 상기 복수의 밸브를 제어하고, 상기 회생 제동력의 생성을 위한 요청 신호를 상기 회생 제동 장치로 전달한다.
또한, 상기 복수의 밸브는, 상기 복수의 휠 실린더의 출구 측에 배치되는 아웃렛밸브;를 포함하고, 상기 전자 제어 장치는, 상기 아웃렛밸브를 개방 상태로 전환함으로써 상기 마스터 실린더로부터 토출되는 가압매체를 상기 어큐뮬레이터에 저장할 수 있다.
또한, 상기 전자 제어 장치는, 차속이 미리 정해진 기준값 이하이면, 상기 어큐물레이터에 저장된 가압매체가 상기 복수의 휠 실린더로 전달되도록 상기 복수의 밸브를 제어할 수 있다.
또한, 상기 복수의 밸브는, 상기 마스터 실린더와 상기 휠 실린더 사이에 배치되는 트랙션컨트롤밸브;를 포함하고, 상기 전자 제어 장치는, 상기 트랙션컨트롤밸브를 폐쇄 상태로 전환함으로써 상기 어큐뮬레이터에 저장된 가압매체를 상기 복수의 휠 실린더로 전달할 수 있다.
또한, 상기 어큐뮬레이터에 저장된 가압매체를 상기 복수의 휠 실린더로 제공하는 유압펌프; 및 상기 유압펌프를 구동하는 모터;를 더 포함하고, 상기 전자 제어 장치는, 상기 유압펌프 및 상기 모터를 턴온(Turn-on)시킴으로써 상기 어큐뮬레이터에 저장된 가압매체를 상기 복수의 휠 실린더로 전달할 수 있다.
또한, 상기 전자 제어 장치는, 상기 브레이크 페달의 변위량이 미리 정해진 임계값 이상이면, 상기 아웃렛밸브를 개방 상태로 전환할 수 있다.
또한, 상기 전자 제어 장치는, 상기 요구 제동력에 대응하는 회생 제동력이 최대 회생 제동력에 도달하기 전에, 상기 아웃렛밸브를 폐쇄 상태로 전환할 수 있다.
또한, 상기 전자 제어 장치는, 상기 최대 회생 제동력에 기초하여 모드변환 회생 제동력을 결정하고, 상기 요구 제동력에 대응하는 회생 제동력이 상기 결정된 모드변환 회생 제동력에 도달하면, 상기 아웃렛밸브를 폐쇄 상태로 전환할 수 있다.
또한, 상기 전자 제어 장치는, 상기 최대 회생 제동력에 미리 정해진 가중치를 적용한 값을 상기 모드변환 회생 제동력으로 결정하고, 상기 미리 정해진 가중치는 0 보다 크고, 1 보다 작거나 같을 수 있다.
또한, 상기 전자 제어 장치는, 상기 요구 제동력에 기초하여 타겟 회생 제동력을 결정하고, 상기 결정된 타겟 회생 제동력이 생성되도록 상기 회생 제동 장치로 상기 요청 신호를 전달할 수 있다.
또한, 상기 전자 제어 장치는, 상기 요구 제동력에서 유압에 의한 제동력을 감산한 제동력을 상기 타겟 회생 제동력으로 결정할 수 있다.
다른 측면에 따른 브레이크 시스템은, 유압에 의한 제동력을 생성하는 유압 제동 장치; 및 전기모터에 의한 회생 제동력을 생성하는 회생 제동 장치를 포함하고, 상기 유압 제동 장치는, 가압매체를 토출함으로써 브레이크 페달의 변위량에 대응하는 유압을 생성하는 마스터 실린더; 복수의 휠 실린더의 출구 측에 마련된 아웃렛밸브; 상기 복수의 휠 실린더의 입구 측에 마련되는 인렛밸브와 상기 마스터실린더 사이에 마련되는 트랙션컨트롤밸브; 상기 아웃렛밸브와 연결되는 어큐뮬레이터; 및 상기 브레이크 페달의 변위량에 대응하는 요구 제동력을 결정하고, 상기 복수의 밸브를 제어하는 전자 제어 장치;를 포함하고, 상기 전자 제어 장치는, 상기 브레이크 페달의 변위량을 감지하면, 상기 마스터 실린더로부터 토출되는 가압매체가 상기 어큐뮬레이터에 저장되도록 상기 아웃렛밸브를 제어하고, 차속이 미리 정해진 기준값 이하이면, 상기 어큐뮬레이터에 저장된 가압매체가 상기 복수의 휠 실린더로 전달되도록 상기 트랙션컨트롤밸브를 제어한다.
또한, 상기 전자 제어 장치는, 상기 아웃렛밸브를 개방 상태로 전환함으로써 상기 마스터 실린더로부터 토출되는 가압매체를 상기 어큐뮬레이터에 저장할 수 있다.
또한, 상기 전자 제어 장치는, 차속이 미리 정해진 기준값 이하이면, 상기 트랙션컨트롤밸브를 폐쇄 상태로 전환함으로써 상기 어큐뮬레이터에 저장된 가압매체를 상기 복수의 휠 실린더로 전달할 수 있다.
또한, 상기 전자 제어 장치는, 상기 브레이크 페달의 변위량이 미리 정해진 임계값 이상이면, 상기 아웃렛밸브를 개방 상태로 전환할 수 있다.
또한, 상기 전자 제어 장치는, 상기 요구 제동력에 대응하는 회생 제동력이 최대 회생 제동력에 도달하기 전에, 상기 아웃렛밸브를 폐쇄 상태로 전환할 수 있다.
또한, 상기 전자 제어 장치는, 상기 최대 회생 제동력에 기초하여 모드변환 회생 제동력을 결정하고, 상기 요구 제동력에 대응하는 회생 제동력이 상기 결정된 모드변환 회생 제동력에 도달하면, 상기 아웃렛밸브를 폐쇄 상태로 전환할 수 있다.
또한, 상기 전자 제어 장치는, 상기 요구 제동력에 기초하여 타겟 회생 제동력을 결정하고, 상기 결정된 타겟 회생 제동력이 생성되기 위한 요청 신호를 상기 회생 제동 장치로 전달할 수 있다.
다른 측면에 따른 브레이크 시스템은, 유압에 의한 제동력을 생성하는 유압 제동 장치; 및 전기모터에 의한 회생 제동력을 생성하는 회생 제동 장치;를 포함하고, 상기 유압 제동 장치는, 브레이크 페달의 변위량에 대응하여 결정된 요구 제동력과 상기 유압에 의한 제동력의 차이를 타겟 회생 제동력으로 결정하고, 상기 결정된 타겟 회생 제동력이 생성되기 위한 요청 신호를 상기 회생 제동 장치로 전달한다.
일 측면에 따른 브레이크 시스템에 따르면, 유압 제동장치가 적용된 차량에서도 회생 제동을 수행할 수 있고, 유압 제동장치의 전자식 제동장치에 대비한 소요액량 차이로 인한 유압 제동력 손실을 회생 제동력으로 보상할 수 있어 총 제동력을 향상시킬 수 있다.
도 1은 일 실시예에 따른 브레이크 시스템을 간략화한 개념도이다.
도 2는 일 실시예에 따른 브레이크 시스템의 유압 회로도이다.
도 3은 일 실시예에 따른 브레이크 시스템의 제동시 회생 제동력과 유압 제동력을 나타낸 그래프이다.
도 4는 일 실시예에 따른 브레이크 시스템의 제동시 밸브, 유압펌프, 저압어큐뮬레이터의 작동 및 상태를 나타낸 도표이다.
도 5a는 일 실시예에 따른 브레이크 시스템의 회생 초기 모드의 작동상태를 나타내는 유압회로도이다.
도 5b는 일 실시예에 의한 브레이크 시스템의 회생 협조 모드의 작동상태를 나타내는 유압회로도이다.
도 5c는 일 실시예에 의한 브레이크 시스템의 회생 페이드아웃 모드의 작동상태를 나타내는 유압회로도이다.
도 5d는 일 실시예에 의한 브레이크 시스템의 회생 해제 모드의 작동상태를 나타내는 유압회로도이다.
도 6은 일반적인 브레이크 시스템의 소요액량과 제동력의 관계를 설명하기 위한 그래프이다.
도 7a는 일 실시예에 따른 브레이크 시스템의 제동시 회생 제동력과 유압 제동력을 설명하기 위한 그래프이다.
도 7b는 다른 실시예에 따른 브레이크 시스템의 제동시 회생 제동력과 유압 제동력을 설명하기 위한 그래프이다.
도 8 및 도 9는 일실시예에 따른 브레이크 시스템의 회생 제동 방법의 흐름도이다.
이하에서는 본 발명의 실시예들을 첨부 도면을 참조하여 상세히 설명한다. 이하에 소개되는 실시예들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달할 수 있도록 하기 위해 예로서 제공하는 것이다. 본 발명은 이하 설명되는 실시예들에 한정하지 않고 다른 형태로 구체화할 수도 있다. 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 도면에서 생략하였으며, 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명의 일실시예에 따른 브레이크 장치를 간략화한 개념도이다.
도 1을 참조하면, 일 실시예에 따른 브레이크 시스템(1)은 유압제동 시스템(1000) 및 회생제동 시스템(2000)을 포함한다.
유압제동 시스템(1000)은 유압 제동력을 제공함으로써 차량의 제동을 수행할 수 있다. 유압 제동 시스템(1000)의 유압 제동 장치(10)는 운전자의 브레이크 페달 답력량 또는 변위량에 기초한 요구 제동력에서 전기모터(200)에 의한 회생 제동력을 제외한 유압 제동력을 발생 및 제공하도록 마련된다.
유압 제동 장치(10)는 ESC(Electronic Stability Control) 장치(100)를 포함할 수 있다.
ESC 장치(100)는 마스터실린더의 압력이나 브레이크 페달 답력량 또는 변위량에 기초하여 운전자 요구 제동력을 산출할 수 있다.
구체적으로, ESC 장치(100)는 전자 제어 장치(Electronic Control Unit(ECU), 11)를 포함할 수 있고, 전자 제어 장치(11)는 산출된 운전자 요구 제동력에서 전기모터(200)에 의한 회생 제동력을 제외한 제동력을 가압매체에 의한 유압 제동력으로 결정할 수 있다. 또한, 전자 제어 장치(11)는 유압 제동력을 휠 실린더로 제공하기 위한 제어 신호를 생성하여 유압 제동 장치(10) 내부의 적어도 하나의 구성 요소로 전달할 수 있다.
이 외에도, ESC 장치(100)는 ABS(anti-lock brake system)을 더 포함할 수 있다.
회생제동 시스템(2000)의 회생 제동 장치(20)는 회생 제동력을 제공함으로써 차량의 제동을 수행할 수 있다. 회생제동 시스템(2000)의 회생 제동 장치(20)는 전기 에너지로 차량의 바퀴를 회전시키는 전기 모터(200)를 포함할 수 있고, 전기 모터(200)에 의해 발생 가능한 회생제동력을 생성함으로써 회생 제동을 수행한다. 이 경우, 전기 모터(200)는 각 휠 실린더가 장착되는 휠에 동력을 제공하여 차량을 운행시킬 수 있다.
동시에, 제동에 의해 차량이 감속하는 경우, 전기 모터(200)는 제너레이터 또는 발전기로 기능함으로써 차량의 운동에너지를 전기에너지로 변환할 수 있고, 변환된 전기에너지를 배터리 또는 축전기에 저장할 수 있다. 전기 모터(200)에 의해 차량의 운동에너지가 전기에너지로 변환되는 경우, 각 휠에는 제동력이 발생하고, 이러한 제동력을 회생 제동력이라 한다.
결과적으로, 운전자로부터 감속이나 제동명령이 발생한 경우, 전 바퀴에 가해지는 제동력은 회생 제동 장치(20)의 전기 모터(200)에 의한 회생 제동력과 유압 제동 장치(10)에 의한 유압 제동력의 합이 된다.
한편, 전기 모터(200)에 의한 발전은 브레이크 작동 중에도 가능하다. 즉 브레이크 작동 중에 열로 발산될 열에너지는 회생 제동 장치(20)의 전기 모터(200)에 의하여 발전될 수 있다. 이 때, 발전 가능한 양은 차량의 속도 및 배터리 충전량 등에 따라 달라지게 된다. 따라서, 운전자가 요구한 제동력은 회생 제동력과 유압 제동력의 합력임을 참조하면, 운전자의 제동 의지를 만족시켜 주기 위해서, 유압 제동 장치(10)은 운전자가 요구한 제동력에서 전기 모터(200)에 의해 발전된 양에 해당하는 회생 제동력을 제외한 크기의 유압 제동력을 생성한다.
이러한 차량의 휠 실린더에 가해지는 총 제동력을 제어하기 위하여, 유압 제동 장치(10)와 회생 제동 장치(20)는 제동을 위한 다양한 정보를 송수신할 수 있다.
유압 제동 장치(10)는 운전자 요구 제동력과 관련된 정보를 회생 제동 장치(20)에 전송할 수 있다. 이 때, 운전자 요구 제동력과 관련된 정보는 마스터실린더(도 2의 101)의 압력이나 브레이크 페달 답력량 또는 변위량, 이로부터 산출된 운전자 요구 제동 토크 등의 운전자 요구 제동량 등을 포함할 수 있다.
또한, 유압 제동 장치(10)는 회생 제동 장치(20)를 제어하기 위한 다양한 신호를 전송할 수 있다. 이 때, 회생 제동 장치(20)를 제어하기 위한 다양한 신호는, 회생 제동력의 생성을 위한 회생제동 요청 신호 또는 회생제동 해제 신호 등을 포함할 수 있다. 회생제동 요청 신호는, 타겟 회생 제동력 등의 회생 제동 요구량에 대한 정보, 운전자 요구 제동력에 대응하는 총 제동력에 대한 정보, 운전자 요구 제동력에 대응하는 총 제동력에서 유압 제동력을 제외한 제동력에 대한 정보, 최대 회생 제동력에 기초하여 결정된 회생 제동력에 대한 정보 중 적어도 하나를 포함할 수 있다.
또한, 유압 제동 장치(10)는 회생 제동에 대한 정보를 회생 제동 장치(20)로부터 수신할 수 있다. 이 때, 회생 제동에 대한 정보는 회생 제동량에 대한 정보를 의미할 수 있으며, 회생 제동력, 최대 회생 제동력 또는 회생 제동토크 등을 포함할 수 있다.
한편, 이러한 회생 제동 장치(20)로의 다양한 정보 및 신호의 전달은 전자 제어 장치(11)에 의하여 수행될 수 있다.
회생 제동 장치(20)는 전술한 회생 제동에 대한 정보를 유압 제동 장치(10)로 전송할 수 있고, 유압 제동 장치(10)로부터 수신된 신호에 기초하여 회생 제동을 수행할 수 있다.
한편, 유압 제동 장치(10)와 회생 제동 장치(20)는 다양한 통신 네트워크를 이용하여 정보를 송수신할 수 있다. 예를 들어, 유압 제동 장치(10)와 회생 제동 장치(20)는 캔(Controller Area Network; CAN) 네트워크를 이용하여 정보를 송수신할 수 있다. 다만, 이에 한정되지는 않고, 플렉스레이(FlexRay), LIN(Local Interconnect Network), MOST(Media Oriented System Transport) 기반의 네트워크 또는 이더넷(ethernet) 기반의 네트워크 등의 다양한 유선 통신망 또는 무선 통신망 등을 이용할 수도 있다.
한편, 유압 제동 장치(10) 및 회생 제동 장치(20) 각각은 회생제동시스템의 구성요소들의 동작을 제어하기 위한 알고리즘 또는 알고리즘을 재현한 프로그램에 대한 데이터를 저장하는 메모리(미도시), 및 메모리에 저장된 데이터를 이용하여 전술한 동작을 수행하는 프로세서(미도시)를 포함하도록 구현될 수 있다. 이때, 메모리와 프로세서는 각각 별개의 칩으로 구현될 수 있다. 또는, 메모리와 프로세서는 단일 칩으로 구현될 수도 있다. 예를 들어, 유압 제동 장치(10)의 전자 제어 장치(11)는 전술한 메모리(미도시) 및 프로세서(미도시)를 포함하도록 구현될 수 있다.
도 1에 도시된 브레이크 시스템(1)의 구성 요소들의 성능에 대응하여 적어도 하나의 구성요소가 추가되거나 삭제될 수 있다. 또한, 구성 요소들의 상호 위치는 시스템의 성능 또는 구조에 대응하여 변경될 수 있다는 것은 당해 기술 분야에서 통상의 지식을 가진 자에게 용이하게 이해될 것이다.
한편, 도 1에서 도시된 각각의 구성요소는 소프트웨어 및/또는 Field Programmable Gate Array(FPGA) 및 주문형 반도체(ASIC, Application Specific Integrated Circuit)와 같은 하드웨어 구성요소를 의미한다.
도 2는 일실시예에 따른 브레이크 시스템의 유압 회로도이다.
도 2를 참조하면, 일 실시예에 따른 브레이크 시스템(1)의 유압 제동 장치(10)는 브레이크 페달(101)의 압력에 의해 부스터가 작동하여 브레이크 액 등의 가압매체의 액압을 발생시키는 마스터실린더(102)와, 마스터 실린더(102)와 복수의 유압 라인을 통해 연결되어 마스터실린더(102)로부터 가압매체를 전달받는 복수의 휠 실린더(Wfr,Wrl,Wfl,Wrr)를 포함할 수 있다.
마스터실린더(102)는 두 개의 챔버를 가질 수 있다. 마스터실린더(102)의 제1 챔버(103)는 전륜 우측 휠(FR) 및 후륜 좌측 휠(RL)에 각각 설치된 휠 실린더(Wfr,Wrl)에 연결되고, 제2 챔버(104)는 전륜 좌측 휠(FL) 및 후륜 우측 휠(RR)에 각각 설치되는 휠 실린더(Wfl,Wrr)에 연결된다.
제1 챔버(103)와 전륜 우측 휠(FR) 및 후륜 좌측 휠(RL)에 각각 설치된 휠 실린더(Wfr,Wrl) 사이의 유압 라인에는 노멀오픈형 트랙션컨트롤밸브(131)가 마련된다. 이 노멀오픈형 트랙션컨트롤밸브(131)는 마스터실린더(102)로부터 각 바퀴의 휠 실린더(Wfr,Wrl)에 전달되는 가압매체를 제어한다.
제2 챔버(104)와 전륜 좌측 휠(FL) 및 후륜 우측 휠(RR)에 각각 설치된 휠 실린더(Wfl,Wrr) 사이의 유압 라인에는 노멀오픈형 트랙션 컨트롤 밸브(132)가 마련된다. 이 노멀오픈형 트랙션 컨트롤 밸브(132)는 마스터실린더(102)로부터 각 바퀴(FL,RR)의 휠 실린더(Wfl,Wrr)에 전달되는 가압매체를 제어한다.
노멀오픈형 트랙션컨트롤밸브(131)와 각 바퀴(FR,RL)의 휠 실린더(Wfr,Wrl) 사이의 유압라인에는 노멀오픈형 인렛밸브(111,112)가 마련되고, 노멀오픈형 트랙션컨트롤밸브(132)와 각 바퀴(FL,RR)의 휠 실린더(Wfl,Wrr) 사이의 유압라인에는 노멀오픈형 인렛밸브(113,114)가 마련된다.
각 바퀴(FR,RL)의 휠 실린더(Wfr,Wrl)의 출구 측에는 노멀클로즈형 아웃렛밸브(121,122)가 마련되고, 각 바퀴(FL,RR)의 휠 실린더(Wfl,Wrr)의 출구 측에는 노멀클로즈형 아웃렛밸브(123,124)가 마련된다.
노멀클로즈형 아웃렛밸브(121,122)의 출구 측에는 각 바퀴(FR,RL)의 휠 실린더(Wfr,Wrl)에서 배출되는 가압매체를 일시 저장하는 저압 어큐뮬레이터(151)가 마련되고, 노멀클로즈형 아웃렛밸브(123,124)의 출구 측에는 각 바퀴(FL,RR)의 휠 실린더(Wfl,Wrr)에서 배출되는 가압매체를 일시 저장하는 저압 어큐뮬레이터(152)가 마련된다.
저압 어큐뮬레이터(151,152)에 저장된 가압매체는 한 쌍의 유압펌프(161,162)에 의하여 각각 가압되어 각 휠 실린더(Wfr,Wrl,Wfl,Wrr)측으로 전달될 수 있다. 이 때, 한 쌍의 유압펌프(161,162)는 모터(13)에 의하여 구동력을 제공받을 수 있다.
한 쌍의 유압펌프(161,162)의 흡입 측과 마스터실린더(102)의 각 챔버(103,104) 사이의 보조 유압 라인에는 노멀클로즈형 전자식셔틀밸브(141,142)가 마련된다. 이에 따라, 노멀클로즈형 전자식셔틀밸브(141,142)가 개방되면 마스터 실린더(102)와 각 유압펌프(161,162) 사이의 보조 유압라인이 개방되고, 노멀클로즈형 전자식셔틀밸브(141,142)가 폐쇄되면 마스터실린더(102)와 각 유압펌프(161, 162) 사이의 보조 유압라인이 폐쇄된다.
한편, 전륜 좌측 바퀴(FL)와 후륜 우측 바퀴(RR)의 유압회로에서는 각각의 부품들이 상술한 전륜 우측 바퀴(FR)와 후륜 좌측 바퀴(RL)의 유압회로와 동일하게 구성된다.
도 2의 실시예에서 설명하는 노멀오픈형(NO: Normal Open) 밸브는 통전되기 전에는 밸브 유로를 개방하고 통전되면 밸브 유로를 폐쇄한다. 노멀클로즈형(NC: Normal Close) 밸브는 통전되기 전에는 밸브 유로를 폐쇄하고 통전되면 밸브 유로를 개방한다.
도 2의 노멀오픈형 트랙션컨트롤밸브(131,132), 노멀클로즈형 전자식셔틀 밸브(141,142), 노멀오픈형 인렛밸브(111-114), 노멀클로즈형 아웃렛밸브(121-124), 유압펌프(161,162)를 작동시키는 모터(13)는 제동모드를 수행하는 전자 제어 장치(11)에 의해 작동된다.
한편, 전술한 트랙션컨트롤밸브(131,132), 전자식셔틀밸브(141,142), 인렛밸브(111-114), 아웃렛밸브(121-124)는 노멀오픈형 밸브 또는 노멀클로즈형 밸브로 구현될 수 있으며, 전술한 예에 한정되지 않는다.
이하, 트랙션컨트롤밸브(131,132)는 노멀오픈형으로, 전자식셔틀 밸브(141,142)는 노멀클로즈형으로, 인렛밸브(111-114)는 노멀오픈형으로, 아웃렛밸브(121-124)는 노멀클로즈형으로 구현되는 경우를 예를 들어 설명한다.
전륜 좌우측 바퀴(FL,FR)와 후륜 좌우측 바퀴(RL,RR)에 각각 마련된 휠 속도센서(WS1~WS4)는 검출된 바퀴의 휠 속도정보를 제공할 수 있도록 전자 제어 장치(11)에 전기적으로 연결되어 있다. 전자 제어 장치(11)는 휠 속도센서(WS1-WS4)로부터 휠 속도정보를 수신할 수 있고, 이를 제어 기초로 활용할 수 있다.
마스터실린더(102)의 압력과, 각 휠 실린더(예를 들면, Wfr,Wfl)의 압력을 검출하도록 마련된 압력센서(P/V)는 검출된 압력정보를 제공할 수 있도록 전자 제어 장치(11)에 전기적으로 연결되어 있다.
운전자의 제동의지를 파악하기 위하여 브레이크 페달(101) 부근에 설치된 페달 트래블 센서(PTS)는 검출된 브레이크 페달 조작정보를 제공할 수 있도록 전자 제어 장치(11)에 전기적으로 연결되어 있다.
ESC 장치(100)의 노멀오픈형 트랙션컨트롤밸브(131,132), 노멀클로즈형 전자식셔틀밸브(141,142), 노멀오픈형 인렛밸브(111,112,113,114), 노멀클로즈형 아웃렛밸브(121,122,123,124), 유압펌프(161,162)를 작동시키는 모터(13)는 전자 제어 장치(11)에 의해 작동이 제어될 수 있다. 또한, 마스터실린더(102)의 액압 및 적어도 어느 하나의 휠 실린더(FL, FR, RR, RL, FR)에 가해지는 액압을 측정하는 압력센서 각각은 복수개 배치될 수 있다.
도 3은 일실시예에 따른 브레이크 시스템의 제동시 회생 제동력과 유압 제동력을 나타낸 그래프이고, 도 4는 일 실시예에 따른 브레이크 시스템의 제동시 밸브, 유압펌프, 저압어큐뮬레이터의 작동 및 상태를 나타낸 도표이다. 도 5a는 일 실시예에 따른 브레이크 시스템의 회생 초기 모드의 작동상태를 나타내는 유압회로도이고, 도 5b는 일 실시예에 의한 브레이크 시스템의 회생 협조 모드의 작동상태를 나타내는 유압회로도이고, 도 5c는 일 실시예에 의한 브레이크 시스템의 회생 페이드아웃 모드의 작동상태를 나타내는 유압회로도이고, 도 5d는 일 실시예에 의한 브레이크 시스템의 회생 해제 모드의 작동상태를 나타내는 유압회로도이다. 도 6은 일반적인 브레이크 시스템의 소요액량과 제동력의 관계를 설명하기 위한 그래프이다.
도 3 및 도 4를 참조하면, 회생 제동 모드가 제동기간별로 여러 개의 모드로 구분되어 있다.
제1 제동기간에서 제동을 시작하여 차량이 감속하다가 제2 제동기간과 제3 제동기간을 거쳐 제4 제동기간에서 차량이 정지한다고 가정한다.
제1 제동기간(①)은 회생 초기 모드가 수행되는 기간이다.
회생 초기 모드는 제동 초기에 유압 제동력을 발생시키지 않고 회생 제동력을 발생시키는 모드이다.
전자 제어 장치(11)는 운전자의 제동의지에 해당하는 값이 미리 설정된 값 이상인 경우, 회생 초기 모드를 수행할 수 있다. 이 경우, 회생 초기 모드로의 진입은 회생 제동력에 관계 없이 수행될 수 있다. 예를 들어, 최대 회생 제동력(Rmax)에 관계 없이 운전자의 제동의지에 해당하는 값이 미리 설정된 임계값 이상일 경우, 전자 제어 장치(11)는 회생 초기 모드로 진입할 수 있다.
이 때, 전자 제어 장치(11)는 브레이크 페달(101)의 변위량을 통하여 운전자의 제동의지에 해당하는 값을 결정할 수 있다. 전자 제어 장치(11)는 브레이크 페달(101)의 변위량이 미리 정해진 임계값 이상이면, 회생 초기 모드로 진입할 수 있다.
회생 초기 모드에서, 전자 제어 장치(11)는 운전자가 브레이크 페달(101)을 밟아 요구한 운전자 요구 제동력에 대응하는 회생 제동력이 발생되도록 회생 제동 장치(20)에 제어 신호를 전송할 수 있다.
도 5a를 참조하면, 회생 초기 모드에서, 마스터실린더(102)로부터 토출되는 가압매체가 저압어큐물레이터(151, 152)로 전달되고, 각 휠 실린더(FR, RL, FL, RR)는 전기모터(200)에 의한 회생 제동력만으로 차량의 제동을 수행할 수 있다.
구체적으로, 전자 제어 장치(11)는, 차량의 제동 시 노멀오픈형 트랙션컨트롤밸브(131, 132)는 개방 상태를 유지하고, 노멀오픈형 인렛밸브(111, 112, 113, 114)는 개방상태를 유지하되, 노멀클로즈형 아웃렛밸브(121, 122, 123, 124)는 개방상태로 전환되도록 제어할 수 있다.
이로써, 마스터실린더(102)로부터 토출되는 가압매체는 노멀오픈형 트랙션컨트롤밸브(131, 132), 노멀오픈형 인렛밸브(111, 112, 113, 114), 노멀클로즈형 아웃렛밸브(121, 122, 123, 124)를 순차적으로 거쳐 저압어큐물레이터(151,152)로 전달되며, 각 휠 실린더(FR, RL, FL, RR)는 전기모터(200)에 의한 회생 제동력 만으로 차량의 제동을 수행하여 차량을 감속시킬 수 있다.
이 때, 전자 제어 장치(11)는 유압펌프(161, 162) 및 모터(13)가 비구동상태를 유지하도록 제어할 수 있다. 또한, 전자 제어 장치(11)는 회생 초기 모드에서, 가압매체가 저압어큐물레이터(151,152)로 덤프(Dump)되기 위하여, 적어도 하나의 밸브의 개방 및 폐쇄 또는 적어도 하나의 펌프의 온오프를 제어할 수 있다.
전술한 바와 같이, 회생 초기 모드에서, 전자 제어 장치(11)는 트랙션컨트롤밸브(131, 132), 인렛밸브(111, 112, 113, 114) 및 아웃렛밸브(121, 122, 123, 124) 중에서 아웃렛밸브(121, 122, 123, 124)만을 개방시키고, 유압펌프(161,162)를 턴오프 시킴으로써 가압매체를 저압어큐물레이터(151,152)로 배출시킬 수 있다.
즉, 회생 초기 모드가 수행되는 제1 제동기간(①)에서, 전자 제어 장치(11)는, 노멀오픈형 트랙션컨트롤밸브(131, 132)는 오프 상태로, 노멀오픈형 인렛밸브(111, 112, 113, 114)는 오프 상태로, 노멀클로즈형 아웃렛밸브(121, 122, 123, 124)는 온 상태가 되도록 각각의 밸브를 제어할 수 있다. 또한, 전자 제어 장치(11)는 유압펌프(161, 162) 및 모터(13)가 오프 상태가 되도록 제어할 수 있다.
한편, 제1 제동기간(①)에서 제2 제동기간(②)으로의 전환은, 회생 제동력에 의하여 결정된다. 전자 제어 장치(11)는 운전자 요구 제동력에 대응하는 회생 제동력이 최대 회생 제동력(Rmax) 보다 작은 경우, 즉 운전자 요구 제동력에 대응하는 회생 제동력이 최대 회생 제동력(Rmax)에 도달하기 전에 제동 모드를 회생 초기 모드에서 회생 협조 모드로 전환시킬 수 있다. 이에 관한 구체적인 설명은 후술한다.
제2 제동기간(②)과 제3 제동구간(③)은 운전자 요구 제동력에 따라 유압 제동력과 회생 제동력을 함께 발생시키는 모드가 수행되는 기간이다.
제2 제동기간(②)은 유압 제동력과 회생 제동력을 함께 발생시키되, 회생 제동력을 최대 회생 제동력까지 증가시킴과 함께 유압 제동력의 발생을 개시하고 증가시킴으로써 회생 제동력과 유압 제동력을 합산한 총 제동력이 운전자 요구 제동력에 도달하도록 제어하는 회생 협조 모드가 수행되는 기간이다.
회생 협조 모드에서, 전자 제어 장치(11)는 브레이크 페달(101)의 변위량의 증가에 따라 운전자 요구 제동력이 점진적으로 증가하는 경우, 회생 제동력뿐만 아니라 유압 제동력이 함께 발생되도록 제어할 수 있다.
도 5b를 참조하면, 회생 협조 모드가 수행되는 동안, 즉 제2 제동기간(②) 동안 노멀오픈형 트랙션컨트롤밸브(131, 132)는 개방 상태를 유지하고, 노멀오픈형 인렛밸브(111, 112, 113, 114)는 개방상태를 유지하되, 노멀클로즈형 아웃렛밸브(121, 122, 123, 124)는 폐쇄상태로 전환된다. 이로써, 마스터실린더(102)로부터 토출되는 가압매체는 노멀오픈형 트랙션컨트롤밸브(131, 132), 노멀오픈형 인렛밸브(111, 112, 113, 114)를 순차적으로 거쳐 각 휠 실린더(FR, RL, FL, RR)로 전달됨으로써 유압 제동력을 제공함과 동시에, 전기모터(200)에 의한 회생 제동력에 의해 차량의 제동을 수행하여 차량을 감속시킬 수 있다. 회생 협조 모드에서 유압펌프(161, 162) 및 모터(13)는 비구동상태 (오프 상태)를 유지한다.
이 경우, 전자 제어 장치(11)는 인렛밸브(111, 112, 113, 114), 아웃렛밸브(121, 122, 123, 124), 트랙션컨트롤밸브(131, 132) 및 유압펌프(161, 162) 중에서 아웃렛밸브(121, 122, 123, 124)만을 폐쇄시킴으로써 마스터실린더(102)의 가압매체를 각 휠 실린더(FR, RL, FL, RR)로 공급함으로써 유압 제동력을 발생시킬 수 있다.
즉, 회생 협조 모드로 동작하는 제2 제동기간(②)에서 전자 제어 장치(11)는 노멀오픈형 트랙션컨트롤밸브(131, 132), 노멀오픈형 인렛밸브(111, 112, 113, 114) 및 노멀클로즈형 아웃렛밸브(121, 122, 123, 124)가 모두 오프 상태가 되도록 각각의 밸브를 제어할 수 있다. 또한, 전자 제어 장치(11)는 유압펌프(161, 162) 및 모터(13)는 오프 상태가 되도록 제어할 수 있다.
한편, 도 6에 도시된 바와 같이, 일반적인 브레이크 시스템에서, 운전자가 브레이크 페달(101)을 가압함에 따라 요구되는 브레이크 소요액량은 제1 그래프(G1)의 형태로 증가할 수 있다. 이 때, 발생되는 유압 제동력은 제2 그래프(G2)의 형태로 증가할 수 있다. 즉, 제동 초기부터 비교적 일정하게 증가하는 브레이크 소요액량과 달리, 유압 제동력은 제동 초기에는 증가 속도가 느리다가 점차 빠르게 증가하게 된다.
이와 같이, 유압 제동력이 발생하기 시작하는 제동 초기에는 브레이크 소요액량에 비하여 현저히 작은 크기의 유압 제동력이 발생되므로, 운전자 요구 제동력과 실제 발생하는 유압 제동력 사이에 차이가 발생한다. 따라서, 이러한 운전자 요구 제동력과 실제 발생하는 유압 제동력 사이의 격차를 보상하기 위한 회생 제동력의 제공이 요구된다.
이를 위해, 전자 제어 장치(11)는 회생 제동 장치(20)에 의하여 발생되는 회생 제동력의 크기가 가압매체의 소요액량에 기초하여 변경되도록 제어할 수 있다.
구체적으로, 전자 제어 장치(11)는 브레이크 페달(101)의 변위량에 기초하여 결정된 브레이크 소요액량에 대응하는 유압 제동력을 확인할 수 있고, 확인된 유압 제동력에 기초하여 제1 타겟 회생 제동력을 결정할 수 있다.
전자 제어 장치(11)는 운전자 요구 제동력에 대응하는 총 요구 제동력에서 확인된 유압 제동력을 제외한 제동력을 제1 타겟 회생 제동력으로 결정할 수 있다. 전자 제어 장치(11)는 결정된 제1 타겟 회생 제동력에 대한 정보를 회생 제동 장치(20)로 전송함으로써 제1 타겟 회생 제동력만큼의 회생 제동이 수행되도록 제어할 수 있다.
이를 통해, 전자 제어 장치(11)는 브레이크 소요액량 특성을 반영하여 운전자 요구 제동력과 실제 발생하는 유압 제동력 사이의 격차를 회생 제동력을 통하여 보상할 수 있다. 운전자 요구 제동력에 부합하는 총 제동력이 발생할 수 있으므로, 보다 효율적인 제동이 가능하다.
제3 제동기간(③)은 유압 제동력과 회생 제동력을 함께 발생시키되, 운전자 요구 제동력에 맞게 회생 제동력을 최대 회생 제동력에서 감소시킴과 함께 유압 제동력을 증가시킴으로써 회생 제동력과 유압 제동력을 합산한 총 제동력이 운전자 요구 제동력에 도달하도록 제어하는 회생 페이드아웃 모드가 수행되는 기간이다.
회생 협조 모드의 수행 중에 차량의 속도가 미리 정해진 임계값 이하이면, 전자 제어 장치(11)는 회생 페이드아웃 모드를 수행할 수 있다. 즉, 회생 협조 모드에서 회생 페이드아웃 모드로의 전환은, 차량의 속도가 미리 정해진 임계값 이하인 경우에 수행될 수 있다.
제3 제동기간(③) 동안 차량의 속도가 충분히 감속되어 전기에너지 전환에 의한 회생제동의 효율이 낮은 경우, 전자 제어 장치(11)는 회생 제동력을 감소시키되 유압 제동력을 증가함으로써 회생 페이드아웃 모드를 수행할 수 있다.
도 5c를 참조하면, 회생 페이드아웃 모드가 수행되는 동안, 즉 제3 제동기간(③) 동안 노멀오픈형 인렛밸브(111, 112, 113, 114)는 개방상태를 유지하고, 노멀클로즈형 아웃렛밸브(121, 122, 123, 124)는 폐쇄상태를 유지하되, 노멀오픈형 트랙션컨트롤밸브(131, 132)는 폐쇄 상태로 전환된다. 이로써, 마스터실린더(102)로부터 토출되는 가압매체는 체크밸브, 노멀오픈형 인렛밸브(111, 112, 113, 114)를 순차적으로 거쳐 각 휠 실린더(FR, RL, FL, RR)로 전달됨으로써 유압 제동력을 제공함과 동시에, 전기모터(200)에 의한 회생 제동력에 의해 차량의 제동을 수행하여 차량을 감속시킬 수 있다.
이 때, 전기모터(200)에 의한 회생 제동력은 점차적으로 감소하는 바, 전자 제어 장치(11)는 운전자의 제동의지에 해당하는 요구 제동력을 유지할 수 있도록, 감소하는 회생 제동력을 보상하기 위하여 유압 제동력을 증가시킬 수 있다.
구체적으로, 전자 제어 장치(11)는 모터(13)를 구동시켜 유압펌프(161, 162)에 의해 저압어큐뮬레이터(151, 152)에 저장된 가압매체를 가압시켜 노멀오픈형 인렛밸브(111, 112, 113, 114)측으로 함께 제공할 수 있다. 이 경우, 전자 제어 장치(11)는 감소하는 회생 제동력에 대한 정보를 회생 제동 장치(20)로부터 수신하고, 회생 제동력의 감소량만큼 유압 제동력이 증가하도록 제어할 수 있다.
전자 제어 장치(11)는 차량의 속도가 미리 정해진 임계값 이하인 경우, 회생 페이드아웃 모드로 진입할 수 있으며, 차량 정차 전 유압펌프(161, 162)를 작동시켜 저압어큐뮬레이터(151, 152)에 저장된 가압매체를 각 휠 실린더(FR, RL, FL, RR)로 공급함으로써 감소된 회생 제동력만큼 유압 제동력을 증가시킬 수 있다.
이를 위해, 전자 제어 장치(11)는 인렛밸브(111, 112, 113, 114), 아웃렛밸브(121, 122, 123, 124) 및 트랙션컨트롤밸브(131, 132) 중에서 인렛밸브(111, 112, 113, 114)만을 개방시키고, 유압펌프(161, 162)를 작동시켜 유압 제동력을 증가시킬 수 있다.
즉, 회생 페이드아웃 모드로 동작하는 제3 제동기간(③)에서, 전자 제어 장치(11)는, 노멀오픈형 인렛밸브(111, 112, 113, 114) 및 노멀클로즈형 아웃렛밸브(121, 122, 123, 124)는 오프 상태가 되고, 노멀오픈형 트랙션컨트롤밸브(131, 132), 유압펌프(161, 162) 및 모터(13)는 온 상태가 되도록 각각의 구성을 제어할 수 있다.
또한, 회생 페이드아웃 모드에서, 전자 제어 장치(11)는 증가된 유압 제동력에 기초하여 제2 타겟 회생 제동력을 결정할 수 있고, 결정된 제2 타겟 회생 제동력에 대한 정보를 회생 제동 장치(20)로 전송함으로써 제2 타겟 회생 제동력만큼의 회생 제동이 수행되도록 제어할 수 있다.
이 경우, 전자 제어 장치(11)는 운전자 요구 제동력에 대응하는 총 요구 제동력에서 증가된 유압 제동력을 제외한 제동력을 제2 타겟 회생 제동력으로 결정할 수 있다. 즉, 제3 제동기간(③)에서 결정된 제2 타겟 회생 제동력은 제2 제동기간(②)에서 결정된 제1 타겟 회생 제동력 보다 작은 값을 가질 수 있다. 결과적으로, 제3 제동기간(③)에서의 회생 제동력은 감소하게 된다.
제4 제동기간(④)은 회생 제동력 발생을 중지하고 운전자 요구 제동력에 대응하는 유압 제동력만을 발생시키는 회생 해제 모드가 수행되는 기간이다.
도 5d를 참조하면, 회생 해제 모드가 수행되는 동안, 즉 제4 제동기간(④) 동안 노멀오픈형 트랙션컨트롤밸브(131, 132)는 폐쇄 상태를 유지하고, 노멀오픈형 인렛밸브(111, 112, 113, 114)는 개방상태를 유지하고, 노멀클로즈형 아웃렛밸브(121, 122, 123, 124)는 폐쇄상태를 유지한다. 이로써, 마스터실린더(102)로부터 토출되는 가압매체는 체크밸브, 노멀오픈형 인렛밸브(111, 112, 113, 114)를 순차적으로 거쳐 각 휠 실린더(FR, RL, FL, RR)로 전달됨으로써 유압 제동력만을 제공할 수 있다. 이를 통해, 차량의 제동이 종료되고, 차량이 정지된다.
이를 위해, 전자 제어 장치(11)는 회생 제동 장치(20)로 회생 제동력 발생을 정지시키기 위한 제어 신호를 전송함으로써 회생 제동력의 발생을 정지시킬 수 있다. 이와 함께, 전자 제어 장치(11)는 인렛밸브(111, 112, 113, 114), 아웃렛밸브(121, 122, 123, 124) 및 트랙션컨트롤밸브(131, 132) 중에서 인렛밸브(111, 112, 113, 114)만이 개방된 상태를 유지하고, 유압펌프(161, 162)를 턴오프하도록 제어함으로써 유압 제동력만을 유지시킬 수 있다.
즉, 회생 해제 모드로 동작하는 제4 제동기간(④)에서 전자 제어 장치(11)는, 노멀오픈형 인렛밸브(111, 112, 113, 114), 노멀클로즈형 아웃렛밸브(121, 122, 123, 124), 유압펌프(161, 162) 및 모터(13)는 오프 상태가 되고, 노멀오픈형 트랙션컨트롤밸브(131, 132)는 온 상태가 되도록 각각의 구성을 제어할 수 있다.
한편, 도 3에 도시된 그래프는 제동시 회생 제동력과 유압 제동력의 이상적인 변화를 나타내는 것으로, 실제 제동시 회생 제동력과 유압 제동력의 변화는 직선 형태의 그래프로 표현되지 않을 수 있으며, 곡선 형태를 갖는 그래프로 표현될 수 있다.
도 7a는 일실시예에 따른 브레이크 시스템의 제동시 회생 제동력과 유압 제동력을 설명하기 위한 그래프이며, 도 7b는 다른 실시예에 따른 브레이크 시스템의 회생 제동력과 유압 제동력을 설명하기 위한 그래프이다.
도 7a를 참조하면, 일 실시예에 따른 브레이크 시스템(1)은 회생 제동력이 최대 회생 제동력(Rmax)에 도달한 시점(Ta) 이전의 시기에서 회생 초기 모드를 수행할 수 있다.
이 때, 전자 제어 장치(11)는 마스터실린더(102)로부터 토출되는 가압매체가 저압어큐물레이터(151, 152)에 저장되도록 적어도 하나의 밸브, 유압펌프(151, 152) 및 모터(13) 중 적어도 하나의 온오프를 제어할 수 있다. 이에 대한 구체적인 설명은 도 3에서 전술한 바와 동일하다.
일 실시예에 따른 전자 제어 장치(11)는 운전자 요구 제동력에 대응하는 회생 제동력이 최대 회생 제동력(Rmax)에 도달하면(Ta 시점), 회생 초기 모드를 회생 협조 모드로 전환시킬 수 있다. 즉, 최대 회생 제동력 이상의 회생 제동력이 요구될 때, 회생 제동력을 발생시키는 회생 초기 모드를 정지하고 유압제동력을 함께 발생시키는 회생 협조 모드를 실행할 수 있다.
일반적으로, 최대 회생 제동력이 커질수록 브레이크 페달(101)의 작동에 따른 운전자 요구 토크와 회생제동제어의 회생 제동토크의 차이가 더 커진다. 이는 최대 회생 제동력이 커질수록 소요 액량 차이가 더 심화되기 때문이다.
이러한 운전자 요구 토크와 회생제동제어의 회생 제동토크의 차이를 보상하기 위하여, 도 7(b)에 도시된 바와 같이, 다른 실시예에 따른 브레이크 시스템(1)은, 회생 협조 모드를 수행하는 시점을 회생 제동력이 최대 회생 제동력(Rmax)에 도달하는 시점(Ta) 이전의 시점(Tb)으로 앞당길 수 있다.
구체적으로, 전자 제어 장치(11)는 최대 회생 제동력(Rmax)에 기초하여 모드 전환 회생 제동력(Rs)를 결정할 수 있으며, 운전자 요구 제동력에 대응하는 회생 제동력이 결정된 모드 전환 회생 제동력(Rs)에 도달하는 시점(Tb)에서, 제동 모드를 회생 초기 모드에서 회생 협조 모드로 전환할 수 있다.
이를 위해, 전자 제어 장치(11)는 운전자 요구 제동력에 대응하는 회생 제동력과 회생 제동 장치(20)의 최대 회생 제동력(Rmax)을 실시간으로 비교할 수 있다.
전자 제어 장치(11)는 최대 회생 제동력(Rmax) 보다 작은 값을 모드 전환 회생 제동력(Rs)으로 결정할 수 있다. 구체적으로, 전자 제어 장치(11)는 최대 회생 제동력(Rmax)에 가중치 k를 적용한 값을 모드 전환 회생 제동력(Rs)으로 결정할 수 있으며, 모드 전환 회생 제동력(Rs)은 [수학식 1]에 의하여 결정될 수 있다.
Figure PCTKR2019005938-appb-M000001
이처럼, [수학식 1]에 의하여 결정된 모드 전환 회생 제동력(Rs)는 최대 회생 제동력(Rmax) 보다 작은 값을 가질 수 있다.
이를 통해, 전자 제어 장치(11)는 브레이크 페달(101)의 작동에 따른 운전자 요구 토크와 회생제동제어의 회생 제동토크의 차이를 보상할 수 있으며, 보다 효율적인 제동이 가능하다.
또한, 회생 협조 모드로 전환되는 시점, 즉 유압 제동력이 제공되기 시작하는 시점(Tb)에서, 전자 제어 장치(11)는 회생 제동 장치(20)에 의하여 발생되는 회생 제동력이 실제 유압 제동력에 기초하여 변경되도록 제어할 수 있다. 전자 제어 장치(11)는 운전자 요구 제동력에 대응하는 총 요구 제동력에서 확인된 유압 제동력을 제외한 제동력을 제1 타겟 회생 제동력으로 결정할 수 있다. 전자 제어 장치(11)는 결정된 제1 타겟 회생 제동력에 대한 정보를 회생 제동 장치(20)로 전송함으로써 제1 타겟 회생 제동력만큼의 회생 제동이 수행되도록 제어할 수 있다.
한편, 전자 제어 장치(11)는 유압 제동력이 제공되기 시작하는 시점(Tb)에서 회생 제동력이 최대 회생 제동력(Rmax)에 도달하는 시점(Ta) 동안, 제1 타겟 회생 제동력을 실시간으로 결정할 수 있고, 이에 따라 회생 제동 장치(20)로 제어 신호를 전송할 수 있다.
이를 통해, 전자 제어 장치(11)는 브레이크 소요액량 특성을 반영하여 운전자 요구 제동력과 실제 발생하는 유압 제동력 사이의 격차를 회생 제동력을 통하여 보상할 수 있다. 운전자 요구 제동력에 부합하는 총 제동력이 발생할 수 있으므로, 보다 효율적인 제동이 가능하다.
도 8 은 일 실시예에 따른 브레이크 시스템의 회생 제동 방법의 흐름도이다.
도 8를 참조하면, 일 실시예에 따른 전자 제어 장치(11)는 페달 변위가 감지되는지 여부를 확인할 수 있으며(710), 페달 변위가 감지되는 경우(710의 예), 감지된 페달 변위에 기초하여 운전자 요구 제동력을 결정할 수 있다(720).
전자 제어 장치(11)는 운전자 요구 제동력이 미리 정해진 임계값 이상인지 여부를 확인할 수 있고(730), 운전자 요구 제동력이 미리 정해진 임계값 이상인 경우(730), 아웃렛밸브(121, 122, 123, 124)를 개방할 수 있고(740), 회생 초기 모드에서 동작할 수 있다(750).
이 경우, 미리 정해진 임계값은 최대 회생 제동력(Rmax)에 관계 없이 설정되는 값일 수 있다. 즉, 회생 초기 모드로의 진입은 최대 회생 제동력에 관계 없이 운전자의 제동의지에 해당하는 값이 미리 설정된 임계값 이상일 경우, 수행될 수 있다.
이 때, 전자 제어 장치(11)는 브레이크 페달(101)의 변위량을 통하여 운전자의 제동의지에 해당하는 값을 결정할 수 있다. 전자 제어 장치(11)는 브레이크 페달(101)의 변위량이 미리 정해진 임계값 이상이면, 회생 초기 모드로 진입할 수 있다. 또한, 아웃렛밸브(121, 122, 123, 124)는 노멀클로즈형 아웃렛밸브로, 전자 제어 장치(11)는 아웃렛밸브(121, 122, 123, 124)가 온 상태가 되도록 제어함으로써 아웃렛밸브(121, 122, 123, 124)를 개방할 수 있다.
도 9는 일 실시예에 따른 브레이크 시스템의 회생 제동 방법의 흐름도이다.
도 9를 참조하면, 일 실시예에 따른 전자 제어 장치(11)는 모드 전환 회생 제동력(Rs)을 결정할 수 있다(810). 이 때, 모드 전환 회생 제동력(Rs)는 회생 초기 모드에서 회생 협조 모드로 전환하기 위하여 기준이 되는 회생 제동력을 의미하며, 최대 회생 제동력(Rmax) 보다 작은 값을 가질 수 있다.
구체적으로, 전자 제어 장치(11)는 최대 회생 제동력(Rmax)에 가중치 k를 적용한 값을 모드 전환 회생 제동력(Rs)으로 결정할 수 있으며, 모드 전환 회생 제동력(Rs)은 전술한 [수학식 1]에 의하여 결정될 수 있다.
전자 제어 장치(11)는 운전자 요구 제동력에 대응하는 회생 제동력이 모드 전환 회생 제동력(Rs) 보다 큰 값을 갖는지 여부를 확인할 수 있다(820).
운전자 요구 제동력에 대응하는 회생 제동력이 모드 전환 회생 제동력(Rs) 보다 큰 값을 갖는 경우, 노멀클로즈형 아웃렛밸브(121, 122, 123, 124)를 폐쇄할 수 있다(830). 이후, 전자 제어 장치(11)는 회생 협조 모드로 동작할 수 있다(840). 즉, 전자 제어 장치(11)는 운전자 요구 제동력에 대응하는 회생 제동력이 모드 전환 회생 제동력(Rs) 보다 커지는 시점에서 제동 모드를 회생 초기 모드에서 회생 협조 모드로 전환할 수 있다.
이를 통해, 일 실시예에 따른 전자 제어 장치(11)는 운전자 요구 제동력에 대응하는 회생 제동력이 최대 회생 제동력에 도달하기 전에 회생 협조 모드로 전환이 가능하므로, 소요 액량의 차이에 따른 제동력 감소를 방지할 수 있다.
이상과 같이, 유압식 제동장치가 적용된 차량에서도 회생 제동을 수행할 수 있고, 유압식 제동장치의 전자식 제동장치에 대비한 소요 액량 차이로 인한 유압 제동력 손실을 회생 제동력으로 보상할 수 있어 총 제동력을 향상시킬 수 있다. 따라서, 사용자의 편의성 및 주행 안전성이 증대될 수 있다.
이상에서와 같이 첨부된 도면을 참조하여 개시된 실시예들을 설명하였다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고도, 개시된 실시예들과 다른 형태로 본 발명이 실시될 수 있음을 이해할 것이다. 개시된 실시예들은 예시적인 것이며, 한정적으로 해석되어서는 안 된다.

Claims (19)

  1. 브레이크 시스템에 있어서,
    유압에 의한 제동력을 생성하는 유압 제동 장치; 및
    전기모터에 의한 회생 제동력을 생성하는 회생 제동 장치를 포함하고,
    상기 유압 제동 장치는,
    가압매체를 토출함으로써 브레이크 페달의 변위량에 대응하는 유압을 생성하는 마스터 실린더;
    복수의 휠 실린더와 상기 마스터 실린더를 연결하는 유로에 배치되는 복수의 밸브;
    상기 유로에 배치되는 어큐뮬레이터; 및
    상기 브레이크 페달의 변위량에 대응하는 요구 제동력을 결정하고, 상기 복수의 밸브를 제어하는 전자 제어 장치;를 포함하고,
    상기 전자 제어 장치는,
    상기 브레이크 페달의 변위량을 감지하면, 상기 마스터 실린더로부터 토출되는 가압매체가 상기 어큐뮬레이터에 저장되도록 상기 복수의 밸브를 제어하고, 상기 회생 제동력의 생성을 위한 요청 신호를 상기 회생 제동 장치로 전달하는 브레이크 시스템.
  2. 제1항에 있어서,
    상기 복수의 밸브는,
    상기 복수의 휠 실린더의 출구 측에 배치되는 아웃렛밸브;를 포함하고,
    상기 전자 제어 장치는,
    상기 아웃렛밸브를 개방 상태로 전환함으로써 상기 마스터 실린더로부터 토출되는 가압매체를 상기 어큐뮬레이터에 저장하는 브레이크 시스템.
  3. 제1항에 있어서,
    상기 전자 제어 장치는,
    차속이 미리 정해진 기준값 이하이면, 상기 어큐물레이터에 저장된 가압매체가 상기 복수의 휠 실린더로 전달되도록 상기 복수의 밸브를 제어하는 브레이크 시스템.
  4. 제3항에 있어서,
    상기 복수의 밸브는,
    상기 마스터 실린더와 상기 휠 실린더 사이에 배치되는 트랙션컨트롤밸브;를 포함하고,
    상기 전자 제어 장치는,
    상기 트랙션컨트롤밸브를 폐쇄 상태로 전환함으로써 상기 어큐뮬레이터에 저장된 가압매체를 상기 복수의 휠 실린더로 전달하는 브레이크 시스템.
  5. 제3항에 있어서,
    상기 어큐뮬레이터에 저장된 가압매체를 상기 복수의 휠 실린더로 제공하는 유압펌프; 및
    상기 유압펌프를 구동하는 모터;를 더 포함하고,
    상기 전자 제어 장치는,
    상기 유압펌프 및 상기 모터를 턴온(Turn-on)시킴으로써 상기 어큐뮬레이터에 저장된 가압매체를 상기 복수의 휠 실린더로 전달하는 브레이크 시스템.
  6. 제1항에 있어서,
    상기 전자 제어 장치는,
    상기 브레이크 페달의 변위량이 미리 정해진 임계값 이상이면, 상기 아웃렛밸브를 개방 상태로 전환하는 브레이크 시스템.
  7. 제1항에 있어서,
    상기 전자 제어 장치는,
    상기 요구 제동력에 대응하는 회생 제동력이 최대 회생 제동력에 도달하기 전에, 상기 아웃렛밸브를 폐쇄 상태로 전환하는 브레이크 시스템.
  8. 제7항에 있어서,
    상기 전자 제어 장치는,
    상기 최대 회생 제동력에 기초하여 모드변환 회생 제동력을 결정하고, 상기 요구 제동력에 대응하는 회생 제동력이 상기 결정된 모드변환 회생 제동력에 도달하면, 상기 아웃렛밸브를 폐쇄 상태로 전환하는 브레이크 시스템.
  9. 제8항에 있어서,
    상기 전자 제어 장치는,
    상기 최대 회생 제동력에 미리 정해진 가중치를 적용한 값을 상기 모드변환 회생 제동력으로 결정하고, 상기 미리 정해진 가중치는 0 보다 크고, 1 보다 작거나 같은 브레이크 시스템.
  10. 제1항에 있어서,
    상기 전자 제어 장치는,
    상기 요구 제동력에 기초하여 타겟 회생 제동력을 결정하고, 상기 결정된 타겟 회생 제동력이 생성되도록 상기 회생 제동 장치로 상기 요청 신호를 전달하는 브레이크 시스템.
  11. 제10항에 있어서,
    상기 전자 제어 장치는,
    상기 요구 제동력에서 유압에 의한 제동력을 감산한 제동력을 상기 타겟 회생 제동력으로 결정하는 브레이크 시스템.
  12. 브레이크 시스템에 있어서,
    유압에 의한 제동력을 생성하는 유압 제동 장치; 및
    전기모터에 의한 회생 제동력을 생성하는 회생 제동 장치를 포함하고,
    상기 유압 제동 장치는,
    가압매체를 토출함으로써 브레이크 페달의 변위량에 대응하는 유압을 생성하는 마스터 실린더;
    복수의 휠 실린더의 출구 측에 마련된 아웃렛밸브;
    상기 복수의 휠 실린더의 입구 측에 마련되는 인렛밸브와 상기 마스터실린더 사이에 마련되는 트랙션컨트롤밸브;
    상기 아웃렛밸브와 연결되는 어큐뮬레이터; 및
    상기 브레이크 페달의 변위량에 대응하는 요구 제동력을 결정하고, 상기 복수의 밸브를 제어하는 전자 제어 장치;를 포함하고,
    상기 전자 제어 장치는,
    상기 브레이크 페달의 변위량을 감지하면, 상기 마스터 실린더로부터 토출되는 가압매체가 상기 어큐뮬레이터에 저장되도록 상기 아웃렛밸브를 제어하고, 차속이 미리 정해진 기준값 이하이면, 상기 어큐뮬레이터에 저장된 가압매체가 상기 복수의 휠 실린더로 전달되도록 상기 트랙션컨트롤밸브를 제어하는 브레이크 시스템.
  13. 제12항에 있어서,
    상기 전자 제어 장치는,
    상기 아웃렛밸브를 개방 상태로 전환함으로써 상기 마스터 실린더로부터 토출되는 가압매체를 상기 어큐뮬레이터에 저장하는 브레이크 시스템.
  14. 제12항에 있어서,
    상기 전자 제어 장치는,
    차속이 미리 정해진 기준값 이하이면, 상기 트랙션컨트롤밸브를 폐쇄 상태로 전환함으로써 상기 어큐뮬레이터에 저장된 가압매체를 상기 복수의 휠 실린더로 전달하는 브레이크 시스템.
  15. 제12항에 있어서,
    상기 전자 제어 장치는,
    상기 브레이크 페달의 변위량이 미리 정해진 임계값 이상이면, 상기 아웃렛밸브를 개방 상태로 전환하는 브레이크 시스템.
  16. 제12항에 있어서,
    상기 전자 제어 장치는,
    상기 요구 제동력에 대응하는 회생 제동력이 최대 회생 제동력에 도달하기 전에, 상기 아웃렛밸브를 폐쇄 상태로 전환하는 브레이크 시스템.
  17. 제16항에 있어서,
    상기 전자 제어 장치는,
    상기 최대 회생 제동력에 기초하여 모드변환 회생 제동력을 결정하고, 상기 요구 제동력에 대응하는 회생 제동력이 상기 결정된 모드변환 회생 제동력에 도달하면, 상기 아웃렛밸브를 폐쇄 상태로 전환하는 브레이크 시스템.
  18. 제12항에 있어서,
    상기 전자 제어 장치는,
    상기 요구 제동력에 기초하여 타겟 회생 제동력을 결정하고, 상기 결정된 타겟 회생 제동력이 생성되기 위한 요청 신호를 상기 회생 제동 장치로 전달하는 브레이크 시스템.
  19. 브레이크 시스템에 있어서,
    유압에 의한 제동력을 생성하는 유압 제동 장치; 및
    전기모터에 의한 회생 제동력을 생성하는 회생 제동 장치;를 포함하고,
    상기 유압 제동 장치는,
    브레이크 페달의 변위량에 대응하여 결정된 요구 제동력과 상기 유압에 의한 제동력의 차이를 타겟 회생 제동력으로 결정하고, 상기 결정된 타겟 회생 제동력이 생성되기 위한 요청 신호를 상기 회생 제동 장치로 전달하는 브레이크 시스템.
PCT/KR2019/005938 2018-05-17 2019-05-17 브레이크 시스템 WO2019221554A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/056,169 US20210213836A1 (en) 2018-05-17 2019-05-17 Brake system
KR1020207032928A KR102631078B1 (ko) 2018-05-17 2019-05-17 브레이크 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180056491 2018-05-17
KR10-2018-0056491 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019221554A1 true WO2019221554A1 (ko) 2019-11-21

Family

ID=68540505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005938 WO2019221554A1 (ko) 2018-05-17 2019-05-17 브레이크 시스템

Country Status (3)

Country Link
US (1) US20210213836A1 (ko)
KR (1) KR102631078B1 (ko)
WO (1) WO2019221554A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151476A4 (en) * 2020-08-07 2023-10-18 Global Technology Co., Ltd. BYPASS ENERGY STORAGE DEVICE FOR AN ELECTRONICALLY CONTROLLED HYDRAULIC BRAKE SYSTEM AND CONTROL METHOD THEREOF

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020108915A1 (de) * 2020-03-31 2021-09-30 Zf Active Safety Gmbh Verfahren zum Betreiben eines hydraulischen Bremssystems bei einem Kraftfahrzeug mit regenerativer Bremsfunktion, hydraulisches Bremssystem und Verfahren zu dessen Steuerung, Computerprogrammprodukt, Steuereinheit und Kraftfahrzeug
JP7392680B2 (ja) * 2021-04-06 2023-12-06 トヨタ自動車株式会社 車両用制動システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070296264A1 (en) * 2003-03-13 2007-12-27 Continental Teves Ag & Co. Ohg Method For Controlling A Brake System Of A Motor Vehicle
US20120139330A1 (en) * 2010-12-03 2012-06-07 Nissan Motor Co., Ltd. Brake control system for an electrically driven vehicle
KR101269927B1 (ko) * 2008-09-18 2013-05-31 주식회사 만도 전기모터가 장착된 차량의 회생 제동 시 유압 제어 방법
KR101371898B1 (ko) * 2012-11-14 2014-03-07 현대자동차주식회사 하이브리드 차량의 제동 제어장치 및 제어방법
KR20160039823A (ko) * 2014-10-02 2016-04-12 현대모비스 주식회사 회생제동 시스템

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305378B2 (ja) * 1992-11-13 2002-07-22 本田技研工業株式会社 電動車両の制動装置
JP3622395B2 (ja) * 1997-01-17 2005-02-23 トヨタ自動車株式会社 制動装置
JP3541621B2 (ja) * 1997-06-10 2004-07-14 トヨタ自動車株式会社 車両用制動装置
JP4134706B2 (ja) * 2002-12-10 2008-08-20 日産自動車株式会社 車両用制動装置
US9630508B2 (en) * 2004-03-09 2017-04-25 Ford Global Technologies, Llc System and method for controlling regenerative braking in a vehicle
JP2007030631A (ja) * 2005-07-25 2007-02-08 Advics:Kk 車両用ブレーキ制御装置
US8366210B2 (en) * 2006-04-03 2013-02-05 Advics Co., Ltd. Braking apparatus for vehicle
JP4466696B2 (ja) * 2007-08-10 2010-05-26 トヨタ自動車株式会社 ブレーキ装置、ブレーキ制御装置およびブレーキ制御方法
KR101304208B1 (ko) * 2009-09-01 2013-09-05 주식회사 만도 회생 제동 시스템의 유압 제어 방법
KR101765445B1 (ko) * 2010-01-28 2017-08-07 콘티넨탈 테베스 아게 운트 코. 오하게 모터 차량용 브레이크 시스템 작동 방법 및 브레이크 시스템
US9016804B2 (en) * 2010-04-27 2015-04-28 Continental Teves Ag & Co. Ohg Brake system for a motor vehicle and method for operating a brake system
JP5386042B2 (ja) * 2010-09-09 2014-01-15 ボッシュ株式会社 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070296264A1 (en) * 2003-03-13 2007-12-27 Continental Teves Ag & Co. Ohg Method For Controlling A Brake System Of A Motor Vehicle
KR101269927B1 (ko) * 2008-09-18 2013-05-31 주식회사 만도 전기모터가 장착된 차량의 회생 제동 시 유압 제어 방법
US20120139330A1 (en) * 2010-12-03 2012-06-07 Nissan Motor Co., Ltd. Brake control system for an electrically driven vehicle
KR101371898B1 (ko) * 2012-11-14 2014-03-07 현대자동차주식회사 하이브리드 차량의 제동 제어장치 및 제어방법
KR20160039823A (ko) * 2014-10-02 2016-04-12 현대모비스 주식회사 회생제동 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151476A4 (en) * 2020-08-07 2023-10-18 Global Technology Co., Ltd. BYPASS ENERGY STORAGE DEVICE FOR AN ELECTRONICALLY CONTROLLED HYDRAULIC BRAKE SYSTEM AND CONTROL METHOD THEREOF

Also Published As

Publication number Publication date
KR102631078B1 (ko) 2024-01-30
KR20210000312A (ko) 2021-01-04
US20210213836A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
WO2019221554A1 (ko) 브레이크 시스템
WO2020246866A1 (ko) 브레이크 시스템의 제어장치
CA2665622C (en) Reduced power mode for an aircraft electric brake system
US8239100B2 (en) Electric braking apparatus and vehicle having thereof
WO2021107501A1 (ko) 전자식 주차 브레이크 시스템 및 그 제어방법
WO2020045970A1 (ko) 전자식 브레이크 시스템
KR20010098953A (ko) 전기적 브레이크 피드백 모니터를 가진 혼합된전기적/마찰 제동 시스템 및 그 사용방법
WO2021118154A1 (ko) 전자식 주차 브레이크 시스템 및 그 제어방법
WO2022010272A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
WO2020184967A1 (ko) 전자식 브레이크 시스템
CN107792041A (zh) 线控制动系统
US20230294650A1 (en) Braking system having a redundant parking brake function
KR20210099847A (ko) 차량의 제동 제어장치
WO2021075763A1 (ko) 전자식 주차 브레이크 시스템 및 그 제어방법
WO2020242070A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
WO2022092959A1 (ko) 전자식 브레이크 시스템
WO2020226443A1 (ko) 브레이크 장치 및 그 제어 방법
WO2021194286A1 (ko) 전자식 브레이크 시스템
WO2019221550A1 (ko) 전자식 브레이크 시스템 및 그 제어 방법
US6318812B1 (en) Vent valve for electropneumatic brake control valve
WO2019151731A2 (ko) 건설기계의 제동 제어 장치 및 제동 제어 방법
WO2021158032A1 (ko) 전자식 브레이크 시스템 및 그 제어방법
JP3775095B2 (ja) 車両用回生協調ブレーキ制御装置
WO2022086139A1 (ko) 리저브 탱크를 활용한 브레이크 시스템
WO2022146054A1 (ko) 전자식 브레이크 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207032928

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803652

Country of ref document: EP

Kind code of ref document: A1