WO2019221485A1 - 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2019221485A1
WO2019221485A1 PCT/KR2019/005788 KR2019005788W WO2019221485A1 WO 2019221485 A1 WO2019221485 A1 WO 2019221485A1 KR 2019005788 W KR2019005788 W KR 2019005788W WO 2019221485 A1 WO2019221485 A1 WO 2019221485A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
substituted
layer
unsubstituted
Prior art date
Application number
PCT/KR2019/005788
Other languages
English (en)
French (fr)
Inventor
박종호
서상덕
김서연
이동훈
박태윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980011089.2A priority Critical patent/CN111683955B/zh
Publication of WO2019221485A1 publication Critical patent/WO2019221485A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present application relates to a compound represented by Formula 1 and an organic light emitting device including the same.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often made of a multi-layered structure composed of different materials to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • the present application is to provide a compound represented by Formula 1 and an organic light emitting device comprising the same.
  • the present application provides a compound represented by the following Chemical Formula 1.
  • X is O, S, NRa, CRbRc or SiRdRe,
  • R is a substituted or unsubstituted alkyl group
  • R1, R2 and Ra to Re are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • At least two of R4 to R6 each independently represent a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted cycloalkyl group, and the rest are each independently hydrogen; Or deuterium,
  • n 1 or 2
  • a and b are each independently an integer of 0 to 4,
  • the present application is a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound described above.
  • the organic light emitting device using the compound according to the exemplary embodiment of the present application is capable of low driving voltage, high luminous efficiency or long life.
  • FIG. 1 shows an example of an organic light emitting device in which a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4 are sequentially stacked.
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, an electron transport layer 7, an electron injection layer 8 and a cathode 4 sequentially.
  • stacked is shown.
  • the compound represented by Chemical Formula 1 has an advantage of controlling triplet energy by having the core structure as described above, and may exhibit long life and high efficiency.
  • the compounds of the present invention When used as phosphorescent dopant materials, they exhibit excellent properties in terms of voltage, efficiency and lifetime.
  • a structure including at least two alkyl groups or cycloalkyl groups in a dibenzofuran ligand, such as the compound of the present invention, may have a sufficient distance between dopant molecules, resulting in less self-quenching. This means that the dibenzofuran is free of substituents, and as compared with a single structure, electrons and holes that participate in luminescence are guaranteed a lot.
  • the alkyl group substituted at the N-meta position of the pyridine has the effect of preventing intermolecular stacking with little effect on the HOMO and LUMO of the dopant. Therefore, a structure including two or more alkyl groups or a cycloalkyl group of R 4 to R 6 and having an alkyl group at the N-meth position of pyridine may have high efficiency and long life without changing color purity.
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
  • substituted or unsubstituted is hydrogen; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; And it is substituted with one or two or more substituents selected from the group consisting of a substituted or unsubstituted heterocyclic group, or two or more of the substituents exemplified above are substituted with a substituent, or means that do not have any substituents.
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group and can be interpreted as a substituent to which two phenyl groups are linked.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • carbon number of an ester group is not specifically limited, It is preferable that it is C1-C50. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C50. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 50.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl, 1-methylhexyl, Cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-oct
  • the cycloalkyl group is not particularly limited, but preferably 3 to 60 carbon atoms, specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto. Do not.
  • the alkoxy group may be linear, branched or cyclic. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C20. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, isopentyloxy, n -Hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy, and the like. It is not limited.
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group and the like, but are not limited thereto.
  • the aryl group is a monocyclic aryl group
  • carbon number is not particularly limited, but preferably 6 to 25 carbon atoms.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc., but is not limited thereto.
  • Carbon number is not particularly limited when the aryl group is a polycyclic aryl group. It is preferable that it is C10-24.
  • the polycyclic aryl group may be naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, peryleneyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and adjacent substituents may be bonded to each other to form a ring.
  • the heterocyclic group includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Se, and S, and the like.
  • carbon number of a heterocyclic group is not specifically limited, It is preferable that it is C2-C60.
  • heterocyclic groups include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, Acridil group, pyridazine group, pyrazine group, quinoline group, quinazole group, quinoxaline group, phthalazine group, pyrido pyrimidine group, pyrido pyrazine group, pyrazino pyrazine group, isoquinoline group, indole group, carbazole group , Benzoxazole group, benzimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuran group, phenanthroline group, thiazolyl
  • heterocycle is a divalent group.
  • the aryloxy group, the arylthioxy group, the aryl sulfoxy group, the aryl phosphine group, the aralkyl group, the aralkylamine group, the aryl group in the aralkenyl group, the arylamine group, the description of the aryl group described above can be applied.
  • an alkyl thioxy group, an alkyl sulfoxy group, an aralkyl group, an aralkyl amine group, and an alkyl group among the alkyl amine groups may be described with respect to the aforementioned alkyl group.
  • alkenyl group of the alkenyl group may be applied to the description of the alkenyl group described above.
  • the meaning of combining with adjacent groups to form a ring means combining with adjacent groups with each other for a substituted or unsubstituted aliphatic hydrocarbon ring; Substituted or unsubstituted aromatic hydrocarbon ring; Substituted or unsubstituted aliphatic heterocycle; Or to form a substituted or unsubstituted aromatic heterocycle.
  • the aliphatic hydrocarbon ring means a ring composed only of carbon and hydrogen atoms as a ring which is not aromatic.
  • examples of the aromatic hydrocarbon ring include, but are not limited to, phenyl group, naphthyl group, anthracenyl group, and the like.
  • the aliphatic heterocycle means an aliphatic ring containing one or more of the heteroatoms.
  • the aromatic heterocycle means an aromatic ring including at least one of heteroatoms.
  • the aliphatic hydrocarbon ring, aromatic hydrocarbon ring, aliphatic hetero ring and aromatic hetero ring may be monocyclic or polycyclic.
  • X is O, S, NRa, CRbRc or SiRdRe.
  • X is O.
  • R is a substituted or unsubstituted alkyl group.
  • R is a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms.
  • R is a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms.
  • R is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms.
  • R is an alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with deuterium.
  • R is a methyl group unsubstituted or substituted with deuterium.
  • R is a methyl group substituted with deuterium.
  • R is a methyl group
  • the R1, R2 and Ra to Re are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • the R1, R2 and Ra to Re are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl group having 6 to 60 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 60 carbon atoms.
  • the R1, R2 and Ra to Re are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 15 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • the R1, R2 and Ra to Re are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 5 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms; Or a substituted or unsubstituted silyl group.
  • the R1, R2 and Ra to Re are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 5 carbon atoms; Or a silyl group unsubstituted or substituted with an alkyl group.
  • the R1, R2 and Ra to Re are each independently hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 5 carbon atoms; Or a silyl group unsubstituted or substituted with an alkyl group having 1 to 5 carbon atoms.
  • the R1 and R2 are each independently hydrogen; Substituted or unsubstituted methyl group; Or a silyl group unsubstituted or substituted with a methyl group.
  • the R1 and R2 are each independently hydrogen; Methyl group unsubstituted or substituted with deuterium; Or a silyl group substituted with a methyl group.
  • R4 to R6 are each independently a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted cycloalkyl group, and the rest are each independently hydrogen; Or deuterium, and the carbon number of R4 to R6 is 2 or more.
  • R4 to R6 are each independently a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; Or a substituted or unsubstituted 3 to 30 cycloalkyl group, and the rest are each independently hydrogen; Or deuterium, and the carbon number of R4 to R6 is 2 or more.
  • R4 to R6 are each independently a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms; Or a substituted or unsubstituted 3 to 15 cycloalkyl group, and the rest are each independently hydrogen; Or deuterium, and the carbon number of R4 to R6 is 2 or more.
  • R4 to R6 are each independently a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms; Or a substituted or unsubstituted 3 to 10 cycloalkyl group, and the rest are each independently hydrogen; Or deuterium, and the carbon number of R4 to R6 is 2 or more.
  • At least two of R4 to R6 are independently a substituted or unsubstituted methyl group; Substituted or unsubstituted propyl group; Substituted or unsubstituted pentyl group; Or a substituted or unsubstituted cyclohexyl group, the remainder are each independently hydrogen; Or deuterium.
  • At least two of R4 to R6 are independently a substituted or unsubstituted methyl group; Substituted or unsubstituted isopropyl group; A substituted or unsubstituted neopentyl group; Or a substituted or unsubstituted cyclohexyl group, the remainder are each independently hydrogen; Or deuterium.
  • At least two of R4 to R6 are independently a methyl group unsubstituted or substituted with deuterium; Isopropyl group unsubstituted or substituted with deuterium; Neopentyl group unsubstituted or substituted with deuterium; Or a cyclohexyl group unsubstituted or substituted with deuterium, and the rest are each independently hydrogen; Or deuterium.
  • the compound represented by Formula 1 is any one selected from the following structural formula.
  • the present application provides an organic light emitting device including the compound described above.
  • the first electrode A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound.
  • the organic material layer of the organic light emitting device of the present application may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes the compound.
  • the organic material layer includes an electron injection layer, an electron transport layer, or an electron injection and transport layer, and the electron injection layer, the electron transport layer, or the electron injection and transport layer includes the compound.
  • the electron injection and transport layer is a layer that simultaneously performs electron injection and transport.
  • the organic layer includes a hole injection layer, a hole transport layer, or a hole injection and transport layer, the hole injection layer, a hole transport layer, or a hole injection and transport layer comprises the compound.
  • the hole injection and transport layer is a layer that simultaneously performs hole injection and transport.
  • the organic light emitting device is a hole injection layer, a hole transport layer. It further comprises one or two or more layers selected from the group consisting of an electron transport layer, an electron injection layer, an electron blocking layer and a hole blocking layer.
  • the light emitting layer may include a dopant material.
  • the host material is a condensed aromatic ring derivative or a heterocyclic containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • the heterocyclic-containing compounds include compounds, dibenzofuran derivatives and ladder type furan compounds. , Pyrimidine derivatives, and the like, but is not limited thereto.
  • the thickness of the organic material layer including the compound of Formula 1 is 10 kPa to 500 kPa.
  • the organic light emitting device comprises a first electrode; A second electrode provided to face the first electrode; And a light emitting layer provided between the first electrode and the second electrode.
  • Two or more organic material layers provided between the light emitting layer and the first electrode, or between the light emitting layer and the second electrode, wherein at least one of the two or more organic material layers comprises the compound.
  • the two or more organic material layers may be selected from the group consisting of an electron transport layer, an electron injection layer, a layer simultaneously performing electron transport and electron injection, and a hole blocking layer.
  • the organic material layer includes two or more electron transport layers, and at least one of the two or more electron transport layers includes the compound.
  • the compound may be included in one layer of the two or more electron transport layers, and may be included in each of the two or more electron transport layers.
  • the organic material layer further includes a hole injection layer or a hole transport layer including a compound including an arylamino group, a carbazole group, or a benzocarbazole group in addition to the organic material layer including the compound.
  • the organic light emitting device may be an organic light emitting device having a normal structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting diode may be an organic light emitting diode having an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of the organic light emitting device according to the exemplary embodiment of the present application is illustrated in FIGS. 1 and 2.
  • FIG. 1 illustrates a structure of an organic light emitting device in which a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4 are sequentially stacked.
  • the compound may be included in the light emitting layer (3).
  • the 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, an electron transport layer 7, an electron injection layer 8 and a cathode 4 sequentially.
  • the structure of the stacked organic light emitting device is illustrated. In such a structure, the compound may be included in at least one of the hole injection layer 5, the hole transport layer 6, the light emitting layer 3, the electron transport layer 7, and the electron injection layer 8.
  • the organic light emitting device of the present application may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound of the present application, that is, the compound.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present application may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound, that is, the compound represented by Chemical Formula 1.
  • the organic light emitting device of the present application may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on the substrate to form an anode.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound of Formula 1 may be formed of an organic material layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying method, roll coating and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate (International Patent Application Publication No. 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode.
  • the anode material a material having a large work function is usually preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); ZnO: Al or SNO 2 : Combination of metals and oxides such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injecting material is a layer for injecting holes from an electrode, and the hole injecting material has a capability of transporting holes.
  • the compound which prevents the movement of the excited excitons to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based Organic materials, anthraquinone, and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • the hole transport material is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer.
  • the material is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxyquinoline aluminum complex (Alq 3); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • the electron transporting material is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transporting material is a material that can inject electrons well from the cathode and transfer them to the light emitting layer. This is suitable. Specific examples thereof include Al complexes of 8-hydroxyquinoline; Complexes including Alq3; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, followed by aluminum layers or silver layers in each case.
  • the electron injection layer is a layer that injects electrons from an electrode, has an ability to transport electrons, has an electron injection effect from a cathode, an electron injection effect with respect to a light emitting layer or a light emitting material, and hole injection of excitons generated in the light emitting layer.
  • the compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the derivatives thereof, metal Complex compounds, nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtolato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtolato) gallium, It is not limited to this.
  • the hole blocking layer is a layer for blocking the arrival of the cathode of the hole, and may be generally formed under the same conditions as the hole injection layer. Specifically, there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complexes, and the like, but are not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double-sided emission type according to a material used.
  • Intermediate 1-1b was prepared by the same method as the method of preparing intermediate 1-1a, except that Intermediate A2 was used instead of Intermediate A1 (20 g, 54% yield).
  • Intermediate B2 was prepared by the same method as the method of preparing intermediate B1, except that Intermediate 1-1b was used instead of Intermediate 1-1a (yield 94%).
  • Intermediate 1-1e was prepared by the same method as the method of preparing intermediate 1-1a, except that Intermediate A3 was used instead of Intermediate A1 (10.2 g, yield 62%).
  • Intermediate B4 was prepared by the same method as the method of preparing intermediate B1, except that Intermediate 1-1g was used instead of Intermediate 1-1a (yield 90%).
  • the intermediate 1-1i was prepared by the same method as the method of preparing intermediate A1, except that intermediate A5 was used instead of intermediate A1.
  • 2-1a (47 g, 0.184 mol) was added to 600 ml of acetic acid and 200 ml of THF in a round bottom flask under nitrogen atmosphere, followed by stirring. The reaction was brought to 0 ° C. and tert-butyl nitrile (103.12 g, 0.336 mol) was added dropwise. After reacting for 5 hours, H 2 O was added to precipitate. The precipitate was dissolved in chloroform, magnesium sulfate (magnesium sulfate) was added thereto, stirred, filtered under reduced pressure, and concentrated. 2-1b was prepared through column chromatography. (20gg, 50% yield)
  • intermediate C1 (34.5 g, 0.12 mol) and sodium ethoxide (5.8 g, 0.085 mol) were dissolved in 300 ml of dimethylsulfoxide-d6 in a round bottom flask at 80 ° C.
  • Compound D2 was prepared in the same manner as in the manufacturing method of Intermediate D1, except that C1 was used as Preparation Example 3-1.
  • Compound D3 was prepared by the same method as the preparation method of Intermediate D1, except that C1 was used as Preparation Example 3-1.
  • Compound D4 was prepared in the same manner as in the manufacturing method of Intermediate D1, except that C1 was used as Preparation Example 3-1.
  • Compound D5 was prepared by the same method as the preparation method of Intermediate D1, except that C1 was used as Preparation Example 3-1.
  • Compound D6 was prepared in the same manner as in the preparation of Intermediate D1, except that C1 was used as C6 in Preparation Example 3-1.
  • Compound D7 was prepared in the same manner as in the preparation of Intermediate D1, except that C1 was used in Preparation Example 3-1.
  • Compound D8 was prepared in the same manner as in the manufacturing method of Intermediate D1, except that C1 was used as C1 in Preparation Example 3-1.
  • Compound D9 was prepared in the same manner as in Intermediate D1, except that C1 was used in Preparation Example 3-1.
  • Compound D10 was prepared by the same method as the preparation method of Intermediate D1, except that C1 was used as Preparation Example 3-1.
  • Compound D11 was prepared in the same manner as in the manufacturing method of Intermediate D1, except that C1 was used in Preparation Example 3-1.
  • Mass spectrometry confirmed molecular weight 845.
  • Mass spectrometry confirmed molecular weight 845.
  • Compound 3 was prepared in the same manner as in preparation 1, except that D1 was used as D3 in Preparation Example 4-1.
  • Mass spectrometry confirmed molecular weight 862.
  • Compound 4 was prepared in the same manner as in the preparation method, except that D1 was used as D4 in Preparation Example 4-1.
  • the molecular weight 911 was confirmed by mass spectrometry.
  • Compound 5 was prepared in the same manner as in Preparation 1, except that D1 was used as D5 in Preparation Example 4-1.
  • the molecular weight 911 was confirmed by mass spectrometry.
  • Compound 6 was prepared in the same manner as in Preparation 1, except that D1 was used as D6 in Preparation Example 4-1.
  • Mass spectrometry confirmed molecular weight 871.
  • Compound 7 was prepared in the same manner as in preparation 1, except that D1 was used as D7 in Preparation Example 4-1.
  • Mass spectrometry confirmed molecular weight 871.
  • Compound 8 was prepared in the same manner as in Preparation 1, except that D1 was used as D8 in Preparation Example 4-1.
  • Mass spectrometry confirmed molecular weight 871.
  • Compound 9 was prepared in the same manner as in preparation 1, except that D1 was used as D9 in Preparation Example 4-1.
  • the molecular weight 886 was confirmed by mass spectrometry.
  • Compound 10 was prepared in the same manner as in the preparation method, except that D1 was used as D10 in Preparation Example 4-1.
  • the molecular weight 886 was confirmed by mass spectrometry.
  • Compound 11 was prepared in the same manner as in Preparation 1, except that D1 was used as D11 in Preparation Example 4-1.
  • the molecular weight 886 was confirmed by mass spectrometry.
  • Compound 12 was prepared in the same manner as in Preparation 1, except that B3 was used as B4 in Preparation Example 4-1.
  • Mass spectrometry confirmed the molecular weight 913.
  • Compound 13 was prepared by the same method as the method for preparing compound 12, except that D1 was used as D2 in Preparation Example 4-12.
  • Mass spectrometry confirmed the molecular weight 913.
  • Compound 14 was prepared in the same manner as in the preparation of compound 12, except that D1 was used as D3 in Preparation Example 4-12.
  • Mass spectrometry confirmed the molecular weight 930.
  • Compound 15 was prepared in the same manner as in the preparation method of compound 12, except that D1 was used as D4 in Preparation Example 4-12.
  • Mass spectrometry confirmed molecular weight 979.
  • Compound 16 was prepared in the same manner as in the preparation of compound 12, except that D1 was used as D5 in Preparation Example 4-12.
  • Mass spectrometry confirmed the molecular weight 979.
  • Compound 17 was prepared in the same manner as in the preparation of compound 12, except that D1 was used as D6 in Preparation Example 4-12.
  • Mass spectrometry confirmed molecular weight 939.
  • Compound 18 was prepared in the same manner as in the preparation of compound 12, except that D1 was used as D7 in Preparation Example 4-12.
  • Mass spectrometry confirmed molecular weight 939.
  • Compound 19 was prepared in the same manner as in the preparation of compound 12, except that D1 was used as D8 in Preparation Example 4-12.
  • Mass spectrometry confirmed molecular weight 939.
  • Compound 20 was prepared in the same manner as in the preparation of compound 12, except that D1 was used as D9 in Preparation Example 4-12.
  • Mass spectrometry confirmed the molecular weight 954.
  • Compound 21 was prepared in the same manner as in the preparation method of compound 12, except that D1 was used as D10 in Preparation Example 4-12.
  • Mass spectrometry confirmed the molecular weight 954.
  • Compound 22 was prepared in the same manner as in the preparation of compound 12, except that D1 was used as D11 in Preparation Example 4-12.
  • Mass spectrometry confirmed the molecular weight 954.
  • Compound 23 was prepared in the same manner as in the preparation method of compound 12, except that D1 was used as D10 in Preparation Example 4-12.
  • Mass spectrometry confirmed the molecular weight 996.
  • Compound 24 was prepared in the same manner as in the preparation method of compound 12, except that D1 was used as D11 in Preparation Example 4-12.
  • Mass spectrometry confirmed the molecular weight 996.
  • the glass substrate coated with ITO indium tin oxide having a thickness of 1,300 mm 3 was placed in distilled water in which detergent was dissolved and ultrasonically cleaned.
  • ITO indium tin oxide
  • Fischer Co. was used as a detergent
  • distilled water was filtered secondly as a filter of Millipore Co. as a distilled water.
  • ultrasonic washing was performed twice with distilled water for 10 minutes.
  • ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • the HI-1 compound as described below was thermally vacuum deposited to a thickness of 500 kPa to form a hole injection layer.
  • the HT-1 compound was thermally vacuum deposited to a thickness of 800 kPa on the hole injection layer, and the HT-3 compound was vacuum deposited to a thickness of 500 kPa in order to form a hole transport layer.
  • Compound 1 synthesized in Preparation Example as a host H1, H2 mixture and a phosphorescent dopant was vacuum-deposited on the hole transport layer at 6 parts by weight based on 100 parts by weight of the host H1, H2 mixture to form a light emitting layer having a thickness of 400 kPa.
  • ET-3 material was vacuum deposited on the light emitting layer to form a hole blocking layer by vacuum deposition, and an ET-4 material and LiQ were vacuum deposited on the hole blocking layer in a weight ratio of 1: 1 to form an electron transport layer of 250 ⁇ .
  • Lithium fluoride (LiF) having a thickness of 10 ⁇ was sequentially deposited on the electron transport layer, and aluminum was deposited to have a thickness of 1000 ⁇ on the cathode to form a cathode.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ / sec
  • the lithium fluoride of the cathode was maintained at a deposition rate of 0.3 ⁇ / sec
  • aluminum 2 ⁇ / sec the vacuum degree during deposition was 1 ⁇ 10 ⁇ 7 to 5 ⁇ 10 ⁇ 8 torr was maintained.
  • the organic light emitting diodes of Examples 2 to 11 were prepared in the same manner as in Example 1, except that the compounds shown in Table 1 below were used as phosphorescent dopants, respectively, when forming the emission layer.
  • the organic light emitting diodes of Comparative Examples 1 to 6 were prepared in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of the compound 1 as a phosphorescent dopant in forming the emission layer.
  • T95 means the time taken for the luminance to decrease to 95% from the initial luminance.
  • the alkyl group substituted at the N-meta position of the pyridine has the effect of preventing intermolecular stacking with little effect on the HOMO and LUMO of the dopant. Therefore, a structure including two or more alkyl groups or a cycloalkyl group of R 4 to R 6 and having an alkyl group at the N-meth position of pyridine may have high efficiency and long life without changing color purity.
  • Comparative Example 4 since an alkyl group is substituted at the N-para position of pyridine, the effect of contributing electrons to the ligand is great. This hinders the balance between electrons and holes, reducing efficiency and lifespan.
  • the dibenzofuran pyridine structure further includes a hetero atom in the ligand, thereby lowering the structural stability of the molecule, which may lead to an increase in driving voltage and a decrease in efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 화합물 및 이를 포함한 유기 발광 소자를 제공한다.

Description

화합물 및 이를 포함하는 유기 발광 소자
본 출원은 2018년 05월 14일에 한국특허청에 제출된 한국 특허 출원 제10-2018-0054995호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.
본 출원은 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자를 제공하는 것이다.
본 출원은 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2019005788-appb-I000001
화학식 1에 있어서,
X는 O, S, NRa, CRbRc 또는 SiRdRe이고,
R은 치환 또는 비치환된 알킬기이고,
R1, R2 및 Ra 내지 Re는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
R4 내지 R6 중 적어도 두 개는 각각 독립적으로, 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 시클로알킬기이고, 나머지는 각각 독립적으로, 수소; 또는 중수소이며,
m은 1 또는 2이며,
a 및 b는 각각 독립적으로, 0 내지 4의 정수이며,
a 및 b가 각각 독립적으로, 2 이상의 정수인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
또한, 본 출원은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 전술한 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 따른 화합물을 사용하는 유기 발광 소자는 낮은 구동전압, 높은 발광효율 또는 장수명이 가능하다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송층(7), 전자주입층(8) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서는 상기 화학식 1로 표시되는 화합물을 제공한다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 상기와 같은 코어 구조를 가짐으로써, 삼중항 에너지를 조절할 수 있는 장점이 있고, 장수명 및 고효율의 특성을 나타낼 수 있다.
본 발명의 화합물을 인광 도펀트 물질로 사용한 경우, 전압, 효율 및 수명 측면에서 우수한 특성을 나타낸다. 본 발명의 화합물과 같이 디벤조퓨란 리간드에 적어도 2개 이상의 알킬기 또는 시클로알킬기를 포함하는 구조는 도펀트 분자 간에 충분한 거리를 가질 수 있어, self-quenching이 적게 일어나게 된다. 이는 디벤조퓨란에 치환기가 없거나 한 개인 구조에 비해서 발광에 참여하는 전자 및 정공이 많이 보장된다는 것이다.
또한, 피리딘의 N-메타 위치에 치환된 알킬기는 도펀트의 HOMO 및 LUMO에 거의 영향을 주지 않으면서 분자 간 stacking을 막는 효과를 가져온다. 따라서, R4 내지 R6 중 2개 이상의 알킬기 또는 시클로알킬기를 포함하며 피리딘의 N-메타 위치에 알킬기를 가진 구조는 색 순도의 변화 없이 고효율, 장수명 특성을 가질 수 있다.
이와 비교하여, 피리딘의 N-파라 위치에 알킬기가 치환되어 있는 경우는 리간드에 전자를 기여하는 효과가 크다. 이는 전자와 정공의 밸런스를 저해하여 효율 및 수명을 저하시킨다. 본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 에스테르기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 50인 것이 바람직하다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2019005788-appb-I000002
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 50인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2019005788-appb-I000003
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에서 상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 25인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 비페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 24인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2019005788-appb-I000004
Figure PCTKR2019005788-appb-I000005
Figure PCTKR2019005788-appb-I000006
등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 헤테로고리기의 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라진기, 퀴놀린기, 퀴나졸기, 퀴녹살린기, 프탈라진기, 피리도 피리미딘기, 피리도 피라진기, 피라지노 피라진기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨란기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아진기 및 디벤조퓨란기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 방향족 탄화수소고리는 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로고리는 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 아릴옥시기, 아릴티옥시기, 아릴술폭시기, 아릴포스핀기, 아르알킬기, 아랄킬아민기, 아르알케닐기, 아릴아민기 중의 아릴기는 전술한 아릴기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 알킬티옥시기, 알킬술폭시기, 아르알킬기, 아랄킬아민기, 알킬아민기 중 알킬기는 전술한 알킬기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 인접하는 기와 서로 결합하여 고리를 형성한다는 의미는 인접하는 기와 서로 결합하여 치환 또는 비치환된 지방족 탄화수소고리; 치환 또는 비치환된 방향족 탄화수소고리; 치환 또는 비치환된 지방족 헤테로고리; 또는 치환 또는 비치환된 방향족 헤테로고리를 형성하는 것을 의미한다.
본 명세서에 있어서, 지방족 탄화수소고리란 방향족이 아닌 고리로서 탄소와 수소 원자로만 이루어진 고리를 의미한다.
본 명세서에 있어서, 방향족 탄화수소고리의 예로는 페닐기, 나프틸기, 안트라세닐기 등이 있으나 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 지방족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 지방족고리를 의미한다.
본 명세서에 있어서, 방향족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 방향족고리를 의미한다.
본 명세서에 있어서, 상기 지방족 탄화수소고리, 방향족 탄화수소고리, 지방족 헤테로고리 및 방향족 헤테로고리는 단환 또는 다환일 수 있다.
본 출원의 일 실시상태에 따르면, 상기 X는 O, S, NRa, CRbRc 또는 SiRdRe이다.
본 출원의 일 실시상태에 따르면, 상기 X는 O이다.
본 출원의 일 실시상태에 따르면, 상기 R은 치환 또는 비치환된 알킬기이다.
본 출원의 일 실시상태에 따르면, 상기 R은 치환 또는 비치환된 탄소수 1 내지 30의 알킬기이다.
본 출원의 일 실시상태에 따르면, 상기 R은 치환 또는 비치환된 탄소수 1 내지 15의 알킬기이다.
본 출원의 일 실시상태에 따르면, 상기 R은 치환 또는 비치환된 탄소수 1 내지 5의 알킬기이다.
본 출원의 일 실시상태에 따르면, 상기 R은 중수소로 치환 또는 비치환된 탄소수 1 내지 5의 알킬기이다.
본 출원의 일 실시상태에 따르면, 상기 R은 중수소로 치환 또는 비치환된 메틸기이다.
본 출원의 일 실시상태에 따르면, 상기 R은 중수소로 치환된 메틸기이다.
본 출원의 일 실시상태에 따르면, 상기 R은 메틸기이다.
본 출원의 일 실시상태에 따르면, 상기 R1, R2 및 Ra 내지 Re는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 출원의 일 실시상태에 따르면, 상기 R1, R2 및 Ra 내지 Re는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로고리기이다.
본 출원의 일 실시상태에 따르면, 상기 R1, R2 및 Ra 내지 Re는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 15의 알킬기; 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.
본 출원의 일 실시상태에 따르면, 상기 R1, R2 및 Ra 내지 Re는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기; 또는 치환 또는 비치환된 실릴기이다.
본 출원의 일 실시상태에 따르면, 상기 R1, R2 및 Ra 내지 Re는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 또는 알킬기로 치환 또는 비치환된 실릴기이다.
본 출원의 일 실시상태에 따르면, 상기 R1, R2 및 Ra 내지 Re는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 또는 탄소수 1 내지 5의 알킬기로 치환 또는 비치환된 실릴기이다.
본 출원의 일 실시상태에 따르면, 상기 R1 및 R2는 각각 독립적으로 수소; 치환 또는 비치환된 메틸기; 또는 메틸기로 치환 또는 비치환된 실릴기이다.
본 출원의 일 실시상태에 따르면, 상기 R1 및 R2는 각각 독립적으로 수소; 중수소로 치환 또는 비치환된 메틸기; 또는 메틸기로 치환된 실릴기이다.
본 출원의 일 실시상태에 따르면, 상기 R4 내지 R6 중 적어도 두 개는 각각 독립적으로, 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 시클로알킬기이고, 나머지는 각각 독립적으로, 수소; 또는 중수소이며, R4 내지 R6의 탄소수 합은 2 이상이다.
본 출원의 일 실시상태에 따르면, 상기 R4 내지 R6 중 적어도 두 개는 각각 독립적으로, 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 치환 또는 비치환된 3 내지 30의 시클로알킬기이고, 나머지는 각각 독립적으로, 수소; 또는 중수소이며, R4 내지 R6의 탄소수 합은 2 이상이다.
본 출원의 일 실시상태에 따르면, 상기 R4 내지 R6 중 적어도 두 개는 각각 독립적으로, 치환 또는 비치환된 탄소수 1 내지 15의 알킬기; 또는 치환 또는 비치환된 3 내지 15의 시클로알킬기이고, 나머지는 각각 독립적으로, 수소; 또는 중수소이며, R4 내지 R6의 탄소수 합은 2 이상이다.
본 출원의 일 실시상태에 따르면, 상기 R4 내지 R6 중 적어도 두 개는 각각 독립적으로, 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 또는 치환 또는 비치환된 3 내지 10의 시클로알킬기이고, 나머지는 각각 독립적으로, 수소; 또는 중수소이며, R4 내지 R6의 탄소수 합은 2 이상이다.
본 출원의 일 실시상태에 따르면, 상기 R4 내지 R6 중 적어도 두 개는 독립적으로, 치환 또는 비치환된 메틸기; 치환 또는 비치환된 프로필기; 치환 또는 비치환된 펜틸기; 또는 치환 또는 비치환된 시클로헥실기이고, 나머지는 각각 독립적으로 수소; 또는 중수소이다.
본 출원의 일 실시상태에 따르면, 상기 R4 내지 R6 중 적어도 두 개는 독립적으로, 치환 또는 비치환된 메틸기; 치환 또는 비치환된 이소프로필기; 치환 또는 비치환된 네오펜틸기; 또는 치환 또는 비치환된 시클로헥실기이고, 나머지는 각각 독립적으로 수소; 또는 중수소이다.
본 출원의 일 실시상태에 따르면, 상기 R4 내지 R6 중 적어도 두 개는 독립적으로, 중수소로 치환 또는 비치환된 메틸기; 중수소로 치환 또는 비치환된 이소프로필기; 중수소로 치환 또는 비치환된 네오펜틸기; 또는 중수소로 치환 또는 비치환된 시클로헥실기이고, 나머지는 각각 독립적으로 수소; 또는 중수소이다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 구조식들 중에서 선택되는 어느 하나이다.
Figure PCTKR2019005788-appb-I000007
Figure PCTKR2019005788-appb-I000008
Figure PCTKR2019005788-appb-I000009
Figure PCTKR2019005788-appb-I000010
Figure PCTKR2019005788-appb-I000011
Figure PCTKR2019005788-appb-I000012
Figure PCTKR2019005788-appb-I000013
Figure PCTKR2019005788-appb-I000014
Figure PCTKR2019005788-appb-I000015
Figure PCTKR2019005788-appb-I000016
Figure PCTKR2019005788-appb-I000017
Figure PCTKR2019005788-appb-I000018
Figure PCTKR2019005788-appb-I000019
Figure PCTKR2019005788-appb-I000020
Figure PCTKR2019005788-appb-I000021
Figure PCTKR2019005788-appb-I000022
Figure PCTKR2019005788-appb-I000023
Figure PCTKR2019005788-appb-I000024
Figure PCTKR2019005788-appb-I000025
Figure PCTKR2019005788-appb-I000026
Figure PCTKR2019005788-appb-I000027
Figure PCTKR2019005788-appb-I000028
Figure PCTKR2019005788-appb-I000029
Figure PCTKR2019005788-appb-I000030
Figure PCTKR2019005788-appb-I000031
Figure PCTKR2019005788-appb-I000032
Figure PCTKR2019005788-appb-I000033
Figure PCTKR2019005788-appb-I000034
Figure PCTKR2019005788-appb-I000035
Figure PCTKR2019005788-appb-I000036
Figure PCTKR2019005788-appb-I000037
Figure PCTKR2019005788-appb-I000038
Figure PCTKR2019005788-appb-I000039
Figure PCTKR2019005788-appb-I000040
Figure PCTKR2019005788-appb-I000041
Figure PCTKR2019005788-appb-I000042
Figure PCTKR2019005788-appb-I000043
Figure PCTKR2019005788-appb-I000044
Figure PCTKR2019005788-appb-I000045
Figure PCTKR2019005788-appb-I000046
Figure PCTKR2019005788-appb-I000047
Figure PCTKR2019005788-appb-I000048
Figure PCTKR2019005788-appb-I000049
Figure PCTKR2019005788-appb-I000050
Figure PCTKR2019005788-appb-I000051
Figure PCTKR2019005788-appb-I000052
Figure PCTKR2019005788-appb-I000053
Figure PCTKR2019005788-appb-I000054
Figure PCTKR2019005788-appb-I000055
Figure PCTKR2019005788-appb-I000056
또한, 본 출원은 상기 전술한 화합물을 포함하는 유기 발광 소자를 제공한다.
본 출원의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 출원에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 출원에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 출원의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 포함한다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 전자주입층, 전자수송층, 또는 전자 주입 및 수송층을 포함하고, 상기 전자주입층, 전자수송층, 또는 전자 주입 및 수송층은 상기 화합물을 포함한다. 상기 전자 주입 및 수송층은 전자 주입 및 수송을 동시에 하는 층이다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 또는 정공 주입 및 수송층을 포함하고, 상기 정공주입층, 정공수송층, 또는 정공 주입 및 수송층은 상기 화합물을 포함한다. 상기 정공 주입 및 수송층은 정공 주입 및 수송을 동시에 하는 층이다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 정공주입층, 정공수송층. 전자수송층, 전자주입층, 전자저지층 및 정공저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함한다.
상기 발광층은 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 화합물, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1의 화합물을 포함하는 유기물층의 두께는 10Å 내지 500Å 다.
본 출원의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 발광층; 상기 발광층과 상기 제1 전극 사이, 또는 상기 발광층과 상기 제2 전극 사이에 구비된 2층 이상의 유기물층을 포함하고, 상기 2층 이상의 유기물층 중 적어도 하나는 상기 화합물을 포함한다. 본 출원의 일 실시상태에 있어서, 상기 2층 이상의 유기물층은 전자수송층, 전자주입층, 전자 수송과 전자주입을 동시에 하는 층 및 정공저지층으로 이루어진 군에서 2 이상이 선택될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 2층 이상의 전자수송층을 포함하고, 상기 2층 이상의 전자수송층 중 적어도 하나는 상기 화합물을 포함한다. 구체적으로 본 출원의 일 실시상태에 있어서, 상기 화합물은 상기 2층 이상의 전자수송층 중 1층에 포함될 수도 있으며, 각각의 2층 이상의 전자수송층에 포함될 수 있다.
또한, 본 출원의 일 실시상태에 있어서, 상기 화합물이 상기 각각의 2층 이상의 전자수송층에 포함되는 경우, 상기 화합물을 제외한 다른 재료들은 서로 동일하거나 상이할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 유기물층은 상기 화합물을 포함하는 유기물층 이외에 아릴아미노기, 카바졸기 또는 벤조카바졸기를 포함하는 화합물을 포함하는 정공주입층 또는 정공수송층을 더 포함한다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 노멀 구조(normal type)의 유기 발광 소자일 수 있다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
예컨대, 본 출원의 일 실시상태에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송층(7), 전자주입층(8) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서 상기 화합물은 상기 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송층(7) 및 전자주입층(8) 중 1층 이상에 포함될 수 있다.
본 출원의 유기 발광 소자는 유기물층 중 1층 이상이 본 출원의 화합물, 즉 상기 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
본 출원의 유기 발광 소자는 유기물층 중 1층 이상이 상기 화합물, 즉 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
예컨대, 본 출원의 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1의 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다 (국제 특허 출원 공개 제 2003/012890호). 다만, 제조 방법이 이에 한정되는 것은 아니다.
본 출원의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이다.
또 하나의 실시상태에 있어서, 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입 물질로는 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 전자 수송 물질로는 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 정공저지층은 정공의 음극 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 출원에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 명세서를 예시하기 위한 것이며, 본 명세서의 범위가 이들에 의하여 한정되는 것은 아니다.
[제조예]
제조예 1-1: 중간체 A1 및 B1 의 화합물 합성
Figure PCTKR2019005788-appb-I000057
(1) 중간체 A1의 제조
질소 분위기에서 둥근 바닥 플라스크에 2-브로모피리딘(2-bromopyridine)(30 g, 0.20 mol), 페닐보로닉산(phenylboronic acid)(43 g, 0.35 mol)을 THF(300ml)에 녹인 후 2M 탄산칼륨수용액(potassium carbonate solution)(150ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(7.0 g, 6.0 mmol)을 넣은 후 3 시간 동안 70 도씨에서 가열 교반하였다. 반응 종료 후 온도를 낮추고 수층을 분리한 뒤 유기층의 용매를 제거하였다. 클로로포름(chloroform)을 사용해 녹인 후 물로 씻어주고 황산마그네슘(magnesium sulfate)과 산성백토를 넣고 교반 후 여과하여 감압 농축시켰다. 이 후 에틸아세테이트(ethyl acetate):헥산(hexane) = 1:50 조건에서 컬럼크로마토그래피를 통해 분리한 화합물 A1 을 제조하였다(25 g, 수율 80%).
(2) 중간체 1-1a의 제조
질소 분위기에서 둥근 바닥 플라스크에 이리듐클로라이드(iridium chloride)(10 g, 33 mmol)과 화합물 A1(11.4 g, 0.073 mol)을 2-에톡시에탄올(2-ethoxyethanol)(1000 ml) 및 증류수(330ml)에 넣고 24 시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 여과하여 에탄올 2L 로 wash 해주어 고체 화합물 1-1a를 제조하였다(10.2 g, 수율 59%).
(3) 중간체 B1의 제조
중간체 1-1a (10.2 g, 10 mmol)와 메틸렌클로라이드 (methylene chloride) 500 ml 를 넣은 AgOTf(14.6 g, 18.9 mmol)를 메탄올 250 ml 에 녹여 넣어준 뒤, 빛을 차단한 상태로 상온 교반하였다. 24 시간 뒤 필터한 후 걸러진 여액의 용매를 날리고 톨루엔 (toluene) 침전하여 추가정제 없이 화합물 B1을 얻었다(수율 91%).
제조예 1-2: 중간체 A2 및 B2 의 화합물 합성
Figure PCTKR2019005788-appb-I000058
(1) 중간체 A2의 제조
2-브로모피리딘(2-bromopyridine) 대신 2-브로모-5-메틸피리딘(2-bromo-5-methylpyridine)(50.0 g, 0.28 mol)을 사용한 것을 제외하고 중간체 A1을 제조하는 방법과 동일한 방법으로 상기 화합물 A2 를 제조하였다(26g, 수율 65%).
(2) 중간체 1-1b의 제조
중간체 A1 대신 중간체 A2 를 사용한 것을 제외하고 중간체 1-1a 를 제조하는 방법과 동일한 방법으로 상기 중간체 1-1b 를 제조하였다(20 g, 수율 54%).
(3) 중간체 B2의 제조
중간체 1-1a 대신 중간체 1-1b 를 사용한 것을 제외하고 중간체 B1을 제조하는 방법과 동일한 방법으로 상기 중간체 B2를 제조하였다(수율 94%).
제조예 1-3: 중간체 A3 및 B3 의 화합물 합성
Figure PCTKR2019005788-appb-I000059
(1) 중간체 1-1c의 제조
2-브로모피리딘(2-bromopyridine) 대신 2,5-브로모피리딘(2,5-bromopyridine)(55 g, 0.23 mol) 을 사용한 것을 제외하고 중간체 A1을 제조하는 방법과 동일한 방법으로 상기 화합물 1-1c 를 제조하였다(26g, 수율 65%).
(2) 중간체 1-1d의 제조
질소 분위기에서 둥근 바닥 플라스크에 5-브로보-2-페닐피리딘(5-bromo-2-phenylpyridine)(35 g, 0.15 mol)을 다이에틸이써(diethylether)에 녹인 후 -78 도씨에서 2.5 M n-BuLi (65 ml, 0.16 mol)를 첨가한 후 1 시간 동안 교반하였다. -78 도씨에서 트리에틸보레이트(triethyl borate)(33 g, 0.23 mol)를 넣은 후 상온에서 1 시간 동안 교반하였다. 2M 하이드로클로라이드수용액(hydrochloride solution)(100ml)을 첨가하고 30 분 동안 교반한 후 20% 소듐하이드록사이드수용액(sodium hydroxide solution)(100ml)으로 중화하였다. 수층을 분리한 뒤 유기층의 용매를 제거하였다. 헥산(hexane):에틸아세테이트(ethyl acetate) = 100:1 조건에서 컬럼크로마토그래피를 통해 분리한 화합물 1-1d 를 제조하였다 (21 g, 수율 73%).
(3) 중간체 A3의 제조
질소 분위기에서 둥근 바닥 플라스크에 (6-페닐피리딘-3-일)보로닉산((6-phenylpyridin-3-yl)boronic acid)(21 g, 0.11 mol), 아이오도메테인-d3(iodomethane-d3)(23 g, 0.16 mol)을 테트라하이드로퓨란(200ml)과 메탄올(100ml)에 녹인 후 2M 탄산칼륨수용액(potassium carbonate solution)(100ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(3.8 g, 3.3 mmol)을 넣은 후 70 도씨에서 12 시간 동안 가열 교반하였다. 클로로포름(chloroform)을 사용해 녹인 후 물로 씻어주고 황산마그네슘(magnesium sulfate)과 산성백토를 넣고 교반 후 여과하여 감압 농축시켰다. 이 후 헥산(hexane): 에틸아세테이트(ethyl acetate) = 50:1 조건에서 컬럼크로마토그래피를 통해 분리한 화합물 A3를 제조하였다(11 g, 수율 67%).
(4) 중간체 1-1e의 제조
중간체 A1 대신 중간체 A3을 사용한 것을 제외하고 중간체 1-1a 를 제조하는 방법과 동일한 방법으로 상기 중간체 1-1e 를 제조하였다 (10.2 g, 수율 62%).
(5) 중간체 B3의 제조
중간체 1-1a 대신 중간체 1-1e 를 사용한 것을 제외하고 중간체 B1을 제조하는 방법과 동일한 방법으로 상기 중간체 B3 를 제조하였다 (수율 90%).
제조예 1-4: 중간체 A4 및 B4 의 화합물 합성
Figure PCTKR2019005788-appb-I000060
(1) 중간체 1-1f의 제조
2-브로모피리딘(2-bromopyridine) 대신 2-브로모-4,5-디메틸피리딘(2-bromo-4,5-methylpyridine)(50 g, 0.27 mol), 페닐보로닉산(phenylboronic acid) 대신 파라-톨릴보로닉산(p-tolylboronic acid)(40 g, 0.30 mol)을 사용한 것을 제외하고 중간체 A1을 제조하는 방법과 동일한 방법으로 상기 화합물 1-1f 를 제조하였다(35 g, 수율 66%).
(2) 중간체 A4의 제조
질소 분위기에서 둥근 바닥 플라스크에 중간체 1-1f (23.6 g, 0.12 mol)와 소듐에톡사이드(sodium ethoxide)(5.8 g, 0.085 mol)을 디메틸설폭사이드-d6(dimethylsulfoxide-d6) 300ml에 녹인 후 80도씨에서 32 시간 동안 가열 교반하였다. 상온으로 온도를 낮춘 후, D2O 100ml (10eq)로 켄칭하고 1 시간 동안 충분히 교반하였다. H2O 과량을 넣고 에틸아세테이트로 추출한 후 감압 농축 시켰다. 이 후 헥산(hexane):에틸아세테이트(ethyl acetate) = 50:1 조건에서 컬럼크로마토그래피를 통해 화합물 A4를 분리하였다. (19 g, 수율 58%)
(3) 중간체 1-1g의 제조
중간체 A1 대신 중간체 A4 를 사용한 것을 제외하고 중간체 A1 를 제조하는 방법과 동일한 방법으로 상기 중간체 1-1g 를 제조하였다 (19 g, 수율 58%).
(4) 중간체 B4의 제조
중간체 1-1a 대신 중간체 1-1g 를 사용한 것을 제외하고 중간체 B1 을 제조하는 방법과 동일한 방법으로 상기 중간체 B4 를 제조하였다 (수율 90%).
제조예 1-5: 중간체 A5 및 B5 의 화합물 합성
Figure PCTKR2019005788-appb-I000061
(1) 중간체 A5의 제조
2-브로모피리딘(2-bromopyridine) 대신 2-브로모-5-(트리메틸실릴)피리딘(2-bromo-5-(trimethylsilyl)pyridine)을 사용한 것을 제외하고 중간체 A1을 제조하는 방법과 동일한 방법으로 상기 화합물 1-1h를 제조하였다.
(2) 중간체 1-1i의 제조
중간체 A1 대신 중간체 A5 를 사용한 것을 제외하고 중간체 A1를 제조하는 방법과 동일한 방법으로 상기 중간체 1-1i 를 제조하였다.
(3) 중간체 B5의 제조
중간체 1-1a 대신 중간체 1-1i 를 사용한 것을 제외하고 중간체 B1을 제조하는 방법과 동일한 방법으로 상기 중간체 B5를 제조하였다 (수율 90%).
[제조예]
제조예 2-1: 중간체 C1의 화합물 합성
Figure PCTKR2019005788-appb-I000062
(1) 중간체 2-1a의 제조
질소 분위기에서 둥근 바닥 플라스크에 2-bromo-3,4-dimethylaniline (53.13g, 0.267mol), (2,3-dimethoxyphenyl)boronic acid (63g, 0.3478mol), K2CO3 (38g, 0.272mol), H2O 100ml, 1,4-dioxanee 750ml를 넣고 24시간동안 환류시켰다. 유기층을 분리하고 감압하에서 농축시켰다. 이후 클로로포름 800ml 추출하고 황산마그네슘(magnesium sulfate)과 산성백토를 넣고 교반 후 감압하에서 여과시키고 감압 농축시켰다. 컬럼크로마토그래피를 통해 분리한 화합물 2-1a를 제조하였다(46.8 g, 수율 69%).
(2) 중간체 2-1b의 제조
질소 분위기에서 둥근 바닥 플라스크에 2-1a (47g, 0.184mol)을 acetic acid 600ml, THF 200ml에 넣고 교반시켰다. 반응물을 0℃로 만들고 tert-butyl nitrile (103.12g, 0.336mol)을 적하하였다. 5시간동안 반응시킨 후, H2O를 첨가하여 석출시켰다. 석출물을 클로로포름에 용해시키고 황산마그네슘(magnesium sulfate)을 넣고 교반 후 감압하에서 여과시키고 농축시켰다. 컬럼크로마토그래피를 통해 2-1b를 제조하였다. (20gg, 수율 50%)
(3) 중간체 2-1c의 제조
둥근 바닥 플라스크에 화합물 2-1b (29.3g, 0.13mol)과 메틸렌클로라이드 350ml를 넣고 교반시켰다. 반응물을 0℃로 만들고 BBr3 (98g, 0.391mol)을 서서히 적하하였다. 상온에서 5시간동안 교반시키고, H2O, NaHCO3를 첨가하여 석출시켰다. 석출물을 감압하에서 여과시켰다. 석출물을 황산마그네슘(magnesium sulfate)을 넣고 교반 후 감압하에서 여과시키고 농축시켰다. 컬럼크로마토그래피를 통해 2-1c를 제조하였다. (23.3g, 수율 84%)
(4) 중간체 2-1d의 제조
둥근 바닥 플라스크에 화합물 2-1c (23g, 0.11mol), 피리딘(Pyridine) (26g. 0.33mmol), 메틸렌클로라이드 300ml를 넣고 교반시켰다. 반응물을 0℃로 만들고 트리플루오르메탄설포닐언하이드라이드 (Trifluoromethanesulfonic anhydride) (62g. 0.22mmol)을 서서히 적하시켰다. 상온에서 24시간동안 반응시키고 H2O를 첨가하였다. 유기층을 분리하고 황산그네슘(magnesium sulfate)을 넣고 교반 후 감압하에서 여과시킨 후, 농축시켜 2-1d를 제조하였다. (35.4g, 수율 93%)
(5) 중간체 2-1e의 제조
둥근 바닥 플라스크에 화합물 2-1d (34g, 0.1mol), 4,4,5,5-테트라메틸-[1,2,3]-다이옥사보로레인(4,4,5,5-tetramethyl-[1,2,3]-dioxaborolane)(56 g, 0.22 mol), Pd(dppf)Cl2 (2.4 g, 3.3 mmol, 3 mol%), 포타슘 아세테이트(potassium acetate)(32 g, 0.33 mol)을 dioxane (300 ml)에 녹인 후 12 시간 동안 80도씨에서 가열 교반하였다. 상온으로 온도를 낮추고, 용매를 감압 농축하였다. 이 농축액을 클로로포름(CHCl3)에 녹인 후 물로 씻어주고, 생성물이 녹아있는 용액을 감압 농축하면서 에탄올(ethanol)에 침전시켜 화합물 2-1d를 제조하였다. (25 g, 수율 84%)
(6) 중간체 C1의 제조
둥근 바닥 플라스크에 화합물 2-1d (28 g, 0.10 mol), 2-브로모-5-메틸피리딘 (2-bromo-5-methylpyridine) (15.3 g, 0.09 mol)을 THF (300ml)에 녹인 후 2M 탄산칼륨수용액(potassium carbonate solution)(100ml)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(3.4 g, 3 mmol)을 넣은 후 12 시간 동안 80 도씨에서 가열 교반하였다. 반응 종료 후 온도를 낮추고 수층을 분리한 뒤 유기층의 용매를 제거하였다. 클로로포름(chloroform)을 사용해 녹인 후 물로 씻어주고 황산마그네슘(magnesium sulfate)과 산성백토를 넣고 교반 후 여과하여 감압 농축시켰다. 이 후 에틸아세테이트(ethyl acetate):헥산(hexane) = 1:50 조건에서 컬럼크로마토그래피를 통해 분리한 화합물 C1 을 제조하였다(25.5g, 수율 89%).
제조예 2-2: 중간체 C2의 화합물 합성
Figure PCTKR2019005788-appb-I000063
제조예 2-1에서 2-브로모-3,4-디메틸아닐린(2-bromo-3,4-dimethylaniline) 대신 2-브로모-4,5-디메틸아닐린(2-bromo-4,5-dimethylaniline)을 사용한 것을 제외하고 중간체 C1을 제조방법과 동일한 방법으로 화합물 C2를 제조하였다.
제조예 2-3: 중간체 C3의 화합물 합성
Figure PCTKR2019005788-appb-I000064
제조예 2-1에서 2-브로모-3,4-디메틸아닐린(2-bromo-3,4-dimethylaniline) 대신 2-브로모-3,4,5-트리메틸아닐린(2-bromo-3,4,5-trimethylaniline)을 사용한 것을 제외하고 중간체 C1을 제조방법과 동일한 방법으로 화합물 C3를 제조하였다.
제조예 2-4: 중간체 C4의 화합물 합성
Figure PCTKR2019005788-appb-I000065
제조예 2-1에서 2-브로모-3,4-디메틸아닐린(2-bromo-3,4-dimethylaniline) 대신 2-브로모-3-시클로헥실-4-메틸아닐린(2-bromo-3-cyclohexyl-4-methylaniline)을 사용한 것을 제외하고 중간체 C1을 제조방법과 동일한 방법으로 화합물 C4를 제조하였다.
제조예 2-5: 중간체 C5의 화합물 합성
Figure PCTKR2019005788-appb-I000066
제조예 2-1에서 2-브로모-3,4-디메틸아닐린(2-bromo-3,4-dimethylaniline) 대신 2-브로모-4-시클로헥실-3-메틸아닐린(2-bromo-4-cyclohexyl-3-methylaniline)을 사용한 것을 제외하고 중간체 C1을 제조방법과 동일한 방법으로 화합물 C5를 제조하였다.
제조예 2-6: 중간체 C6의 화합물 합성
Figure PCTKR2019005788-appb-I000067
제조예 2-1에서 2-브로모-3,4-디메틸아닐린(2-bromo-3,4-dimethylaniline) 대신 2-브로모-3-아이소프로필-4메틸아닐린(2-bromo-3-isopropyl-4-methylaniline)을 사용한 것을 제외하고 중간체 C1을 제조방법과 동일한 방법으로 화합물 C6를 제조하였다.
제조예 2-7: 중간체 C7의 화합물 합성
Figure PCTKR2019005788-appb-I000068
제조예 2-1에서 2-브로모-3,4-디메틸아닐린(2-bromo-3,4-dimethylaniline) 대신 2-브로모-4-아이소프로필-3-메틸아닐린(2-bromo-4-isopropyl-3-methylaniline)을 사용한 것을 제외하고 중간체 C1을 제조방법과 동일한 방법으로 화합물 C7를 제조하였다.
제조예 2-8: 중간체 C8의 화합물 합성
Figure PCTKR2019005788-appb-I000069
제조예 2-1에서 2-브로모-3,4-디메틸아닐린(2-bromo-3,4-dimethylaniline) 대신 2-브로모-5-아이소프로필-3-메틸아닐린(2-bromo-5-isopropyl-3-methylaniline)을 사용한 것을 제외하고 중간체 C1을 제조방법과 동일한 방법으로 화합물 C8를 제조하였다.
제조예 2-9: 중간체 C9의 화합물 합성
Figure PCTKR2019005788-appb-I000070
제조예 2-1에서 2-브로모-3,4-디메틸아닐린(2-bromo-3,4-dimethylaniline) 대신 2-브로모-3-아이소부틸-4-메틸아닐린(2-bromo-3-isobutyl-4-methylaniline)을 사용한 것을 제외하고 중간체 C1을 제조방법과 동일한 방법으로 화합물 C9를 제조하였다.
제조예 2-10: 중간체 C10의 화합물 합성
Figure PCTKR2019005788-appb-I000071
제조예 2-1에서 2-브로모-3,4-디메틸아닐린(2-bromo-3,4-dimethylaniline) 대신 2-브로모-4-아이소부틸-3-메틸아닐린(2-bromo-4-isobutyl-3-methylaniline)을 사용한 것을 제외하고 중간체 C1을 제조방법과 동일한 방법으로 화합물 C10을 제조하였다.
제조예 2-11: 중간체 C11의 화합물 합성
Figure PCTKR2019005788-appb-I000072
제조예 2-1에서 2-브로모-3,4-디메틸아닐린(2-bromo-3,4-dimethylaniline) 대신 2-브로모-5-아이소부틸-3-메틸아닐린(2-bromo-5-isobutyl-3-methylaniline)을 사용한 것을 제외하고 중간체 C1을 제조방법과 동일한 방법으로 화합물 C11를 제조하였다.
제조예 3-1: 중간체 D1의 화합물 합성
Figure PCTKR2019005788-appb-I000073
질소 분위기에서 둥근 바닥 플라스크에 중간체 C1 (34.5g, 0.12 mol)와 소듐에톡사이드(sodium ethoxide)(5.8 g, 0.085 mol)을 디메틸설폭사이드-d6(dimethylsulfoxide-d6) 300ml에 녹인 후 80도씨에서 32 시간 동안 가열 교반하였다. 상온으로 온도를 낮춘 후, D2O 100ml (10eq)로 켄칭하고 1 시간 동안 충분히 교반하였다. H2O 과량을 넣고 에틸아세테이트로 추출한 후 감압 농축 시켰다. 이 후 헥산(hexane):에틸아세테이트(ethyl acetate) = 50:1 조건에서 컬럼크로마토그래피를 통해 화합물 D1를 분리하였다. (20.63g, 수율 58%)
제조예 3-2: 중간체 D2의 화합물 합성
Figure PCTKR2019005788-appb-I000074
제조예 3-1에서 C1을 C2 을 사용한 것을 제외하고 중간체 D1을 제조방법과 동일한 방법으로 화합물 D2를 제조하였다.
제조예 3-3: 중간체 D3의 화합물 합성
Figure PCTKR2019005788-appb-I000075
제조예 3-1에서 C1을 C3을 사용한 것을 제외하고 중간체 D1을 제조방법과 동일한 방법으로 화합물 D3를 제조하였다.
제조예 3-4: 중간체 D4의 화합물 합성
Figure PCTKR2019005788-appb-I000076
제조예 3-1에서 C1을 C4 을 사용한 것을 제외하고 중간체 D1을 제조방법과 동일한 방법으로 화합물 D4를 제조하였다.
제조예 3-5: 중간체 D5의 화합물 합성
Figure PCTKR2019005788-appb-I000077
제조예 3-1에서 C1을 C5 을 사용한 것을 제외하고 중간체 D1을 제조방법과 동일한 방법으로 화합물 D5를 제조하였다.
제조예 3-6: 중간체 D6의 화합물 합성
Figure PCTKR2019005788-appb-I000078
제조예 3-1에서 C1을 C6 을 사용한 것을 제외하고 중간체 D1을 제조방법과 동일한 방법으로 화합물 D6를 제조하였다.
제조예 3-7: 중간체 D7의 화합물 합성
Figure PCTKR2019005788-appb-I000079
제조예 3-1에서 C1을 C7 을 사용한 것을 제외하고 중간체 D1을 제조방법과 동일한 방법으로 화합물 D7를 제조하였다.
제조예 3-8: 중간체 D8의 화합물 합성
Figure PCTKR2019005788-appb-I000080
제조예 3-1에서 C1을 C8 을 사용한 것을 제외하고 중간체 D1을 제조방법과 동일한 방법으로 화합물 D8를 제조하였다.
제조예 3-9: 중간체 D9의 화합물 합성
Figure PCTKR2019005788-appb-I000081
제조예 3-1에서 C1을 C9 을 사용한 것을 제외하고 중간체 D1을 제조방법과 동일한 방법으로 화합물 D9를 제조하였다.
제조예 3-10: 중간체 D10의 화합물 합성
Figure PCTKR2019005788-appb-I000082
제조예 3-1에서 C1을 C10 을 사용한 것을 제외하고 중간체 D1을 제조방법과 동일한 방법으로 화합물 D10를 제조하였다.
제조예 3-11: 중간체 D11의 화합물 합성
Figure PCTKR2019005788-appb-I000083
제조예 3-1에서 C1을 C11 을 사용한 것을 제외하고 중간체 D1을 제조방법과 동일한 방법으로 화합물 D11를 제조하였다.
제조예 4
제조예 4-1: 화합물 1의 화합물 합성
Figure PCTKR2019005788-appb-I000084
질소 분위기에서 화합물 B3(20 g, 28 mmol) 과 화합물 D1(20.7g, 70 mmol), 메탄올(methanol) 200 ml, 에탄올(ethnol) 200 ml 를 넣고 반응온도 70 도씨에서 48시간 동안 가열 교반하였다. 반응 종료 후 필터하고 에탄올로 씻어준 후 헥산(hexane): 메탄올(methyl achohol) = 30 : 1 조건에서 컬럼크로마토그래피를 통해 분리한 화합물 1 을 제조하였다 (수율 32%).
질량분석을 통해 분자량 845을 확인하였다.
제조예 4-2: 화합물 3의 화합물 합성
Figure PCTKR2019005788-appb-I000085
제조예 4-1에서 D1을 D2로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 2를 제조하였다.(수율 39%)
질량분석을 통해 분자량 845을 확인하였다.
제조예 4-3: 화합물 3의 화합물 합성
Figure PCTKR2019005788-appb-I000086
제조예 4-1에서 D1을 D3로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 3를 제조하였다.
질량분석을 통해 분자량 862을 확인하였다.
제조예 4-4: 화합물 4의 화합물 합성
Figure PCTKR2019005788-appb-I000087
제조예 4-1에서 D1을 D4로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 4를 제조하였다.
질량분석을 통해 분자량 911을 확인하였다.
제조예 4-5: 화합물 5의 화합물 합성
Figure PCTKR2019005788-appb-I000088
제조예 4-1에서 D1을 D5로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 5를 제조하였다.
질량분석을 통해 분자량 911을 확인하였다.
제조예 4-6: 화합물 6의 화합물 합성
Figure PCTKR2019005788-appb-I000089
제조예 4-1에서 D1을 D6로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 6를 제조하였다.
질량분석을 통해 분자량 871을 확인하였다.
제조예 4-7: 화합물 7의 화합물 합성
Figure PCTKR2019005788-appb-I000090
제조예 4-1에서 D1을 D7로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 7를 제조하였다.
질량분석을 통해 분자량 871을 확인하였다.
제조예 4-8: 화합물 8의 화합물 합성
Figure PCTKR2019005788-appb-I000091
제조예 4-1에서 D1을 D8로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 8를 제조하였다.
질량분석을 통해 분자량 871을 확인하였다.
제조예 4-9: 화합물 9의 화합물 합성
Figure PCTKR2019005788-appb-I000092
제조예 4-1에서 D1을 D9로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 9를 제조하였다.
질량분석을 통해 분자량 886을 확인하였다.
제조예 4-10: 화합물 10의 화합물 합성
Figure PCTKR2019005788-appb-I000093
제조예 4-1에서 D1을 D10로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 10를 제조하였다.
질량분석을 통해 분자량 886을 확인하였다.
제조예 4-11: 화합물 11의 화합물 합성
Figure PCTKR2019005788-appb-I000094
제조예 4-1에서 D1을 D11로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 11를 제조하였다.
질량분석을 통해 분자량 886을 확인하였다.
제조예 4-12: 화합물 12의 화합물 합성
Figure PCTKR2019005788-appb-I000095
제조예 4-1에서 B3을 B4로 사용한 것을 제외하고 화합물 1을 제조방법과 동일한 방법으로 화합물 12를 제조하였다.
질량분석을 통해 분자량 913을 확인하였다.
제조예 4-13: 화합물 13의 화합물 합성
Figure PCTKR2019005788-appb-I000096
제조예 4-12에서 D1을 D2로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 13를 제조하였다.
질량분석을 통해 분자량 913을 확인하였다.
제조예 4-14: 화합물 14의 화합물 합성
Figure PCTKR2019005788-appb-I000097
제조예 4-12에서 D1을 D3으로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 14를 제조하였다.
질량분석을 통해 분자량 930을 확인하였다.
제조예 4-15: 화합물 15의 화합물 합성
Figure PCTKR2019005788-appb-I000098
제조예 4-12에서 D1을 D4로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 15를 제조하였다.
질량분석을 통해 분자량 979을 확인하였다.
제조예 4-16: 화합물 16의 화합물 합성
Figure PCTKR2019005788-appb-I000099
제조예 4-12에서 D1을 D5로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 16를 제조하였다.
질량분석을 통해 분자량 979을 확인하였다.
제조예 4-17: 화합물 17의 화합물 합성
Figure PCTKR2019005788-appb-I000100
제조예 4-12에서 D1을 D6로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 17를 제조하였다.
질량분석을 통해 분자량 939을 확인하였다.
제조예 4-18: 화합물 18의 화합물 합성
Figure PCTKR2019005788-appb-I000101
제조예 4-12에서 D1을 D7로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 18을 제조하였다.
질량분석을 통해 분자량 939을 확인하였다.
제조예 4-19: 화합물 19의 화합물 합성
Figure PCTKR2019005788-appb-I000102
제조예 4-12에서 D1을 D8로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 19를 제조하였다.
질량분석을 통해 분자량 939을 확인하였다.
제조예 4-20: 화합물 20의 화합물 합성
Figure PCTKR2019005788-appb-I000103
제조예 4-12에서 D1을 D9로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 20을 제조하였다.
질량분석을 통해 분자량 954을 확인하였다.
제조예 4-21: 화합물 21의 화합물 합성
Figure PCTKR2019005788-appb-I000104
제조예 4-12에서 D1을 D10로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 21를 제조하였다.
질량분석을 통해 분자량 954을 확인하였다.
제조예 4-22: 화합물 22의 화합물 합성
Figure PCTKR2019005788-appb-I000105
제조예 4-12에서 D1을 D11로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 22를 제조하였다.
질량분석을 통해 분자량 954을 확인하였다.
제조예 4-23: 화합물 23의 화합물 합성
Figure PCTKR2019005788-appb-I000106
제조예 4-12에서 D1을 D10로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 23를 제조하였다.
질량분석을 통해 분자량 996을 확인하였다.
제조예 4-24: 화합물 24의 화합물 합성
Figure PCTKR2019005788-appb-I000107
제조예 4-12에서 D1을 D11로 사용한 것을 제외하고 화합물 12의 제조방법과 동일한 방법으로 화합물 24를 제조하였다.
질량분석을 통해 분자량 996을 확인하였다.
실시예 1
ITO(indium tin oxide)가 1,300 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
상기와 같이 준비된 ITO 투명 전극 위에 하기와 같은 HI-1 화합물을 500Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다.
상기 정공 주입층 위에 HT-1 화합물을 800Å의 두께로 열 진공증착하고, 순차적으로 HT-3 화합물을 500Å 두께로 진공 증착하여 정공 수송층을 형성하였다.
이어서, 상기 정공수송층 위에 호스트 H1, H2 혼합물과 인광 도펀트로서 상기 제조예에서 합성한 화합물 1을 호스트 H1, H2 혼합물 100 중량부 기준으로 6 중량부로 진공증착하여 400Å 두께의 발광층을 형성하였다.
상기 발광층 위에 ET-3 물질을 50Å의 두께로 진공 증착하여 정공저지층을 형성하고, 상기 정공저지층 위에 ET-4 물질 및 LiQ를 1:1의 중량비로 진공증착하여 250Å의 전자 수송층을 형성하였다. 상기 전자 수송층 위에 순차적으로 10Å 두께의 리튬 프루라이드(LiF)를 증착하고, 이위에 1000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 음극의 리튬플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 × 10-7 ~ 5 × 10-8 torr를 유지하였다.
Figure PCTKR2019005788-appb-I000108
실시예 2 내지 11
발광층 형성시 인광 도펀트로서 화합물 1 대신 하기 표 1에 기재된 화합물을 각각 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 실시예 2 내지 11의 유기 발광 소자를 각각 제작하였다.
비교예 1 내지 6
발광층 형성시 인광 도펀트로서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 비교예 1 내지 6의 유기 발광 소자를 각각 제작하였다.
Figure PCTKR2019005788-appb-I000109
Figure PCTKR2019005788-appb-I000110
실험예 1
상기 실시예 1 내지 11 및 비교예 1 내지 6에서 제작된 유기 발광 소자에 전류를 인가하여, 전압, 효율, 색좌표, 및 수명을 측정하고, 그 결과를 하기 표 1에 나타내었다.
T95는 휘도가 초기 휘도에서 95%로 감소되는데 소요되는 시간을 의미한다.
도펀트물질 전압(V@10mA/cm2) 효율(cd/A@10mA/cm2) 색좌표(x,y) 수명(T95, h,@50mA/cm2)
실시예 1 1 3.32 78 (0.385, 0.591) 235
실시예 2 3 3.28 81 (0.392, 0.593) 221
실시예 3 4 3.21 79 (0.394, 0.587) 245
실시예 4 6 3.19 80 (0.384, 0.594) 239
실시예 5 9 3.14 76 (0.394, 0.590) 245
실시예 6 13 3.2 79 (0.391, 0.589) 257
실시예 7 14 3.14 76 (0.387, 0.588) 241
실시예 8 16 3.18 77 (0.390, 0.593) 238
실시예 9 18 3.1 82 (0.386, 0.595) 221
실시예 10 21 3.05 80 (0.388, 0.597) 249
실시예 11 24 3.08 81 (0.384, 0.595) 254
비교예 1 E1 3.52 71 (0.381, 0.582) 120
비교예 2 E2 3.50 75 (0.383, 0.584) 128
비교예 3 E3 3.48 70 (0.380, 0.579) 117
비교예 4 E4 3.52 68 (0.384, 0.593) 124
비교예 5 E5 3.56 73 (0.390, 0.599) 131
비교예 6 E6 3.44 71 (0.387, 0.585) 129
상기 표 1에서 알 수 있듯이, 본 발명의 화합물을 인광 도펀트 물질로 사용한 경우, 비교예 1내지 6에 비해 전압, 효율 및 수명 측면에서 우수한 특성을 나타내는 것을 확인하였다. 본 발명의 화합물과 같이 디벤조퓨란 리간드에 적어도 2개 이상의 알킬기 또는 시클로알킬기를 포함하는 구조는 도펀트 분자 간에 충분한 거리를 가질 수 있어, self-quenching이 적게 일어나게 된다. 이는 비교예 1 내지 3의 디벤조퓨란에 치환기가 없거나 한 개인 구조에 비해서 발광에 참여하는 전자 및 정공이 많이 보장된다는 것이고, 실시예 1내지 11과 같이 높은 효율 및 수명을 가질 수 있다. 또한, 피리딘의 N-메타 위치에 치환된 알킬기는 도펀트의 HOMO 및 LUMO에 거의 영향을 주지 않으면서 분자 간 stacking을 막는 효과를 가져온다. 따라서, R4 내지 R6 중 2개 이상의 알킬기 또는 시클로알킬기를 포함하며 피리딘의 N-메타 위치에 알킬기를 가진 구조는 색 순도의 변화 없이 고효율, 장수명 특성을 가질 수 있다. 비교예 4는 피리딘의 N-파라 위치에 알킬기가 치환되어 있어서 리간드에 전자를 기여하는 효과가 크다. 이는 전자와 정공의 밸런스를 저해하여 효율 및 수명을 저하시킨다. 비교예 6은 N-메타 위치에 메틸기가 치환되어 있으나 디벤죠퓨란에 1개의 치환기만 가지고 있어서, 본 발명의 화합물에 비해 효율 및 수명이 낮은 것을 확인할 수 있다. 비교예 5의 구조와 같이 디벤조퓨란에 피리딘 구조는 리간드에 헤테로 아톰을 추가로 더 포함하고 있어서 분자의 구조적 안정성이 낮으며, 이는 구동전압 상승 및 효율의 저하로 이어질 수 있다.
[부호의 설명]
1: 기판
2: 양극
3: 발광층
4: 음극
5: 정공주입층
6: 정공수송층
7: 전자수송층
8: 전자주입층

Claims (8)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2019005788-appb-I000111
    화학식 1에 있어서,
    X는 O, S, NRa, CRbRc 또는 SiRdRe이고,
    R은 치환 또는 비치환된 알킬기이고,
    R1, R2 및 Ra 내지 Re는 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
    R4 내지 R6 중 적어도 두 개는 각각 독립적으로, 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 시클로알킬기이고, 나머지는 각각 독립적으로, 수소; 또는 중수소이며,
    R4 내지 R6의 탄소수 합은 2 이상이며,
    m은 1 또는 2이며,
    a 및 b는 각각 독립적으로, 0 내지 4의 정수이며,
    a 및 b가 각각 독립적으로, 2 이상의 정수인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
  2. 청구항 1에 있어서,
    상기 R은 중수소로 치환 또는 비치환된 탄소수 1 내지 5의 알킬기인 화합물.
  3. 청구항 1에 있어서,
    상기 R4 내지 R6 중 적어도 두 개는 각각 독립적으로, 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 또는 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기이고, 나머지는 각각 독립적으로, 수소; 또는 중수소이며,
    상기 R4 내지 R6의 탄소수 합은 2 이상인 화합물.
  4. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 구조식들 중에서 선택되는 어느 하나인 것인 화합물:
    Figure PCTKR2019005788-appb-I000112
    Figure PCTKR2019005788-appb-I000113
    Figure PCTKR2019005788-appb-I000114
    Figure PCTKR2019005788-appb-I000115
    Figure PCTKR2019005788-appb-I000116
    Figure PCTKR2019005788-appb-I000117
    Figure PCTKR2019005788-appb-I000118
    Figure PCTKR2019005788-appb-I000119
    Figure PCTKR2019005788-appb-I000120
    Figure PCTKR2019005788-appb-I000121
    Figure PCTKR2019005788-appb-I000122
    Figure PCTKR2019005788-appb-I000123
    Figure PCTKR2019005788-appb-I000124
    Figure PCTKR2019005788-appb-I000125
    Figure PCTKR2019005788-appb-I000126
    Figure PCTKR2019005788-appb-I000127
    Figure PCTKR2019005788-appb-I000128
    Figure PCTKR2019005788-appb-I000129
    Figure PCTKR2019005788-appb-I000130
    Figure PCTKR2019005788-appb-I000131
    Figure PCTKR2019005788-appb-I000132
    Figure PCTKR2019005788-appb-I000133
    Figure PCTKR2019005788-appb-I000134
    Figure PCTKR2019005788-appb-I000135
    Figure PCTKR2019005788-appb-I000136
    Figure PCTKR2019005788-appb-I000137
    Figure PCTKR2019005788-appb-I000138
    Figure PCTKR2019005788-appb-I000139
    Figure PCTKR2019005788-appb-I000140
    Figure PCTKR2019005788-appb-I000141
    Figure PCTKR2019005788-appb-I000142
    Figure PCTKR2019005788-appb-I000143
    Figure PCTKR2019005788-appb-I000144
    Figure PCTKR2019005788-appb-I000145
    Figure PCTKR2019005788-appb-I000146
    Figure PCTKR2019005788-appb-I000147
    Figure PCTKR2019005788-appb-I000148
    Figure PCTKR2019005788-appb-I000149
    Figure PCTKR2019005788-appb-I000150
    Figure PCTKR2019005788-appb-I000151
    Figure PCTKR2019005788-appb-I000152
    Figure PCTKR2019005788-appb-I000153
    Figure PCTKR2019005788-appb-I000154
    Figure PCTKR2019005788-appb-I000155
    Figure PCTKR2019005788-appb-I000156
    Figure PCTKR2019005788-appb-I000157
    Figure PCTKR2019005788-appb-I000158
    Figure PCTKR2019005788-appb-I000159
    Figure PCTKR2019005788-appb-I000160
    Figure PCTKR2019005788-appb-I000161
    .
  5. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 청구항 1 내지 4 중 어느 한 항에 따른 화합물을 포함하는 것인 유기 발광 소자.
  6. 청구항 5에 있어서,
    상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 포함하는 것인 유기 발광 소자.
  7. 청구항 5에 있어서,
    상기 유기물층은 전자주입층, 전자수송층, 또는 전자 주입 및 수송층을 포함하고, 상기 전자주입층, 전자수송층, 또는 전자 주입 및 수송층은 상기 화합물을 포함하는 것인 유기 발광 소자.
  8. 청구항 5에 있어서,
    상기 유기물층은 정공주입층, 정공수송층, 또는 정공 주입 및 수송층을 포함하고, 상기 정공주입층, 정공수송층, 또는 정공 주입 및 수송층은 상기 화합물을 포함하는 것인 유기 발광 소자.
PCT/KR2019/005788 2018-05-14 2019-05-14 화합물 및 이를 포함하는 유기 발광 소자 WO2019221485A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980011089.2A CN111683955B (zh) 2018-05-14 2019-05-14 化合物及包含其的有机发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180054995 2018-05-14
KR10-2018-0054995 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019221485A1 true WO2019221485A1 (ko) 2019-11-21

Family

ID=68540595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005788 WO2019221485A1 (ko) 2018-05-14 2019-05-14 화합물 및 이를 포함하는 유기 발광 소자

Country Status (3)

Country Link
KR (1) KR102184860B1 (ko)
CN (1) CN111683955B (ko)
WO (1) WO2019221485A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110130475A (ko) * 2009-03-23 2011-12-05 유니버셜 디스플레이 코포레이션 이종 이리듐 착체
KR20140104926A (ko) * 2013-02-21 2014-08-29 유니버셜 디스플레이 코포레이션 인광성 화합물
KR20150034333A (ko) * 2013-09-26 2015-04-03 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20150045295A (ko) * 2013-10-18 2015-04-28 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
US20170069848A1 (en) * 2015-09-09 2017-03-09 Universal Display Corporation Organic electroluminescent materials and devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687957B1 (ko) * 2004-10-20 2007-02-27 에스케이씨 주식회사 적색 인광 발광 이리듐 착화합물 및 이를 포함하는유기전기발광소자
US9193745B2 (en) * 2011-11-15 2015-11-24 Universal Display Corporation Heteroleptic iridium complex
KR101706203B1 (ko) * 2014-11-10 2017-02-27 부산대학교 산학협력단 신규한 적색 발광 이리듐(iii) 착화합물 및 이를 포함하는 유기전계발광소자
KR101768312B1 (ko) 2014-05-15 2017-08-16 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
KR20170014413A (ko) * 2015-07-30 2017-02-08 부산대학교 산학협력단 이리듐(ⅲ) 착화합물, 이의 제조방법 및 이를 포함하는 유기전계발광소자
KR101953767B1 (ko) * 2016-08-19 2019-03-04 주식회사 엘지화학 신규한 유기금속 화합물 및 이를 이용한 유기발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110130475A (ko) * 2009-03-23 2011-12-05 유니버셜 디스플레이 코포레이션 이종 이리듐 착체
KR20140104926A (ko) * 2013-02-21 2014-08-29 유니버셜 디스플레이 코포레이션 인광성 화합물
KR20150034333A (ko) * 2013-09-26 2015-04-03 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20150045295A (ko) * 2013-10-18 2015-04-28 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
US20170069848A1 (en) * 2015-09-09 2017-03-09 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
CN111683955B (zh) 2023-12-08
KR20190130514A (ko) 2019-11-22
KR102184860B1 (ko) 2020-12-01
CN111683955A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2017171420A1 (ko) 화합물 및 이를 이용하는 유기 발광 소자
WO2014208829A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2016195441A1 (ko) 함질소 축합고리 화합물 및 이를 이용한 유기 발광 소자
WO2015046835A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2020141949A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021066623A1 (ko) 유기 발광 소자
WO2019221484A1 (ko) 유기 금속 화합물 및 이를 포함하는 유기 발광 소자
WO2019135665A1 (ko) 유기 발광 소자
WO2017073933A1 (ko) 스피로형 화합물 및 이를 포함하는 유기 발광 소자
WO2019004790A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022039520A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023200282A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022080715A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2017052221A1 (ko) 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2016140551A2 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019221486A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022250386A1 (ko) 유기 발광 소자
WO2022045743A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021125814A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020231022A1 (ko) 유기 발광 소자
WO2020111728A1 (ko) 유기 발광 소자
WO2019221485A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2024167188A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2024063592A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023018267A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804011

Country of ref document: EP

Kind code of ref document: A1