WO2019220982A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2019220982A1
WO2019220982A1 PCT/JP2019/018393 JP2019018393W WO2019220982A1 WO 2019220982 A1 WO2019220982 A1 WO 2019220982A1 JP 2019018393 W JP2019018393 W JP 2019018393W WO 2019220982 A1 WO2019220982 A1 WO 2019220982A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
secondary battery
pressing body
active material
Prior art date
Application number
PCT/JP2019/018393
Other languages
English (en)
French (fr)
Inventor
秀俊 高橋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019220982A1 publication Critical patent/WO2019220982A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This technology relates to a secondary battery in which a battery element is stored inside a storage member.
  • a variety of electronic devices such as mobile phones are widely used, and there is a demand for downsizing, weight reduction and long life of the electronic devices. Therefore, development of a secondary battery that is small and lightweight as well as capable of obtaining a high energy density as a power source is underway.
  • the secondary battery has a battery element inside the storage member.
  • This battery element has a winding structure in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween, and the positive electrode, the negative electrode, and the separator are wound.
  • a conductive flat plate member is disposed outside the battery element (for example, Patent Documents 1 and 2).
  • the thickness of the outermost current collector is larger than the thickness of the current collector inside the outermost periphery (see, for example, Patent Document 3).
  • the present technology has been made in view of such problems, and an object thereof is to provide a secondary battery capable of obtaining excellent battery characteristics.
  • a secondary battery includes (A) a positive electrode and a negative electrode that are stacked with a separator interposed therebetween and wound around a winding axis that extends in a predetermined direction, and (B) The shape of the cross section intersecting with the extending direction of the winding axis is a flat shape defined by the major axis and the minor axis extending in the direction intersecting each other, and (C) the cross section is mutually in the extending direction of the major axis.
  • the shape of the cross section of the battery element intersecting with the extending direction of the winding axis is defined by the long axis and the short axis (a pair of curved outer edges and a pair of flat outer edges), and the pair of curves Since a pair of tangent lines and a pair of alongside lines are defined based on the outer edge and the pair of flat outer edges, when the quadrangular area is defined by the pair of tangent lines and the pair of alongside lines, the four corners of the quadrangular area have There are four corresponding areas. Details (definitions) of these four areas will be described later.
  • the battery element including the positive electrode and the negative electrode wound around the winding axis and having a flat cross-sectional shape is housed in the housing member.
  • the pressing member is disposed in at least one of the four regions corresponding to the four corners defined by the shape of the cross section, excellent battery characteristics can be obtained.
  • effect of the present technology is not necessarily limited to the effect described here, and may be any of a series of effects related to the present technology described later.
  • FIG. 3 is a plan view illustrating a configuration of a wound electrode body illustrated in FIG. 2. It is sectional drawing which expands and represents a part of structure of the winding electrode body shown in FIG. It is a figure which represents typically the cross-sectional structure of the winding electrode body shown in FIG. It is sectional drawing which expands and represents the structure of the press body shown in FIG. It is sectional drawing which expands and represents the other structure of the press body shown in FIG. 10 is a cross-sectional view illustrating a configuration of a secondary battery according to Modification 1.
  • FIG. 3 is a plan view illustrating a configuration of a wound electrode body illustrated in FIG. 2. It is sectional drawing which expands and represents a part of structure of the winding electrode body shown in FIG. It is a figure which represents typically the cross-sectional structure of the winding electrode body shown in FIG. It is sectional drawing which expands and represents the structure of the press body shown in FIG. It is sectional drawing which expands and represents the other structure of the press body shown in FIG.
  • FIG. 10 is a plan view illustrating a configuration of a secondary battery according to Modification 2.
  • FIG. 10 is a cross-sectional view illustrating a configuration (second winding structure) of a secondary battery according to Modification 3.
  • FIG. 10 is a cross-sectional view illustrating a configuration (third winding structure) of a secondary battery according to Modification 4.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a secondary battery according to Modification 5.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a secondary battery according to Modification 6.
  • Secondary battery 1-1 Overall configuration 1-2. Configuration of wound electrode body 1-3. Configuration of the pressing body 1-4. Operation 1-5. Manufacturing method 1-6. Action and effect Modified example 3. Applications of secondary batteries
  • the secondary battery described here is, for example, a secondary battery that can obtain a battery capacity (capacity of a negative electrode 20 described later) by utilizing the phenomenon of occlusion of electrode reactant and the release of electrode reactant.
  • This electrode reactant is a substance involved in an electrode reaction (so-called charging reaction), and the type of the electrode reactant is not particularly limited.
  • a secondary battery using lithium as an electrode reactant is a so-called lithium ion secondary battery.
  • FIG. 1 illustrates a perspective configuration of the secondary battery
  • FIG. 2 illustrates a cross-sectional configuration of the secondary battery illustrated in FIG.
  • FIG. 3 illustrates a planar configuration of the spirally wound electrode body 100 illustrated in FIG. 2
  • FIG. 4 is an enlarged part of a cross-sectional configuration of the spirally wound electrode body 100 illustrated in FIG. 2.
  • FIG. 5 schematically shows a cross-sectional configuration of the spirally wound electrode body 100 shown in FIG. 2 in order to explain the location of the pressing body 200 shown in FIG.
  • FIG. 6 and FIG. 7 has expanded the cross-sectional structure of the press body 200 shown in FIG.
  • FIG. 2 shows a sectional configuration of the secondary battery along the XZ plane
  • FIG. 4 shows a sectional configuration of the wound electrode body 100 along the XZ plane.
  • FIG. 3 the planar configuration of the spirally wound electrode body 100 viewed from the Z-axis direction is shown, and the outline of a round bar 600 used in a crush test described later is indicated by a broken line.
  • 6 and 7 also show a part of the positive electrode current collector 11 (positive electrode non-forming portion 11S) to which the pressing body 200 is attached.
  • the secondary battery includes a film-shaped exterior material 1, a wound electrode body 100, and a pressing body 200.
  • the secondary battery described here is, for example, a laminated film type secondary battery in which the wound electrode body 100 is accommodated inside the film-shaped exterior member 1.
  • the wound electrode body 100 is impregnated with an electrolytic solution that is a liquid electrolyte, and has a positive electrode lead 2 and a negative electrode lead 3 attached thereto.
  • an adhesion film 4 is inserted between the exterior material 1 and the positive electrode lead 2
  • an adhesion film 5 is inserted between the exterior material 1 and the negative electrode lead 3, for example.
  • FIG. 1 in order to make it easy to see the respective configurations of the exterior material 1 and the wound electrode body 100, the state before the wound electrode body 100 is housed inside the exterior material 1, that is, the exterior material 1 and A state where the wound electrode body 100 is separated from each other is shown.
  • the exterior material 1 is a film-shaped storage member that stores the wound electrode body 100 and the like.
  • the exterior material 1 is a single film that can be folded in the direction of an arrow R, and the exterior material 1 contains, for example, a wound electrode body 100.
  • Indentation 1U is provided.
  • the exterior material 1 is a film having flexibility (or flexibility), for example, and may be a single layer or a multilayer. Especially, it is preferable that the exterior material 1 is a multilayer laminated film.
  • the layer configuration of the laminate film is not particularly limited.
  • the laminate film has a three-layer configuration in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order from the inside. In this case, for example, after the exterior material 1 is folded so that the fusion layers are opposed to each other via the wound electrode body 100, the outer peripheral edges of the fusion layers are fused to each other. Has been.
  • the fusion layer is a film containing a polymer compound such as polyethylene, for example.
  • a metal layer is metal foil containing metal materials, such as aluminum, for example.
  • the surface protective layer is a film containing a polymer compound such as nylon, for example.
  • the exterior material 1 is preferably a three-layer aluminum laminated film in which a fusion layer (polyethylene film), a metal layer (aluminum foil), and a surface protective layer (nylon film) are laminated in this order from the inside. This is because excellent sealing properties and excellent durability can be obtained.
  • shape (shape defined by the outer edge of the exterior material 1) of the cross section (XZ surface) of the exterior material 1 which cross
  • shaft J (refer FIG. 2) mentioned later is shown, for example in FIG. As shown, it is a quadrangle (rectangle) having four concave corners C (C11 to C14).
  • the wound electrode body 100 is a main part of a secondary battery that causes a charge / discharge reaction to proceed, and is a so-called battery element.
  • the wound electrode body 10 includes, for example, a positive electrode 10, a negative electrode 20, a separator 30, and an electrolytic solution that is a liquid electrolyte.
  • the spirally wound electrode body 100 includes, for example, as shown in FIGS. 2 to 4, after the positive electrode 10 and the negative electrode 20 are laminated with the separator 30 interposed therebetween, the positive electrode 10, the negative electrode 20 and the separator A winding structure 30 is wound around the winding axis J.
  • the positive electrode 10 and the negative electrode 20 are wound so that the positive electrode 10 is disposed on the outer side and the negative electrode 20 is disposed on the inner side.
  • the winding axis J is an axis (virtual axis) extending in a predetermined direction (Y-axis direction).
  • a covering material such as a protective tape, for example.
  • the wound electrode body 100 is moved to the Z axis. It is pressure molded in the direction. For this reason, the shape of the cross section (XZ plane) of the wound electrode body 100 intersecting the extending direction (Y-axis direction) of the winding axis J is a flat shape as shown in FIGS. 2 and 5. .
  • the cross-sectional shape of the spirally wound electrode body 100 has a long axis KX and a short axis KZ extending in directions intersecting each other, that is, a long axis KX extending in the X axis direction and a short axis extending in the Z axis direction. It is a substantially oval shape defined by KZ.
  • spirally wound electrode body 100 The detailed configuration of the spirally wound electrode body 100 (including details regarding the cross-sectional shape) will be described later.
  • the pressing body 200 is introduced in order to prevent the secondary battery from undergoing thermal runaway when the secondary battery described later is crushed.
  • the pressing body 200 is a pressing member that presses the secondary battery (the positive electrode 10 and the negative electrode 20) using the force during the crushing of the secondary battery, and the secondary battery is In order to suppress thermal runaway, the wound electrode body 100 is intentionally and actively destroyed. Since the number of the pressing bodies 200 is not particularly limited, it may be only one or may be two or more.
  • the detailed reason why the secondary battery includes the pressing body 200 is as described below.
  • the round bar 600 is, for example, a cylindrical member that extends in the X-axis direction.
  • the round bar 600 is placed in the Z-axis direction.
  • the round bar 600 is pressed against the secondary battery.
  • the wound electrode body 100 is locally crushed by the round bar 600, whereby each of the positive electrode 1 and the negative electrode 20 is locally pressed.
  • the secondary battery does not include the pressing body 200
  • the round bar 600 when the round bar 600 is pressed against the wound electrode body 100, only the round bar 600 is pressed against each of the positive electrode 10 and the negative electrode 20.
  • Each of the positive electrode 10 and the negative electrode 20 is pressed using only the pressing force of the rod 600.
  • the positive electrode active material layer 12 and the negative electrode active material layer 22, which will be described later approach each other to the extent that a high-resistance short-circuit path is formed.
  • the positive electrode current collector 11 and the negative electrode current collector 21, which will be described later are less likely to approach each other to the extent that a low-resistance short-circuit path is formed.
  • the positive electrode active material layer 12 and the negative electrode active material layer 22 in the wound electrode body 100 While a high-resistance short-circuit path due to contact is likely to be formed, a low-resistance short-circuit path due to contact between the positive electrode current collector 11 and the negative electrode current collector 21 is less likely to be formed.
  • the secondary battery includes the pressing body 200
  • the round bar 600 when the round bar 600 is pressed against the wound electrode body 100, the pressing body 200 together with the round bar 600 becomes the positive electrode 10 and the negative electrode 20. Therefore, the positive electrode 10 and the negative electrode 20 are pressed using the pressing force of the round bar 600 and the pressing force of the pressing body 200.
  • the positive electrode active material layer 12 and the negative electrode active material layer 22 approach each other to the extent that a high-resistance short-circuit path is formed.
  • the positive electrode current collector 11 and the negative electrode current collector 21 are also likely to approach each other to the extent that a low-resistance short-circuit path is formed.
  • the positive electrode current collector 11 and the negative electrode current collector 21 can sufficiently come into contact with each other when the secondary battery is crushed, in the wound electrode body 100, the positive electrode active material layer 12 and the negative electrode active material layer 22 A high-resistance short-circuit path due to contact is formed, and a low-resistance short-circuit path due to contact between the positive electrode current collector 11 and the negative electrode current collector 21 is easily formed.
  • the wound electrode body 100 when not only a high-resistance short-circuit path is formed but also a low-resistance short-circuit path is formed, a so-called current escape path is formed. It flows in the short circuit path. This makes it difficult for the current to concentrate on the high-resistance short-circuit path, so that heat generation is difficult on the high-resistance short-circuit path. Therefore, since it becomes difficult to store heat when the secondary battery is crushed, the secondary battery is unlikely to run out of heat.
  • the number of the pressing bodies 200 is not particularly limited as described above, but it is preferable that the number of the pressing bodies 200 be as large as possible. This is because when the secondary battery is crushed, a low-resistance short-circuit path is more easily formed by using the pressing body 200, and the secondary battery is more unlikely to run out of heat.
  • the positive electrode lead 2 is a positive electrode terminal attached to the positive electrode 10, and more specifically, is connected to, for example, a positive electrode current collector 11 (see FIGS. 2 and 4) described later.
  • the positive electrode lead 2 is led out from the inside of the exterior material 1 to the outside, for example, and includes a conductive material such as aluminum.
  • the three-dimensional shape of the positive electrode lead 2 is, for example, a thin plate shape or a mesh shape.
  • the negative electrode lead 3 is a negative electrode terminal attached to the negative electrode 20, and more specifically, for example, is connected to a negative electrode current collector 21 (see FIGS. 2 and 4) described later.
  • the negative electrode lead 3 is led out from the inside of the exterior material 1 to the outside, for example, and includes a conductive material such as copper.
  • the lead-out direction of the negative electrode lead 3 is, for example, the same as the lead-out direction of the positive electrode lead 2, and the three-dimensional shape of the negative electrode lead 3 is, for example, the same as the three-dimensional shape of the positive electrode lead 2.
  • the adhesion film 4 is a member that prevents outside air from entering the exterior material 1 and includes, for example, an adhesion material.
  • This adhesive material is a material having adhesiveness to the positive electrode lead 2, and is, for example, a polyolefin resin such as polypropylene.
  • the configuration of the adhesive film 5 is the same as that of the adhesive film 4 except that the adhesive film 5 includes an adhesive material having adhesiveness to the negative electrode lead 3, for example.
  • the adhesive material used for the adhesive film 5 is the same as the adhesive material used for the adhesive film 4, for example.
  • the wound electrode body 100 includes, for example, the positive electrode 10, the negative electrode 20, and the separator 30 as described above.
  • the positive electrode 10 includes, for example, as shown in FIGS. 2 and 4, a positive electrode current collector 11 and a positive electrode active material layer 12 formed on the positive electrode current collector 11.
  • the positive electrode active material layer 12 is formed only on a part of the positive electrode current collector 11, for example. Details of the formation range of the positive electrode active material layer 12 with respect to the positive electrode current collector 11 will be described later.
  • the positive electrode current collector 11 includes a conductive material such as aluminum, for example.
  • the positive electrode current collector 11 may be a single layer or a multilayer.
  • the positive electrode active material layer 12 includes, for example, an inner positive electrode active material layer 12A formed on the inner surface (side closer to the winding axis J) of the positive electrode current collector 11, and the outer side (winding of the positive electrode current collector 11). And an outer positive electrode active material layer 12B formed on the surface far from the axis J).
  • FIG. 4 shows a portion of the positive electrode 10 where both the inner positive electrode active material layer 12A and the outer positive electrode active material layer 12B are formed on the positive electrode current collector 11.
  • the positive electrode active material layer 12 includes a positive electrode material that can occlude lithium and can release lithium as a positive electrode active material.
  • the positive electrode active material layer 21B may further include other materials such as a positive electrode binder and a positive electrode conductive agent.
  • the positive electrode material contains a lithium-containing compound. This is because a high energy density can be obtained.
  • the type of the lithium-containing compound is not particularly limited, and examples thereof include a lithium-containing composite oxide and a lithium-containing phosphate compound.
  • the lithium-containing composite oxide is a generic name for oxides containing lithium and one or more other elements as constituent elements, and has a crystal structure such as a layered rock salt type and a spinel type.
  • the lithium-containing phosphate compound is a general term for a phosphate compound containing lithium and one or more kinds of other elements as constituent elements, and has, for example, an olivine type crystal structure.
  • Other elements are elements other than lithium.
  • the type of other elements is not particularly limited, but among them, elements belonging to Groups 2 to 15 of the long-period periodic table are preferable. This is because a high voltage can be obtained.
  • other elements are nickel, cobalt, manganese, iron, etc., for example.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure is, for example, LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
  • An example of the lithium-containing composite oxide having a spinel crystal structure is LiMn 2 O 4 .
  • Examples of the lithium-containing phosphate compound having an olivine type crystal structure include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
  • the positive electrode binder includes, for example, a synthetic rubber and a polymer compound.
  • the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
  • the polymer compound include polyvinylidene fluoride and polyimide.
  • the positive electrode conductive agent includes, for example, a conductive material such as a carbon material, and the carbon material is, for example, graphite, carbon black, acetylene black, and ketjen black.
  • the positive electrode conductive agent may be a metal material or a conductive polymer.
  • the positive electrode active material layer 12 is formed only on a part of the positive electrode current collector 11.
  • the positive electrode current collector 11 includes, for example, as shown in FIG. 2, a positive electrode non-forming portion 11S in which neither the inner positive electrode active material layer 12A nor the outer positive electrode active material layer 12B is formed. Yes.
  • This positive electrode non-formation part 11S is extended toward the winding inner side from the edge part of the winding outer side in the winding direction of the positive electrode 10, for example.
  • the extending length of the positive electrode non-forming part 11S (the dimension in the winding direction of the positive electrode 10) is not particularly limited, but is, for example, a length corresponding to about a half circumference from the end part on the winding outer side.
  • the formation range of the inner positive electrode active material layer 12A on the outer winding side and the formation range of the outer positive electrode active material layer 12B on the outer winding side are different from each other, for example. Specifically, since the inner positive electrode active material layer 12A is formed on the positive electrode current collector 11 except for the positive electrode non-forming portion 11S, for example, the position of the end of the positive electrode non-forming portion 11S on the inner side is For example, it coincides with the position of the end portion of the inner positive electrode active material layer 12A on the outer winding side.
  • the position of the end portion of the outer positive electrode active material layer 12B on the outer side of the winding is shifted to the inner side of the winding from the position of the end portion of the inner positive electrode active material layer 12A on the outer side of the winding.
  • step difference mitigation is provided. It may be.
  • a tape for level difference relaxation may be provided at the end of the outer positive electrode active material layer 12B on the outer side and the inner side of the winding and in the vicinity thereof.
  • the negative electrode 20 includes a negative electrode current collector 21 and a negative electrode active material layer 22 formed on the negative electrode current collector 21.
  • the negative electrode active material layer 22 is formed only on a part of the negative electrode current collector 21, for example. Details of the formation range of the negative electrode active material layer 22 with respect to the negative electrode current collector 21 will be described later.
  • the negative electrode current collector 21 includes, for example, a conductive material such as copper.
  • the negative electrode current collector 21 may be a single layer or a multilayer.
  • the surface of the negative electrode current collector 21 is preferably roughened using an electrolytic method or the like. This is because the adhesion of the negative electrode active material layer 22 to the negative electrode current collector 21 is improved by utilizing a so-called anchor effect.
  • the negative electrode active material layer 22 includes, for example, an inner negative electrode active material layer 22A formed on the inner surface of the negative electrode current collector 21, and an outer negative electrode active material layer 22B formed on the outer surface of the negative electrode current collector 21.
  • FIG. 4 shows a portion of the negative electrode 20 where both the inner negative electrode active material layer 22 ⁇ / b> A and the outer negative electrode active material layer 22 ⁇ / b> B are formed on the negative electrode current collector 21.
  • the negative electrode active material layer 22 includes a negative electrode material that can occlude lithium and can release lithium as a negative electrode active material.
  • the negative electrode active material layer 22 may further include other materials such as a negative electrode binder and a negative electrode conductive agent.
  • the capacity of the negative electrode material that can be charged is preferably larger than the discharge capacity of the positive electrode 10. That is, the electrochemical equivalent of the negative electrode material is preferably larger than the electrochemical equivalent of the positive electrode 10.
  • the type of the negative electrode material is not particularly limited, and examples thereof include carbon materials and metal-based materials.
  • Carbon material is a general term for materials containing carbon as a constituent element. This is because the crystal structure of the carbon material hardly changes at the time of occlusion and release of lithium, so that a high energy density can be stably obtained. Moreover, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 22 is improved.
  • Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite.
  • the (002) plane spacing for non-graphitizable carbon is preferably 0.37 nm or more
  • the (002) plane spacing for graphite is preferably 0.34 nm or less.
  • examples of the carbon material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks.
  • examples of the cokes include pitch coke, needle coke, and petroleum coke.
  • the organic polymer compound fired body is a fired product obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature.
  • the carbon material may be, for example, low crystalline carbon that has been heat-treated at a temperature of about 1000 ° C. or less, or amorphous carbon.
  • the shape of the carbon material is, for example, fibrous, spherical, granular, and scale-like.
  • Metallic material is a general term for materials containing one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
  • the metal-based material may be a simple substance, an alloy, a compound, a mixture of two or more of them, or a material containing one or two or more phases thereof.
  • the alloy includes not only a material composed of two or more kinds of metal elements, but also a material containing one or more kinds of metal elements and one or more kinds of metalloid elements.
  • the alloy may contain one kind or two or more kinds of nonmetallic elements.
  • the structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a coexistence of two or more kinds thereof.
  • metal elements and metalloid element can form an alloy with lithium.
  • metal elements and metalloid elements are, for example, magnesium, boron, aluminum, gallium, indium, silicon, germanium, tin, lead, bismuth, cadmium, silver, zinc, hafnium, zirconium, yttrium, palladium, and platinum. Etc.
  • silicon and tin are preferable, and silicon is more preferable. This is because the lithium storage ability is excellent and the lithium release ability is excellent, so that a significantly high energy density can be obtained.
  • the metal-based material may be a silicon simple substance, a silicon alloy, a silicon compound, a tin simple substance, a tin alloy, or a tin compound. Further, a mixture of two or more kinds thereof, or a material including one kind or two or more kinds of phases thereof may be used. Since the simple substance described here means a general simple substance, the simple substance may contain a small amount of impurities. That is, the purity of a single substance is not necessarily limited to 100%.
  • the silicon alloy contains, for example, tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium as constituent elements other than silicon.
  • the silicon compound contains, for example, carbon and oxygen as constituent elements other than silicon.
  • the silicon compound may contain, for example, a series of constituent elements described for the silicon alloy as constituent elements other than silicon.
  • Silicon alloys and silicon compounds include, for example, SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), LiSiO, and the like.
  • the range of v may be 0.2 ⁇ v ⁇ 1.4, for example.
  • the tin alloy contains, for example, silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, and the like as constituent elements other than tin.
  • the tin compound contains, for example, carbon and oxygen as constituent elements other than tin.
  • the compound of tin may contain any 1 type or 2 types or more of the series of structural elements demonstrated regarding the alloy of tin as structural elements other than tin, for example.
  • Examples of the tin alloy and the tin compound include SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.
  • the negative electrode material preferably contains both a carbon material and a metal-based material for the reason described below.
  • Metallic materials particularly materials containing silicon as a constituent element, have the advantage of high theoretical capacity, but have a concern that they are likely to violently expand and contract during charging and discharging.
  • the carbon material has a concern that the theoretical capacity is low, but has an advantage that it does not easily expand and contract during charging and discharging. Therefore, by using the carbon material and the metal-based material in combination, expansion and contraction of the negative electrode active material layer 22 are suppressed during charging / discharging while obtaining a high theoretical capacity (that is, battery capacity).
  • the formation method of the negative electrode active material layer 22 is not particularly limited, and examples thereof include a coating method, a gas phase method, a liquid phase method, a thermal spraying method, and a firing method (sintering method).
  • the coating method is, for example, a method in which a solution (coating solution) in which a mixture of a particle (powder) negative electrode active material and a negative electrode binder is dissolved or dispersed in an organic solvent or the like is applied to the negative electrode current collector 21. is there.
  • the vapor phase method includes, for example, physical deposition method and chemical deposition method, and more specifically, vacuum deposition method, sputtering method, ion plating method, laser ablation method, thermal chemical vapor deposition, chemical vapor deposition.
  • the thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 21.
  • the firing method is, for example, a method of applying a coating solution to the negative electrode current collector 21 using a coating method, and then heat-treating the coating solution (coating film) at a temperature higher than the melting point of the negative electrode binder, More specifically, an atmosphere firing method, a reaction firing method, a hot press firing method, and the like.
  • the negative electrode active material layer 22 is formed only on a part of the negative electrode current collector 21.
  • the negative electrode current collector 21 includes, for example, as shown in FIG. 2, a negative electrode non-formation portion 21S in which neither the inner negative electrode active material layer 22A nor the outer negative electrode active material layer 22B is formed. Yes.
  • the negative electrode non-forming portion 21 ⁇ / b> S extends from the winding outer end in the winding direction of the negative electrode 20 toward the winding inner side.
  • the extension length (dimension in the winding direction of the negative electrode 20) of the negative electrode non-forming portion 21S is not particularly limited, for example, it is a length corresponding to about a half circumference from the end portion on the winding outer side.
  • the formation range of the inner negative electrode active material layer 22A on the outer side and the formation range of the outer negative electrode active material layer 22B on the outer side coincide with each other, for example.
  • the inner negative electrode active material layer 22A is formed on the negative electrode current collector 21 except for the negative electrode non-forming portion 21S, for example, the position of the end portion of the negative electrode non-forming portion 21S on the inner side is For example, it coincides with the position of the end of the inner negative electrode active material layer 22A on the outer side.
  • the outer negative electrode active material layer 22B is formed on the negative electrode current collector 21 except for the negative electrode non-forming portion 21S, and therefore the position of the end of the negative electrode non-forming portion 21S on the inner side is, for example, on the outer side of the winding. It corresponds to the position of the end of the outer negative electrode active material layer 22B.
  • the position of the end of the inner negative electrode active material layer 22A on the outer side and the position of the end of the outer negative electrode active material layer 22B on the outer side of the winding are, for example, The positions of the end portions of the outer positive electrode active material layer 12B on the outer side of the winding are shifted to the outer side of the winding.
  • the negative electrode 20 may also be provided with a step-relief tape similar to the positive electrode 10, for example.
  • a tape for step-relief may be provided at and near the end of the inner negative electrode active material layer 22A on the outer side and the inner side, and on each of the outer side and the inner side.
  • a step reducing tape may be provided at the end of the outer negative electrode active material layer 22B and in the vicinity thereof.
  • the separator 30 is interposed between the positive electrode 10 and the negative electrode 20, and prevents lithium short circuit caused by contact between the positive electrode 10 and the negative electrode 20. Pass through.
  • the separator 30 includes, for example, a porous film such as a synthetic resin and ceramic, and may be a laminated film in which two or more kinds of porous films are laminated together.
  • the synthetic resin is, for example, polyethylene.
  • the separator 30 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on one or both surfaces of the base material layer. This is because the adhesion of the separator 30 to each of the positive electrode 10 and the negative electrode 20 is improved, so that the wound electrode body 100 is less likely to be distorted. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, even when charging and discharging are repeated, the resistance of the secondary battery is hardly increased. The secondary battery is less likely to swell.
  • the polymer compound layer contains, for example, a polymer compound such as polyvinylidene fluoride. It is because it is excellent in physical strength and is electrochemically stable.
  • the high molecular compound layer may contain insulating particles, such as an inorganic particle, for example. This is because safety is improved.
  • the kind of inorganic particles is not particularly limited, and examples thereof include aluminum oxide and aluminum nitride.
  • the wound electrode body 100 is impregnated with the electrolytic solution.
  • the electrolytic solution is impregnated in the separator 23 and impregnated in each of the positive electrode 21 and the negative electrode 22.
  • This electrolytic solution contains a solvent and an electrolyte salt.
  • the solvent includes a non-aqueous solvent such as an organic solvent.
  • the electrolytic solution containing the nonaqueous solvent is a so-called nonaqueous electrolytic solution.
  • Nonaqueous solvents are, for example, cyclic carbonates, chain carbonates, lactones, chain carboxylic acid esters, and nitrile (mononitrile) compounds. This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • Examples of the cyclic carbonate include ethylene carbonate and propylene carbonate.
  • Examples of the chain ester carbonate include dimethyl carbonate and diethyl carbonate.
  • Examples of the lactone include ⁇ -butyrolactone and ⁇ -valerolactone.
  • Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, and methyl propionate.
  • Nitrile compounds include, for example, acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
  • the non-aqueous solvent includes, for example, unsaturated cyclic carbonates, halogenated carbonates, sulfonates, acid anhydrides, dicyano compounds (dinitrile compounds), diisocyanate compounds, phosphate esters, and the like. This is because the chemical stability of the electrolytic solution is improved.
  • Examples of unsaturated cyclic carbonates include vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate.
  • Examples of the halogenated carbonate include 4-fluoro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one, and fluoromethyl methyl carbonate.
  • Examples of the sulfonic acid ester include 1,3-propane sultone and 1,3-propene sultone.
  • Examples of the acid anhydride include succinic anhydride, glutaric anhydride, maleic anhydride, ethanedisulfonic anhydride, propanedisulfonic anhydride, sulfobenzoic anhydride, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid.
  • Examples of the dinitrile compound include succinonitrile, glutaronitrile, adiponitrile, phthalonitrile, and the like.
  • Examples of the diisocyanate compound include hexamethylene diisocyanate.
  • Examples of the phosphate ester include trimethyl phosphate and triethyl phosphate.
  • the electrolyte salt includes, for example, a lithium salt.
  • the electrolyte salt may contain a salt other than the lithium salt, for example.
  • Other salts are, for example, salts of light metals other than lithium.
  • lithium salt examples include lithium fluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), bis (fluorosulfonyl) imidolithium (LiN (SO 2 F) 2 ), and bis (trifluoromethanesulfonyl).
  • lithium fluorophosphate (Li 2 PFO 3 ) lithium fluorophosphate and the like. This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • the content of the electrolyte salt is not particularly limited, but is preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. This is because high ionic conductivity is obtained.
  • the configuration of the pressing body 200 is to positively and positively press each of the positive electrode 10 and the negative electrode 20 using the pressing body 200 when the secondary battery is crushed.
  • the formation material of the press body 200 will not be specifically limited if it has the rigidity of the grade which can press each of the positive electrode 10 and the negative electrode 20 fully.
  • the press body 200 may have electroconductivity and may have nonelectroconductivity (insulation). Of course, you may use together the press body 200 which has electroconductivity, and the press body 200 which has insulation.
  • the pressing body 200 When the pressing body 200 has insulating properties, the pressing body 200 includes, for example, an insulating material such as a polymer compound. Although the kind of high molecular compound is not specifically limited, For example, it is an acrylic resin etc.
  • the pressing body 200 When the pressing body 200 has conductivity, the pressing body 200 includes, for example, a conductive material such as a metal material.
  • a conductive material such as a metal material.
  • the kind of metal material is not specifically limited, For example, they are aluminum, nickel, copper, stainless steel, etc.
  • the type of metal material can be selected as appropriate according to the type of electrode to which the pressing body 200 is attached. Specifically, for example, when the pressing body 200 is attached to the positive electrode 10 (the positive electrode current collector 11), the type of the metal material is selected according to the electrochemical potential of the positive electrode 10. For example, when the pressing body 200 is attached to the negative electrode 20 (negative electrode current collector 21), the type of the metal material is selected according to the electrochemical potential of the negative electrode 20.
  • the press body 200 has electroconductivity. This is because when the positive electrode 10 and the negative electrode 20 are pressed when the secondary battery is crushed, a low-resistance short-circuit path is easily formed using the conductive pressing body 200.
  • the material for forming the conductive pressing body 200 is the same material as the electrode forming material to which the pressing body 200 described later is attached. Specifically, when the pressing body electrode 200 is attached to the positive electrode 10 (the positive electrode current collector 11), the forming material of the pressing body 200 is the same as the forming material of the positive electrode current collector 11. Is preferred. When the pressing body 200 is attached to the negative electrode 20 (negative electrode current collector 21), the forming material of the pressing body 200 is preferably the same as the forming material of the negative electrode current collector 21. This is because by using the pressing body 200 with high conductivity, a low-resistance short-circuit path is easily formed stably using the pressing body 200.
  • the pressing body 200 is preferably attached to the positive electrode current collector 11 and more preferably attached to the positive electrode non-forming part 11S. Moreover, it is preferable that the press body 200 is attached to the negative electrode collector 21, and it is more preferable that it is attached to the negative electrode non-formation part 21S.
  • the pressing body 200 is adjacent to each of the positive electrode current collector 11 (positive electrode non-forming part 11S) and the negative electrode current collector 21 (negative electrode non-forming part 21S) having rigidity, so that the pressing body 200 becomes the positive electrode 10 and This is because it can be sufficiently pressed against each of the negative electrodes 20.
  • the pressing body 200 has conductivity, when the secondary battery is crushed, a low-resistance short-circuit path is formed using the respective conductivity of the positive electrode current collector 11 and the pressing body 200. It becomes easy to form, and it becomes easy to form a short circuit path with a low resistance by utilizing the respective conductivity of the negative electrode current collector 21 and the pressing body 200.
  • the three-dimensional shape of the press body 200 is not specifically limited, For example, they are plate shape, wire shape, etc.
  • the plate-shaped pressing body 200 and the wire-shaped pressing body 200 may be used in combination.
  • the pressing body 200 is, for example, a polymer sheet and a polymer wire.
  • the pressing body 200 is, for example, a metal plate or a metal wire.
  • the pressing body 200 is preferably one or both of a metal plate and a metal wire.
  • the formation range of the pressing body 200 is not particularly limited. Especially, as shown in FIG. 3, it is preferable that the press body 200 is extended in the direction (Y-axis direction) along the extension direction of the winding axis
  • the pressing body 200 has a plate shape having a thickness T, a width W, and a length L as shown in FIGS. 2 and 3, for example.
  • Each of the thickness T, the width W, and the length L is not particularly limited, and can be arbitrarily set.
  • each of the thickness T, the width W, and the length L is sufficiently large. This is because when the thickness T is sufficiently large, the pressing body 200 is easily pressed against the positive electrode 10 and the negative electrode 20. When each of the width W and the length L is sufficiently large, the existence range of the pressing body 200 is widened. Therefore, even if the round bar 600 is pressed against the secondary battery at any position in the Y-axis direction, This is because the pressing body 200 is easily pressed against each of the positive electrode 10 and the negative electrode 20 by using the pressing force of the round bar 600. Accordingly, each of the positive electrode 10 and the negative electrode 20 can be sufficiently pressed without depending on the pressing position of the round bar 600, so that a low-resistance short-circuit path is easily formed.
  • FIG. 3 shows a case where, for example, the length L of the pressing body 200 is sufficiently increased in order to sufficiently widen the existence range of the pressing body 200.
  • the pressing body 200 extends, for example, from one end of the wound electrode body 100 in the Y-axis direction to the other end of the wound electrode body 100 in the Y-axis direction.
  • the pressing body 200 is arranged in one or more of four arrangement regions R (R1 to R4) described later.
  • arrangement regions R1 to R4 will be described, and then the specific arrangement location and the number of arrangement of the pressing bodies 200 will be described.
  • the cross-sectional shape of the spirally wound electrode body 100 is a flat shape (substantially oval) defined by the major axis KX and the minor axis KZ.
  • the cross section (outer edge G) of the spirally wound electrode body 100 has a pair of curved outer edges W1 and W2 and a pair of flat outer edges H1 and H2, as shown in FIG.
  • the pair of curved outer edges W1 and W2 are a pair of arc-shaped outer edges that are separated from each other and face each other in the extending direction of the long axis KX (X-axis direction).
  • the pair of flat outer edges H1 and H2 are a pair of linear outer edges that are separated from each other and face each other in the extending direction of the short axis KZ (Z-axis direction). That is, the outer edge G of the cross section of the wound electrode body 100 is formed by connecting a pair of curved outer edges W1, W2 and a pair of flat outer edges H1, H2. In FIG. 5, in order to easily identify the wound electrode body 100, the wound electrode body 100 is shaded.
  • a pair of tangent lines SW1 and SW2 in contact with each of the pair of curved outer edges W1 and W2 and a pair of lines SH1 and SH2 along each of the pair of flat outer edges H1 and H2 are defined.
  • the quadrangular region RK is defined by the four straight lines (a pair of tangent lines SW1 and SW2 and a pair of lines SH1 and SH2).
  • the tangent line SW1 is a virtual line extending in the Z-axis direction by being in contact with the curved outer edge W1
  • the tangent line SW2 is extending in the Z-axis direction by being in contact with the curved outer edge W2, similarly to the tangent line SW1.
  • It is a virtual line.
  • the rail line SH1 is a virtual line extending in the X-axis direction along the flat outer edge H1
  • the line SH2 extends in the X-axis direction along the flat outer edge H2 in the same manner as the line SH1. It is a virtual line.
  • each of tangent lines SW1 and SW2, which are virtual lines, and along the lines SH1 and SH2 are indicated by alternate long and short dash lines.
  • the quadrangular area RK is a virtual area drawn using the tangent lines SW1 and SW2 and along the lines SH1 and SH2, that is, a virtual area surrounded by the tangent lines SW1 and SW2 and the lines along the lines SH1 and SH2. Since this area is surrounded by four straight lines (tangent lines SW1, SW2 and along lines SH1, SH2), the planar shape of the area is a quadrangle.
  • the quadrangular region RK that is a virtual region is indicated by a two-dot chain line.
  • the planar shape of the quadrangular region RK is, for example, a rectangle (rectangle).
  • the planar shape of the quadrangular region RK is not particularly limited as long as it is a quadrangular shape.
  • the square shape of the quadrangular region RK may be other quadrangles such as a square, a parallelogram, and a rhombus in addition to the above-described rectangle.
  • the rectangular area RK has four corners C (C1 to C4), and each of the arrangement areas R1 to R4 corresponds to each of the corners C1 to C4. It is an area to do. That is, the arrangement region R1 is a region corresponding to the corner portion C1. The arrangement region R2 is a region corresponding to the corner portion C2. The arrangement region R3 is a region corresponding to the corner C3. The arrangement region R4 is a region corresponding to the corner C4.
  • the arrangement region R1 is a region that includes a straight line connecting the corner portion C1 and the winding axis J and the periphery thereof. That is, the arrangement region R1 is a virtual region extending from the corner portion C1 toward the winding axis J while including a position on a straight line and a position around it. Details regarding each of the placement regions R2 to R4 are the same as details about the placement region R1 except that straight lines are defined based on the corners C2 to C4 instead of the corners C1. Therefore, the arrangement regions R1 to R4 are four regions extending in four different directions (directions toward the corners C1 to C4) with the winding axis J as the center.
  • the placement location of the pressing body 200 is not particularly limited as long as it is one or more of the placement regions R1 to R4. Further, as long as the pressing body 200 is disposed in one or more of the arrangement regions R1 to R4, the attachment target of the pressing body 200 is not particularly limited. That is, the pressing body 200 may be attached to the exterior material 1, may be attached to the wound electrode body 100, or may be attached to both the exterior material 1 and the wound electrode body 100. Good.
  • the pressing body 200 When the pressing body 200 is attached to the exterior material 1, the pressing body 200 may be attached to the inner side (inner surface) of the outer packaging material 1, for example, or the outer side (outer surface) of the outer packaging material 1 ), Or may be attached to both the inner surface and the outer surface of the exterior material 1.
  • the pressing body 200 When the pressing body 200 is attached to the wound electrode body 100, the pressing body 200 may be attached to, for example, the positive electrode 10 (the positive electrode current collector 11) or the negative electrode 20 (the negative electrode current collector). It may be attached to the body 21) or may be attached to both the positive electrode 10 and the negative electrode 20.
  • the positive electrode 10 the positive electrode current collector 11
  • the negative electrode 20 the negative electrode current collector
  • the positive electrode active material layer 12 is formed only on a part of the positive electrode current collector 11 (the inner positive electrode active material layer 12A and the outer positive electrode active material layer 12B).
  • the pressing body 200 may be attached to the inner side surface, the pressing body 200 may be attached to the outer side surface of the positive electrode non-forming part 11S, or the inner side surface and the outer side surface of the positive electrode non-forming part 11S.
  • the pressing body 200 may be attached to both sides.
  • the pressing body 200 is placed on the outer surface of the positive electrode current collector 11. It may be attached.
  • the pressing body 200 is placed on the inner surface of the positive electrode current collector 11. It may be attached.
  • the mounting object of the pressing body 200 in the positive electrode 10 are the same as in the mounting object of the pressing body 200 in the negative electrode 20. That is, in the negative electrode 20, as described above, the negative electrode active material layer 22 is formed only on a part of the negative electrode current collector 21 (the inner negative electrode active material layer 22A and the negative positive electrode active material layer 22B).
  • the negative electrode non-forming portion 21S may be attached to the inner side surface, the pressing body 200 may be attached to the outer side surface of the negative electrode non-forming portion 21S, or the inner side surface and the outer side surface of the negative electrode non-forming portion 21S.
  • the pressing body 200 may be attached to both sides.
  • the pressing body 200 is placed on the outer surface of the negative electrode current collector 21. It may be attached.
  • the pressing body 200 is provided on the inner surface of the negative electrode current collector 21. It may be attached.
  • the pressing body 200 is disposed inside the exterior material 1, and more specifically, is preferably attached to the wound electrode body 100. This is because the pressing body 200 is disposed close to the spirally wound electrode body 100, so that the pressing body 200 is easily pressed against each of the positive electrode 10 and the negative electrode 20 when the secondary battery is crushed. Further, even if the pressing body 200 is introduced into the secondary battery, the presence of the pressing body 200 does not affect the appearance of the secondary battery (exterior material 1), so the quality relating to the appearance of the secondary battery is ensured. This is because that.
  • the number of the pressing bodies 200 arranged in the arrangement area R1 is not particularly limited, and may be one or two or more. The same applies to the number of pressing bodies 200 arranged in each of the arrangement regions R2 to R4.
  • the pressing body 200 is disposed in the arrangement region R because the pressing body 200 suppresses the influence of the presence of the pressing body 200 on the battery size, in other words, the battery capacity (energy density) of the secondary battery. This is to prevent the secondary battery from running out of heat using 200.
  • an arrangement area N other than the arrangement area R can be considered.
  • the arrangement region N corresponds to the arrangement region N (N1) corresponding to each of the pair of curved outer edges W1 and W2 and each of the pair of flat outer edges H1 and H2.
  • the arrangement region N2 is caused by the presence of the flat outer edges H1 and H2. Since the wound electrode body 100 is brought close to the exterior material 1, there is almost no space for placing the pressing body 200. In this case, in order to arrange the pressing body 200 in the arrangement region N2 under the condition that the battery size, that is, the volume of the internal space of the exterior material 1 (volume of the secondary battery) is constant, the pressing body 200 is arranged. In order to secure the arrangement space, it is necessary to reduce the volume of the secondary battery, that is, the number of turns of each of the positive electrode 10 and the negative electrode 20.
  • the spirally wound electrode body 100 is brought close to the exterior material 1 due to the presence of the curved outer edges W1 and W2 that are curved in a convex shape. There is almost no space to place. Therefore, when the pressing body 200 is arranged in the arrangement area N1, it is difficult to achieve both securing of battery capacity and suppression of thermal runaway for the same reason as in the case where the pressing body 200 is arranged in the arrangement area N2. .
  • the spirally wound electrode body 100 is separated from the exterior material 1 due to the presence of the curved outer edges W1 and W2, so that there is a space for arranging the pressing body 200.
  • This space is a surplus space inside the housing member 1 and is a space using a so-called dead space.
  • the pressing body 200 is arranged in the arrangement region R in which the dead space can be used to secure the arrangement space for the pressing body 200. It is not necessary to reduce the volume of the secondary battery (the number of turns of each of the positive electrode 10 and the negative electrode 20). Moreover, even if it becomes necessary to reduce the volume of the secondary battery, the volume reduction of the secondary battery is minimal.
  • each of the positive electrode 10 and the negative electrode 20 is bent in the step of forming the wound electrode body 100.
  • each of the positive electrode 10 and the negative electrode 20 is likely to be destroyed in the vicinity of the curved outer edges W1 and W2, and thus heat is easily generated in the vicinity of the curved outer edges W1 and W2.
  • the pressing body 200 is arranged in the arrangement region R in the vicinity of the curved outer edges W1, W2, the positive electrode 10 and the negative electrode 20 are respectively in the vicinity of the curved outer edges W1, W2 when the secondary battery is crushed.
  • the pressing body 200 Since the pressing body 200 is pressed against each of the positive electrode 10 and the negative electrode 20 from the initial stage of destruction when the breakage starts, the pressing body 200 promotes the pressing of the positive electrode 10 and the negative electrode 20. For this reason, each of the positive electrode 10 and the negative electrode 20 is easily and effectively pressed using the pressing body 200.
  • thermal runaway of the secondary battery is suppressed using the pressing body 200 while suppressing a decrease in the energy density (battery capacity) of the entire secondary battery. Therefore, by arranging the pressing body 200 in the arrangement region R, it is possible to achieve both securing the battery capacity and suppressing thermal runaway.
  • the pressing body 200 When the pressing body 200 is attached to the wound electrode body 100, it is preferable that the pressing body 200 is disposed inside the rectangular region RK. This is because the pressing body 200 is introduced into the secondary battery without changing the battery size. In addition, since the pressing body 200 is disposed close to the wound electrode body 100, the pressing body 200 is easily pressed against each of the positive electrode 10 and the negative electrode 20 when the secondary battery is crushed. Furthermore, even if the pressing body 200 is introduced into the secondary battery, the presence of the pressing body 200 does not affect the appearance of the secondary battery (exterior material 1), so the quality relating to the appearance of the secondary battery is ensured. This is because that.
  • the pressing body 200 is attached to the positive electrode 10 (the positive electrode current collector 11), it is preferable that the pressing body 200 is attached to the positive electrode non-forming part 11S as described above. This is because when the pressing body 200 has conductivity, a low-resistance short-circuit path is more easily formed using the positive electrode current collector 11 and the pressing body 200 when the secondary battery is crushed.
  • the pressing body 200 when the pressing body 200 is attached to the negative electrode 20 (negative electrode current collector 21), it is preferable that the pressing body 200 is attached to the negative electrode non-formed product 21S as described above. This is because, when the secondary battery is crushed, a low-resistance short-circuit path is more easily formed using the negative electrode current collector 21 and the pressing body 200.
  • the conductive pressing body 200 is disposed between the positive electrode non-forming part 11S and the negative electrode non-forming part 21S, and the conductive pressing body 200 is the positive electrode non-forming part 11S and the negative electrode non-forming part 21S. It is preferable that it is attached to one or both of these. When the secondary battery is crushed, the positive electrode non-forming part 11S and the negative electrode non-forming part 21S are easily electrically connected via the pressing body 200, so that a low-resistance short-circuit path is easily formed. is there.
  • the pressing body 200 is arranged at a series of arrangement locations described below, for example, as shown in FIG. However, in FIG. 2, for example, in order to collectively describe all candidates related to the placement location of the pressing body 200, a case is shown in which the pressing body 200 is placed at all the placement locations that are candidates.
  • the secondary battery includes, for example, ten pressing bodies 200 (211 to 214, 221 to 224, 231 and 241) as shown in FIG.
  • ten pressing bodies 200 211 to 214, 221 to 224, 231 and 241
  • FIG. 3 only the pressing bodies 211, 221, 231, and 241 are shown in order to simplify the illustrated contents.
  • the secondary battery includes, for example, four pressing bodies 200 (211 to 214) in the arrangement region R1.
  • the pressing body 211 is attached to the outer surface of the positive electrode current collector 11 (positive electrode non-forming part 11S), for example.
  • the pressing body 212 is attached to the inner surface of the positive electrode current collector 11 (positive electrode non-forming part 11S), for example.
  • the pressing body 213 is attached to the outer surface of the negative electrode current collector 21 (negative electrode non-forming part 21S), for example.
  • the pressing body 214 is attached to the inner surface of the negative electrode current collector 21 (negative electrode non-forming portion 21S), for example.
  • the secondary battery includes, for example, four pressing bodies 200 (221, 222, 223, 224) in the arrangement region R2.
  • the pressing body 221 is attached to, for example, the outer surface of the positive electrode current collector 11 (positive electrode non-forming portion 11S).
  • the pressing body 222 is attached to the inner surface of the positive electrode current collector 11 (positive electrode non-forming part 11S), for example.
  • the pressing body 223 is attached to the outer surface of the negative electrode current collector 21 (negative electrode non-forming portion 21S), for example.
  • the pressing body 224 is attached to the inner surface of the negative electrode current collector 21 (negative electrode non-forming part 21S), for example.
  • the secondary battery includes, for example, one pressing body 200 (231) in the arrangement region R3.
  • the pressing body 231 is attached to the outer surface of the positive electrode current collector 11, for example.
  • the secondary battery includes, for example, one pressing body 200 (241) in the arrangement region R4.
  • the pressing body 241 is attached to the outer surface of the positive electrode current collector 11, for example.
  • the pressing body 200 attached to the positive electrode 10 (the positive electrode current collector 11) is positively charged in the same manner as the positive electrode 10.
  • the pressing body 200 attached to the negative electrode 20 (negative electrode current collector 21) is negatively charged in the same manner as the negative electrode 20.
  • first winding structure Each of the winding structures of the wound electrode body 100 set as shown in FIG. 2 is referred to as a “first winding structure”.
  • a method for attaching the pressing body 200 to the positive electrode current collector 11 is not particularly limited. Below, the attachment method of the press body 211 is demonstrated by giving the press body 211 as an example.
  • the pressing body 211 may be directly attached to the positive electrode current collector 11 using a welding method or the like.
  • the pressing body 211 may be indirectly attached to the positive electrode current collector 11 via an adhesive 50 as shown in FIG. 6, for example.
  • an adhesive 50 as shown in FIG. 6, for example.
  • a plurality of pressing bodies 211 may be stacked on each other via the adhesive 50.
  • the adhesive 50 when using the adhesive 50 with the press body 211 which has electroconductivity, it is preferable to use a conductive adhesive as the adhesive 50. Since the positive electrode current collector 11 and the pressing body 211 are electrically connected to each other via the adhesive 50, a low-resistance short-circuit path is formed using the pressing body 211 even when the adhesive 50 is used. Because it is done.
  • the details regarding the mounting method of the pressing body 211 are the same for the mounting methods of the other pressing bodies 212 to 214, 221 to 224, 231 and 241 for example.
  • This secondary battery is manufactured, for example, according to the procedure described below.
  • the positive electrode 10 is first produced.
  • a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture.
  • a paste-like positive electrode mixture slurry is prepared by dispersing the positive electrode mixture in an organic solvent or the like.
  • the positive electrode mixture slurry is dried, whereby the positive electrode active material layer 12 (the inner peripheral side positive electrode active material layer 12A and the outer peripheral side positive electrode active material).
  • a material layer 12B is formed.
  • the positive electrode active material layer 12 is compression molded using a roll press or the like. In this case, the positive electrode active material layer 12 may be heated, or compression molding may be repeated a plurality of times.
  • the negative electrode 20 is manufactured by the same procedure as that of the positive electrode 10 described above. Specifically, a negative electrode active material, a negative positive electrode binder, a negative electrode conductive agent, and the like are mixed to form a negative electrode mixture, and then the negative electrode mixture is dispersed in an organic solvent or the like. A negative electrode mixture slurry is prepared. Subsequently, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 21, and then the negative electrode mixture slurry is dried, whereby the negative electrode active material layer 22 (the inner peripheral side negative electrode active material layer 22A and the outer peripheral side negative electrode active material). A material layer 22B) is formed. After that, the negative electrode active material layer 22 is compression molded using a roll press machine or the like.
  • the pressing body 200 is installed at a desired location in each of the positive electrode 10 and the negative electrode 20.
  • the candidates for the installation location of the pressing body 200 are as described above.
  • the specific installation location of the pressing body 200 and the number of installation thereof can be arbitrarily set.
  • the pressing body 200 may be connected to each of the positive electrode current collector 11 and the negative electrode current collector 21 using a welding method or the like.
  • the pressing body 200 may be attached to each of the positive electrode current collector 11 and the negative electrode current collector 21 using the adhesive 50.
  • you may use attachment methods other than the above.
  • an electrolytic solution is prepared.
  • the solvent is stirred to disperse or dissolve the electrolyte salt in the solvent.
  • a secondary battery is assembled using the positive electrode 10, the negative electrode 20, and the electrolytic solution.
  • the positive electrode lead 2 is attached to the positive electrode 10 (positive electrode current collector 11) using a welding method or the like, and the negative electrode lead 3 is connected to the negative electrode 20 (negative electrode current collector 21) using a welding method or the like.
  • Install Subsequently, after the positive electrode 10 and the negative electrode 20 are laminated with each other through the separator 30, the positive electrode 10, the negative electrode 20, and the separator 30 are wound around the winding axis J to form a wound body. Then, the winding end part is fixed by sticking the winding stop tape to the winding end part of the wound body.
  • the outer peripheral edge portions of the remaining two sides excluding the outer peripheral edge portions of one side of the outer packaging material 1 using a heat fusion method or the like are bonded to each other, so that the wound body is housed inside the bag-shaped exterior material 1.
  • the wound body is disposed inside the recess 1U provided in the exterior material 1.
  • the exterior material 1 is sealed using a heat fusion method or the like.
  • the wound electrode body 100 is manufactured and the wound electrode body 100 is enclosed in the exterior material 1.
  • the adhesion film 4 is inserted between the exterior material 1 and the positive electrode lead 2, and the adhesion film 5 is inserted between the exterior material 1 and the negative electrode lead 3.
  • the wound electrode body 100 is formed by pressurizing the outer packaging material 1 in which the wound electrode body 100 is sealed so that the shape of the cross section intersecting the extending direction of the winding shaft J becomes a flat shape. To do. In this case, you may pressurize, while heating the winding electrode body 100 with the exterior material 1. FIG. Thereby, a laminated film type secondary battery is completed.
  • the wound electrode body 100 including the positive electrode 10 and the negative electrode 20 wound around the winding axis J is housed in the exterior material 1, and the extending direction of the winding axis J
  • the cross-sectional shape of the spirally wound electrode body 100 intersecting with is a flat shape.
  • a quadrangular region RK having four corners C (C1 to C4) is defined based on the cross-sectional shape of the wound electrode body 100, and four arrangements corresponding to the corners C1 to C4 are defined.
  • the pressing body 200 is disposed in one or more of the regions R (R1 to R4).
  • the pressing body 200 is pressed against each of the positive electrode 10 and the negative electrode 20 by utilizing the crushing force.
  • a short circuit path with low resistance due to contact with the negative electrode current collector 21 is easily formed. This makes it difficult for heat to be stored in the high-resistance short-circuit path, making it difficult for the secondary battery to run out of heat.
  • the pressing body 200 is disposed in the arrangement region R using the extra space (dead space) inside the exterior material 1, even if the pressing body 200 is introduced into the secondary battery, the second Compared to the case where the pressing body 200 is not introduced into the secondary battery, the battery size is not easily changed. In this case, even if the pressing body 200 is used, the volume of the secondary battery (the number of turns of each of the positive electrode 10 and the negative electrode 20) is difficult to decrease, and therefore the overall energy density (battery capacity) of the secondary battery. Is easily maintained.
  • the pressing body 200 extends in a direction along the extending direction of the winding axis J, the existence range of the pressing body 200 is widened in that direction. Therefore, within the range in which the pressing body 200 extends, the pressing body 200 is easily pressed against each of the positive electrode 10 and the negative electrode 20 even if the secondary battery is crushed at any position. Can be obtained.
  • the pressing body 200 has conductivity, a low-resistance short-circuit path is more easily formed using the pressing body 200 when the secondary battery is crushed, so that a higher effect can be obtained. .
  • the pressing body 200 includes a metal plate or the like, the pressing body 200 has sufficient rigidity and sufficient conductivity. Therefore, when the secondary battery is crushed, each of the positive electrode 10 and the negative electrode 20 is It becomes easier to be pressed. Therefore, since a low-resistance short-circuit path is easily formed stably, a higher effect can be obtained.
  • the pressing body 200 is disposed inside the exterior material 1, the pressing body 200 is disposed in the vicinity of the wound electrode body 100, so that the pressing body 200 becomes the positive electrode 10 and the secondary battery when the secondary battery is crushed. Since it becomes easy to press each of the negative electrodes 20, a higher effect can be acquired.
  • the pressing body 200 is arranged inside the rectangular region RK, the pressing body 200 is introduced into the secondary battery without changing the battery size, and the pressing body is pressed when the secondary battery is crushed. Since 200 is easily pressed by each of the positive electrode 10 and the negative electrode 20, a further higher effect can be obtained.
  • the pressing body 200 is attached to the wound electrode body 100, the pressing body 200 is disposed closer to the wound electrode body 100, so that the pressing body 200 becomes the positive electrode 10 and the secondary battery when the secondary battery is crushed. Since it becomes easy to be pressed by each of the negative electrodes 20, a higher effect can be obtained.
  • the pressing body 200 is attached to one or both of the positive electrode non-forming portion 11S and the negative electrode non-forming portion 21S, the pressing body 200 is pressed against each of the rigid positive electrode non-forming portion 11S and the rigid negative electrode current collector 21. Since the pressing body 200 is easily pressed against each of the positive electrode 10 and the negative electrode 20 by adjoining 200, a higher effect can be obtained.
  • the cross-sectional shape of the exterior material 1 has four concave corners C (C11 to C14), but the number of corners C included in the cross-sectional shape of the exterior material 1 is arbitrary. Can be changed.
  • the exterior material 1 is curved at locations corresponding to the two corners C ⁇ b> 11 and C ⁇ b> 14.
  • the cross-sectional shape may have only two corners C12 and C13.
  • the same effect as that shown in FIG. 2 can be obtained by arranging the pressing body 200 in one or more of the four arrangement regions R (R1 to R4). .
  • battery capacity is secured and thermal runaway is suppressed by arranging the pressing body 200 in each of the placement regions R1 and R4 without changing the battery size (volume of the secondary battery). Since both are compatible, the same effect can be obtained.
  • the three-dimensional shape of the pressing body 200 is a plate shape, but the three-dimensional shape of the pressing body 200 is not particularly limited.
  • the pressing body 200 may be in the form of a wire.
  • the number of the pressing bodies 200 is not particularly limited, and may be only one or may be two or more.
  • FIG. 9 shows a case where the number of the pressing bodies 200 is five, for example. Also in this case, since the wire-like pressing body 200 performs the same function as the plate-like pressing body 200, the same effect as that shown in FIG. 2 can be obtained.
  • the spirally wound electrode body 100 has the first spiral structure, but the configuration of the spirally wound electrode body 100 can be arbitrarily changed.
  • the wound electrode body 100 may have a second winding structure instead of the first winding structure.
  • the secondary battery having the second winding structure includes, for example, a pressing body 300 instead of the pressing body 200.
  • Each configuration of the positive electrode 10 and the negative electrode 20 in the secondary battery having the second winding structure is, for example, that of the positive electrode 10 and the negative electrode 22 in the secondary battery having the first winding structure, except as described below. It is the same as each structure.
  • the structure of the press body 300 is the same as that of the press body 200 except for what is demonstrated below, for example.
  • the positive electrode non-forming portion 11 ⁇ / b> S is wound one or more times from the outer end portion in the winding direction of the positive electrode 10.
  • the extension length of the positive electrode non-formation part 11S in the case shown in FIG. 10 is larger than the extension length of the positive electrode non-formation part 11S in the case shown in FIG. This is because, when the secondary battery is crushed, the pressing body 300 is pressed against the positive electrode non-forming portion 11S, so that a low-resistance short-circuit path is easily formed.
  • the positive electrode non-forming part 11 ⁇ / b> S is wound, for example, two or more times from the winding outer end in the winding direction of the positive electrode 10. This is because when the extension length of the positive electrode non-forming portion 11S is increased, a low-resistance short-circuit path is more easily formed when the secondary battery is crushed.
  • the formation range of the inner positive electrode active material layer 12A on the outer winding side and the formation range of the outer positive electrode active material layer 12B on the outer winding side are different from each other, for example. Specifically, since the inner positive electrode active material layer 12A is formed on the positive electrode current collector 11 except for the positive electrode non-forming portion 11S, for example, the position of the end of the positive electrode non-forming portion 11S on the inner side is For example, it coincides with the position of the end portion of the inner positive electrode active material layer 12A on the outer winding side.
  • the position of the end portion of the outer positive electrode active material layer 12B on the outer side of the winding is shifted to the inner side of the winding from the position of the end portion of the inner positive electrode active material layer 12A on the outer side of the winding.
  • the negative electrode non-forming portion 21 ⁇ / b> S is wound one or more times from the winding outer end in the winding direction of the negative electrode 20.
  • the extension length of the negative electrode non-forming part 21S in the case shown in FIG. 10 is larger than the extension length of the negative electrode non-forming part 21S in the case shown in FIG.
  • the pressing body 300 is pressed against the negative electrode non-forming part 21S when the secondary battery is crushed, so that a low-resistance short-circuit path is formed. It is because it becomes easy to form easily.
  • the negative electrode non-forming part 21S is wound, for example, two or more times from the winding end in the winding direction of the negative electrode 20 toward the winding inner side.
  • the positive electrode non-forming part 11 is wound two or more times, when the extension length of the negative electrode non-forming part 21S is increased, a low-resistance short-circuit path is easier when the secondary battery is crushed. This is because it is easily formed.
  • the formation range of the inner negative electrode active material layer 22A on the outer side and the formation range of the outer negative electrode active material layer 22B on the outer side coincide with each other, for example.
  • the inner negative electrode active material layer 22A is formed on the negative electrode current collector 21 except for the negative electrode non-forming portion 21S, for example, the position of the end portion of the negative electrode non-forming portion 21S on the inner side is For example, it coincides with the position of the end of the inner negative electrode active material layer 22A on the outer side.
  • the outer negative electrode active material layer 22B is formed on the negative electrode current collector 21 except for the negative electrode non-forming portion 21S, and therefore the position of the end of the negative electrode non-forming portion 21S on the inner side is, for example, on the outer side of the winding. It corresponds to the position of the end of the outer negative electrode active material layer 22B.
  • the position of the end of the inner positive electrode active material layer 12A on the outer side is, for example, the position of the end of the inner negative electrode active material layer 22A on the outer side and the position of the end of the outer negative electrode active material layer 22B on the outer side. It is shifted to the inside of the winding than each.
  • the pressing body 300 is arranged at a series of arrangement locations described below, for example, as shown in FIG. However, in FIG. 10, for example, in order to collectively describe all the candidates related to the placement location of the pressing body 300, the case where the pressing body 200 is placed at all the placement locations that are candidates is shown.
  • the pressing body 300 It is attached to one or more of the positive electrode non-forming part 11S, the second positive electrode non-forming part 11S, the first negative electrode non-forming part 21S, and the second negative electrode non-forming part 21S. Is preferred. As described above, since the pressing body 300 is pressed against each of the positive electrode non-forming part 11S and the negative electrode non-forming part 21S when the secondary battery is crushed, a low-resistance short-circuit path is easily formed. is there.
  • the secondary battery includes, for example, 16 pressing bodies 300 (311 to 314, 321 to 324, 331 to 334, 341 to 344) as shown in FIG.
  • the secondary battery includes, for example, four pressing bodies 300 (311 to 314) corresponding to the four pressing bodies 200 (211 to 214) in the arrangement region R1.
  • the secondary battery includes, for example, four pressing bodies 300 (321 to 324) corresponding to the four pressing bodies 200 (221 to 224) in the arrangement region R2.
  • the secondary battery includes, for example, four pressing bodies 300 (331 to 334) in the arrangement region R3.
  • the pressing body 331 is attached to the outer surface of the positive electrode current collector 11 (positive electrode non-forming part 11S), for example.
  • the pressing body 332 is attached to the inner surface of the positive electrode current collector 11 (positive electrode non-forming part 11S), for example.
  • the pressing body 333 is attached to the outer surface of the negative electrode current collector 21 (negative electrode non-forming part 21S), for example.
  • the pressing body 334 is attached to the inner surface of the negative electrode current collector 21 (negative electrode non-forming part 21S), for example.
  • the secondary battery includes, for example, four pressing bodies 300 (341 to 344) in the arrangement region R4.
  • the pressing body 341 is attached to, for example, the outer surface of the positive electrode current collector 11 (positive electrode non-forming portion 11S).
  • the pressing body 342 is attached to, for example, the inner surface of the positive electrode current collector 11 (positive electrode non-forming portion 11S).
  • the pressing body 343 is attached to, for example, the outer surface of the negative electrode current collector 21 (negative electrode non-forming portion 21S).
  • the pressing body 344 is attached to, for example, the inner surface of the negative electrode current collector 21 (negative electrode non-forming portion 21S).
  • the wound electrode body 100 has the second winding structure, that is, when each of the positive electrode non-forming part 11S and the negative electrode non-forming part 21S is wound one or more times, when the secondary battery is crushed Since a low-resistance short-circuit path is easily formed, a higher effect can be obtained. In this case, if each of the positive electrode non-forming portion 11S and the negative electrode non-forming portion 21S is wound two or more times, a low-resistance short-circuit path is more easily formed, and thus a higher effect can be obtained. Can do.
  • the positive electrode active material layer 12 and the negative electrode active material layer 22 are compared with the case where the wound electrode body 100 has the first winding structure.
  • Each formation range opposite area of the positive electrode active material layer 12 and the negative electrode active material layer 22 decreases. For this reason, a low-resistance short-circuit path is easily formed using the pressing body 400, but the battery capacity is easily reduced.
  • the wound electrode body 100 may have a third winding structure instead of the first winding structure.
  • the secondary battery having the third winding structure includes a pressing body 400 instead of the pressing body 200.
  • the configurations of the positive electrode 10 and the negative electrode 20 in the secondary battery having the third winding structure are, for example, that of the positive electrode 10 and the negative electrode 22 in the secondary battery having the first winding structure, except as described below. It is the same as each structure. Moreover, the structure of the press body 400 is the same as that of the press body 200 except for what is demonstrated below, for example.
  • the positive electrode non-forming portion 11 ⁇ / b> S is wound from the winding outer end in the winding direction of the positive electrode 10 toward the winding inner side, and the positive electrode non-forming portion 11 ⁇ / b> S.
  • the extension length is, for example, the length of about a half circumference.
  • the formation range of the inner positive electrode active material layer 12A on the outer winding side and the formation range of the outer positive electrode active material layer 12B on the outer winding side are different from each other, for example. Specifically, since the inner positive electrode active material layer 12A is formed on the positive electrode current collector 11 except for the positive electrode non-forming portion 11S, for example, the position of the end of the positive electrode non-forming portion 11S on the inner side is For example, it coincides with the position of the end portion of the inner positive electrode active material layer 12A on the outer winding side.
  • the position of the end portion of the outer positive electrode active material layer 12B on the outer side of the winding is shifted to the inner side of the winding from the position of the end portion of the inner positive electrode active material layer 12A on the outer side of the winding.
  • the negative electrode non-forming portion 21 ⁇ / b> S is wound from the end on the outer side in the winding direction of the negative electrode 20 toward the inner side, and the negative electrode non-forming portion 21 ⁇ / b> S.
  • the extension length is, for example, the length of about a half circumference.
  • the formation range of the inner negative electrode active material layer 22A on the outer side and the formation range of the outer negative electrode active material layer 22B on the outer side are different, for example.
  • the position of the end of the negative electrode non-forming part 21S on the inner side is For example, it coincides with the position of the end of the outer negative electrode active material layer 22B on the winding side.
  • the position of the end of the inner negative electrode active material layer 22A on the outer side of the winding is shifted to the inner side of the winding from the position of the end of the outer negative electrode active material layer 22B on the outer side of the winding.
  • the position of the end portion of the inner positive electrode active material layer 12A on the outer side of the winding is shifted to the inner side of the winding from the position of the end portion of the outer negative electrode active material layer 22B on the outer side of the winding, for example.
  • the pressing body 400 is arranged at a series of arrangement locations described below, for example, as shown in FIG. However, in FIG. 11, for example, in order to collectively describe all candidates related to the placement location of the pressing body 400, the case where the pressing body 200 is placed at all the placement locations that are candidates is shown.
  • the secondary battery includes ten pressing bodies 400 (411 to 414, 421 to 424, 431, and 441) as shown in FIG.
  • the secondary battery includes, for example, four pressing bodies 400 (411 to 414) corresponding to the four pressing bodies 200 (211 to 214) in the arrangement region R1.
  • the secondary battery includes, for example, four pressing bodies 400 (421 to 424) corresponding to the four pressing bodies 200 (221 to 224) in the arrangement region R2.
  • the secondary battery includes, for example, one pressing body 400 (431) corresponding to one pressing body 200 (231) in the arrangement region R3.
  • the secondary battery includes, for example, one pressing body 400 (441) corresponding to one pressing body 200 (241) in the arrangement region R4.
  • the positive electrode active material layer 12 and the negative electrode active material layer 22 are compared with the case where the wound electrode body 100 has the second winding structure.
  • the respective formation ranges (opposite areas of the positive electrode active material layer 12 and the negative electrode active material layer 22) increase. For this reason, a low-resistance short-circuit path is easily formed while ensuring the battery capacity.
  • the pressing body 200 is attached to the wound electrode body 100, but the pressing body 500 may be attached to the exterior material 1 instead of the wound electrode body 100.
  • the secondary battery described here has the same configuration as the secondary battery shown in FIG. 2 except that the pressing body 500 is provided instead of the pressing body 200.
  • the structure of the press body 500 is the same as that of the press body 200 except for what is demonstrated below, for example. That is, the pressing body 500 is arranged in one or more of the arrangement regions R1 to R4.
  • the pressing body 500 may be attached to the inner side (inner surface) of the exterior material 1 in the arrangement regions R1, R4, As shown in FIG. 13 corresponding to FIG. 2, the pressing body 500 (511 ⁇ / b> Q, 514 ⁇ / b> Q) may be attached to the outside (outer surface) of the exterior material 1 in the arrangement regions R ⁇ b> 1, R ⁇ b> 4.
  • the pressing bodies 511 and 514 are attached to the inner surface of the exterior material 1 via an adhesive 51, for example, and the pressing bodies 511Q and 514Q are attached to the outer surface of the exterior material 1 via an adhesive 52, for example. It is attached. Unlike the adhesive 50, each of the adhesives 51 and 52 may not have conductivity. Also in these cases, since the pressing body 500 performs the same function as the pressing body 200, the same effect as when the pressing body 200 is attached to the wound electrode body 100 can be obtained.
  • the pressing body 500 described here is not limited to, for example, the case where the wound electrode body 100 has the first winding structure (FIG. 2), and the case where the winding electrode body 100 has the second winding structure (FIG. 10). ) And the case where the wound electrode body 100 has a third winding structure (FIG. 11).
  • the pressing bodies 200, 300, and 400 are attached to the wound electrode body 100 rather than the case where the pressing body 500 is attached to the exterior material 1. Since the pressing bodies 200, 300, and 400 are arranged closer to the wound electrode body 100 than the pressing body 500, the pressing bodies 200, 300, and 400 are respectively applied to the positive electrode 10 and the negative electrode 20 from the initial stage when the secondary battery is crushed. It is because it becomes easy to be pressed.
  • Secondary batteries can be used in machines, equipment, instruments, devices, and systems (aggregates of multiple devices) that can be used as power sources for driving and power storage sources for power storage. If there is, it will not be specifically limited.
  • the secondary battery used as a power source may be a main power source or an auxiliary power source.
  • the main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
  • the auxiliary power supply may be, for example, a power supply used instead of the main power supply, or a power supply that can be switched from the main power supply as necessary.
  • the type of main power source is not limited to the secondary battery.
  • the usage of the secondary battery is, for example, as follows.
  • Electronic devices including portable electronic devices
  • portable electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals.
  • It is a portable living device such as an electric shaver.
  • Storage devices such as backup power supplies and memory cards.
  • Electric tools such as electric drills and electric saws.
  • It is a battery pack that is mounted on a notebook computer as a detachable power source.
  • Medical electronic devices such as pacemakers and hearing aids.
  • An electric vehicle such as an electric vehicle (including a hybrid vehicle).
  • It is a power storage system such as a home battery system that stores power in case of an emergency.
  • the secondary battery may be used in other applications than the above-described applications.
  • the laminate film type secondary battery (lithium ion secondary battery) shown in FIG. 1 to FIG. 7 and FIG. 10 to FIG. 13 was fabricated according to the procedure described below.
  • the positive electrode 10 When the positive electrode 10 is manufactured, first, 91 parts by mass of a positive electrode active material (LiCoO 2 ), 3 parts by mass of a positive electrode binder (polyvinylidene fluoride), and 6 parts by mass of a positive electrode conductive agent (graphite) are mixed. Thus, a positive electrode mixture was obtained. Subsequently, the positive electrode mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and the organic solvent was stirred to obtain a paste-like positive electrode mixture slurry.
  • a positive electrode active material LiCoO 2
  • 3 parts by mass of a positive electrode binder polyvinylidene fluoride
  • a positive electrode conductive agent graphite
  • the non-positive electrode is formed by adjusting the respective formation ranges of the inner positive electrode active material layer 12A and the outer positive electrode active material layer 12B. While forming the formation part 11S, the press body 200,300,400,500 (aluminum plate) was attached to the positive electrode collector 11 containing the positive electrode non-formation part 11S. In this case, for the purpose of comparison, the pressing bodies 200, 300, 400, 500 were not attached to the positive electrode current collector 11 as necessary.
  • Table 1 and Table 2 show details regarding the presence / absence of each of the pressing bodies 200, 300, and 400, the mounting positions (arrangement regions R1 to R4), the number of mounting, the mounting method, the thickness T ( ⁇ m), and the width W (mm) As shown.
  • Table 1 and Table 2 in order to specify the attachment position and the number of attachments of the pressing bodies 200, 300, 400, 500, the reference numerals shown in FIGS. 311 for the body 300, 411 for the pressing body 400, and 611 for the pressing body 600).
  • the details regarding the mounting position are as follows. In “directly”, as shown in FIGS. 2, 10, and 11, the pressing bodies 200, 300, and 400 are directly attached using a welding method. In “indirect”, as shown in FIGS. 6, 12, and 13, the pressing bodies 200 and 600 are indirectly attached using the adhesives 50, 51, and 52. In “direct + indirect”, as shown in FIG. 7, after the first pressing body 200 is directly attached using a welding method, the second pressing body 200 is indirectly bonded using the adhesive 50. Attached. In “indirect + indirect”, the first pressing body 200 was indirectly attached using the adhesive 50, and then the second pressing body 200 was indirectly attached again using the adhesive 50.
  • a negative electrode active material graphite
  • a negative electrode binder polyvinylidene fluoride
  • Inner negative electrode active material layer 22A and outer negative electrode active material layer 22B were formed. In this case, as shown in FIGS. 2, 10, and 11, the formation ranges of the inner negative electrode active material layer 22A and the outer negative electrode active material layer 22B were adjusted. Finally, the negative electrode active material layer 22 was compression molded using a roll press.
  • the negative electrode non-electrode is formed by adjusting the respective formation ranges of the inner negative electrode active material layer 22A and the outer negative electrode active material layer 22B. While forming the formation part 21S, the press body 200 (aluminum plate) was attached to the negative electrode current collector 21 including the negative electrode non-formation part 21S. In this case, for comparison, the pressing body 200 was not attached to the negative electrode current collector 21 as necessary.
  • an electrolyte salt lithium hexafluorophosphate
  • a solvent ethylene carbonate and ethylmethyl carbonate
  • the content of the electrolyte salt was 1 mol / kg with respect to the solvent.
  • the positive electrode lead 2 made of aluminum is welded to the positive electrode 10 (positive electrode current collector 11), and the negative electrode lead 3 made of copper is welded to the negative electrode (negative electrode current collector 21).
  • the wound body was formed by sticking a protective tape on the outermost periphery part of the laminated body.
  • the adhesion film is interposed between the exterior material 1 and the negative electrode lead 4.
  • the spirally wound electrode body 100 was formed, and the spirally wound electrode body 100 was enclosed in the exterior material 1, so that a laminated film type lithium ion secondary battery was completed.
  • the wound electrode body 100 has a first winding structure, a second winding structure, and a third winding.
  • One of the structures has a winding structure.
  • the types of winding structures of the wound electrode body 100 are as shown in Table 1 and Table 2.
  • the pressing body 200 (211, 212, 221, 222) is attached to the positive electrode non-forming portion 11 ⁇ / b> S.
  • the pressing body 200 (231, 241) is not formed on the positive electrode non-forming portion 11S.
  • the press body 200 (213, 214, 223, 224) is attached to the negative electrode non-formation part 21S.
  • the thickness (dimension in the Z-axis direction: mm) of the wound electrode body 100 was measured by recovering the molded wound electrode body 100 from the secondary battery.
  • Table 1 and Table 2 were obtained.
  • the thickness of the wound electrode body 100 having the first winding structure is 3.85 mm
  • the thickness of the wound electrode body 100 having the second winding structure is The thickness was 3.96 mm
  • the thickness of the wound electrode body 100 having the third winding structure was 3.88 mm.
  • the thickness described here is the volume (the positive electrode 10 and the negative electrode 20) of the wound electrode body 100 for each type of the wound electrode body 100 (first winding structure, second winding structure, and third winding structure). This represents the reference value of each number of turns).
  • the collision safety (normal temperature collision safety and high temperature collision safety) varies greatly depending on the configuration of the secondary battery (the presence or absence of the pressing body 200, 300, 400, 500). did.
  • the presence or absence of the pressing bodies 200, 300, 400, 500 for each type of winding structure (the first winding structure, the second winding structure, and the third winding structure) of the wound electrode body 100 is a collision safety. The effect on sex will be explained.
  • the secondary battery includes the pressing bodies 200 and 500 (Experimental Examples 1 to 16, 19, and 20)
  • good high temperature collision safety is obtained depending on the configuration of the pressing bodies 200 and 500.
  • good room temperature collision safety was obtained without depending on the configuration of the pressing bodies 200 and 500.
  • the battery thickness slightly increased.
  • the battery thickness is slightly smaller than when the wound electrode body 100 has the first winding structure. While increasing, collision safety is improved, and it is considered that room temperature collision safety is improved.
  • the present technology has been described with reference to one embodiment and an example.
  • the aspect of the present technology is not limited to the aspect described in the embodiment and the example, and various modifications can be made with respect to the aspect of the present technology. Is possible.
  • the secondary battery of the present technology is a laminate film type secondary battery
  • the present invention is not limited thereto.
  • the secondary battery of the present technology may be another type of secondary battery such as a square secondary battery.
  • the secondary battery of the present technology is a lithium ion secondary battery using lithium as an electrode reactant
  • the present invention is not limited thereto.
  • the secondary battery of the present technology may be another secondary battery using a substance other than lithium as the electrode reactant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池は、(A)セパレータを介して互いに積層されると共に所定の方向に延在する巻回軸を中心として巻回された正極および負極を含み、(B)巻回軸の延在方向と交差する断面の形状が互いに交差する方向に延在する長軸および短軸により画定される扁平な形状であり、(C)断面が長軸の延在方向において互いに対向する一対の湾曲外縁と短軸の延在方向において互いに対向する一対の平坦外縁とを有し、(D)一対の湾曲外縁のそれぞれに接する一対の接線と一対の平坦外縁のそれぞれに沿った一対の沿線とにより4つの角部を有する四角形領域が画定される電池素子と、その電池素子を収納する収納部材と、4つの角部に対応する4つの領域のうちの少なくとも1つに配置された押圧部材とを備える。

Description

二次電池
 本技術は、収納部材の内部に電池素子が収納された二次電池に関する。
 携帯電話機などの多様な電子機器が広く普及しており、その電子機器の小型化、軽量化および長寿命化が要望されている。そこで、電源として、小型かつ軽量であると共に高エネルギー密度を得ることが可能である二次電池の開発が進められている。
 二次電池は、収納部材の内部に電池素子を備えている。この電池素子は、正極および負極がセパレータを介して互いに積層されると共にその正極、負極およびセパレータが巻回された巻回構造を有している。
 二次電池の構成は、電池特性に大きな影響を及ぼすため、その二次電池の構成に関しては、さまざまな検討がなされている。具体的には、積層構造を有する電池素子を備えた二次電池の安全性を向上させるために、その電池素子の外側に導電性平板部材が配置されていると共に(例えば、特許文献1,2参照。)、最外側の集電体の厚さがその最外周よりも内側の集電体の厚さよりも大きくなっている(例えば、特許文献3参照。)。
特開2001-297795号公報 特開2001-068156号公報 特開2002-110170号公報
 二次電池の安全性を向上させるために様々な検討がなされているが、その安全性は未だ十分でないため、改善の余地がある。特に、優れた電池特性を得るためには、安全性だけを向上させるだけでなく、電池容量を担保することも重要である。
 本技術はかかる問題点に鑑みてなされたもので、その目的は、優れた電池特性を得ることが可能な二次電池を提供することにある。
 本技術の一実施形態の二次電池は、(A)セパレータを介して互いに積層されると共に所定の方向に延在する巻回軸を中心として巻回された正極および負極を含み、(B)巻回軸の延在方向と交差する断面の形状が互いに交差する方向に延在する長軸および短軸により画定される扁平な形状であり、(C)断面が長軸の延在方向において互いに対向する一対の湾曲外縁と短軸の延在方向において互いに対向する一対の平坦外縁とを有し、(D)一対の湾曲外縁のそれぞれに接する一対の接線と一対の平坦外縁のそれぞれに沿った一対の沿線とにより4つの角部を有する四角形領域が画定される電池素子と、その電池素子を収納する収納部材と、その4つの角部に対応する4つの領域のうちの少なくとも1つに配置された押圧部材とを備えたものである。
 上記した4つの領域は、巻回軸の延在方向と交差する電池素子の断面の形状が長軸および短軸(一対の湾曲外縁および一対の平坦外縁)により画定されると共に、その一対の湾曲外縁および一対の平坦外縁に基づいて一対の接線および一対の沿線が規定されるため、その一対の接線および一対の沿線により四角形領域が画定される場合において、その四角形領域が有する4つの角部に対応する4つの領域である。この4つの領域の詳細(定義)に関しては、後述する。
 本技術の一実施形態の二次電池によれば、巻回軸を中心として巻回された正極および負極を含むと共に断面の形状が扁平な形状である電池素子が収納部材の内部に収納されており、その断面の形状により画定される4つの角部に対応する4つの領域のうちの少なくとも1つに押圧部材が配置されているので、優れた電池特性を得ることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の一実施形態の二次電池の構成(第1巻回構造)を表す斜視図である。 図1に示した二次電池の構成を表す断面図である。 図2に示した巻回電極体の構成を表す平面図である。 図2に示した巻回電極体の構成の一部を拡大して表す断面図である。 図2に示した巻回電極体の断面構成を模式的に表す図である。 図2に示した押圧体の構成を拡大して表す断面図である。 図2に示した押圧体の他の構成を拡大して表す断面図である。 変形例1の二次電池の構成を表す断面図である。 変形例2の二次電池の構成を表す平面図である。 変形例3の二次電池の構成(第2巻回構造)を表す断面図である。 変形例4の二次電池の構成(第3巻回構造)を表す断面図である。 変形例5の二次電池の構成を表す断面図である。 変形例6の二次電池の構成を表す断面図である。
 以下、本技術の一実施形態に関して、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池
  1-1.全体構成
  1-2.巻回電極体の構成
  1-3.押圧体の構成
  1-4.動作
  1-5.製造方法
  1-6.作用および効果
 2.変形例
 3.二次電池の用途
<1.二次電池>
 まず、本技術の一実施形態の二次電池に関して説明する。
 ここで説明する二次電池は、例えば、電極反応物質の吸蔵現象および電極反応物質の放出現象を利用して電池容量(後述する負極20の容量)が得られる二次電池である。この電極反応物質は、電極反応(いわゆる充電反応)に関わる物質であり、その電極反応物質の種類は、特に限定されない。
 以下では、例えば、電極反応物質としてリチウムを用いる場合に関して説明する。電極反応物質としてリチウムを用いた二次電池は、いわゆるリチウムイオン二次電池である。
<1-1.全体構成>
 図1は、二次電池の斜視構成を表しており、図2は、図1に示した二次電池の断面構成を表している。図3は、図2に示した巻回電極体100の平面構成を表しており、図4は、図2に示した巻回電極体100の断面構成の一部を拡大している。図5は、図2に示した押圧体200の配置場所を説明するために、その図2に示した巻回電極体100の断面構成を模式的に表している。図6および図7のそれぞれは、図2に示した押圧体200の断面構成を拡大している。
 ただし、図2では、XZ面に沿った二次電池の断面構成を示していると共に、図4では、XZ面に沿った巻回電極体100の断面構成を示している。図3では、Z軸方向から見た巻回電極体100の平面構成を示していると共に、後述する圧潰試験に用いられる丸棒600の輪郭を破線で示している。図6および図7のそれぞれでは、押圧体200が取り付けられる正極集電体11(正極非形成部11S)の一部も併せて示している。
 この二次電池は、例えば、図1および図2に示したように、フィルム状の外装材1と、巻回電極体100と、押圧体200とを備えている。ここで説明する二次電池は、例えば、フィルム状の外装材1の内部に巻回電極体100が収納されたラミネートフィルム型の二次電池である。
 巻回電極体100には、液状の電解質である電解液が含浸されていると共に、正極リード2および負極リード3が取り付けられている。外装材1と正極リード2との間には、例えば、密着フィルム4が挿入されていると共に、外装材1と負極リード3との間には、例えば、密着フィルム5が挿入されている。
 ただし、図1では、外装材1および巻回電極体100のそれぞれの構成を見やすくするために、その外装材1の内部に巻回電極体100が収納される前の状態、すなわち外装材1と巻回電極体100とが互いに離間された状態を示している。
[外装材]
 外装材1は、巻回電極体100などを収納するフィルム状の収納部材である。この外装材1は、例えば、図1に示したように、矢印Rの方向に折り畳み可能である1枚のフィルムであり、その外装材1には、例えば、巻回電極体100を収納するための窪み1Uが設けられている。
 具体的には、外装材1は、例えば、柔軟性(または可撓性)を有するフィルムであり、単層でもよいし、多層でもよい。中でも、外装材1は、多層のラミネートフィルムであることが好ましい。ラミネートフィルムの層構成は、特に限定されないが、例えば、融着層、金属層および表面保護層が内側からこの順に積層された3層構成である。この場合には、例えば、巻回電極体100を介して融着層同士が互いに対向するように1枚の外装材1が折り畳まれたのち、その融着層の外周縁部同士が互いに融着されている。
 融着層は、例えば、ポリエチレンなどの高分子化合物を含むフィルムである。金属層は、例えば、アルミニウムなどの金属材料を含む金属箔である。表面保護層は、例えば、ナイロンなどの高分子化合物を含むフィルムである。
 中でも、外装材1は、融着層(ポリエチレンフィルム)、金属層(アルミニウム箔)および表面保護層(ナイロンフィルム)が内側からこの順に積層された3層のアルミラミネートフィルムであることが好ましい。優れた封止性および優れた耐久性が得られるからである。
 なお、後述する巻回軸J(図2参照)の延在方向と交差する外装材1の断面(XZ面)の形状(外装材1の外縁により画定される形状)は、例えば、図2に示したように、4個の凹状の角部C(C11~C14)を有する四角形(長方形)である。
[巻回電極体]
 巻回電極体100は、充放電反応を進行させる二次電池の主要部であり、いわゆる電池素子である。この巻回電極体10は、例えば、正極10と、負極20と、セパレータ30と、液状の電解質である電解液とを含んでいる。
 具体的には、巻回電極体100は、例えば、図2~図4に示したように、正極10および負極20がセパレータ30を介して互いに積層されたのち、その正極10、負極20およびセパレータ30が巻回軸Jを中心として巻回された巻回構造体である。この場合には、例えば、正極10が外側に配置されると共に負極20が内側に配置されるように、その正極10および負極20が巻回されている。この巻回軸Jは、所定の方向(Y軸方向)に延在する軸(仮想軸)である。なお、巻回電極体100の表面は、例えば、保護テープなどの被覆材により保護されていてもよい。
 二次電池の製造工程では、正極10、負極20およびセパレータ30が巻回軸Jを中心として巻回されることにより巻回電極体100が形成されたのち、その巻回電極体100がZ軸方向において加圧成形されている。このため、巻回軸Jの延在方向(Y軸方向)と交差する巻回電極体100の断面(XZ面)の形状は、図2および図5に示したように、扁平な形状である。すなわち、巻回電極体100の断面の形状は、互いに交差する方向に延在する長軸KXおよび短軸KZ、すなわちX軸方向に延在する長軸KXおよびZ軸方向に延在する短軸KZにより画定される略楕円形である。
 なお、巻回電極体100の詳細な構成(断面の形状に関する詳細を含む。)に関しては、後述する。
[押圧体]
 押圧体200は、後述する二次電池の圧潰時において、その二次電池が熱暴走することを抑制するために導入されている。具体的には、押圧体200は、二次電池の圧潰時において、その圧潰時の力を利用して二次電池(正極10および負極20)を押圧する押圧部材であり、その二次電池が熱暴走することを抑制するために、意図的かつ積極的に巻回電極体100を破壊する。押圧体200の数は、特に限定されないため、1個だけでもよいし、2個以上でもよい。
 二次電池が押圧体200を備えている詳細な理由は、以下で説明する通りである。以下では、例えば、二次電池の圧潰試験時において、図3に示した丸棒600を用いて巻回電極体100を押圧する場合に関して説明する。この丸棒600は、例えば、X軸方向に延在する円筒状の部材である。
 例えば、図3に示したように、巻回電極体100の巻回方向(X軸方向)と同様の方向に延在するように丸棒600を配置したのち、Z軸方向において丸棒600を巻回電極体100に向かって押し下げることにより、その二次電池に丸棒600を押し当てる。この場合には、丸棒600により巻回電極体100が局所的に圧潰されることにより、正極1および負極20のそれぞれが局所的に押圧される。
 二次電池が押圧体200を備えていない場合には、巻回電極体100に丸棒600を押し当てると、その丸棒600だけが正極10および負極20のそれぞれに押し当てられるため、その丸棒600の押当力だけを利用して正極10および負極20のそれぞれが押圧される。
 この場合には、正極10および負極20のそれぞれに十分な押当力が供給されないため、高抵抗の短絡経路が形成される程度まで後述する正極活物質層12および負極活物質層22が互いに接近しやすくなるのに対して、低抵抗の短絡経路が形成される程度まで後述する正極集電体11および負極集電体21が互いに接近しにくくなる。これにより、二次電池の圧潰時において正極集電体11および負極集電体21が互いに十分に接触できないため、巻回電極体100中では、正極活物質層12と負極活物質層22との接触に起因した高抵抗の短絡経路が形成されやすくなるのに対して、正極集電体11と負極集電体21との接触に起因した低抵抗の短絡経路が形成されにくくなる。
 巻回電極体100中において、低抵抗の短絡経路が形成されずに高抵抗の短絡経路だけが形成されると、その高抵抗の短絡経路に電流が集中しやすくなるため、その高抵抗の短絡経路において著しく発熱しやすくなる。よって、二次電池において蓄熱されやすくなるため、その蓄熱された熱に起因して二次電池が熱暴走しやすくなる。
 これに対して、二次電池が押圧体200を備えている場合には、巻回電極体100に丸棒600を押し当てると、その丸棒600と共に押圧体200が正極10および負極20のそれぞれに押し当てられるため、その丸棒600の押当力と共に押圧体200の押当力を利用して正極10および負極20のそれぞれが押圧される。
 この場合には、正極10および負極20のそれぞれに十分な押当力が供給されるため、高抵抗の短絡経路が形成される程度まで正極活物質層12および負極活物質層22が互いに接近しやすくなるだけでなく、低抵抗の短絡経路が形成される程度まで正極集電体11および負極集電体21も互いに接近しやすくなる。これにより、二次電池の圧潰時において正極集電体11および負極集電体21が互いに十分に接触できるため、巻回電極体100中では、正極活物質層12と負極活物質層22との接触に起因した高抵抗の短絡経路が形成されると共に、正極集電体11と負極集電体21との接触に起因した低抵抗の短絡経路も形成されやすくなる。
 巻回電極体100中において、高抵抗の短絡経路が形成されるだけでなく低抵抗の短絡経路も形成されると、いわゆる電流の逃げ道が形成されるため、その電流の一部が低抵抗の短絡経路に流れる。これにより、高抵抗の短絡経路に電流が集中しにくくなるため、その高抵抗の短絡経路において発熱しにくくなる。よって、二次電池の圧潰時において蓄熱されにくくなるため、その二次電池が熱暴走しにくくなる。
 押圧体200の数は、上記したように、特に限定されないが、中でも、できるだけ多いことが好ましい。二次電池の圧潰時において、押圧体200を利用して低抵抗の短絡経路がより形成されやすくなるため、その二次電池がより熱暴走しにくくなるからである。
 なお、押圧体200の詳細な構成(配置場所に関する詳細を含む。)に関しては、後述する。
[正極リード]
 正極リード2は、正極10に取り付けられた正極端子であり、より具体的には、例えば、後述する正極集電体11(図2および図4参照)に接続されている。
 この正極リード2は、例えば、外装材1の内部から外部に向かって導出されており、アルミニウムなどの導電性材料を含んでいる。正極リード2の立体的形状は、例えば、薄板状および網目状などである。
[負極リード]
 負極リード3は、負極20に取り付けられた負極端子であり、より具体的には、例えば、後述する負極集電体21(図2および図4参照)に接続されている。
 この負極リード3は、例えば、外装材1の内部から外部に向かって導出されており、銅などの導電性材料を含んでいる。負極リード3の導出方向は、例えば、正極リード2の導出方向と同様であると共に、負極リード3の立体的形状は、例えば、正極リード2の立体的形状と同様である。
[密着フィルム]
 密着フィルム4は、外装材1の内部に外気が侵入することを防止する部材であり、例えば、密着性材料を含んでいる。この密着性材料は、正極リード2に対して密着性を有する材料であり、例えば、ポリプロピレンなどのポリオレフィン樹脂である。密着フィルム5の構成は、例えば、負極リード3に対して密着性を有する密着性材料を含んでいることを除いて、密着フィルム4の構成と同様である。密着フィルム5に用いられる密着性材料は、例えば、密着性フィルム4に用いられる密着性材料と同様である。
<1-2.巻回電極体の構成>
 巻回電極体100は、例えば、上記したように、正極10と、負極20と、セパレータ30とを含んでいる。
[正極]
 正極10は、例えば、図2および図4に示したように、正極集電体11と、その正極集電体11に形成された正極活物質層12とを含んでいる。ただし、正極活物質層12は、例えば、正極集電体11の一部だけに形成されている。正極集電体11に対する正極活物質層12の形成範囲の詳細に関しては、後述する。
(正極集電体)
 正極集電体11は、例えば、アルミニウムなどの導電性材料を含んでいる。この正極集電体11は、単層でもよいし、多層でもよい。
(正極活物質層)
 正極活物質層12は、例えば、正極集電体11の内側(巻回軸Jに近い側)の面に形成された内側正極活物質層12Aと、その正極集電体11の外側(巻回軸Jから遠い側)の面に形成された外側正極活物質層12Bとを含んでいる。図4では、正極10のうち、正極集電体11に内側正極活物質層12Aおよび外側正極活物質層12Bの双方が形成されている部分を示している。
 この正極活物質層12は、正極活物質として、リチウムを吸蔵可能であると共にリチウムを放出可能である正極材料を含んでいる。ただし、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料を含んでいてもよい。
 正極材料は、リチウム含有化合物を含んでいる。高いエネルギー密度が得られるからである。リチウム含有化合物の種類は、特に限定されないが、例えば、リチウム含有複合酸化物およびリチウム含有リン酸化合物などである。
 リチウム含有複合酸化物は、リチウムと1種類または2種類以上の他元素とを構成元素として含む酸化物の総称であり、例えば、層状岩塩型およびスピネル型などの結晶構造を有している。リチウム含有リン酸化合物は、リチウムと1種類または2種類以上の他元素とを構成元素として含むリン酸化合物の総称であり、例えば、オリビン型などの結晶構造を有している。
 他元素は、リチウム以外の元素である。他元素の種類は、特に限定されないが、中でも、長周期型周期表のうちの2族~15族に属する元素であることが好ましい。高い電圧が得られるからである。具体的には、他元素は、例えば、ニッケル、コバルト、マンガンおよび鉄などである。
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。スピネル型の結晶構造を有するリチウム含有複合酸化物は、例えば、LiMnなどである。オリビン型の結晶構造を有するリチウム含有リン酸化合物は、例えば、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。
 正極結着剤は、例えば、合成ゴムおよび高分子化合物などを含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、例えば、ポリフッ化ビニリデンおよびポリイミドなどである。
 正極導電剤は、例えば、炭素材料などの導電性材料を含んでおり、その炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、正極導電剤は、金属材料および導電性高分子などでもよい。
(正極活物質層の形成範囲)
 正極10では、例えば、上記したように、正極活物質層12が正極集電体11の一部だけに形成されている。
 具体的には、正極集電体11は、例えば、図2に示したように、内側正極活物質層12Aおよび外側正極活物質層12Bの双方が形成されていない正極非形成部11Sを含んでいる。この正極非形成部11Sは、例えば、正極10の巻回方向における巻外側の端部から巻内側に向かって延在している。正極非形成部11Sの延在長さ(正極10の巻回方向における寸法)は、特に限定されないが、例えば、巻外側の端部から約半周分の長さである。
 巻外側における内側正極活物質層12Aの形成範囲と巻外側における外側正極活物質層12Bの形成範囲とは、例えば、互いに異なっている。具体的には、内側正極活物質層12Aは、例えば、正極非形成部11Sを除いて正極集電体11に形成されているため、巻内側における正極非形成部11Sの端部の位置は、例えば、巻外側における内側正極活物質層12Aの端部の位置に一致している。巻外側における外側正極活物質層12Bの端部の位置は、例えば、巻外側における内側正極活物質層12Aの端部の位置よりも巻内側にずれている。
 なお、巻外側および巻内側のそれぞれにおける内側正極活物質層12Aの端部およびその近傍には、例えば、その端部に起因する段差の影響を抑制するために、段差緩和用のテープが設けられていてもよい。同様に、巻外側および巻内側のそれぞれにおける外側正極活物質層12Bの端部およびその近傍には、例えば、段差緩和用のテープが設けられていてもよい。
[負極]
 負極20は、例えば、図2および図4に示したように、負極集電体21と、その負極集電体21に形成された負極活物質層22とを含んでいる。ただし、負極活物質層22は、例えば、負極集電体21の一部だけに形成されている。負極集電体21に対する負極活物質層22の形成範囲の詳細に関しては、後述する。
(負極集電体)
 負極集電体21は、例えば、銅などの導電性材料を含んでいる。この負極集電体21は、単層でもよいし、多層でもよい。負極集電体21の表面は、電解法などを用いて粗面化されていることが好ましい。いわゆるアンカー効果を利用して、負極集電体21に対する負極活物質層22の密着性が向上するからである。
(負極活物質層)
 負極活物質層22は、例えば、負極集電体21の内側の面に形成された内側負極活物質層22Aと、その負極集電体21の外側の面に形成された外側負極活物質層22Bとを含んでいる。図4では、負極20のうち、負極集電体21に内側負極活物質層22Aおよび外側負極活物質層22Bの双方が形成されている部分を示している。
 この負極活物質層22は、負極活物質として、リチウムを吸蔵可能であると共にリチウムを放出可能である負極材料を含んでいる。ただし、負極活物質層22は、さらに、負極結着剤および負極導電剤などの他の材料を含んでいてもよい。
 充電途中において意図せずにリチウム金属が負極20の表面に析出することを防止するために、充電可能である負極材料の容量は、正極10の放電容量よりも大きいことが好ましい。すなわち、負極材料の電気化学当量は、正極10の電気化学当量よりも大きいことが好ましい。
 負極材料の種類は、特に限定されないが、例えば、炭素材料および金属系材料などである。
 炭素材料は、炭素を構成元素として含む材料の総称である。リチウムの吸蔵時およびリチウムの放出時において炭素材料の結晶構造はほとんど変化しないため、高いエネルギー密度が安定に得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層22の導電性が向上するからである。
 この炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素に関する(002)面の面間隔は、0.37nm以上であることが好ましいと共に、黒鉛に関する(002)面の面間隔は、0.34nm以下であることが好ましい。
 より具体的には、炭素材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類は、例えば、ピッチコークス、ニードルコークスおよび石油コークスなどを含む。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)された焼成物である。この他、炭素材料は、例えば、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。炭素材料の形状は、例えば、繊維状、球状、粒状および鱗片状などである。
 金属系材料は、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称である。高いエネルギー密度が得られるからである。
 この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの1種類または2種類以上の相を含む材料でもよい。ただし、合金には、2種類以上の金属元素からなる材料だけでなく、1種類または2種類以上の金属元素と1種類または2種類以上の半金属元素とを含む材料も含まれる。また、合金は、1種類または2種類以上の非金属元素を含んでいてもよい。金属系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。
 金属元素および半金属元素のそれぞれは、リチウムと合金を形成可能である。具体的には、金属元素および半金属元素は、例えば、マグネシウム、ホウ素、アルミニウム、ガリウム、インジウム、ケイ素、ゲルマニウム、スズ、鉛、ビスマス、カドミウム、銀、亜鉛、ハフニウム、ジルコニウム、イットリウム、パラジウムおよび白金などである。
 中でも、ケイ素およびスズが好ましく、ケイ素がより好ましい。リチウムの吸蔵能力が優れていると共にリチウムの放出能力が優れているため、著しく高いエネルギー密度が得られるからである。
 具体的には、金属系材料は、ケイ素の単体でもよいし、ケイ素の合金でもよいし、ケイ素の化合物でもよいし、スズの単体でもよいし、スズの合金でもよいし、スズの化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの1種類または2種類以上の相を含む材料でもよい。ここで説明する単体は、あくまで一般的な単体を意味しているため、その単体は、微量の不純物を含んでいてもよい。すなわち、単体の純度は、必ずしも100%に限られない。
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどを含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などを含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の構成元素を含んでいてもよい。
 ケイ素の合金およびケイ素の化合物は、例えば、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、およびLiSiOなどである。ただし、vの範囲は、例えば、0.2<v<1.4でもよい。
 スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどを含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などを含んでいる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金に関して説明した一連の構成元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
 スズの合金およびスズの化合物は、例えば、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。
 中でも、負極材料は、以下で説明する理由により、炭素材料および金属系材料の双方を含んでいることが好ましい。
 金属系材料、特に、ケイ素を構成元素として含む材料などは、理論容量が高いという利点を有する反面、充放電時において激しく膨張および収縮しやすいという懸念点を有する。一方、炭素材料は、理論容量が低いという懸念点を有する反面、充放電時において膨張および収縮しにくいという利点を有する。よって、炭素材料と金属系材料とを併用することにより、高い理論容量(すなわち電池容量)が得られながら、充放電時において負極活物質層22の膨張および収縮が抑制される。
 負極結着剤に関する詳細は、例えば、上記した正極結着剤に関する詳細と同様である。負極導電剤に関する詳細は、例えば、上記した負極導電剤に関する詳細と同様である。
 負極活物質層22の形成方法は、特に限定されないが、例えば、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などである。塗布法は、例えば、粒子(粉末)状の負極活物質と負極結着剤などとの混合物が有機溶剤などにより溶解または分散された溶液(塗布液)を負極集電体21に塗布する方法である。気相法は、例えば、物理堆積法および化学堆積法などであり、より具体的には、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長法(CVD)およびプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法および無電解鍍金法などである。溶射法は、溶融状態または半溶融状態の負極活物質を負極集電体21に噴き付ける方法である。焼成法は、例えば、塗布法を用いて負極集電体21に塗布液を塗布したのち、その塗布液(塗膜)を負極結着剤などの融点よりも高い温度で熱処理する方法であり、より具体的には、雰囲気焼成法、反応焼成法およびホットプレス焼成法などである。
(負極活物質層の形成範囲)
 負極20では、例えば、上記したように、負極活物質層22が負極集電体21の一部だけに形成されている。
 具体的には、負極集電体21は、例えば、図2に示したように、内側負極活物質層22Aおよび外側負極活物質層22Bの双方が形成されていない負極非形成部21Sを含んでいる。この負極非形成部21Sは、例えば、負極20の巻回方向における巻外側の端部から巻内側に向かって延在している。負極非形成部21Sの延在長さ(負極20の巻回方向における寸法)は、特に限定されないが、例えば、巻外側の端部から約半周分の長さである。
 巻外側における内側負極活物質層22Aの形成範囲と巻外側における外側負極活物質層22Bの形成範囲とは、例えば、互いに一致している。具体的には、内側負極活物質層22Aは、例えば、負極非形成部21Sを除いて負極集電体21に形成されているため、巻内側における負極非形成部21Sの端部の位置は、例えば、巻外側における内側負極活物質層22Aの端部の位置に一致している。外側負極活物質層22Bは、例えば、負極非形成部21Sを除いて負極集電体21に形成されているため、巻内側における負極非形成部21Sの端部の位置は、例えば、巻外側における外側負極活物質層22Bの端部の位置に一致している。
 巻外側における内側負極活物質層22Aの端部の位置および巻外側における外側負極活物質層22Bの端部の位置のそれぞれは、例えば、巻外側における内側正極活物質層12Aの端部の位置および巻外側における外側正極活物質層12Bの端部の位置のそれぞれよりも、巻外側にずれている。正極活物質層12(内側正極活物質層12Aおよび外側正極活物質層12B)と負極活物質層22(内側負極活物質層22Aおよび外側負極活物質層22B)との対向範囲を確保することにより、充電時においてリチウム金属が析出することを防止するためである。
 なお、負極20においても、例えば、正極10と同様に、段差緩和用のテープが設けられていてもよい。具体的には、例えば、巻外側および巻内側のそれぞれにおける内側負極活物質層22Aの端部およびその近傍に段差緩和用のテープが設けられていてもよいし、巻外側および巻内側のそれぞれにおける外側負極活物質層22Bの端部およびその近傍に段差緩和用のテープが設けられていてもよい。
[セパレータ]
 セパレータ30は、例えば、図2および図4に示したように、正極10と負極20との間に介在しており、その正極10と負極20との接触に起因する短絡を防止しながらリチウムイオンを通過させる。
 このセパレータ30は、例えば、合成樹脂およびセラミックなどの多孔質膜を含んでおり、2種類以上の多孔質膜が互いに積層された積層膜でもよい。合成樹脂は、例えば、ポリエチレンなどである。
 特に、セパレータ30は、例えば、上記した多孔質膜(基材層)と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいてもよい。正極10および負極20のそれぞれに対するセパレータ30の密着性が向上するため、巻回電極体100が歪みにくくなるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても、二次電池の抵抗が上昇しにくくなると共に、その二次電池が膨れにくくなる。
 高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。物理的強度に優れていると共に、電気化学的に安定であるからである。なお、高分子化合物層は、例えば、無機粒子などの絶縁性粒子を含んでいてもよい。安全性が向上するからである。無機粒子の種類は、特に限定されないが、例えば、酸化アルミニウムおよび窒化アルミニウムなどである。
[電解液]
 電解液は、上記したように、巻回電極体100に含浸されている。このため、電解液は、例えば、セパレータ23に含浸されていると共に、正極21および負極22のそれぞれに含浸されている。この電解液は、溶媒および電解質塩を含んでいる。
(溶媒)
 溶媒は、有機溶媒などの非水溶媒を含んでいる。非水溶媒を含む電解液は、いわゆる非水電解液である。
 非水溶媒は、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルおよびニトリル(モノニトリル)化合物などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。
 環状炭酸エステルは、例えば、炭酸エチレンおよび炭酸プロピレンなどである。鎖状炭酸エステルは、例えば、炭酸ジメチルおよび炭酸ジエチルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。鎖状カルボン酸エステルは、例えば、酢酸メチル、酢酸エチルおよびプロピオン酸メチルなどである。ニトリル化合物は、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。
 また、非水溶媒は、例えば、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物(ジニトリル化合物)およびジイソシアネート化合物、リン酸エステルなどである。電解液の化学的安定性が向上するからである。
 不飽和環状炭酸エステルは、例えば、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。ハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンおよび炭酸フルオロメチルメチルなどである。スルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどである。酸無水物は、例えば、無水コハク酸、無水グルタル酸、無水マレイン酸、無水エタンジスルホン酸、無水プロパンジスルホン酸、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。ジニトリル化合物は、例えば、スクシノニトリル、グルタロニトリル、アジポニトリルおよびフタロニトリルなどである。ジイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネートなどである。リン酸エステルは、例えば、リン酸トリメチルおよびリン酸トリエチルなどである。
(電解質塩)
 電解質塩は、例えば、リチウム塩を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の他の塩を含んでいてもよい。この他の塩は、例えば、リチウム以外の軽金属の塩などである。
 リチウム塩は、例えば、フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、ビス(フルオロスルホニル)イミドリチウム(LiN(SOF))、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、ジフルオロリン酸リチウム(LiPF)およびフルオロリン酸リチウム(LiPFO)などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。
 電解質塩の含有量は、特に限定されないが、中でも、溶媒に対して0.3mol/kg~3.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。
<1-3.押圧体の構成>
 押圧体200の構成は、上記したように、二次電池の圧潰時において押圧体200を利用して正極10および負極20のそれぞれを意図的かつ積極的に押圧することにより、正極集電体11と負極集電体21との接触に起因した低抵抗の短絡経路を形成可能であれば、特に限定されない。このため、押圧体200の形成材料は、正極10および負極20のそれぞれを十分に押圧可能な程度の剛性を有していれば、特に限定されない。また、押圧体200は、導電性を有していてもよいし、非導電性(絶縁性)を有していてもよい。もちろん、導電性を有する押圧体200と絶縁性を有する押圧体200とを併用してもよい。
[形成材料]
 押圧体200が絶縁性を有している場合、その押圧体200は、例えば、高分子化合物などの絶縁性材料を含んでいる。高分子化合物の種類は、特に限定されないが、例えば、アクリル樹脂などである。
 押圧体200が導電性を有している場合、その押圧体200は、例えば、金属材料などの導電性材料を含んでいる。金属材料の種類は、特に限定されないが、例えば、アルミニウム、ニッケル、銅およびステンレスなどである。
 この場合には、押圧体200が取り付けられる電極の種類に応じて、適宜、金属材料の種類を選択することができる。具体的には、例えば、押圧体200が正極10(正極集電体11)に取り付けられる場合には、その正極10の電気化学的な電位に応じて金属材料の種類を選択する。また、例えば、押圧体200が負極20(負極集電体21)に取り付けられる場合には、その負極20の電気化学的な電位に応じて金属材料の種類を選択する。
 中でも、押圧体200は、導電性を有していることが好ましい。二次電池の圧潰時において正極10および負極20のそれぞれが押圧された際に、導電性の押圧体200を利用して低抵抗の短絡経路が形成されやすくなるからである。
 この場合には、導電性を有する押圧体200の形成材料は、後述する押圧体200が取り付けられている電極の形成材料と同様の材料であることが好ましい。具体的には、押圧体極200が正極10(正極集電体11)に取り付けられている場合には、その押圧体200の形成材料は、正極集電体11の形成材料と同様であることが好ましい。また、押圧体200が負極20(負極集電体21)に取り付けられている場合には、その押圧体200の形成材料は、負極集電体21の形成材料と同様であることが好ましい。導電性が高い押圧体200を用いることにより、その押圧体200を利用して低抵抗の短絡経路が安定に形成されやすくなるからである。
 また、押圧体200は、正極集電体11に取り付けられていることが好ましく、正極非形成部11Sに取り付けられていることがより好ましい。また、押圧体200は、負極集電体21に取り付けられていることが好ましく、負極非形成部21Sに取り付けられていることがより好ましい。剛性を有する正極集電体11(正極非形成部11S)および負極集電体21(負極非形成部21S)のそれぞれに押圧体200が隣接されていることにより、その押圧体200が正極10および負極20のそれぞれに十分に押し当てられやすくなるからである。
 この場合には、押圧体200が導電性を有していると、二次電池の圧潰時において、正極集電体11および押圧体200のそれぞれの導電性を利用して低抵抗の短絡経路が形成されやすくなると共に、負極集電体21および押圧体200のそれぞれの導電性を利用して低抵抗の短絡経路が形成されやすくなる。
[立体的形状]
 押圧体200の立体的形状は、特に限定されないが、例えば、板状およびワイヤ状などである。もちろん、板状の押圧体200とワイヤ状の押圧体200とを併用してもよい。具体的には、押圧体200が絶縁性を有する場合、その押圧体200は、例えば、高分子シートおよび高分子ワイヤなどである。押圧体200が導電性を有する場合、その押圧体200は、例えば、金属板および金属ワイヤなどである。上記したように、中でも、押圧体200は、導電性を有していることが好ましいため、その押圧体200は、金属板および金属ワイヤの一方または双方であることが好ましい。
 押圧体200の形成範囲は、特に限定されない。中でも、押圧体200は、図3に示したように、巻回軸Jの延在方向に沿った方向(Y軸方向)に延在していることが好ましい。Y軸方向において押圧体200の存在範囲が広くなるため、そのY軸方向におけるいずれの位置において丸棒600が二次電池に押し当てられても、その丸棒600の押当力を利用して押圧体200が正極10および負極20のそれぞれに押し当てられやすくなるからである。
 ここでは、押圧体200は、例えば、図2および図3に示したように、厚さT、幅Wおよび長さLを有する板状である。厚さT、幅Wおよび長さLのそれぞれは、特に限定されないため、任意に設定可能である。
 中でも、厚さT、幅Wおよび長さLのそれぞれは、十分に大きいことが好ましい。厚さTが十分に大きいと、正極10および負極20のそれぞれに押圧体200が押し当てられやすくなるからである。幅Wおよび長さLのそれぞれが十分に大きいと、押圧体200の存在範囲が広くなるため、Y軸方向のうちのいずれの位置において丸棒600が二次電池に押し当てられても、その丸棒600の押当力を利用して押圧体200が正極10および負極20のそれぞれに押し当てられやすくなるからである。これにより、丸棒600の押当位置に依存せずに、正極10および負極20のそれぞれが十分に押圧されやすくなるため、低抵抗の短絡経路が形成されやすくなる。
 図3では、例えば、押圧体200の存在範囲を十分に広くするために、その押圧体200の長さLを十分に大きくした場合を示している。具体的には、押圧体200は、例えば、Y軸方向における巻回電極体100の一端部から、そのY軸方向における巻回電極体100の他端部まで延在している。
[配置場所および配置数]
 押圧体200は、後述する4個の配置領域R(R1~R4)のうちの1個または2個以上に配置されている。以下では、配置領域R1~R4の詳細に関して説明したのち、具体的な押圧体200の配置場所および配置数に関して説明する。
(配置領域)
 図2および図5に示したように、巻回電極体100の断面の形状は、長軸KXおよび短軸KZにより画定されている扁平な形状(略楕円形)である。このため、巻回電極体100の断面(外縁G)は、図5に示したように、一対の湾曲外縁W1,W2と、一対の平坦外縁H1,H2とを有している。
 一対の湾曲外縁W1,W2は、長軸KXの延在方向(X軸方向)において互いに離間されると共に互いに対向する一対の円弧状の外縁である。一対の平坦外縁H1,H2は、短軸KZの延在方向(Z軸方向)において互いに離間されると共に互いに対向する一対の直線状の外縁である。すなわち、巻回電極体100の断面の外縁Gは、一対の湾曲外縁W1,W2と一対の平坦外縁H1,H2とが互いに結合されることにより形成されている。図5では、巻回電極体100を識別しやすくするために、その巻回電極体100に網掛けを施している。
 この場合において、一対の湾曲外縁W1,W2のそれぞれに接する一対の接線SW1,SW2と、一対の平坦外縁H1,H2のそれぞれに沿った一対の沿線SH1,SH2とを規定する。これにより、図5に示したように、4本の直線(一対の接線SW1,SW2および一対の沿線SH1,SH2)により、四角形領域RKが画定される。
 接線SW1は、湾曲外縁W1に接することにより、Z軸方向に延在する仮想線であると共に、接線SW2は、湾曲外縁W2に接することにより、その接線SW1と同様にZ軸方向に延在する仮想線である。沿線SH1は、平坦外縁H1に沿うことにより、X軸方向に延在する仮想線であると共に、沿線SH2は、平坦外縁H2に沿うことにより、その沿線SH1と同様にX軸方向に延在する仮想線である。図5では、仮想線である接線SW1,SW2および沿線SH1,SH2のそれぞれを一点鎖線で示している。
 四角形領域RKは、接線SW1,SW2および沿線SH1,SH2を用いて描かれる仮想領域であり、すなわち接線SW1,SW2および沿線SH1,SH2により囲まれた仮想領域である。この領域は、4本の直線(接線SW1,SW2および沿線SH1,SH2)により囲まれているため、その領域の平面形状は、四角形である。図5では、仮想領域である四角形領域RKを二点鎖線で示している。
 ここでは、四角形領域RKの平面形状は、例えば、矩形(長方形)である。ただし、四角形領域RKの平面形状は、四角形であれば、特に限定されない。このため、四角形領域RKの平面形状は、上記した長方形の他、正方形、平行四辺形および菱形などの他の四角形でもよい。
 四角形領域RKは、図5に示したように、4個の角部C(C1~C4)を有しており、上記した配置領域R1~R4のそれぞれは、角部C1~C4のそれぞれに対応する領域である。すなわち、配置領域R1は、角部C1に対応する領域である。配置領域R2は、角部C2に対応する領域である。配置領域R3は、角部C3に対応する領域である。配置領域R4は、角部C4に対応する領域である。
 詳細には、配置領域R1は、角部C1と巻回軸Jとを結んだ直線上およびその周辺を含む領域である。すなわち、配置領域R1は、直線上の位置およびその周辺の位置を含みながら、角部C1から巻回軸Jに向かって延在する仮想領域である。配置領域R2~R4のそれぞれに関する詳細は、角部C1の代わりに角部C2~C4のそれぞれに基づいて直線が定義されることを除いて、配置領域R1に関する詳細と同様である。よって、配置領域R1~R4は、巻回軸Jを中心として互いに異なる4つの方向(角部C1~C4のそれぞれに向かう方向)に延在する4個の領域である。
(配置場所および配置数)
 押圧体200の配置場所は、配置領域R1~R4のうちの1個または2個以上であれば、特に限定されない。また、配置領域R1~R4のうちの1個または2個以上に押圧体200が配置されていれば、その押圧体200の取り付け対象は、特に限定されない。すなわち、押圧体200は、外装材1に取り付けられていてもよいし、巻回電極体100に取り付けられていてもよいし、外装材1および巻回電極体100の双方に取り付けられていてもよい。
 押圧体200が外装材1に取り付けられている場合には、その押圧体200は、例えば、その外装材1の内側(内面)に取り付けられていてもよいし、その外装材1の外側(外面)に取り付けられていてもよいし、その外装材1の内面および外面の双方に取り付けられていてもよい。
 押圧体200が巻回電極体100に取り付けられている場合には、その押圧体200は、例えば、正極10(正極集電体11)に取り付けられていてもよいし、負極20(負極集電体21)に取り付けられていてもよいし、正極10および負極20の双方に取り付けられていてもよい。
 ここで、正極10では、上記したように、正極活物質層12が正極集電体11(内側正極活物質層12Aおよび外側正極活物質層12B)の一部だけに形成されている。
 この場合には、正極集電体11のうち、内側正極活物質層12Aおよび外側正極活物質層12Bが形成されていない箇所(正極非形成部11S)では、例えば、その正極非形成部11Sの内側面に押圧体200が取り付けられていてもよいし、その正極非形成部11Sの外側面に押圧体200が取り付けられていてもよいし、その正極非形成部11Sの内側面および外側面の双方に押圧体200が取り付けられていてもよい。
 正極集電体11のうち、内側正極活物質層12Aが形成されていると共に外側正極活物質層12Bが形成されていない箇所では、例えば、その正極集電体11の外側面に押圧体200が取り付けられていてもよい。正極集電体11のうち、内側正極活物質層12Aが形成されていないと共に外側正極活物質層12Bが形成されている箇所では、例えば、その正極集電体11の内側面に押圧体200が取り付けられていてもよい。
 上記した正極10における押圧体200の取り付け対象に関する詳細は、負極20における押圧体200の取り付け対象に関しても同様である。すなわち、負極20では、上記したように、負極活物質層22が負極集電体21(内側負極活物質層22Aおよび負側正極活物質層22B)の一部だけに形成されている。
 この場合には、負極集電体21のうち、内側負極活物質層22Aおよび外側負極活物質層22Bが形成されていない箇所(負極非形成部21S)では、例えば、その負極非形成部21Sの内側面に押圧体200が取り付けられていてもよいし、その負極非形成部21Sの外側面に押圧体200が取り付けられていてもよいし、その負極非形成部21Sの内側面および外側面の双方に押圧体200が取り付けられていてもよい。
 負極集電体11のうち、内側負極活物質層22Aが形成されていると共に外側負極活物質層22Bが形成されていない箇所では、例えば、その負極集電体21の外側面に押圧体200が取り付けられていてもよい。負極集電体21のうち、内側負極活物質層22Aが形成されていないと共に外側負極活物質層22Bが形成されている箇所では、例えば、その負極集電体21の内側面に押圧体200が取り付けられていてもよい。
 中でも、押圧体200は、外装材1の内部に配置されており、より具体的には、巻回電極体100に取り付けられていることが好ましい。押圧体200が巻回電極体100に近接配置されるため、二次電池の圧潰時において押圧体200が正極10および負極20のそれぞれに押し当てられやすくなるからである。また、二次電池に押圧体200を導入しても、その押圧体200の存在が二次電池(外装材1)の外観に影響を及ぼさないため、その二次電池の外観に関する品質が担保されるからである。
 押圧体200が配置領域R1に配置される場合、その配置領域R1に配置される押圧体200の数は、特に限定されないため、1個だけでもよいし、2個以上でもよい。このことは、配置領域R2~R4のそれぞれに配置される押圧体200の数に関しても同様である。
 配置領域Rに押圧体200が配置されているのは、その押圧体200の存在が電池サイズ、言い替えれば二次電池の電池容量(エネルギー密度)に影響を与えることを抑制しながら、その押圧体200を利用して二次電池が熱暴走することを抑制するためである。
 詳細には、押圧体200の配置場所としては、例えば、配置領域Rの他に、その配置領域R以外の他の配置領域Nが考えられる。この配置領域Nは、例えば、図2および図5に示したように、一対の湾曲外縁W1,W2のそれぞれに対応する配置領域N(N1)および一対の平坦外縁H1,H2のそれぞれに対応する配置領域N(N2)である。特に、図3に示したように、Z軸方向において丸棒600が巻回電極体100に押し当てられる場合には、配置領域N2に押圧体200が配置されていると、配置領域Rに押圧体200が配置されている場合と比較して、その丸棒600が押圧体200に早期から押し当てられやすくなる。
 しかしながら、外装材1の内部に巻回電極体100が収納されている二次電池の全体のサイズをできる限り小型化しようとする場合、配置領域N2では、平坦外縁H1,H2の存在に起因して巻回電極体100が外装材1に近接されるため、押圧体200を配置するスペースがほとんど存在しない。この場合には、電池サイズ、すなわち外装材1の内部空間の容積(二次電池の体積)を一定とする条件下において、配置領域N2に押圧体200を配置するためには、その押圧体200の配置スペースを確保するために、二次電池の体積、すなわち正極10および負極20のそれぞれの巻回数を減少させなければならない。正極10および負極20のそれぞれの巻回数が減少すると、押圧体200を利用して二次電池の熱暴走が抑制される反面、二次電池全体としてはエネルギー密度が減少するため、電池容量が減少してしまう。よって、配置領域N2に押圧体200を配置した場合には、電池容量の確保と熱暴走の抑制とを両立させることが困難である。
 また、配置領域N1では、凸状に湾曲した湾曲外縁W1,W2の存在に起因して巻回電極体100が外装材1に近接されるため、上記した配置領域N2と同様に、押圧体200を配置するスペースがほとんど存在しない。よって、配置領域N1に押圧体200を配置すると、上記した配置領域N2に押圧体200を配置する場合と同様の理由により、電池容量の確保と熱暴走の抑制とを両立させることが困難である。
 これに対して、配置領域Rでは、湾曲外縁W1,W2の存在に起因して巻回電極体100が外装材1から離間されるため、押圧体200を配置するスペースが存在する。このスペースは、収容部材1の内部における余剰空間であり、いわゆるデッドスペースを利用した空間である。この場合には、電池サイズを一定とする条件下においても、デッドスペースを利用可能である配置領域Rに押圧体200を配置することにより、その押圧体200の配置スペースを確保するために、二次電池の体積(正極10および負極20のそれぞれの巻回数)を減少させる必要がない。また、もしも二次電池の体積を減少させる必要性が生じたとしても、その二次電池の体積の減少は最低限で済む。
 しかも、巻回電極体100のうちの湾曲外縁W1,W2の近傍部分では、その巻回電極体100の形成工程において正極10および負極20のそれぞれが折り曲げられている。この場合には、二次電池が圧潰されると、正極10および負極20のそれぞれが湾曲外縁W1,W2の近傍部分において破壊されやすくなるため、その湾曲外縁W1,W2の近傍部分において発熱しやすくなる。これにより、湾曲外縁W1,W2の近傍である配置領域Rに押圧体200が配置されていると、二次電池の圧潰時において正極10および負極20のそれぞれが湾曲外縁W1,W2の近傍部分において破壊され始めた際に、その押圧体200が初期の破壊段階から正極10および負極20のそれぞれに押し当てられるため、その押圧体200により正極10および負極20のそれぞれの押圧が促進される。このため、押圧体200を利用して正極10および負極20のそれぞれが十分かつ効果的に押圧されやすくなる。
 これらのことから、二次電池全体のエネルギー密度(電池容量)が減少することを抑制しながら、押圧体200を利用して二次電池の熱暴走が抑制される。よって、配置領域Rに押圧体200を配置することにより、電池容量の確保と熱暴走の抑制とを両立させることができる。
 押圧体200が巻回電極体100に取り付けられる場合には、中でも、その押圧体200は四角形領域RKの内側に配置されていることが好ましい。電池サイズを変更せずに、二次電池に押圧体200が導入されるからである。また、押圧体200が巻回電極体100に近接配置されるため、二次電池の圧潰時において押圧体200が正極10および負極20のそれぞれに押し当てられやすくなるからである。さらに、二次電池に押圧体200を導入しても、その押圧体200の存在が二次電池(外装材1)の外観に影響を及ぼさないため、その二次電池の外観に関する品質が担保されるからである。
 また、押圧体200が正極10(正極集電体11)に取り付けられる場合には、中でも、上記したように、その押圧体200は、正極非形成部11Sに取り付けられることが好ましい。押圧体200が導電性を有していると、二次電池の圧潰時において正極集電体11および押圧体200を利用して低抵抗の短絡経路がより形成されやすくなるからである。
 同様の理由により、押圧体200が負極20(負極集電体21)に取り付けられる場合には、中でも、上記したように、その押圧体200は、負極非形成物21Sに取り付けられることが好ましい。二次電池の圧潰時において負極集電体21および押圧体200を利用して低抵抗の短絡経路がより形成されやすくなるからである。
 特に、正極非形成部11Sと負極非形成部21Sとの間に導電性の押圧体200が配置されており、その導電性の押圧体200が正極非形成部11Sおよび負極非形成部21Sのうちの一方または双方に取り付けられていることが好ましい。二次電池の圧潰時において、正極非形成部11Sと負極非形成部21Sとが押圧体200を介して電気的に接続されやすくなるため、低抵抗の短絡経路が容易に形成されやすくなるからである。
 具体的には、押圧体200は、例えば、図2に示したように、以下で説明する一連の配置場所に配置されている。ただし、図2では、例えば、押圧体200の配置場所に関する全ての候補をまとめて説明するために、その候補となる全ての配置場所に押圧体200が配置されている場合を示している。
 ここでは、二次電池は、例えば、図2に示したように、10個の押圧体200(211~214,221~224,231,241)を備えている。ただし、図3では、図示内容を簡略化するために、押圧体211,221,231,241だけを示している。
 第1に、二次電池は、例えば、配置領域R1に4個の押圧体200(211~214)を備えている。押圧体211は、例えば、正極集電体11(正極非形成部11S)の外側面に取り付けられている。押圧体212は、例えば、正極集電体11(正極非形成部11S)の内側面に取り付けられている。押圧体213は、例えば、負極集電体21(負極非形成部21S)の外側面に取り付けられている。押圧体214は、例えば、負極集電体21(負極非形成部21S)の内側面に取り付けられている。
 第2に、二次電池は、例えば、配置領域R2に4個の押圧体200(221,222,223,224)を備えている。押圧体221は、例えば、正極集電体11(正極非形成部11S)の外側面に取り付けられている。押圧体222は、例えば、正極集電体11(正極非形成部11S)の内側面に取り付けられている。押圧体223は、例えば、負極集電体21(負極非形成部21S)の外側面に取り付けられている。押圧体224は、例えば、負極集電体21(負極非形成部21S)の内側面に取り付けられている。
 第3に、二次電池は、例えば、配置領域R3に1個の押圧体200(231)を備えている。押圧体231は、例えば、正極集電体11の外側面に取り付けられている。
 第4に、二次電池は、例えば、配置領域R4に1個の押圧体200(241)を備えている。押圧体241は、例えば、正極集電体11の外側面に取り付けられている。
 なお、正極10(正極集電体11)に取り付けられている押圧体200は、その正極10と同様に正に帯電している。また、負極20(負極集電体21)に取り付けられている押圧体200は、その負極20と同様に負に帯電している。
 以下では、正極活物質層12(内側正極活物質層12Aおよび外側正極活物質層12B)の形成範囲および負極活物質層22(内側負極活物質層22Aおよび外側負極活物質層22B)の形成範囲のそれぞれが図2に示したように設定されている巻回電極体100の巻回構造を「第1巻回構造」と呼称する。
[取付方法]
 正極集電体11に対する押圧体200の取付方法は、特に限定されない。以下では、押圧体211を例として挙げることにより、その押圧体211の取付方法に関して説明する。
 具体的には、押圧体211は、例えば、図2に示したように、溶接法などを用いて正極集電体11に対して直接的に取り付けられていてもよい。
 また、押圧体211は、例えば、図6に示したように、接着剤50を介して正極集電体11に対して間接的に取り付けられていてもよい。この場合には、例えば、図6に対応する図7に示したように、複数の押圧体211が接着剤50を介して互いに積層されていてもよい。図7では、例えば、2個の押圧体211が接着剤50を介して互いに積層されている場合を示している。
 なお、導電性を有する押圧体211と共に接着剤50を用いる場合には、その接着剤50として導電性接着剤を用いることが好ましい。正極集電体11と押圧体211とが接着剤50を介して互いに電気的に接続されるため、その接着剤50を用いた場合においても押圧体211を利用して低抵抗の短絡経路が形成されるからである。
 上記した押圧体211の取付方法に関する詳細は、例えば、他の押圧体212~214,221~224,231,241のそれぞれの取付方法に関しても同様である。
<1-4.動作>
 この二次電池では、例えば、充電時において、正極10からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極20に吸蔵される。一方、二次電池では、例えば、放電時において、負極20からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極10に吸蔵される。
<1-5.製造方法>
 この二次電池は、例えば、以下で説明する手順により製造される。
[正極の作製]
 二次電池を製造する場合には、最初に、正極10を作製する。この場合には、最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させることにより、ペースト状の正極合剤スラリーを調製する。続いて、正極集電体11の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層12(内周側正極活物質層12Aおよび外周側正極活物質層12B)を形成する。最後に、ロールプレス機などを用いて正極活物質層12を圧縮成型する。この場合には、正極活物質層12を加熱してもよいし、圧縮成型を複数回繰り返してもよい。
[負極の作製]
 次に、上記した正極10の作製手順と同様の手順により、負極20を作製する。具体的には、負極活物質と、負正極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤などに負極合剤を分散させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体21の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22(内周側負極活物質層22Aおよび外周側負極活物質層22B)を形成する。こののち、ロールプレス機などを用いて負極活物質層22を圧縮成型する。
[押圧体の設置]
 次に、正極10および負極20のそれぞれのうちの所望の場所に、押圧体200を設置する。押圧体200の設置場所の候補は、上記した通りである。具体的な押圧体200の設置場所およびその設置数は、任意に設定可能である。
 この場合には、上記したように、溶接法などを用いて正極集電体11および負極集電体21のそれぞれに押圧体200を接続させてもよい。または、接着剤50を用いて正極集電体11および負極集電体21のそれぞれに押圧体200を貼り付けてもよい。もちろん、上記以外の他の取付方法を用いてもよい。
[電解液の調製]
 次に、電解液を調製する。この場合には、溶媒に電解質塩を加えたのち、その溶媒を撹拌することにより、その溶媒中において電解質塩を分散または溶解させる。
[二次電池の組み立て]
 最後に、正極10、負極20および電解液を用いて二次電池を組み立てる。この場合には、最初に、溶接法などを用いて正極10(正極集電体11)に正極リード2を取り付けると共に、溶接法などを用いて負極20(負極集電体21)に負極リード3を取り付ける。続いて、セパレータ30を介して正極10および負極20を互いに積層させたのち、巻回軸Jを中心として正極10、負極20およびセパレータ30を巻回させることにより、巻回体を形成する。続いて、巻回体の巻き終わり部分に巻止めテープを貼り付けることにより、その巻き終わり部分を固定する。
 続いて、巻回体を挟むように外装材1を折り畳んだのち、熱融着法などを用いて外装材1のうちの一辺の外周縁部同士を除いた残りの2辺の外周縁部同士を互いに接着させることにより、袋状の外装材1の内部に巻回体を収納する。この場合には、外装材1に設けられている窪み1Uの内部に巻回体を配置する。続いて、袋状の外装材1の内部に電解液を注入したのち、熱融着法などを用いて外装材1を密封する。これにより、巻回体に電解液が含浸されるため、巻回電極体100が作製される共に、その巻回電極体100が外装材1の内部に封入される。この場合には、外装材1と正極リード2との間に密着フィルム4を挿入すると共に、外装材1と負極リード3との間に密着フィルム5を挿入する。
 最後に、巻回電極体100が封入された外装材1を加圧することにより、巻回軸Jの延在方向と交差する断面の形状が扁平な形状となるように巻回電極体100を成形する。この場合には、外装材1と共に巻回電極体100を加温しながら加圧してもよい。これにより、ラミネートフィルム型の二次電池が完成する。
<1-6.作用および効果>
 この二次電池では、巻回軸Jを中心として巻回された正極10および負極20を含む巻回電極体100が外装材1の内部に収納されており、その巻回軸Jの延在方向と交差する巻回電極体100の断面の形状が扁平な形状である。また、巻回電極体100の断面の形状に基づいて、4個の角部C(C1~C4)を有する四角形領域RKが画定されており、その角部C1~C4に対応する4個の配置領域R(R1~R4)のうちの1個または2個以上に、押圧体200が配置されている。
 この場合には、上記したように、二次電池の圧潰時において、その圧潰時の力を利用して押圧体200が正極10および負極20のそれぞれに押し当てられるため、正極集電体11と負極集電体21との接触に起因した低抵抗の短絡経路が形成されやすくなる。これにより、高抵抗の短絡経路において蓄熱されにくくなるため、二次電池が熱暴走しにくくなる。
 しかも、上記したように、外装材1の内部の余剰空間(デッドスペース)を利用した配置領域Rに押圧体200が配置されるため、二次電池に押圧体200が導入されても、その二次電池に押圧体200が導入されない場合と比較して、電池サイズが変更されにくい。この場合には、押圧体200を利用しても、二次電池の体積(正極10および負極20のそれぞれの巻回数)が減少しにくいため、その二次電池の全体のエネルギー密度(電池容量)が維持されやすくなる。
 よって、電池容量の確保と熱暴走の抑制とが両立されることにより、電池性能が担保されながら安全性が向上するため、優れた電池特性を得ることができる。
 特に、押圧体200が巻回軸Jの延在方向に沿った方向に延在していれば、その方向において押圧体200の存在範囲が広くなる。よって、押圧体200が延在している範囲内では、いずれの位置において二次電池が圧潰されても押圧体200が正極10および負極20のそれぞれに押し当てられやすくなるため、より高い効果を得ることができる。
 また、押圧体200が導電性を有していれば、二次電池の圧潰時において押圧体200を利用して低抵抗の短絡経路がより形成されやすくなるため、より高い効果を得ることができる。
 この場合には、押圧体200が金属板などを含んでいれば、その押圧体200が十分な剛性および十分な導電性を有するため、二次電池の圧潰時において正極10および負極20のそれぞれがより押圧されやすくなる。よって、低抵抗の短絡経路が安定に形成されやすくなるため、さらに高い効果を得ることができる。
 また、押圧体200が外装材1の内部に配置されていれば、その押圧体200が巻回電極体100に近接配置されることにより、二次電池の圧潰時において押圧体200が正極10および負極20のそれぞれに押し当てられやすくなるため、より高い効果を得ることができる。
 この場合には、押圧体200が四角形領域RKの内側に配置されていれば、電池サイズを変更せずに二次電池に押圧体200が導入されると共に、二次電池の圧潰時において押圧体200が正極10および負極20のそれぞれにより押し当てられやすくなるため、さらに高い効果を得ることができる。
 また、押圧体200が巻回電極体100に取り付けられていれば、その押圧体200が巻回電極体100により近接配置されることにより、二次電池の圧潰時において押圧体200が正極10および負極20のそれぞれにより押し当てられやすくなるため、さらに高い効果を得ることができる。
 また、押圧体200が正極非形成部11Sおよび負極非形成部21Sの一方または双方に取り付けられていれば、剛性を有する正極非形成部11Sおよび剛性を有する負極集電体21のそれぞれに押圧体200が隣接されることにより、その押圧体200が正極10および負極20のそれぞれに押し当てられやすくなるため、より高い効果を得ることができる。
 この場合には、押圧体200が導電性を有していれば、二次電池の圧潰時において、正極非形成部11Sおよび押圧体200により低抵抗の短絡経路が形成されやすくなると共に、負極非形成部21Sおよび押圧体200により低抵抗の短絡経路が形成されやすくなるため、より高い効果を得ることができる。
<2.変形例>
 上記した二次電池の構成は、適宜、変更可能である。
[変形例1]
 図2では、外装材1の断面の形状が4個の凹状の角部C(C11~C14)を有しているが、その外装材1の断面の形状が有する角部Cの数は、任意に変更可能である。
 具体的には、例えば、図2に対応する図8に示したように、2個の角部C11,C14のそれぞれに対応する箇所において外装材1が湾曲しているため、その外装材1の断面の形状が2個の角部C12,C13だけを有していてもよい。この場合においても、4個の配置領域R(R1~R4)のうちの1個または2個以上に押圧体200を配置することにより、図2に示した場合と同様の効果を得ることができる。この場合には、特に、電池サイズ(二次電池の体積)を変更せずに配置領域R1,R4のそれぞれに押圧体200が配置されることにより、電池容量の確保と熱暴走の抑制とが両立されるため、同様の効果が得られる。
[変形例2]
 図2では、押圧体200の立体的形状は板状であるが、その押圧体200の立体的形状は、特に限定されない。
 具体的には、例えば、図2に対応する図9に示したように、押圧体200がワイヤ状でもよい。押圧体200がワイヤ状である場合、その押圧体200の本数は、特に限定されないため、1本だけでもよいし、2本以上でもよい。図9では、例えば、押圧体200の本数が5本である場合を示している。この場合においても、ワイヤ状の押圧体200が板状の押圧体200と同様の機能を果たすため、図2に示した場合と同様の効果を得ることができる。
[変形例3]
 図2では、巻回電極体100が第1巻回構造を有するようにしたが、その巻回電極体100の構成は、任意に変更可能である。
 具体的には、例えば、図2に対応する図10に示したように、巻回電極体100は、第1巻回構造の代わりに第2巻回構造を有していてもよい。この第2巻回構造を有する二次電池は、例えば、押圧体200の代わりに押圧体300を備えている。
 第2巻回構造を有する二次電池における正極10および負極20のそれぞれの構成は、例えば、以下で説明することを除いて、第1巻回構造を有する二次電池における正極10および負極22のそれぞれの構成と同様である。また、押圧体300の構成は、例えば、以下で説明することを除いて、押圧体200の構成と同様である。
 正極10では、例えば、図10に示したように、正極非形成部11Sが正極10の巻回方向における巻外側の端部から1周以上巻回されている。このため、図10に示した場合における正極非形成部11Sの延在長さは、図2に示した場合における正極非形成部11Sの延在長さよりも大きくなっている。二次電池の圧潰時において押圧体300が正極非形成部11Sに押し当てられることにより、低抵抗の短絡経路が容易に形成されやすくなるからである。
 具体的には、正極非形成部11Sは、例えば、正極10の巻回方向における巻外側の端部から2周以上巻回されている。正極非形成部11Sの延在長さが大きくなると、二次電池の圧潰時において低抵抗の短絡経路がより容易に形成されやすくなるからである。
 巻外側における内側正極活物質層12Aの形成範囲と巻外側における外側正極活物質層12Bの形成範囲とは、例えば、互いに異なっている。具体的には、内側正極活物質層12Aは、例えば、正極非形成部11Sを除いて正極集電体11に形成されているため、巻内側における正極非形成部11Sの端部の位置は、例えば、巻外側における内側正極活物質層12Aの端部の位置に一致している。巻外側における外側正極活物質層12Bの端部の位置は、例えば、巻外側における内側正極活物質層12Aの端部の位置よりも巻内側にずれている。
 負極20では、例えば、図10に示したように、負極非形成部21Sが負極20の巻回方向における巻外側の端部から1周以上巻回されている。このため、図10に示した場合における負極非形成部21Sの延在長さは、図2に示した場合における負極非形成部21Sの延在長さよりも大きくなっている。上記した正極非形成部11が1周以上巻回されている場合と同様に、二次電池の圧潰時において押圧体300が負極非形成部21Sに押し当てられることにより、低抵抗の短絡経路が容易に形成されやすくなるからである。
 具体的には、負極非形成部21Sは、例えば、負極20の巻回方向における巻外側の端部から巻内側に向かって2周以上巻回されている。上記した正極非形成部11が2周以上巻回されている場合と同様に、負極非形成部21Sの延在長さが大きくなると、二次電池の圧潰時において低抵抗の短絡経路がより容易に形成されやすくなるからである。
 巻外側における内側負極活物質層22Aの形成範囲と巻外側における外側負極活物質層22Bの形成範囲とは、例えば、互いに一致している。具体的には、内側負極活物質層22Aは、例えば、負極非形成部21Sを除いて負極集電体21に形成されているため、巻内側における負極非形成部21Sの端部の位置は、例えば、巻外側における内側負極活物質層22Aの端部の位置に一致している。外側負極活物質層22Bは、例えば、負極非形成部21Sを除いて負極集電体21に形成されているため、巻内側における負極非形成部21Sの端部の位置は、例えば、巻外側における外側負極活物質層22Bの端部の位置に一致している。
 なお、巻外側における内側正極活物質層12Aの端部の位置は、例えば、巻外側における内側負極活物質層22Aの端部の位置および巻外側における外側負極活物質層22Bの端部の位置のそれぞれよりも巻内側にずれている。
 具体的には、押圧体300は、例えば、図10に示したように、以下で説明する一連の配置場所に配置されている。ただし、図10では、例えば、押圧体300の配置場所に関する全ての候補をまとめて説明するために、その候補となる全ての配置場所に押圧体200が配置されている場合を示している。
 例えば、上記したように、正極非形成部11Sが2周以上巻回されていると共に、負極非形成部21Sが2周以上巻回されている場合には、押圧体300は、1周目の正極非形成部11S、2周目の正極非形成部11S、1周目の負極非形成部21Sおよび2周目の負極非形成部21Sのうちの1個または2個以上に取り付けられていることが好ましい。上記したように、二次電池の圧潰時において押圧体300が正極非形成部11Sおよび負極非形成部21Sのそれぞれに押し当てられることにより、低抵抗の短絡経路が容易に形成されやすくなるからである。
 ここでは、二次電池は、例えば、図10に示したように、16個の押圧体300(311~314,321~324,331~334,341~344)を備えている。
 第1に、二次電池は、例えば、配置領域R1に4個の押圧体200(211~214)に対応する4個の押圧体300(311~314)を備えている。
 第2に、二次電池は、例えば、配置領域R2に4個の押圧体200(221~224)に対応する4個の押圧体300(321~324)を備えている。
 第3に、二次電池は、例えば、配置領域R3に4個の押圧体300(331~334)を備えている。押圧体331は、例えば、正極集電体11(正極非形成部11S)の外側面に取り付けられている。押圧体332は、例えば、正極集電体11(正極非形成部11S)の内側面に取り付けられている。押圧体333は、例えば、負極集電体21(負極非形成部21S)の外側面に取り付けられている。押圧体334は、例えば、負極集電体21(負極非形成部21S)の内側面に取り付けられている。
 第4に、二次電池は、例えば、配置領域R4に4個の押圧体300(341~344)を備えている。押圧体341は、例えば、正極集電体11(正極非形成部11S)の外側面に取り付けられている。押圧体342は、例えば、正極集電体11(正極非形成部11S)の内側面に取り付けられている。押圧体343は、例えば、負極集電体21(負極非形成部21S)の外側面に取り付けられている。押圧体344は、例えば、負極集電体21(負極非形成部21S)の内側面に取り付けられている。
 巻回電極体100が第2巻回構造を有する場合においても、押圧体300が押圧体200と同様の機能を果たすため、巻回電極体100が第1巻回構造を有する場合と同様の効果を得ることができる。
 特に、巻回電極体100が第2巻回構造を有する場合、すなわち正極非形成部11Sおよび負極非形成部21Sのそれぞれが1周以上巻回されている場合には、二次電池の圧潰時において低抵抗の短絡経路が形成されやすくなるため、より高い効果を得ることができる。この場合には、正極非形成部分11Sおよび負極非形成部21Sのそれぞれが2周以上巻回されていれば、低抵抗の短絡経路がより容易に形成されやすくなるため、さらに高い効果を得ることができる。
 ただし、巻回電極体100が第2巻回構造を有する場合には、巻回電極体100が第1巻回構造を有する場合と比較して、正極活物質層12および負極活物質層22のそれぞれの形成範囲(正極活物質層12と負極活物質層22との対向面積)が減少する。このため、押圧体400を利用して低抵抗の短絡経路が形成されやすくなる反面、電池容量が減少しやすくなる。
[変形例4]
 また、例えば、図2に対応する図11に示したように、巻回電極体100は、第1巻回構造の代わりに第3巻回構造を有していてもよい。この第3巻回構造を有する二次電池は、押圧体200の代わりに押圧体400を備えている。
 第3巻回構造を有する二次電池における正極10および負極20のそれぞれの構成は、例えば、以下で説明することを除いて、第1巻回構造を有する二次電池における正極10および負極22のそれぞれの構成と同様である。また、押圧体400の構成は、例えば、以下で説明することを除いて、押圧体200の構成と同様である。
 正極10では、例えば、図11に示したように、正極非形成部11Sが正極10の巻回方向における巻外側の端部から巻内側に向かって巻回されており、その正極非形成部11Sの延在長さは、例えば、約半周分の長さである。
 巻外側における内側正極活物質層12Aの形成範囲と巻外側における外側正極活物質層12Bの形成範囲とは、例えば、互いに異なっている。具体的には、内側正極活物質層12Aは、例えば、正極非形成部11Sを除いて正極集電体11に形成されているため、巻内側における正極非形成部11Sの端部の位置は、例えば、巻外側における内側正極活物質層12Aの端部の位置に一致している。巻外側における外側正極活物質層12Bの端部の位置は、例えば、巻外側における内側正極活物質層12Aの端部の位置よりも巻内側にずれている。
 負極20では、例えば、図11に示したように、負極非形成部21Sが負極20の巻回方向における巻外側の端部から巻内側に向かって巻回されており、その負極非形成部21Sの延在長さは、例えば、約半周分の長さである。
 巻外側における内側負極活物質層22Aの形成範囲と巻外側における外側負極活物質層22Bの形成範囲とは、例えば、互いに異なっている。具体的には、外側負極活物質層22Bは、例えば、負極非形成部21Sを除いて負極集電体21に形成されているため、巻内側における負極非形成部21Sの端部の位置は、例えば、巻外側における外側負極活物質層22Bの端部の位置に一致している。巻外側における内側負極活物質層22Aの端部の位置は、例えば、巻外側における外側負極活物質層22Bの端部の位置よりも巻内側にずれている。
 なお、巻外側における内側正極活物質層12Aの端部の位置は、例えば、巻外側における外側負極活物質層22Bの端部の位置よりも巻内側にずれている。
 具体的には、押圧体400は、例えば、図11に示したように、以下で説明する一連の配置場所に配置されている。ただし、図11では、例えば、押圧体400の配置場所に関する全ての候補をまとめて説明するために、その候補となる全ての配置場所に押圧体200が配置されている場合を示している。
 ここでは、二次電池は、例えば、図11に示したように、10個の押圧体400(411~414,421~424,431,441)を備えている。
 第1に、二次電池は、例えば、配置領域R1に4個の押圧体200(211~214)に対応する4個の押圧体400(411~414)を備えている。
 第2に、二次電池は、例えば、配置領域R2に4個の押圧体200(221~224)に対応する4個の押圧体400(421~424)を備えている。
 第3に、二次電池は、例えば、配置領域R3に1個の押圧体200(231)に対応する1個の押圧体400(431)を備えている。
 第4に、二次電池は、例えば、配置領域R4に1個の押圧体200(241)に対応する1個の押圧体400(441)を備えている。
 巻回電極体100が第3巻回構造を有する場合においても、押圧体400が押圧体200と同様の機能を果たすため、巻回電極体100が第1巻回構造を有する場合と同様の効果を得ることができる。
 特に、巻回電極体100が第3巻回構造を有する場合には、巻回電極体100が第2巻回構造を有する場合と比較して、正極活物質層12および負極活物質層22のそれぞれの形成範囲(正極活物質層12と負極活物質層22との対向面積)が増加する。このため、電池容量を担保しながら、低抵抗の短絡経路が形成されやすくなる。
[変形例5,6]
 図2では、巻回電極体100に押圧体200を取り付けたが、その巻回電極体100の代わりに外装材1に押圧体500を取り付けてもよい。ここで説明する二次電池は、押圧体200の代わりに押圧体500を備えていることを除いて、図2に示した二次電池と同様の構成を有している。また、押圧体500の構成は、例えば、以下で説明することを除いて、押圧体200の構成と同様である。すなわち、押圧体500は、配置領域R1~R4のうちの1個または2個以上に配置されている。
 具体的には、例えば、図2に対応する図12に示したように、配置領域R1,R4において外装材1の内側(内面)に押圧体500(511,514)を取り付けてもよいし、図2に対応する図13に示したように、配置領域R1,R4において外装材1の外側(外面)に押圧体500(511Q,514Q)を取り付けてもよい。押圧体511,514は、例えば、接着剤51を介して外装材1の内面に貼り付けられていると共に、押圧体511Q,514Qは、例えば、接着剤52を介して外装材1の外面に貼り付けられている。接着剤51,52のそれぞれは、接着剤50とは異なり、導電性を有していなくてもよい。これらの場合においても、押圧体500が押圧体200と同様の機能を果たすため、押圧体200が巻回電極体100に取り付けられている場合と同様の効果を得ることができる。
 ここで説明した押圧体500は、例えば、巻回電極体100が第1巻回構造を有する場合(図2)に限られず、巻回電極体100が第2巻回構造を有する場合(図10)および巻回電極体100が第3巻回構造を有する場合(図11)に関しても適用可能である。
 ただし、外装材1に押圧体500が取り付けられる場合よりも、巻回電極体100に押圧体200,300,400が取り付けられる場合が好ましい。押圧体200,300,400が押圧体500よりも巻回電極体100に近接配置されるため、二次電池の圧潰時における初期から正極10および負極20のそれぞれに押圧体200,300,400が押し当てられやすくなるからである。
<3.二次電池の用途>
 二次電池の用途は、その二次電池を駆動用の電源および電力蓄積用の電力貯蔵源などとして利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられる二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、例えば、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。二次電池を補助電源として用いる場合には、主電源の種類は二次電池に限られない。
 二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む。)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時に備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、二次電池の用途は、上記した用途以外の他の用途でもよい。
 以下では、本技術の実施例に関して説明する。
(実験例1~23)
 以下で説明するように、二次電池を作製したのち、その二次電池の電池特性を評価した。
[二次電池の作製]
 最初に、以下で説明する手順により、図1~図7および図10~図13に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製した。
 正極10を作製する場合には、最初に、正極活物質(LiCoO)91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを得た。続いて、コーティング装置を用いて正極集電体11(アルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層12(内側正極活物質層12Aおよび外側正極活物質層12B)を形成した。最後に、ロールプレス機を用いて正極活物質層12を圧縮成型した。
 この正極10を作製する場合には、図2、図10および図11に示したように、内側正極活物質層12Aおよび外側正極活物質層12Bのそれぞれの形成範囲を調整することにより、正極非形成部11Sを形成すると共に、その正極非形成部11Sを含む正極集電体11に押圧体200,300,400,500(アルミニウム板)を取り付けた。この場合には、比較のために、必要に応じて正極集電体11に押圧体200,300,400,500を取り付けなかった。
 押圧体200,300,400のそれぞれの有無、取付位置(配置領域R1~R4)、取付数、取付方法、厚さT(μm)および幅W(mm)に関する詳細は、表1および表2に示した通りである。表1および表2では、押圧体200,300,400,500の取付位置および取付数を特定するために、図2、図10および図11に示した符号(押圧体200に関しては211など、押圧体300に関しては311など、押圧体400に関して411など、押圧体600に関しては611など)を示している。
 なお、取付位置に関する詳細は、以下の通りである。「直接」では、図2、図10および図11に示したように、溶接法を用いて押圧体200,300,400を直接的に取り付けた。「間接」では、図6、図12および図13に示したように、接着剤50,51,52を用いて押圧体200,600を間接的に取り付けた。「直接+間接」では、図7に示したように、溶接法を用いて1個目の押圧体200を直接的に取り付けたのち、接着剤50を用いて2個目の押圧体200を間接的に取り付けた。「間接+間接」では、接着剤50を用いて1個目の押圧体200を間接的に取り付けたのち、再び接着剤50を用いて2個目の押圧体200を間接的に取り付けた。
 負極20を作製する場合には、負極活物質(黒鉛)95質量部と、負極結着剤(ポリフッ化ビニリデン)5質量部とを混合することにより、負極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に負極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーを得た。続いて、コーティング装置を用いて負極集電体21(銅箔,厚さ=8μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22(内側負極活物質層22Aおよび外側負極活物質層22B)を形成した。この場合には、図2、図10および図11に示したように、内側負極活物質層22Aおよび外側負極活物質層22Bのそれぞれの形成範囲を調整した。最後に、ロールプレス機を用いて負極活物質層22を圧縮成型した。
 この負極20を作製する場合には、図2、図10および図11に示したように、内側負極活物質層22Aおよび外側負極活物質層22Bのそれぞれの形成範囲を調整することにより、負極非形成部21Sを形成すると共に、その負極非形成部21Sを含む負極集電体21に押圧体200(アルミニウム板)を取り付けた。この場合には、比較のために、必要に応じて負極集電体21に押圧体200を取り付けなかった。
 押圧体200の有無、取付位置、取付数、取付方法、厚さT(μm)および幅W(mm)に関する詳細は、表1および表2に示した通りである。なお、押圧体200の取付位置および取付数に関する特定および押圧体200の取付方法(直接または間接)に関する詳細は、上記した通りである。
 電解液を調製する場合には、溶媒(炭酸エチレンおよび炭酸エチルメチル)に電解質塩(六フッ化リン酸リチウム)を加えたのち、その溶媒を撹拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸エチルメチル=50:50とすると共に、電解質塩の含有量を溶媒に対して1mol/kgとした。
 二次電池を組み立てる場合には、最初に、正極10(正極集電体11)にアルミニウム製の正極リード2を溶接すると共に、負極(負極集電体21)に銅製の負極リード3を溶接した。続いて、セパレータ30(微多孔性ポリエチレンフィルム,厚さ=15μm)を介して正極10および負極20を互いに積層させることにより、積層体を得た。続いて、巻回軸Jを中心として積層体を巻回させたのち、その積層体の最外周部に保護テープを貼り付けることにより、巻回体を形成した。続いて、巻回体を挟むように外装材1(表面保護層:ナイロンフィルム,厚さ=25μm/金属層:アルミニウム箔,厚さ=40μm,/融着層:ポリプロピレンフィルム,厚さ=30μm)を折り畳んだのち、その外装材1のうちの2辺の外周縁部同士を互いに熱融着した。この場合には、外装材1と正極リード2と外装材1との間に密着フィルム3(ポリプロピレンフィルム,厚さ=15μm)を挿入すると共に、外装材1と負極リード4との間に密着フィルム4(ポリプロピレンフィルム,厚さ=15μm)を挿入した。続いて、外装材1の内部に電解液を注入することにより、その電解液を巻回体に含浸させたのち、減圧環境中において外装材1のうちの残りの1辺の外周縁部同士を互いに熱融着した。最後に、巻回電極体100が封入された外装材1を加温しながら加圧することにより、巻回軸Jの延在方向と交差する断面の形状が扁平な形状(略楕円形)となるように巻回電極体100を成形した。
 これにより、巻回電極体100が形成されると共に、その巻回電極体100が外装材1の内部に封入されたため、ラミネートフィルム型のリチウムイオン二次電池が完成した。この巻回電極体100を形成する場合には、図2、図10および図11に示したように、その巻回電極体100が第1巻回構造、第2巻回構造および第3巻回構造のうちのいずれかの巻回構造を有するようにした。巻回電極体100の巻回構造の種類は、表1および表2に示した通りである。
 図2に示した第1巻回構造において、配置領域R1,R2のそれぞれでは、押圧体200(211,212,221,222)が正極非形成部11Sに取り付けられているのに対して、配置領域R3,R4のそれぞれでは、押圧体200(231,241)が正極非形成部11Sに形成されていない。また、配置領域R1,R2のそれぞれでは、押圧体200(213,214,223,224)が負極非形成部21Sに取り付けられている。
 なお、二次電池を作製したのち、その二次電池から成形後の巻回電極体100を回収することにより、その巻回電極体100の厚さ(Z軸方向における寸法:mm)を測定したところ、表1および表2に示した結果が得られた。押圧体200,300,400,500を用いなかった場合には、第1巻回構造を有する巻回電極体100の厚さは3.85mm、第2巻回構造を有する巻回電極体100の厚さは3.96mm、第3巻回構造を有する巻回電極体100の厚さは3.88mmであった。ここで説明した厚さは、巻回電極体100の種類(第1巻回構造、第2巻回構造および第3巻回構造)ごとにおける巻回電極体100の体積(正極10および負極20のそれぞれの巻回数)の基準値を表している。
[電池特性の評価]
 二次電池の電池特性(衝突安全性)を調べたところ、表1および表2に示した結果が得られた。
 衝突安全性を調べる場合には、米国UL1642の試験項目(衝突試験)および国連勧告(UN3480)安全性基準 T6(衝突試験)のそれぞれに記載されている試験方法に基づいて、以下の手順により、衝突安全性を評価した。ここでは、常温環境中における衝突安全性(常温衝突安全性)と、高温環境中における衝突安全性(高温衝突安全性)とを調べた。
 常温衝突安全性を調べる場合には、最初に、常温環境中(温度=23℃)において、電圧が4.5Vに到達するまで二次電池を過充電させた。続いて、図3に示したように、二次電池の上に丸棒600(直径=15.8mm)を載置したのち、その丸棒600に向かって重り(重量=9,1kg)を落下(高さ=61±2.5cm)させることにより、その丸棒600を利用して二次電池を圧潰させた。最後に、圧潰後の二次電池の状態を調べることにより、その二次電池の状態を評価した。この場合には、試験数(評価に用いる二次電池の個数)を3個とした。この結果、圧潰後6時間以内に3個の二次電池のうちのいずれもが熱暴走(破裂および発火)しなかった場合を良好(A)と判定した。一方、圧潰後6時間以内に3個の二次電池のうちの1個以上が熱暴走した場合を不良(B)と判定した。
 高温衝突安全性を調べる場合には、常温環境中(温度=23℃)において、電圧が4.5Vに到達するまで二次電池を過充電させたのち、恒温層(高温環境中)中において表面温度が45±2℃になるまで二次電池を加熱保存した。こののち、常温環境中(温度=23℃)において、常温衝突安全性を調べた場合と同様の手順により、圧潰後の二次電池の状態を評価した。
 ここでは、上記したように、衝突安全性に関する試験を実施する場合において、過充電状態の二次電池を用いることにより、通常(未過充電状態)の二次電池を用いた場合よりも厳しい試験(常温衝突安全性の評価)を実施している。このため、過充電状態の二次電池をさらに加熱する試験(高温衝突安全性の評価)は、上記した常温衝突性安全性に関する試験よりもさらに厳しい試験である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[考察]
 表1および表2に示したように、衝突安全性(常温衝突安全性および高温衝突安全性)は、二次電池の構成(押圧体200,300,400,500の有無)に応じて大きく変動した。以下では、巻回電極体100の巻回構造の種類(第1巻回構造、第2巻回構造および第3巻回構造)ごとに、押圧体200,300,400,500の有無が衝突安全性に与える影響に関して説明する。
(第1巻回構造:実験例1~16,19~21)
 二次電池が押圧体200,500を備えていない場合(実験例21)には、良好な高温衝突安全性が得られなかったと共に、良好な常温衝突安全性も得られなかった。
 これに対して、二次電池が押圧体200,500を備えている場合(実験例1~16,19,20)には、押圧体200,500の構成によっては良好な高温衝突安全性は得られなかったが、その押圧体200,500の構成に依存せずに良好な常温衝突安全性が得られた。この場合には、押圧体200の構成によっては、電池厚さが僅かに増加した。
 具体的には、押圧体200の厚さTが小さすぎる場合(実験例1)には、良好な常温衝突安全性は得られたが、良好な高温衝突安全性が得られなかった。これに対して、押圧体200の厚さTが適正に大きい場合(実験例2,3)には、良好な常温衝突安全性が得られたと共に、良好な高温衝突安全性も得られた。
 押圧体200の厚さTが大きすぎる場合(実験例4)には、良好な常温衝突安全性および良好な高温衝突安全性は得られたが、電池厚さが僅かに増加した。これに対して、押圧体200の厚さTが適正に小さい場合(実験例2,3)には、電池厚さが維持されながら、良好な常温衝突安全性および良好な高温衝突安全性が得られた。ただし、押圧体200の厚さTが大きすぎる場合において電池厚さが増加した割合は、僅か(約1.3%)にすぎなかったため、その場合には、電池厚さの増加が最低限に抑えられながら、良好な常温衝突安全性および良好な高温衝突安全性が得られた。
 押圧体200の幅Wが大きすぎる場合(実験例16)には、良好な常温衝突安全性および良好な高温衝突安全性は得られたが、電池厚さが僅かに増加した。これに対して、押圧体200の幅Wが適正に小さい場合(実験例1)には、電池厚さが維持されながら、良好な常温衝突安全性および良好な高温衝突安全性が得られた。ただし、押圧体200の幅Wが大きすぎる場合には、上記した押圧体200の厚さTが大きすぎる場合と同様に、電池厚さの増加が最低限に抑えられながら、良好な常温衝突安全性および良好な高温衝突安全性が得られた。
 外装材1に押圧体500が取り付けられている場合(実験例19,20)には、良好な常温衝突安全性は得られたが、良好な高温衝突安全性は得られなかった。これに対して、巻回電極体100に押圧体200が取り付けられている場合(実験例3)には、良好な常温衝突安全性が得られたと共に、良好な高温衝突安全性も得られた。
 正極非形成部11Sに押圧体200(231,241)が取り付けられていない場合(実験例5)には、良好な常温衝突安全性は得られたが、良好な高温衝突安全性は得られなかった。これに対して、正極非形成部11Sに押圧体200(211,221)が取り付けられている場合(実験例3)には、良好な常温衝突安全性が得られたと共に、良好な高温衝突安全性も得られた。後者の場合(実験例3)には、特に、配置領域R1,R2のそれぞれに正極非形成部11Sおよび負極非形成部21Sが存在しているため、その正極非形成部11Sと負極形成部21Sとの接触に起因した低抵抗の短絡経路が著しく形成されやすくなった。
(第2巻回構造:実験例17,22)
 巻回電極体100が第1巻回構造を有する場合(実験例1~16,19~21)と同様の結果が得られた。すなわち、二次電池が押圧体300を備えていない場合(実験例22)には、良好な常温衝突安全性は得られたが、良好な高温衝突安全性は得られなかった。これに対して、二次電池が押圧体300を備えている場合(実験例17)には、電池厚さが維持されながら、良好な常温衝突安全性および良好な常温衝突安全性が得られた。
(第3巻回構造:実験例18,23)
 巻回電極体100が第2巻回構造を有する場合(実験例17,22)と同様の結果が得られた。すなわち、二次電池が押圧体400を備えていない場合(実験例23)には、良好な常温衝突安全性は得られたが、良好な高温衝突安全性は得られなかった。これに対して、二次電池が押圧体400を備えている場合(実験例18)には、電池厚さが維持されながら、良好な常温衝突安全性および良好な常温衝突安全性が得られた。
(その他)
 なお、巻回電極体100が第1巻回構造を有していると共に、二次電池が押圧体200を備えていない場合(実験例21)には、良好な高温衝突安全性が得られなかったと共に、良好な常温衝突安全性も得られなかった。これに対して、巻回電極体100が第2巻回構造を有していると共に、二次電池が押圧体300を備えていない場合(実験例22)には、電池厚さが僅かに増加した反面、良好な高温衝突安全性は依然として得られなかったものの、良好な常温衝突安全性は得られた。この巻回電極体100が第2巻回構造を有する場合において得られた傾向は、巻回電極体100が第3巻回構造を有する場合においても同様に得られた。
 よって、巻回電極体100が第2巻回構造または第3巻回構造を有する場合には、巻回電極体100が第1巻回構造を有する場合と比較して、電池厚さが僅かに増加する反面、衝突安全性が向上し、特に、常温衝突安全性が改善されると考えられる。
[まとめ]
 表1および表2に示した結果から、4個の配置領域R(R1~R4)のうちの1個または2個以上に押圧体200,300,400,500が配置されていると、電池サイズ(電池厚さ)がほぼ維持されながら、二次電池の衝突安全性(常温衝突安全性および高温衝突安全性)が改善された。よって、優れた電池特性を得ることができた。
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の態様は一実施形態および実施例において説明された態様に限定されず、その本技術の態様に関しては種々に変形可能である。
 具体的には、本技術の二次電池がラミネートフィルム型の二次電池である場合に関して説明したが、これに限られない。例えば、本技術の二次電池は、角型の二次電池などの他の種類の二次電池でもよい。
 また、本技術の二次電池が電極反応物質としてリチウムを用いたリチウムイオン二次電池である場合に関して説明したが、これに限られない。例えば、本技術の二次電池は、電極反応物質としてリチウム以外の物質を用いた他の二次電池でもよい。
 なお、本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して他の効果が得られてもよい。

Claims (10)

  1.  (A)セパレータを介して互いに積層されると共に所定の方向に延在する巻回軸を中心として巻回された正極および負極を含み、(B)前記巻回軸の延在方向と交差する断面の形状が、互いに交差する方向に延在する長軸および短軸により画定される扁平な形状であり、(C)前記断面が、前記長軸の延在方向において互いに対向する一対の湾曲外縁と、前記短軸の延在方向において互いに対向する一対の平坦外縁とを有し、(D)前記一対の湾曲外縁のそれぞれに接する一対の接線と、前記一対の平坦外縁のそれぞれに沿った一対の沿線とにより、4つの角部を有する四角形領域が画定される、電池素子と、
     前記電池素子を収納する収納部材と、
     前記4つの角部に対応する4つの領域のうちの少なくとも1つに配置された押圧部材と を備えた、二次電池。
  2.  前記押圧部材は、前記巻回軸の延在方向に沿った方向に延在する、
     請求項1記載の二次電池。
  3.  前記押圧部材は、導電性を有する、
     請求項1または請求項2に記載の二次電池。
  4.  前記押圧部材は、金属板および金属ワイヤのうちの少なくとも一方を含む、
     請求項1ないし請求項3のいずれか1項に記載の二次電池。
  5.  前記押圧部材は、前記収納部材の内部に配置されている、
     請求項1ないし請求項4のいずれか1項に記載の二次電池。
  6.  前記押圧部材は、前記四角形領域の内側に配置されている、
     請求項1ないし請求項5のいずれか1項に記載の二次電池。
  7.  前記押圧部材は、前記電池素子に取り付けられている、
     請求項1ないし請求項6のいずれか1項に記載の二次電池。
  8.  前記正極は、正極集電体と、前記正極集電体の一部に形成された正極活物質層とを含むと共に、前記正極集電体は、前記正極の巻回方向における巻外側の端部から巻内側に向かって延在すると共に前記正極活物質層が形成されていない正極非形成部を含み、
     前記負極は、負極集電体と、前記負極集電体の一部に形成された負極活物質層とを含むと共に、前記負極集電体は、前記負極の巻回方向における巻外側の端部から巻内側に向かって延在すると共に前記負極活物質層が形成されていない負極非形成部を含み、
     前記押圧部材は、前記正極非形成部および前記負極非形成部のうちの少なくとも一方に取り付けられている、
     請求項1ないし請求項7のいずれか1項に記載の二次電池。
  9.  前記正極非形成部は、前記正極の巻回方向における巻外側の端部から1周以上巻回されていると共に、前記負極非形成部は、前記負極の巻回方向における巻外側の端部から1周以上巻回されている、
     請求項8記載の二次電池。
  10.  前記正極非形成部は、前記正極の巻回方向における巻外側の端部から2周以上巻回されていると共に、前記負極非形成部は、前記負極の巻回方向における巻外側の端部から2周以上巻回されており、
     前記押圧部材は、1周目の前記正極非形成部、2周目の前記正極非形成部、1周目の前記負極非形成部および2周目の前記正極非形成部のうちの少なくとも1つに取り付けられている、
     請求項8または請求項9に記載の二次電池。
PCT/JP2019/018393 2018-05-14 2019-05-08 二次電池 WO2019220982A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018092857 2018-05-14
JP2018-092857 2018-05-14

Publications (1)

Publication Number Publication Date
WO2019220982A1 true WO2019220982A1 (ja) 2019-11-21

Family

ID=68539998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018393 WO2019220982A1 (ja) 2018-05-14 2019-05-08 二次電池

Country Status (1)

Country Link
WO (1) WO2019220982A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145059A1 (ja) * 2020-01-15 2021-07-22 株式会社村田製作所 二次電池
CN116682935A (zh) * 2023-08-04 2023-09-01 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186844A (ja) * 1996-09-26 1999-03-30 Toray Ind Inc 電池用電極およびそれを用いた電池
JP2002515637A (ja) * 1998-05-08 2002-05-28 エヴァレディー バッテリー カンパニー インコーポレイテッド 電気化学電池用の破壊制御機構
JP2006040899A (ja) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd 二次電池
JP2007214106A (ja) * 2006-01-13 2007-08-23 Sony Corp 電池
JP2008041264A (ja) * 2006-08-01 2008-02-21 Sony Corp 電池および短絡部材
JP2012248462A (ja) * 2011-05-30 2012-12-13 Gs Yuasa Corp 蓄電池
JP2014241208A (ja) * 2013-06-11 2014-12-25 日立オートモティブシステムズ株式会社 リチウムイオン二次電池および組電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186844A (ja) * 1996-09-26 1999-03-30 Toray Ind Inc 電池用電極およびそれを用いた電池
JP2002515637A (ja) * 1998-05-08 2002-05-28 エヴァレディー バッテリー カンパニー インコーポレイテッド 電気化学電池用の破壊制御機構
JP2006040899A (ja) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd 二次電池
JP2007214106A (ja) * 2006-01-13 2007-08-23 Sony Corp 電池
JP2008041264A (ja) * 2006-08-01 2008-02-21 Sony Corp 電池および短絡部材
JP2012248462A (ja) * 2011-05-30 2012-12-13 Gs Yuasa Corp 蓄電池
JP2014241208A (ja) * 2013-06-11 2014-12-25 日立オートモティブシステムズ株式会社 リチウムイオン二次電池および組電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145059A1 (ja) * 2020-01-15 2021-07-22 株式会社村田製作所 二次電池
CN116682935A (zh) * 2023-08-04 2023-09-01 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Similar Documents

Publication Publication Date Title
JP4726896B2 (ja) 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP5699559B2 (ja) 非水電解質電池
JP6024457B2 (ja) 二次電池およびそれに用いる二次電池用電解液
JP6337777B2 (ja) セパレータ、電極素子、蓄電デバイスおよび前記セパレータの製造方法
WO2013129033A1 (ja) 二次電池
CN112567555B (zh) 二次电池、电池包、电动车辆、蓄电系统、电动工具及电子设备
WO2017007015A1 (ja) 非水電解質電池及び電池パック
WO2019220982A1 (ja) 二次電池
WO2012049889A1 (ja) 二次電池およびそれに用いる二次電池用電解液
JPWO2019039412A1 (ja) 積層構造体及びその製造方法、並びに、ロールプレス装置
JP7298853B2 (ja) 二次電池
JP7107382B2 (ja) 二次電池
JP6048477B2 (ja) 非水電解質電池の製造方法
US20220352601A1 (en) Secondary battery
WO2018203534A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
US12057578B2 (en) Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US20210242489A1 (en) Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN112771705B (zh) 锂离子二次电池用电解液及锂离子二次电池
JPWO2012029645A1 (ja) 二次電池およびそれに用いる二次電池用電解液
JP2019129145A (ja) 非水電解質電池
JP7044174B2 (ja) 二次電池
CN112956053B (zh) 二次电池
US12040480B2 (en) Secondary battery
WO2020138317A1 (ja) 非水電解液および非水電解質二次電池
JP2014116271A (ja) セパレータ、電極素子、蓄電デバイスおよび前記セパレータの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP