WO2019220853A1 - マルチプレクサ、高周波フロントエンド回路および通信装置 - Google Patents

マルチプレクサ、高周波フロントエンド回路および通信装置 Download PDF

Info

Publication number
WO2019220853A1
WO2019220853A1 PCT/JP2019/016578 JP2019016578W WO2019220853A1 WO 2019220853 A1 WO2019220853 A1 WO 2019220853A1 JP 2019016578 W JP2019016578 W JP 2019016578W WO 2019220853 A1 WO2019220853 A1 WO 2019220853A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
series arm
resonator
arm resonators
resonators
Prior art date
Application number
PCT/JP2019/016578
Other languages
English (en)
French (fr)
Inventor
高田 俊明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201980031978.5A priority Critical patent/CN112106297B/zh
Priority to JP2020519530A priority patent/JP6733853B2/ja
Priority to KR1020207031687A priority patent/KR102605779B1/ko
Publication of WO2019220853A1 publication Critical patent/WO2019220853A1/ja
Priority to US17/088,640 priority patent/US11811393B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02866Means for compensation or elimination of undesirable effects of bulk wave excitation and reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • H03H9/6496Reducing ripple in transfer characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7209Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched from a first band to a second band

Definitions

  • the present invention relates to a multiplexer, a high frequency front end circuit, and a communication device.
  • a multiplexer that separates (demultiplexes) a high-frequency signal for each frequency band in order to support a plurality of frequency bands and a plurality of radio systems, so-called multiband and multimode, in a communication device such as a mobile phone terminal. (Demultiplexer) is widely used.
  • Patent Document 1 discloses a one-chip leaky (surface leaky) surface acoustic wave duplexer in which a ladder-type bandpass filter and a multimode coupled bandpass filter are connected in common.
  • a series arm resonator is disposed on the most common connection point side of the ladder type band pass filter, and the ladder type band pass filter has a plurality of series arm resonators including the series arm resonator.
  • the Rayleigh wave ripple of each elastic wave resonator becomes a problem.
  • the bandpass filter constituting the duplexer uses, for example, a leaky wave as a main elastic wave, or a laminated structure including a piezoelectric layer, a high sound speed support substrate, and a low sound speed film (details) Rayleigh wave ripples occur when a resonator having the above is provided.
  • an object of the present invention is to provide a multiplexer or the like that can suppress deterioration of insertion loss in the passband due to Rayleigh wave ripple of an elastic wave resonator.
  • the multiplexer is disposed on a first filter disposed on a first path connecting the common terminal and the first terminal, and on a second path connecting the common terminal and the second terminal, A second filter having a pass band in which the generation frequencies of Rayleigh wave ripples in the first filter overlap, the first filter including a plurality of series arm resonators disposed on the first path, and the first filter A connection node provided on one path, the connection node provided closer to the first terminal than the first series arm resonator connected closest to the common terminal among the plurality of series arm resonators A first parallel arm resonator disposed between the first parallel arm resonator and the ground, wherein the plurality of series arm resonators and the first parallel arm resonator use an SH wave as a main mode, Electrode finger of first series arm resonator Number, the smallest among the respective number of electrode finger pairs of the plurality of series arm resonators.
  • a high-frequency front end circuit includes the multiplexer described above and an amplifier circuit connected to the multiplexer.
  • a communication apparatus includes an RF signal processing circuit that processes a high-frequency signal transmitted and received by an antenna element, and the high-frequency signal that transmits the high-frequency signal between the antenna element and the RF signal processing circuit.
  • a front-end circuit includes an RF signal processing circuit that processes a high-frequency signal transmitted and received by an antenna element, and the high-frequency signal that transmits the high-frequency signal between the antenna element and the RF signal processing circuit.
  • the multiplexer or the like it is possible to suppress the deterioration of the insertion loss in the passband due to the Rayleigh wave ripple of the elastic wave resonator.
  • FIG. 1 is a configuration diagram illustrating an example of a multiplexer according to the first embodiment.
  • FIG. 2 is a circuit configuration diagram illustrating an example of the first filter according to the embodiment.
  • FIG. 3 is a plan view and a cross-sectional view schematically showing the resonator of the first filter according to the first embodiment.
  • FIG. 4 is a diagram for explaining Rayleigh wave ripple.
  • FIG. 5 is a graph comparing the pass characteristics of the second filters according to the example and the comparative example.
  • FIG. 6 is a graph comparing the return loss characteristics viewed from the common terminal side of the first filter according to the example and the comparative example.
  • FIG. 7 is a graph showing the relationship between the logarithm of the first series arm resonator and the return loss difference according to the first embodiment.
  • FIG. 8 is a graph comparing the pass characteristics of the first filter according to the example and the comparative example.
  • FIG. 9 is a configuration diagram of the high-frequency front-end circuit and the communication device according
  • FIG. 1 is a configuration diagram illustrating an example of a multiplexer 10 according to the first embodiment.
  • FIG. 1 also shows an antenna element ANT connected to the common terminal 20 of the multiplexer 10.
  • the antenna element ANT is a multiband antenna that transmits and receives a high-frequency signal and conforms to a communication standard such as LTE (Long Term Evolution).
  • the multiplexer 10 is a demultiplexing / multiplexing circuit using an elastic wave filter, and is a hexaplexer in the present embodiment.
  • the multiplexer 10 includes, as input / output terminals, a common terminal 20, an input / output terminal 21a (first terminal), an input / output terminal 21b (second terminal), an input / output terminal 21c, an input / output terminal 21d, an input / output terminal 21e, and an input / output.
  • a terminal 21f is provided.
  • the multiplexer 10 includes filters 10a to 10f, and one side (a side different from the input / output terminals 21a to 21f) is commonly connected to the common terminal 20.
  • the common terminal 20 is provided in common to the six filters 10a to 10f, and is connected to the filters 10a to 10f inside the multiplexer 10.
  • the common terminal 20 is connected to the antenna element ANT outside the multiplexer 10. That is, the common terminal 20 is also an antenna terminal of the multiplexer 10.
  • the input / output terminals 21a to 21f are provided corresponding to the six filters 10a to 10f individually in this order, and are connected to the corresponding filters inside the multiplexer 10.
  • the input / output terminals 21a to 21f are connected to an RF signal processing circuit (RFIC: Radio Frequency Integrated Circuit, not shown) through an amplifier circuit (not shown in FIG. 1) outside the multiplexer 10.
  • RFIC Radio Frequency Integrated Circuit
  • the filter 10a is a first filter disposed on a first path connecting the common terminal 20 and the input / output terminal 21a.
  • the filter 10a is a reception filter using an elastic wave.
  • the pass band is, for example, LTE Band 30Rx (2350-2360 MHz).
  • the filter 10b is a second filter disposed on the second path connecting the common terminal 20 and the input / output terminal 21b.
  • the filter 10b is a transmission filter using elastic waves, and its passband is, for example, LTE Band66Tx (1710-1780 MHz).
  • the filter 10c is a filter arranged on a path connecting the common terminal 20 and the input / output terminal 21c.
  • the filter 10c is a reception filter using an elastic wave, and its passband is, for example, LTE Band25Rx (1930-1995 MHz).
  • the filter 10d is a filter arranged on a path connecting the common terminal 20 and the input / output terminal 21d.
  • the filter 10d is a transmission filter using an elastic wave, and the passband thereof is, for example, LTE Band25Tx (1850-1915 MHz).
  • the filter 10e is a filter disposed on a path connecting the common terminal 20 and the input / output terminal 21e.
  • the filter 10e is a reception filter using an elastic wave, and the passband thereof is, for example, LTE Band66Rx (2110-2200 MHz).
  • the filter 10f is a filter disposed on a path connecting the common terminal 20 and the input / output terminal 21f.
  • the filter 10f is a transmission filter using elastic waves, and its passband is, for example, LTE Band 30Tx (2305-2315 MHz).
  • the pass bands of the filters are different from each other, for example, and a single multiplexer 10 can correspond to a plurality of frequency bands.
  • the passbands of the six filters 10a to 10f are not limited to the combination of Band30, Band66, and Band25.
  • the number of filters connected to the common terminal 20 may be two or more.
  • the multiplexer 10 may be composed of only a plurality of transmission filters or only a plurality of reception filters.
  • FIG. 2 is a circuit configuration diagram illustrating an example of the first filter (filter 10a) according to the embodiment.
  • the filter 10a is a plurality of series arm resonators disposed on a first path connecting the common terminal 20 and the input / output terminal 21a, and a connection node provided on the first path, and includes a plurality of series arm resonances.
  • a first parallel arm resonator disposed between a connection node provided closer to the input / output terminal 21a than the first series arm resonator connected closest to the common terminal 20 and the ground.
  • a connection node is a connection point between elements and / or elements, and is indicated by a point indicated by x1 or the like in FIG.
  • the plurality of series arm resonators is at least three series arm resonators.
  • the filter 10a includes series arm resonators S1 to S4 connected in series as at least three series arm resonators.
  • the series arm resonator S1 is a first series arm resonator connected closest to the common terminal 20 among the series arm resonators S1 to S4.
  • the filter 10a has a plurality of parallel arm resonators including the first parallel arm resonator.
  • the filter 10a includes, as a plurality of parallel arm resonators, a parallel arm resonator P1 connected between the connection node x1 between the series arm resonators S1 and S2 and the ground, and the series arm resonators S2 and S3.
  • the parallel arm resonator P2 is connected between the connection node x2 and the ground
  • the parallel arm resonator P3 is connected between the connection node x3 between the series arm resonators S3 and S4 and the ground.
  • the plurality of parallel arm resonators are arranged between the connection nodes x1 to x3 provided on the input / output terminal 21a side of the series arm resonator S1 and the ground, which connects the filter 10a to the common terminal 20 side. In other words, it is arranged from the series arm resonator S1. In other words, it means that no parallel arm resonator is connected between the common terminal 20 and the series arm resonator S1.
  • the parallel arm resonator P1 is a first parallel arm resonator connected closest to the common terminal 20 among a plurality of parallel arm resonators (parallel arm resonators P1 to P3).
  • the series arm resonators S1 to S4 and the parallel arm resonators P1 to P3 are resonators constituting the pass band of the filter 10a.
  • the resonance frequency of the series arm resonators S1 to S4 and the anti-resonance frequency of the parallel arm resonators P1 to P3 are designed to be located near the center frequency of the pass band of the filter 10a.
  • the antiresonance frequency of the series arm resonators S1 to S4 is an attenuation pole near the high band side of the pass band
  • the resonance frequency of the parallel arm resonators P1 to P3 is an attenuation pole near the low band side of the pass band. Designed to be located. In this way, the pass band is formed.
  • the series arm resonators S1 to S4 and the parallel arm resonators P1 and P3 are each composed of a plurality of divided resonators obtained by dividing one resonator.
  • the series arm resonator S1 includes split resonators S1a and S1b
  • the series arm resonator S2 includes split resonators S2a to S2c
  • the series arm resonator S3 includes split resonators S3a and S3b.
  • the resonator S4 is composed of split resonators S4a and S4b.
  • the parallel arm resonator P1 is composed of split resonators P1a and P1b
  • the parallel arm resonator P3 is composed of split resonators P3a and P3b.
  • IMD Inter Modulation Distortion
  • a plurality of series arm resonators and first parallel arm resonators use SH waves such as leaky waves as a main mode.
  • the plurality of series arm resonators and the first parallel arm resonator are configured by IDT (InterDigital Transducer) electrodes that excite elastic waves mainly composed of SH waves.
  • IDT InterDigital Transducer
  • a plurality of divided resonators in one resonator are equally divided, and when attention is paid to the number of electrode fingers (the number of electrode finger pairs) constituting the IDT electrode, a plurality of divided resonances in one resonator. The logarithm of each child is the same.
  • the number of pairs of electrode fingers constituting the IDT electrode of the resonator is also referred to as the number of pairs of resonators.
  • Each IDT electrode of the plurality of series arm resonators and the first parallel arm resonator is formed on a substrate having a piezoelectric layer (substrate having piezoelectricity), and the IDT electrode is on one main surface of the substrate.
  • a low sound velocity film having a lower bulk wave sound velocity propagating through the piezoelectric layer than the bulk wave sound velocity. Details will be described later with reference to FIG. Since each resonator constituting the filter 10a has such a laminated structure, the Rayleigh wave ripple generated in the filter 10a is increased.
  • the resonator is a surface acoustic wave (SAW) resonator.
  • SAW surface acoustic wave
  • FIG. 3 is a plan view and a cross-sectional view schematically showing the resonator of the first filter (filter 10a) according to the first embodiment.
  • a resonator 401 is taken as an example, and a schematic plan view and a schematic sectional view showing the structure are illustrated.
  • the resonator 401 shown in FIG. 3 is for explaining a typical structure of the plurality of resonators, and the number and length of electrode fingers constituting the electrode are limited to this. Not.
  • the resonator 401 has a pair of comb-like electrodes 11a and 11b facing each other. Although not shown, the resonator 401 further includes a reflector disposed adjacent to the pair of comb-like electrodes 11a and 11b in the propagation direction of the elastic wave. The pair of comb-like electrodes 11a and 11b constitutes an IDT electrode.
  • the comb-teeth electrode 11a is arranged in a comb-teeth shape and includes a plurality of electrode fingers 110a parallel to each other and a bus bar electrode 111a that connects one end of each of the plurality of electrode fingers 110a.
  • the comb-like electrode 11b is arranged in a comb-teeth shape and includes a plurality of electrode fingers 110b parallel to each other and a bus bar electrode 111b that connects one end of each of the plurality of electrode fingers 110b.
  • the plurality of electrode fingers 110a and 110b are formed to extend in a direction orthogonal to the elastic wave propagation direction.
  • the comb-like electrodes 11a and 11b are not limited to the above configuration, and may have, for example, offset electrode fingers.
  • the resonator 401 may have a so-called inclined IDT in which the bus bar electrodes 111a and 111b are inclined with respect to the elastic wave propagation direction.
  • the electrode fingers 110a and 110b may have so-called thinned electrodes thinned at a predetermined interval.
  • the IDT electrode composed of the plurality of electrode fingers 110a and 110b and the bus bar electrodes 111a and 111b has a laminated structure of the adhesion layer 51 and the main electrode layer 52 as shown in the sectional view of FIG. Yes.
  • the adhesion layer 51 is a layer for improving the adhesion between the piezoelectric substrate 50 and the main electrode layer 52, and, for example, Ti is used as a material.
  • the film thickness of the adhesion layer 51 is, for example, 12 nm.
  • the main electrode layer 52 is made of, for example, Al containing 1% Cu.
  • the film thickness of the main electrode layer 52 is, for example, 162 nm.
  • the protective layer 53 is formed so as to cover the IDT electrode.
  • the protective layer 53 is a layer for the purpose of protecting the main electrode layer 52 from the external environment, adjusting frequency temperature characteristics, and improving moisture resistance, for example, a film containing silicon dioxide as a main component. .
  • the film thickness of the protective layer 53 is, for example, 25 nm.
  • adherence layer 51, the main electrode layer 52, and the protective layer 53 is not limited to the material mentioned above.
  • the IDT electrode does not have to have the above laminated structure.
  • the IDT electrode may be composed of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, or Pd, or may be composed of a plurality of laminates composed of the above metals or alloys. Also good.
  • the protective layer 53 may not be formed.
  • the piezoelectric substrate 50 is a substrate having piezoelectricity in which an IDT electrode and a reflector are disposed on the main surface.
  • the piezoelectric substrate 50 is, for example, a 42 ° Y-cut X-propagating LiTaO 3 piezoelectric single crystal or a piezoelectric ceramic (a lithium tantalate single crystal cut along a plane whose axis is rotated by 42 ° from the Y axis with the X axis as the central axis)
  • it is made of ceramic and is made of a single crystal or ceramic in which surface acoustic waves propagate in the X-axis direction.
  • the piezoelectric substrate 50 is a piezoelectric substrate having a laminated structure in which a high acoustic velocity supporting substrate, a low acoustic velocity film, and a piezoelectric film (piezoelectric layer) are laminated in this order.
  • the piezoelectric film is made of, for example, 42 ° Y-cut X-propagating LiTaO 3 piezoelectric single crystal or piezoelectric ceramic.
  • the piezoelectric film has a thickness of 600 nm, for example.
  • the high sound velocity support substrate is a substrate that supports the low sound velocity film, the piezoelectric film, and the IDT electrode.
  • the high-sonic support substrate is a substrate in which the acoustic velocity of the bulk wave in the high-sonic support substrate is higher than that of the surface wave or boundary wave that propagates through the piezoelectric film. It functions in such a way that it is confined in the portion where the sonic film is laminated and does not leak below the high sonic support substrate.
  • the high sound speed support substrate is, for example, a silicon substrate, and has a thickness of, for example, 200 ⁇ m.
  • the low acoustic velocity film is a membrane in which the acoustic velocity of the bulk wave in the low acoustic velocity film is lower than the bulk wave propagating through the piezoelectric membrane, and is disposed between the piezoelectric membrane and the high acoustic velocity support substrate. Due to this structure and the property that energy is concentrated in a medium where acoustic waves are essentially low in sound velocity, leakage of surface acoustic wave energy to the outside of the IDT electrode is suppressed.
  • the low acoustic velocity film is, for example, a film mainly composed of silicon dioxide and has a thickness of, for example, 670 nm.
  • the low acoustic velocity film may have a multilayer structure composed of a plurality of low acoustic velocity materials. According to this laminated structure, the Q value at the resonance frequency and the anti-resonance frequency can be significantly increased as compared with a structure in which the piezoelectric substrate 50 is used as a single layer. That is, since a surface acoustic wave resonator having a high Q value can be configured, a filter with a small insertion loss can be configured using the surface acoustic wave resonator.
  • the high sound velocity support substrate has a structure in which a support substrate and a high sound velocity film in which the velocity of the bulk wave propagating is higher than that of the surface wave and boundary wave propagating in the piezoelectric film are stacked.
  • the supporting substrate is a piezoelectric material such as lithium tantalate, lithium niobate, crystal, sapphire, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, forsterite, etc.
  • Various ceramics, dielectrics such as glass, semiconductors such as silicon and gallium nitride, resin substrates, and the like can be used.
  • the high sound velocity film includes various materials such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film or diamond, a medium mainly composed of the above materials, and a medium mainly composed of a mixture of the above materials. High sound velocity material can be used.
  • the electrode parameters of the IDT electrode constituting the surface acoustic wave resonator will be described.
  • the wavelength of the surface acoustic wave resonator is defined by a wavelength ⁇ which is a repetition period of the plurality of electrode fingers 110a or 110b constituting the IDT electrode shown in FIG.
  • the electrode pitch P is 1 ⁇ 2 of the wavelength ⁇
  • the line width of the electrode fingers 110a and 110b constituting the comb-shaped electrodes 11a and 11b is W
  • the distance between the adjacent electrode fingers 110a and 110b is W.
  • the space width of S is S, it is defined by (W + S).
  • the crossing width L of the pair of comb-like electrodes 11a and 11b is an overlapping electrode finger length when viewed from the propagation direction.
  • the electrode duty R of each resonator is the line width occupation ratio of the plurality of electrode fingers 110a and 110b, and is the ratio of the line width to the sum of the line width and the space width of the plurality of electrode fingers 110a and 110b. Yes, defined as W / (W + S).
  • the film thickness of the IDT electrode is the thickness h of the plurality of electrode fingers 110a and 110b.
  • the generation frequency of the Rayleigh wave ripple in the filter 10a is about 0.76 times the pass band of the filter 10a. More specifically, since there is a variation of ⁇ 0.02 times as the processing variation of the filter 10a, the generation frequency of the Rayleigh wave ripple in the filter 10a is 0.74 to 0.78 times the passband of the filter 10a. Double the frequency.
  • the filters 10b to 10f commonly connected to the filter 10a and the common terminal 20 the filter 10b has a pass band in which the generation frequencies of Rayleigh wave ripples in the filter 10a overlap.
  • FIG. 4 is a diagram for explaining the Rayleigh wave ripple.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the insertion loss of the filter 10a.
  • the Rayleigh wave ripple generated in the filter 10a increases.
  • a Rayleigh wave ripple is generated in the Band66Tx that overlaps with a frequency about 0.76 times the Band30Rx that is the passband of the filter 10a, that is, in the passband of the filter 10b.
  • the reflection coefficient when the filter 10a is viewed from the common terminal 20 deteriorates (decreases), in other words, the return loss increases. Since the frequency at which the Rayleigh wave ripple is generated is included in the passband of the filter 10b, a ripple due to the Rayleigh wave ripple is generated in the passband of the filter 10b. The ripple generated in the pass band deteriorates the insertion loss in the pass band of the filter 10b.
  • the inventor has found that the above-described Rayleigh wave ripple is a factor that deteriorates the insertion loss of the filter 10b (Band66Tx filter), and the filter 10a has the following configuration (resonator parameter). It has been found that application can suppress deterioration of insertion loss of the filter 10b.
  • Table 1 shows the resonator parameters of each resonator constituting the filter 10a according to the example.
  • Table 2 shows the resonator parameters of each resonator constituting the filter 10a according to the comparative example.
  • symbol 10a is attached
  • the logarithm and the cross width of the series arm resonators constituting the filter 10a are different between the example and the comparative example.
  • each of the series arm resonators S1 to S4 and the parallel arm resonators P1 and P3 is composed of a plurality of divided resonators obtained by dividing one resonator.
  • the logarithms shown in Tables 1 and 2 indicate the logarithms of the split resonators for the resonators constituted by the split resonators.
  • the series arm resonator S1 is constituted by the split resonators S1a and S1b, and the logarithms of the split resonators S1a and S1b are 75 pairs.
  • the number of electrode fingers constituting the IDT electrode of the series arm resonator S1 (the number of electrode fingers of the series arm resonator S1) is the series arm resonator S1.
  • the logarithm of each of the series arm resonators S1 to S4 becomes smaller as the logarithm of the series arm resonator closer to the common terminal 20.
  • the logarithm of the series arm resonator S1 is the largest among the respective logarithms of the series arm resonators S1 to S4.
  • the logarithm of the parallel arm resonator P1 is the smallest among the respective logarithms of the parallel arm resonators P1 to P3.
  • FIG. 5 is a graph comparing the pass characteristics of the filter 10b (second filter) according to the example and the comparative example.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the insertion loss of the filter 10b.
  • the characteristic in the example is indicated by a solid line
  • the characteristic in the comparative example is indicated by a broken line. The same applies to FIGS. 6 and 8 described later.
  • the insertion loss in the passband is improved in the embodiment in the passband (that is, Band66Tx) of the filter 10b as compared with the comparative example.
  • the insertion loss in the passband in the comparative example is 2.22 dB at the maximum, whereas the insertion loss in the passband in the example is 1.98 dB at the maximum. This is because the Rayleigh wave ripple generated in the filter 10a is smaller in the embodiment than in the comparative example. This will be described with reference to FIGS.
  • FIG. 6 is a graph comparing return loss characteristics as seen from the common terminal 20 side of the filter 10a (first filter) according to the example and the comparative example.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the return loss of the filter 10a.
  • the filter 10a When the return loss of the filter 10a (first filter) increases, the signal component leaking from the filter 10b (second filter) to the passband of the filter 10a (that is, Band30Rx) increases, and thus the passband of the filter 10b (that is, Band66Tx). ) Insertion loss worsens.
  • the series arm resonator S1 that is connected closest to the common terminal 20 among the series arm resonators S1 to S4 is likely to affect the filter 10b that is commonly connected to the filter 10a and the common terminal 20. Therefore, it is considered that the filter 10b is influenced by the resonator parameter of the series arm resonator S1 connected to the most common terminal 20 side in the filter 10a. Therefore, the present invention focuses on the logarithm of the resonator among the resonator parameters.
  • the number of series arm resonators S1 is the smallest among the number of series arm resonators S1 to S4.
  • the number of series arm resonators S1 to S4 is the number of series arm resonators S1 to S4.
  • the logarithm of S1 is the largest.
  • the return loss difference difference between the maximum and minimum return loss in Band30Rx
  • the return loss difference is large in the comparative example in which the logarithm of the series arm resonator S1 is large.
  • FIG. 7 is a graph showing the relationship between the logarithm of the series arm resonator S1 (first series arm resonator) according to the first embodiment and the return loss difference.
  • the horizontal axis represents the logarithm of the series arm resonator S1
  • the vertical axis represents the return loss difference of the filter 10a.
  • FIG. 7 also shows that the return loss difference decreases as the logarithm of the series arm resonator S1 is decreased.
  • the return loss of the filter 10a increases at the frequency at which the Rayleigh wave ripple occurs in the filter 10a, from the results shown in FIGS. 6 and 7, in the embodiment where the return loss difference is small, It can be said that Rayleigh wave ripple is suppressed. That is, it can be said that the Rayleigh wave ripple can be suppressed by reducing the logarithm of the series arm resonator S1 as in the embodiment. Therefore, as shown in FIG. 5, in the embodiment, the deterioration of the insertion loss in the passband of the filter 10b due to the Rayleigh wave ripple can be suppressed as compared with the comparative example.
  • the reason why the return loss difference decreases as the number of resonators is decreased is considered to be due to the fact that the reflection efficiency (confinement efficiency) of the IDT electrode becomes worse as the number of resonators decreases.
  • the number of logarithms of the series arm resonators S1 to S4 is smaller as the number of series arm resonators close to the common terminal 20 is smaller. This is because the series arm resonator connected closer to the common terminal 20 side tends to affect the return loss of the filter 10b.
  • the parallel arm resonator P1 that is connected closest to the common terminal 20 is also connected to the common terminal 20 in the same manner as the series arm resonator S1, so Easy to affect return loss.
  • the number of parallel arm resonators P1 is the smallest of the number of parallel arm resonators P1 to P3, and the deterioration of the insertion loss in the passband of the filter 10b due to the Rayleigh wave ripple is further reduced. It can be effectively suppressed.
  • the series arm resonator S1 tends to affect the return loss of the filter 10a, but the series arm resonators S2 to S4 far from the common terminal 20 can be increased even if the logarithm is increased. Less likely to affect return loss.
  • Table 1 in the embodiment, the logarithms of the series arm resonators S2 to S4 excluding the series arm resonator S1 are larger than the logarithms of the series arm resonator S1.
  • Table 2 in the comparative example, the logarithm of each of the series arm resonators S2 to S4 is smaller than the logarithm of the series arm resonator S1.
  • FIG. 8 is a graph comparing the pass characteristics of the filter 10a (first filter) according to the example and the comparative example.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the insertion loss of the filter 10a.
  • the insertion loss in the passband is improved in the embodiment in the passband (that is, Band30Rx) of the filter 10a as compared with the comparative example.
  • the insertion loss in the pass band in the comparative example is 2.50 dB at the maximum
  • the insertion loss in the pass band in the example is 2.37 dB at the maximum. This is because the logarithm of each of the series arm resonators S2 to S4 in the filter 10a is larger in the embodiment than in the comparative example, that is, the electrode finger resistance of the IDT electrode is reduced.
  • the series arm resonator S1 connected closest to the common terminal 20 has the smallest number of pairs of the series arm resonators S1 to S4, and the series arm excluding the series arm resonator S1.
  • the filter 10a includes at least three (four in this case) series arm resonators.
  • the logarithm of the series arm resonator S1 When the logarithm of the series arm resonator S1 is reduced, the deterioration of the insertion loss in the pass band of the filter 10b can be suppressed.
  • the electrode finger resistance of the entire filter 10a is increased by reducing the logarithm of the series arm resonator S1. This causes deterioration of insertion loss in the pass band of the filter 10a. Therefore, by increasing the number of series arm resonators constituting the filter 10a and increasing the number of series arm resonators other than the series arm resonator S1, the electrode finger resistance of the entire filter 10a can be reduced.
  • Deterioration of insertion loss in the passband of the filter 10a can be suppressed. As described above, even if the number of other series arm resonators is increased, since these series arm resonators are connected far from the common terminal 20, the insertion loss in the passband of the filter 10b is reduced. Less likely to cause deterioration.
  • the logarithms of the series arm resonators S1 to S4 are preferably different from each other.
  • the logarithms of the series arm resonators S1 to S4 are preferably different from each other.
  • the logarithms of the series arm resonators S1 to S4 are different from each other.
  • the logarithm of the series arm resonator S1 is preferably designed so that the return loss difference of the filter 10a is within 0.5 dB.
  • the deterioration of the insertion loss in the pass band of the filter 10b can be within about 0.15 dB.
  • the deterioration of the insertion loss within 0.15 dB is smaller than the deterioration of the insertion loss caused by the processing variation of the filter and is within the allowable range.
  • 7 that the logarithm of the series arm resonator S1 when the return loss difference of the filter 10a is within 0.5 dB is approximately 100 pairs or less.
  • the logarithm of the series arm resonator S1 is designed to be 100 pairs or less. Thereby, degradation of the insertion loss in the pass band of the filter 10b can be suppressed more effectively.
  • the filter 10b includes a plurality of series arm resonators arranged on the second path and a connection node provided on the second path, like the filter 10a, and a plurality of series arm resonances. At least one parallel arm resonator disposed between a connection node provided on the input / output terminal 21b side of the second series arm resonator connected to the common terminal 20 closest to the common terminal 20 and the ground. Have. Similarly, the filters 10c to 10f have such a ladder structure.
  • Table 3 shows the logarithms of series arm resonators connected to the common terminal 20 closest to each filter constituting the multiplexer 10 according to the first embodiment.
  • the number of pairs of electrode fingers constituting the IDT electrode of the series arm resonator S1 of the filter 10a is the common terminal of the filters 10b to 10f.
  • the number of electrode fingers constituting the IDT electrode of the second series arm resonator connected closest to 20 is smaller than the number of electrode fingers (number of electrode finger pairs of the second series arm resonator).
  • the multiplexer 10 since the pass band of the filter 10b and the generation frequency of the Rayleigh wave ripple in the filter 10a overlap, it is necessary to reduce the logarithm of the series arm resonator S1 constituting the filter 10a.
  • the multiplexer 10 does not include a filter having a pass band that overlaps with the generation frequency of each Rayleigh wave ripple.
  • the logarithm of each of the series arm resonators connected closest to the common terminal 20 included in the filters 10b to 10f is designed to be large, whereby the filters 10b to 10f Deterioration of insertion loss in the passband can be suppressed.
  • the multiplexer 10 is disposed on the filter 10a disposed on the first path connecting the common terminal 20 and the input / output terminal 21a and on the second path connecting the common terminal 20 and the input / output terminal 21b.
  • a filter 10b having a pass band in which the generation frequencies of Rayleigh wave ripples in the filter 10a overlap.
  • the filter 10a is a plurality of series arm resonators arranged on the first path and a connection node provided on the first path, and is connected closest to the common terminal 20 among the plurality of series arm resonators.
  • the parallel arm resonator P1 disposed between the connection node provided on the input / output terminal 20a side of the series arm resonator S1 and the ground.
  • the plurality of series arm resonators and parallel arm resonators P1 use SH waves as the main mode.
  • the number of electrode finger pairs of the series arm resonator S1 is the smallest among the number of electrode finger pairs of the plurality of series arm resonators.
  • the series arm resonator S1 that is connected closest to the common terminal 20 is connected to the common terminal 20 closest to the filter 10a, and thus is connected in common to the filter 10a and the common terminal 20.
  • the filter 10b having a pass band overlapping with the frequency is likely to be affected. From the simulation results shown in FIGS. 6 and 7, the smaller the logarithm of the series arm resonator S1, the smaller the return loss difference of the filter 10a (the difference between the maximum and minimum return loss in the pass band of the filter 10b). It can be seen that Rayleigh wave ripple is suppressed.
  • the insertion loss in the passband of the filter 10b is deteriorated due to the Rayleigh wave ripple of the elastic wave resonator. Can be suppressed.
  • the electrode finger resistance of the entire filter 10a increases by decreasing the number of series arm resonators S1, but increasing the number of series arm resonators excluding the series arm resonator S1 increases the electrode finger resistance. Can be suppressed. Thereby, deterioration of the insertion loss in the passband of the filter 10a can be suppressed.
  • each IDT electrode of the plurality of series arm resonators and parallel arm resonators P1 may be formed on the piezoelectric substrate 50 having a piezoelectric layer.
  • the piezoelectric substrate 50 includes a piezoelectric layer in which an IDT electrode is formed on one main surface, a high sound velocity support substrate having a higher bulk wave sound velocity than an acoustic wave sound velocity propagating through the piezoelectric layer, There may be provided a low sound velocity film disposed between the sound velocity supporting substrate and the piezoelectric layer and having a propagating bulk wave sound velocity that is lower than a bulk wave sound velocity propagating through the piezoelectric layer.
  • the Q value at the resonance frequency and the antiresonance frequency of each resonator can be significantly increased. That is, since a surface acoustic wave resonator having a high Q value can be configured, a filter with a small insertion loss can be configured using the surface acoustic wave resonator.
  • the logarithm of the series arm resonator S1 is set to be the smallest among the respective logarithms of the plurality of series arm resonators. Therefore, it is possible to configure a filter with low insertion loss while suppressing Rayleigh wave ripple.
  • the filter 10a includes a plurality of parallel arm resonators including the parallel arm resonator P1, and the number of electrode fingers of the parallel arm resonator P1 among the plurality of parallel arm resonators is equal to the plurality of parallel arm resonators.
  • the number of electrode finger pairs may be the smallest.
  • the parallel arm resonator P1 connected closest to the common terminal 20 is also connected to the common terminal 20 side in the same manner as the series arm resonator S1, and thus easily affects the filter 10b. .
  • the insertion loss in the passband of the filter 10b due to the Rayleigh wave ripple of the elastic wave resonator is minimized by reducing the number of the parallel arm resonator P1 among the logarithms of the plurality of parallel arm resonators. Degradation can be more effectively suppressed.
  • the filter 10b includes a plurality of series arm resonators disposed on the second path and a connection node provided on the second path, and is connected to the common terminal 20 among the plurality of series arm resonators.
  • You may have at least 1 parallel arm resonator arrange
  • the number of electrode finger pairs of the series arm resonator S1 may be smaller than the number of electrode finger pairs of the second series arm resonator.
  • the number of series arm resonators S1 is smaller than the number of second series arm resonators connected closest to the common terminal 20 of the filter 10b is, in other words, the number of series arm resonators S1 in the filter 10b.
  • the electrode finger resistance of the entire filter 10b can be reduced, and the deterioration of the insertion loss in the passband of the filter 10b can be more effectively suppressed. it can.
  • the number of electrode finger pairs of the series arm resonator S1 may be 100 pairs or less.
  • the plurality of series arm resonators in the filter 10a may be at least three series arm resonators.
  • the electrode finger resistance of the entire filter 10a is increased by reducing the logarithm of the series arm resonator S1. This causes deterioration of insertion loss in the pass band of the filter 10a. Therefore, by increasing the number of series arm resonators constituting the filter 10a and increasing the number of series arm resonators other than the series arm resonator S1, the electrode finger resistance of the entire filter 10a can be reduced. Degradation of insertion loss in the passband of the filter 10a can be more effectively suppressed.
  • the number of electrode finger pairs of at least three series arm resonators may be different from each other.
  • the generation frequency of the Rayleigh wave ripple in the filter 10a is 0.74 to 0.78 times the pass band of the filter 10a.
  • Embodiment 2 The multiplexer according to Embodiment 1 can be applied to a high-frequency front-end circuit and further to a communication device including the high-frequency front-end circuit. Therefore, in this embodiment, such a high-frequency front-end circuit and a communication device will be described.
  • FIG. 9 is a configuration diagram of the high-frequency front-end circuit 3 and the communication device 1 according to the second embodiment.
  • the antenna element ANT, the high-frequency front end circuit 3, the RF signal processing circuit 70, and the baseband signal processing circuit 80 constitute the communication device 1.
  • the antenna element ANT may be provided separately from the communication device 1.
  • the high-frequency front-end circuit 3 includes the multiplexer 10 according to the first embodiment, switches 61a and 61b, a low noise amplifier circuit 62a, and a power amplifier circuit 62b.
  • the switch 61a is a switch circuit having a selection terminal connected to the input / output terminals 21a, 21c and 21e of the multiplexer 10 and a common terminal connected to the low noise amplifier circuit 62a.
  • the switch 61b is a switch circuit having a selection terminal connected to the input / output terminals 21b, 21d and 21f of the multiplexer 10 and a common terminal connected to the power amplifier circuit 62b.
  • the switches 61a and 61b are configured by, for example, SPDT (Single Pole Double Throw) type switches that connect a common terminal and any signal path in the multiplexer 10 according to a control signal from a control unit (not shown).
  • SPDT Single Pole Double Throw
  • the low noise amplifier circuit 62a is a reception amplification circuit that amplifies a high frequency signal (here, a high frequency reception signal) via the antenna element ANT, the multiplexer 10, and the switch 61a and outputs the amplified signal to the RF signal processing circuit 70.
  • the power amplifier circuit 62b is a transmission amplifier circuit that amplifies the high-frequency signal (here, the high-frequency transmission signal) input from the RF signal processing circuit 70 and outputs the amplified signal to the antenna element ANT via the switch 61b and the multiplexer 10.
  • the RF signal processing circuit 70 processes the high-frequency reception signal input from the antenna element ANT via the reception signal path by down-conversion or the like, and the baseband signal processing circuit 80 generates the reception signal generated by the signal processing. Output to. Further, the RF signal processing circuit 70 performs signal processing on the transmission signal input from the baseband signal processing circuit 80 by up-conversion or the like, and outputs the high-frequency signal generated by the signal processing to the high-frequency front end circuit 3.
  • the RF signal processing circuit 70 is, for example, an RFIC.
  • the signal processed by the baseband signal processing circuit 80 is used, for example, as an image signal for image display or as an audio signal for a call.
  • the high-frequency front-end circuit 3 may include other circuit elements between the above-described components.
  • the communication device 1 may not include the baseband signal processing circuit 80 according to the high-frequency signal processing method.
  • the high-frequency front-end circuit 3 includes the multiplexer 10 and the amplifier circuit connected to the multiplexer 10.
  • the communication device 1 transmits an RF signal processing circuit 70 that processes a high-frequency signal transmitted and received by the antenna element ANT, and transmits the high-frequency signal between the antenna element ANT and the RF signal processing circuit 70.
  • a high-frequency front-end circuit 3 that performs
  • a hexaplexer has been described as an example of the multiplexer 10, but the present invention can be applied to a multiplexer in which antenna terminals of two or more filters are shared, for example.
  • the filter 10a has four series arm resonators S1 to S4 as a plurality of series arm resonators.
  • two, three, or five or more series arm resonators are used. You may have a child.
  • the filter 10a has the three parallel arm resonators P1 to P3, but one parallel arm resonator P1 or two including the parallel arm resonator P1 or You may have four or more parallel arm resonators.
  • the filter 10a has a plurality of series arm resonators and a plurality of parallel arm resonators.
  • the filter 10a may have a longitudinally coupled resonator. Good.
  • each resonator included in the filter 10a is configured by the split resonator, but may not be configured by the split resonator.
  • the filters 10b to 10f are acoustic wave filters, but they may not be acoustic wave filters, and may be LC filters or the like.
  • the filters 10b to 10f may be formed on the same chip.
  • the piezoelectric substrate 50 includes a piezoelectric layer in which an IDT electrode is formed on one main surface, a high acoustic velocity supporting substrate having a higher bulk wave sound velocity than a acoustic wave velocity propagating through the piezoelectric layer, In the case of including a low sound velocity film disposed between the sound velocity supporting substrate and the piezoelectric layer and having a bulk wave sound velocity propagating at a lower speed than the elastic wave sound velocity propagating through the piezoelectric layer, the filters 10b ⁇ Even if the frequency of the 10f pass band is distant, a desired pass band can be realized only by adjusting the pitch of the IDT electrodes.
  • the present invention can be widely used in communication devices such as mobile phones as multiplexers, front-end circuits and communication devices applicable to multiband systems.

Abstract

マルチプレクサは、共通端子(20)と入出力端子(21a)とを結ぶ第1経路上に配置されたフィルタ(10a)と、共通端子(20)と第2端子とを結ぶ第2経路上に配置され、フィルタ(10a)におけるレイリー波リップルの発生周波数が重なる通過帯域を有する第2フィルタと、を備え、フィルタ(10a)は、第1経路上に配置された複数の直列腕共振子(S1~S4)と、並列腕共振子(P1)と、を有し、複数の直列腕共振子(S1~S4)および並列腕共振子(P1)は、SH波をメインモードとして利用しており、直列腕共振子(S1)の電極指対数は、複数の直列腕共振子(S1~S4)のそれぞれの電極指対数のうち最も少ない。

Description

マルチプレクサ、高周波フロントエンド回路および通信装置
 本発明は、マルチプレクサ、高周波フロントエンド回路および通信装置に関する。
 近年、携帯電話端末等の通信装置について、1つの端末で複数の周波数帯域および複数の無線方式、いわゆるマルチバンドおよびマルチモードに対応するため、高周波信号を周波数帯域ごとに分離(分波)するマルチプレクサ(分波器)が広く用いられている。
 特許文献1には、ラダー型バンドパスフィルタと多重モード結合型バンドパスフィルタとを共通接続したワンチップ漏洩(リーキー)表面弾性波分波器が開示されている。ラダー型バンドパスフィルタの最も共通接続点側には直列腕共振子が配置されており、ラダー型バンドパスフィルタは、当該直列腕共振子を含む複数の直列腕共振子を有している。
特開2013-81068号公報
 特許文献1では、各弾性波共振子のレイリー波リップルが問題となる。分波器を構成するバンドパスフィルタが、例えば、リーキー波を主要弾性波として利用している場合、または、圧電体層と、高音速支持基板と、低音速膜と、からなる積層構造(詳細は後述する)を有する共振子を備える場合等にレイリー波リップルが発生する。すなわち、上記のように複数のバンドパスフィルタを共通接続している場合に、一方のバンドパスフィルタ内の弾性波共振子のレイリー波リップルが他方のバンドパスフィルタの通過帯域内で生じると、当該他方のバンドパスフィルタの通過帯域内にリップルが発生し、当該他方のバンドパスフィルタの挿入損失が悪化するという問題がある。
 そこで、本発明は、弾性波共振子のレイリー波リップルによる通過帯域内の挿入損失の劣化を抑制できるマルチプレクサ等を提供することを目的とする。
 本発明の一態様に係るマルチプレクサは、共通端子と第1端子とを結ぶ第1経路上に配置された第1フィルタと、前記共通端子と第2端子とを結ぶ第2経路上に配置され、前記第1フィルタにおけるレイリー波リップルの発生周波数が重なる通過帯域を有する第2フィルタと、を備え、前記第1フィルタは、前記第1経路上に配置された複数の直列腕共振子と、前記第1経路上に設けられた接続ノードであって、前記複数の直列腕共振子のうち前記共通端子に最も近く接続された第1直列腕共振子よりも前記第1端子側に設けられた接続ノードとグランドとの間に配置された第1並列腕共振子と、を有し、前記複数の直列腕共振子および前記第1並列腕共振子は、SH波をメインモードとして利用しており、前記第1直列腕共振子の電極指対数は、前記複数の直列腕共振子のそれぞれの電極指対数のうち最も少ない。
 本発明の一態様に係る高周波フロントエンド回路は、上記のマルチプレクサと、前記マルチプレクサに接続された増幅回路と、を備える。
 本発明の一態様に係る通信装置は、アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する上記の高周波フロントエンド回路と、を備える。
 本発明に係るマルチプレクサ等によれば、弾性波共振子のレイリー波リップルによる通過帯域内の挿入損失の劣化を抑制できる。
図1は、実施の形態1に係るマルチプレクサの一例を示す構成図である。 図2は、実施例に係る第1フィルタの一例を示す回路構成図である。 図3は、実施の形態1に係る第1フィルタの共振子を模式的に表す平面図および断面図である。 図4は、レイリー波リップルについて説明するための図である。 図5は、実施例および比較例に係る第2フィルタの通過特性を比較したグラフである。 図6は、実施例および比較例に係る第1フィルタの共通端子側から見たリターンロス特性を比較したグラフである。 図7は、実施の形態1に係る第1直列腕共振子の対数とリターンロス差との関係を示すグラフである。 図8は、実施例および比較例に係る第1フィルタの通過特性を比較したグラフである。 図9は、実施の形態2に係る高周波フロントエンド回路および通信装置の構成図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。また、以下の実施の形態において、「接続される」とは、直接接続される場合だけでなく、他の素子等を介して電気的に接続される場合も含まれる。
 (実施の形態1)
 [1.マルチプレクサの構成]
 図1は、実施の形態1に係るマルチプレクサ10の一例を示す構成図である。図1には、マルチプレクサ10の共通端子20に接続されたアンテナ素子ANTも図示されている。アンテナ素子ANTは、高周波信号を送受信する、例えばLTE(Long Term Evolution)等の通信規格に準拠したマルチバンド対応のアンテナである。
 マルチプレクサ10は、弾性波フィルタを用いた分波/合波回路であり、本実施の形態ではヘキサプレクサである。マルチプレクサ10は、入出力端子として、共通端子20、入出力端子21a(第1端子)、入出力端子21b(第2端子)、入出力端子21c、入出力端子21d、入出力端子21eおよび入出力端子21fを備える。マルチプレクサ10は、フィルタ10a~10fを備え、それぞれの一方側(上記入出力端子21a~21f側とは異なる側)が共通端子20に共通接続されている。
 共通端子20は、6つのフィルタ10a~10fに共通に設けられ、マルチプレクサ10の内部でフィルタ10a~10fに接続されている。また、共通端子20は、マルチプレクサ10の外部でアンテナ素子ANTに接続される。つまり、共通端子20は、マルチプレクサ10のアンテナ端子でもある。
 入出力端子21a~21fは、この順に、6つのフィルタ10a~10fに個別に対応して設けられ、マルチプレクサ10の内部で対応するフィルタに接続されている。また、入出力端子21a~21fは、マルチプレクサ10の外部で、増幅回路等(図1には図示せず)を介してRF信号処理回路(RFIC:Radio Frequency Integrated Circuit、図示せず)に接続される。
 フィルタ10aは、共通端子20と入出力端子21aとを結ぶ第1経路上に配置された第1フィルタである。フィルタ10aは、弾性波を用いた受信フィルタであり、ここでは、その通過帯域は、例えば、LTEのBand30Rx(2350-2360MHz)である。
 フィルタ10bは、共通端子20と入出力端子21bとを結ぶ第2経路上に配置された第2フィルタである。フィルタ10bは、弾性波を用いた送信フィルタであり、ここでは、その通過帯域は、例えば、LTEのBand66Tx(1710-1780MHz)である。
 フィルタ10cは、共通端子20と入出力端子21cとを結ぶ経路上に配置されたフィルタである。フィルタ10cは、弾性波を用いた受信フィルタであり、ここでは、その通過帯域は、例えば、LTEのBand25Rx(1930-1995MHz)である。
 フィルタ10dは、共通端子20と入出力端子21dとを結ぶ経路上に配置されたフィルタである。フィルタ10dは、弾性波を用いた送信フィルタであり、ここでは、その通過帯域は、例えば、LTEのBand25Tx(1850-1915MHz)である。
 フィルタ10eは、共通端子20と入出力端子21eとを結ぶ経路上に配置されたフィルタである。フィルタ10eは、弾性波を用いた受信フィルタであり、ここでは、その通過帯域は、例えば、LTEのBand66Rx(2110-2200MHz)である。
 フィルタ10fは、共通端子20と入出力端子21fとを結ぶ経路上に配置されたフィルタである。フィルタ10fは、弾性波を用いた送信フィルタであり、ここでは、その通過帯域は、例えば、LTEのBand30Tx(2305-2315MHz)である。
 このように、各フィルタの通過帯域は、例えば、互いに異なる帯域であり、1つのマルチプレクサ10によって、複数の周波数帯域に対応することができる。
 なお、6つのフィルタ10a~10fの通過帯域は、Band30、Band66、およびBand25の組み合わせに限らない。また、共通端子20に接続されるフィルタの数は2以上であればよい。また、マルチプレクサ10は、複数の送信フィルタのみ、または、複数の受信フィルタのみで構成されていてもよい。
 [2.フィルタの構成]
 次に、実施の形態1に係る第1フィルタ(フィルタ10a)の構成について説明する。なお、実施の形態1を以下、実施例とも呼ぶ。
 図2は、実施例に係る第1フィルタ(フィルタ10a)の一例を示す回路構成図である。
 フィルタ10aは、共通端子20と入出力端子21aとを結ぶ第1経路上に配置された複数の直列腕共振子と、第1経路上に設けられた接続ノードであって、複数の直列腕共振子のうち共通端子20に最も近く接続された第1直列腕共振子よりも入出力端子21a側に設けられた接続ノードとグランドとの間に配置された第1並列腕共振子と、を有する。接続ノードとは、素子と素子、または、素子と端子の間の接続点であり、図2では、x1等で示される点によって示している。
 実施の形態1では、複数の直列腕共振子は、少なくとも3つの直列腕共振子である。フィルタ10aは、少なくとも3つの直列腕共振子として、互いに直列接続された直列腕共振子S1~S4を有する。直列腕共振子S1は、直列腕共振子S1~S4のうち共通端子20に最も近く接続された第1直列腕共振子である。また、フィルタ10aは、上記第1並列腕共振子を含む複数の並列腕共振子を有する。フィルタ10aは、複数の並列腕共振子として、直列腕共振子S1およびS2の間の接続ノードx1とグランドとの間に接続された並列腕共振子P1、直列腕共振子S2およびS3の間の接続ノードx2とグランドとの間に接続された並列腕共振子P2、ならびに、直列腕共振子S3およびS4の間の接続ノードx3とグランドとの間に接続された並列腕共振子P3を有する。複数の並列腕共振子は、直列腕共振子S1よりも入出力端子21a側に設けられた接続ノードx1~x3とグランドとの間に配置されており、これは、フィルタ10aを共通端子20側から見ると、直列腕共振子S1から配置されることを意味している。言い換えると、共通端子20と直列腕共振子S1との間には、並列腕共振子が接続されていないことを意味している。
 並列腕共振子P1は、複数の並列腕共振子(並列腕共振子P1~P3)のうち共通端子20に最も近く接続された第1並列腕共振子である。
 直列腕共振子S1~S4および並列腕共振子P1~P3は、フィルタ10aの通過帯域を構成する共振子である。具体的には、直列腕共振子S1~S4の共振周波数および並列腕共振子P1~P3の反共振周波数がフィルタ10aの通過帯域の中心周波数付近に位置するように設計される。また、直列腕共振子S1~S4の反共振周波数が当該通過帯域の高域側近傍の減衰極に、並列腕共振子P1~P3の共振周波数が当該通過帯域の低域側近傍の減衰極に位置するように設計される。このようにして、当該通過帯域は形成される。
 また、実施の形態1では、直列腕共振子S1~S4、ならびに、並列腕共振子P1およびP3は、それぞれ、1つの共振子が分割された複数の分割共振子によって構成されている。直列腕共振子S1は分割共振子S1aおよびS1bから構成され、直列腕共振子S2は分割共振子S2a~S2cから構成され、直列腕共振子S3は分割共振子S3aおよびS3bから構成され、直列腕共振子S4は分割共振子S4aおよびS4bから構成される。並列腕共振子P1は分割共振子P1aおよびP1bから構成され、並列腕共振子P3は分割共振子P3aおよびP3bから構成される。このように、1つの共振子が複数の分割共振子によって構成されることで、詳細な説明は省略するが、IMD(Inter Modulation Distortion)特性を改善することができる。
 複数の直列腕共振子および第1並列腕共振子は、リーキー波などのSH波をメインモードとして利用している。言い換えると、複数の直列腕共振子および第1並列腕共振子は、SH波を主成分とする弾性波を励振するIDT(InterDigital Transducer)電極によって構成される。例えば、1つの共振子における複数の分割共振子は、均等に分割されており、IDT電極を構成する複数の電極指の対数(電極指対数)に着目すると、1つの共振子における複数の分割共振子のそれぞれの対数は、同じになっている。なお、以下では、共振子のIDT電極を構成する複数の電極指の対数を、共振子の対数とも呼ぶ。
 複数の直列腕共振子および第1並列腕共振子のそれぞれのIDT電極は、圧電体層を有する基板(圧電性を有する基板)上に形成され、当該基板は、IDT電極が一方の主面上に形成された圧電体層と、圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である高音速支持基板と、高音速支持基板と圧電体層との間に配置され、圧電体層を伝搬するバルク波音速よりも、伝搬するバルク波音速が低速である低音速膜と、を備える。詳細については、後述する図3で説明する。フィルタ10aを構成する各共振子がこのような積層構造を有することで、フィルタ10aにおいて発生するレイリー波リップルが大きくなる。
 [3.共振子の基本構造]
 次に、フィルタ10aを構成する各共振子(直列腕共振子、並列腕共振子およびそれらを構成する分割共振子)の基本構造について説明する。本実施の形態では、当該共振子は、弾性表面波(SAW:Surface Acoustic Wave)共振子である。
 図3は、実施の形態1に係る第1フィルタ(フィルタ10a)の共振子を模式的に表す平面図および断面図である。同図には、フィルタ10aを構成する複数の共振子として、共振子401を一例に、その構造を表す平面摸式図および断面模式図が例示されている。なお、図3に示された共振子401は、上記複数の共振子の典型的な構造を説明するためのものであって、電極を構成する電極指の本数や長さなどは、これに限定されない。
 図3の平面図に示すように、共振子401は、互いに対向する一対の櫛歯状電極11aおよび11bを有する。また、図示していないが、共振子401は、さらに、一対の櫛歯状電極11aおよび11bに対して弾性波の伝搬方向に隣り合って配置された反射器を有する。一対の櫛歯状電極11aおよび11bは、IDT電極を構成している。
 櫛歯状電極11aは、櫛歯形状に配置され、互いに平行な複数の電極指110aと、複数の電極指110aのそれぞれの一端同士を接続するバスバー電極111aとで構成されている。また、櫛歯状電極11bは、櫛歯形状に配置され、互いに平行な複数の電極指110bと、複数の電極指110bのそれぞれの一端同士を接続するバスバー電極111bとで構成されている。複数の電極指110aおよび110bは、弾性波伝搬方向の直交方向に延びるように形成されている。
 なお、櫛歯状電極11aおよび11bは、上記構成に限られず、例えば、オフセット電極指を有していてもよい。また、共振子401は、バスバー電極111aおよび111bが弾性波伝搬方向に対して傾斜している、いわゆる傾斜IDTを有していてもよい。さらには、電極指110aおよび110bが所定の間隔で間引かれた、いわゆる間引き電極を有していてもよい。
 また、複数の電極指110aおよび110b、ならびに、バスバー電極111aおよび111bで構成されるIDT電極は、図3の断面図に示すように、密着層51と主電極層52との積層構造となっている。
 密着層51は、圧電基板50と主電極層52との密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。密着層51の膜厚は、例えば、12nmである。
 主電極層52は、材料として、例えば、Cuを1%含有したAlが用いられる。主電極層52の膜厚は、例えば162nmである。
 保護層53は、IDT電極を覆うように形成されている。保護層53は、主電極層52を外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする膜である。保護層53の膜厚は、例えば25nmである。
 なお、密着層51、主電極層52および保護層53を構成する材料は、上述した材料に限定されない。さらに、IDT電極は、上記積層構造でなくてもよい。IDT電極は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。また、保護層53は、形成されていなくてもよい。
 圧電基板50は、IDT電極ならびに反射器が主面上に配置された圧電性を有する基板である。圧電基板50は、例えば、42°YカットX伝搬LiTaO圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸から42°回転した軸を法線とする面で切断したタンタル酸リチウム単結晶またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。
 圧電基板50は、高音速支持基板と、低音速膜と、圧電膜(圧電体層)とがこの順で積層された積層構造を有する圧電性基板である。圧電膜は、例えば、42°YカットX伝搬LiTaO圧電単結晶または圧電セラミックスからなる。圧電膜は、例えば、厚みが600nmである。高音速支持基板は、低音速膜、圧電膜ならびにIDT電極を支持する基板である。高音速支持基板は、さらに、圧電膜を伝搬する表面波や境界波の弾性波よりも、高音速支持基板中のバルク波の音速が高速となる基板であり、弾性表面波を圧電膜および低音速膜が積層されている部分に閉じ込め、高音速支持基板より下方に漏れないように機能する。高音速支持基板は、例えば、シリコン基板であり、厚みは、例えば200μmである。低音速膜は、圧電膜を伝搬するバルク波よりも、低音速膜中のバルク波の音速が低速となる膜であり、圧電膜と高音速支持基板との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。低音速膜は、例えば、二酸化ケイ素を主成分とする膜であり、厚みは、例えば670nmである。なお、低音速膜の間に、TiやNiなどからなる接合層を含んでいてもよい。低音速膜は複数の低音速材料からなる多層構造であってもよい。この積層構造によれば、圧電基板50を単層で使用している構造と比較して、共振周波数および反共振周波数におけるQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性表面波共振子を構成し得るので、当該弾性表面波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。
 なお、高音速支持基板は、支持基板と、圧電膜を伝搬する表面波や境界波の弾性波よりも、伝搬するバルク波の音速が高速となる高音速膜とが積層された構造を有していてもよい。この場合、支持基板は、リチウムタンタレート、リチュウムニオベイト、水晶等の圧電体、サファイア、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、ガラス等の誘電体またはシリコン、窒化ガリウム等の半導体および樹脂基板等を用いることができる。また、高音速膜は、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンド、上記材料を主成分とする媒質、上記材料の混合物を主成分とする媒質等、様々な高音速材料を用いることができる。
 ここで、弾性表面波共振子を構成するIDT電極の電極パラメータについて説明する。
 弾性表面波共振子の波長とは、図3に示すIDT電極を構成する複数の電極指110aまたは110bの繰り返し周期である波長λで規定される。また、電極ピッチPは、波長λの1/2であり、櫛歯状電極11aおよび11bを構成する電極指110aおよび110bのライン幅をWとし、隣り合う電極指110aと電極指110bとの間のスペース幅をSとした場合、(W+S)で定義される。また、一対の櫛歯状電極11aおよび11bの交叉幅Lは、伝搬方向から見た場合の重複する電極指長さである。また、各共振子の電極デューティRは、複数の電極指110aおよび110bのライン幅占有率であり、複数の電極指110aおよび110bのライン幅とスペース幅との加算値に対する当該ライン幅の割合であり、W/(W+S)で定義される。また、対数とは、櫛歯状電極11aおよび11bのうち、対をなす電極指110aおよび電極指110bの数であり、電極指110aおよび電極指110bの総数の概ね半数である。例えば、対数をNとし、電極指110aおよび電極指110bの総数をMとすると、M=(N+1)×2を満たす。すなわち、櫛歯状電極11aおよび11bの一方の1つの電極指の先端部分と当該先端部分に対向する他方のバスバー電極とで挟まれる領域の数が0.5対に相当する。また、IDT電極の膜厚とは、複数の電極指110aおよび110bの厚みhである。
 [4.レイリー波リップルの影響]
 ここで、フィルタ10aに発生するレイリー波リップルの影響について説明する。フィルタ10aにおけるレイリー波リップルの発生周波数は、フィルタ10aの通過帯域の約0.76倍の周波数である。より具体的には、フィルタ10aの加工ばらつきとして、±0.02倍のばらつきが存在するため、フィルタ10aにおけるレイリー波リップルの発生周波数は、フィルタ10aの通過帯域の0.74倍から0.78倍の周波数である。フィルタ10aと共通端子20に共通接続されたフィルタ10b~10fのうち、フィルタ10bは、フィルタ10aにおけるレイリー波リップルの発生周波数が重なる通過帯域を有する。
 図4は、レイリー波リップルについて説明するための図である。図4において、横軸は周波数を示し、縦軸はフィルタ10aの挿入損失を示す。上述したように、フィルタ10aを構成する各共振子が圧電体層と高音速支持基板と低音速膜とからなる積層構造を有するため、フィルタ10aにおいて発生するレイリー波リップルが大きくなる。図4に示されるように、フィルタ10aの通過帯域であるBand30Rxの約0.76倍の周波数と重なるBand66Tx、つまり、フィルタ10bの通過帯域においてレイリー波リップルが発生していることがわかる。このレイリー波リップルが発生した周波数では、共通端子20からフィルタ10aを見た場合の反射係数が悪化(低下)、言い換えると、リターンロスが増加する。上記レイリー波リップルが発生した周波数がフィルタ10bの通過帯域に含まれるため、フィルタ10bの通過帯域内に、上記レイリー波リップルに起因したリップルが発生する。この通過帯域内に発生したリップルにより、フィルタ10bの通過帯域内の挿入損失が悪化する。
 発明者は、鋭意検討の結果、フィルタ10b(Band66Txフィルタ)の挿入損失を劣化させている要因が上述したレイリー波リップルであり、フィルタ10aに対して以下に示すような構成(共振子パラメータ)を適用することにより、フィルタ10bの挿入損失の劣化を抑制できることを見出した。
 [5.実施例および比較例の比較]
 表1に、実施例に係るフィルタ10aを構成する各共振子の共振子パラメータを示す。表2に、比較例に係るフィルタ10aを構成する各共振子の共振子パラメータを示す。なお、比較例に係るフィルタについて、回路構成が実施例に係るフィルタと同じであるため、同じ符号10aを付して説明を省略する。実施例と比較例とでは、フィルタ10aを構成する直列腕共振子の対数および交叉幅が異なる。
 実施の形態1では、直列腕共振子S1~S4、ならびに、並列腕共振子P1およびP3は、それぞれ、1つの共振子が分割された複数の分割共振子によって構成されている。表1および表2に示される対数は、分割共振子によって構成される共振子については、分割共振子の対数を示している。例えば、直列腕共振子S1は、分割共振子S1aおよびS1bによって構成されるが、分割共振子S1aおよびS1bのそれぞれの対数が75対となっている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示されるように、実施例では、直列腕共振子S1のIDT電極を構成する複数の電極指の対数(直列腕共振子S1の電極指対数)は、直列腕共振子S1~S4のそれぞれのIDT電極を構成する複数の電極指の対数(直列腕共振子S1~S4のそれぞれの電極指対数)のうち最も少ない。また、直列腕共振子S1~S4のそれぞれの対数は、共通端子20に近い直列腕共振子の対数ほど少なくなる。一方で、比較例では、直列腕共振子S1の対数は、直列腕共振子S1~S4のそれぞれの対数のうち最も多い。また、実施例および比較例ともに、並列腕共振子P1の対数は、並列腕共振子P1~P3のそれぞれの対数のうち最も少ない。
 図5は、実施例および比較例に係るフィルタ10b(第2フィルタ)の通過特性を比較したグラフである。図5において、横軸は周波数を示し、縦軸はフィルタ10bの挿入損失を示す。図5では、実施例における特性を実線で示し、比較例における特性を破線で示している。後述する、図6および図8についても同様である。
 図5に示されるように、フィルタ10bの通過帯域(つまり、Band66Tx)において、比較例と比べて実施例では、通過帯域内の挿入損失が改善していることがわかる。具体的には、比較例における通過帯域内の挿入損失は、最大で2.22dBであるのに対して、実施例における通過帯域内の挿入損失は、最大で1.98dBとなっている。これは、実施例では、比較例と比べて、フィルタ10aにおいて発生するレイリー波リップルが小さくなったためである。これについて図6および図7を用いて説明する。
 図6は、実施例および比較例に係るフィルタ10a(第1フィルタ)の共通端子20側から見たリターンロス特性を比較したグラフである。図6において、横軸は周波数を示し、縦軸はフィルタ10aのリターンロスを示す。
 フィルタ10a(第1フィルタ)のリターンロスが大きくなると、フィルタ10b(第2フィルタ)からフィルタ10aの通過帯域(つまり、Band30Rx)に漏れる信号成分が増加するため、フィルタ10bの通過帯域(つまり、Band66Tx)の挿入損失が悪化する。フィルタ10aにおいて、直列腕共振子S1~S4のうち共通端子20に最も近く接続される直列腕共振子S1は、フィルタ10aと共通端子20において共通接続されたフィルタ10bに影響を与えやすい。したがって、フィルタ10aにおいて最も共通端子20側に接続されている直列腕共振子S1の共振子パラメータによって、フィルタ10bに影響を与えられると考えられる。そこで、本発明では、共振子パラメータのうち、共振子の対数に着目している。
 実施例では、直列腕共振子S1~S4の対数のうち、直列腕共振子S1の対数が最も少なくなっており、比較例では、直列腕共振子S1~S4の対数のうち、直列腕共振子S1の対数が最も多くなっている。図6に示されるように、Band66Tx(1710-1780MHz)において、直列腕共振子S1の対数が少ない実施例では、リターンロス差(Band30Rxにおけるリターンロスの最大と最小との差分)が小さくなっており、直列腕共振子S1の対数が多い比較例では、リターンロス差が大きくなっていることがわかる。
 図7は、実施の形態1に係る直列腕共振子S1(第1直列腕共振子)の対数とリターンロス差との関係を示すグラフである。図7において、横軸は直列腕共振子S1の対数を示し、縦軸はフィルタ10aのリターンロス差を示す。図7からも、直列腕共振子S1の対数を少なくするほど、リターンロス差が小さくなることがわかる。
 上述したように、フィルタ10aにおいてレイリー波リップルが発生した周波数では、フィルタ10aのリターンロスが増加するため、図6および図7に示される結果から、リターンロス差が小さくなっている実施例では、レイリー波リップルが抑制されているといえる。つまり、実施例のように、直列腕共振子S1の対数を少なくすることで、レイリー波リップルを抑制できるといえる。したがって、図5に示されるように、実施例では、比較例と比べてレイリー波リップルによるフィルタ10bの通過帯域内の挿入損失の劣化を抑制できている。共振子の対数を少なくするほどリターンロス差が小さくなるのは、共振子の対数が少ないほどIDT電極における反射効率(閉じ込め効率)が悪くなることが影響していると考えられる。
 また、直列腕共振子S1~S4のそれぞれの対数について、共通端子20に近い直列腕共振子の対数ほど少なくなっている。これは、共通端子20側に近く接続された直列腕共振子ほどフィルタ10bのリターンロスに影響を与えやすいためである。
 なお、並列腕共振子P1~P3のうち共通端子20に最も近く接続される並列腕共振子P1についても、直列腕共振子S1と同様に共通端子20側に接続されているため、フィルタ10aのリターンロスに影響を与えやすい。このため、実施例では、並列腕共振子P1~P3の対数のうち、並列腕共振子P1の対数が最も少なくなっており、レイリー波リップルによるフィルタ10bの通過帯域内の挿入損失の劣化をより効果的に抑制できる。
 また、上述したように、直列腕共振子S1は、フィルタ10aのリターンロスに影響を与えやすいが、共通端子20から遠い直列腕共振子S2~S4については、その対数を増やしてもフィルタ10aのリターンロスに影響を与えにくい。このため、表1に示されるように、実施例では、直列腕共振子S1を除く直列腕共振子S2~S4のそれぞれの対数は、直列腕共振子S1の対数よりも多い。一方で、表2に示されるように、比較例では、直列腕共振子S2~S4のそれぞれの対数は、直列腕共振子S1の対数よりも少ない。
 フィルタ10aを構成する直列腕共振子S2~S4のそれぞれの対数を増やすことで、フィルタ10bの通過帯域内の挿入損失の劣化の抑制に加えて、フィルタ10aの通過帯域内の挿入損失の劣化の抑制も可能となる。
 図8は、実施例および比較例に係るフィルタ10a(第1フィルタ)の通過特性を比較したグラフである。図8において、横軸は周波数を示し、縦軸はフィルタ10aの挿入損失を示す。
 図8に示されるように、フィルタ10aの通過帯域(つまり、Band30Rx)において、比較例と比べて実施例では、通過帯域内の挿入損失が改善していることがわかる。具体的には、比較例における通過帯域内の挿入損失は、最大で2.50dBであるのに対して、実施例における通過帯域内の挿入損失は、最大で2.37dBとなっている。これは、実施例では、比較例と比べて、フィルタ10aにおける直列腕共振子S2~S4のそれぞれの対数が多く、つまり、IDT電極の電極指抵抗が減少するためである。
 このように、共通端子20に最も近く接続された直列腕共振子S1の対数を、直列腕共振子S1~S4のそれぞれの対数のうち最も少なくし、かつ、直列腕共振子S1を除く直列腕共振子S2~S4の対数を多くすることで、フィルタ10aおよび10bの双方の通過帯域内の挿入損失の劣化を抑制できる。
 なお、実施の形態1では、フィルタ10aは、少なくとも3つ(ここでは4つ)の直列腕共振子によって構成されている。直列腕共振子S1の対数を少なくした場合、フィルタ10bの通過帯域内の挿入損失の劣化を抑制できるが、フィルタ10a全体の電極指抵抗は、直列腕共振子S1の対数を少なくした分大きくなり、フィルタ10aの通過帯域内の挿入損失の劣化の要因となる。このため、フィルタ10aを構成する直列腕共振子の数を多くし、直列腕共振子S1を除く他の直列腕共振子の対数を多くすることで、フィルタ10a全体の電極指抵抗を小さくでき、フィルタ10aの通過帯域内の挿入損失の劣化を抑制できる。なお、上述したように、他の直列腕共振子の対数を多くしたとしても、これらの直列腕共振子は共通端子20から遠くに接続されているため、フィルタ10bの通過帯域内の挿入損失の劣化の要因となりにくい。
 また、直列腕共振子S1~S4のそれぞれの対数は、互いに異なることが好ましい。例えば、直列腕共振子S1の対数を最も少なくした場合に、直列腕共振子S2~S4のそれぞれの対数が互いに同じ場合には、直列腕共振子S2~S4によるレイリー波リップルが、1つの周波数に集中して発生してしまう。このため、フィルタ10aのリターンロスに影響を与えにくい直列腕共振子S2~S4であっても、レイリー波リップルが、1つの周波数に集中して発生してしまうことで、フィルタ10aのリターンロスを増加させてしまうことがある。このため、実施例では、直列腕共振子S1~S4のそれぞれの対数を互いに異ならせている。
 また、例えば、直列腕共振子S1の対数は、フィルタ10aのリターンロス差が、0.5dB以内となるように設計されることが好ましい。リターンロス差を0.5dB以内とすることで、フィルタ10bの通過帯域内の挿入損失の劣化を約0.15dB以内とすることができる。0.15dB以内の挿入損失の劣化とは、フィルタの加工ばらつきにより発生する挿入損失の劣化よりも小さく許容範囲内の劣化となる。図7から、フィルタ10aのリターンロス差が0.5dB以内となるときの直列腕共振子S1の対数は、おおよそ100対以下であることがわかる。すなわち、直列腕共振子S1の対数は、100対以下となるように設計されることが好ましい。これにより、フィルタ10bの通過帯域内の挿入損失の劣化をより効果的に抑制できる。
 また、例えば、フィルタ10bは、フィルタ10aと同じように、第2経路上に配置された複数の直列腕共振子と、第2経路上に設けられた接続ノードであって、複数の直列腕共振子のうち共通端子20に最も近く接続された第2直列腕共振子よりも入出力端子21b側に設けられた接続ノードとグランドとの間に配置された少なくとも1つの並列腕共振子と、を有する。フィルタ10c~10fについても、同様にこのようなラダー型の構造を有する。
 表3に、実施の形態1に係るマルチプレクサ10を構成する各フィルタにおける、共通端子20に最も近く接続された直列腕共振子の対数を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、フィルタ10aが有する直列腕共振子S1のIDT電極を構成する複数の電極指の対数(直列腕共振子S1の電極指対数)は、フィルタ10b~10fが有する共通端子20に最も近く接続された第2直列腕共振子のIDT電極を構成する複数の電極指の対数(第2直列腕共振子の電極指対数)よりも少ない。
 上述したように、フィルタ全体の電極指抵抗を小さくするために、フィルタを構成する共振子の対数を多くすることが好ましい。マルチプレクサ10では、フィルタ10bの通過帯域と、フィルタ10aにおけるレイリー波リップルの発生周波数とが重複しているため、フィルタ10aを構成する直列腕共振子S1の対数を少なくする必要がある。しかし、フィルタ10b~10fについては、それぞれのレイリー波リップルの発生周波数と重なる通過帯域を有するフィルタがマルチプレクサ10に含まれていない。したがって、フィルタ10b~10fについては、共通端子20に最も近い直列腕共振子の対数を少なくする必要がなく、むしろ、フィルタ全体の電極指抵抗を小さくするために、直列腕共振子の対数を多くすることが好ましい。
 このため、表3に示されるように、フィルタ10b~10fが有する共通端子20に最も近く接続された直列腕共振子のそれぞれの対数は、多くなるように設計され、これにより、フィルタ10b~10fの通過帯域内の挿入損失の劣化を抑制できる。
 [6.まとめ]
 以上説明したように、マルチプレクサ10は、共通端子20と入出力端子21aとを結ぶ第1経路上に配置されたフィルタ10aと、共通端子20と入出力端子21bとを結ぶ第2経路上に配置され、フィルタ10aにおけるレイリー波リップルの発生周波数が重なる通過帯域を有するフィルタ10bと、を備える。フィルタ10aは、第1経路上に配置された複数の直列腕共振子と、第1経路上に設けられた接続ノードであって、複数の直列腕共振子のうち共通端子20に最も近く接続された直列腕共振子S1よりも入出力端子20a側に設けられた接続ノードとグランドとの間に配置された並列腕共振子P1と、を有する。複数の直列腕共振子および並列腕共振子P1は、SH波をメインモードとして利用している。直列腕共振子S1の電極指対数は、複数の直列腕共振子のそれぞれの電極指対数のうち最も少ない。
 複数の直列腕共振子のうち共通端子20に最も近く接続される直列腕共振子S1は、フィルタ10aにおいて最も共通端子20側に接続されているため、フィルタ10aと共通端子20において共通接続された、当該周波数と重なる通過帯域を有するフィルタ10bに影響を与えやすい。図6および図7に示されるシミュレーション結果から、直列腕共振子S1の対数が少ないほど、フィルタ10aのリターンロス差(フィルタ10bの通過帯域におけるリターンロスの最大と最小との差分)が小さくなっており、レイリー波リップルが抑制されることがわかる。したがって、直列腕共振子S1の対数を、複数の直列腕共振子のそれぞれの対数のうち最も少なくすることで、弾性波共振子のレイリー波リップルによる、フィルタ10bの通過帯域内の挿入損失の劣化を抑制できる。
 また、直列腕共振子S1の対数を、複数の直列腕共振子のそれぞれの対数のうち最も少なくするということは、言い換えると、直列腕共振子S1を除く直列腕共振子の対数を多くすることを意味する。フィルタ10a全体の電極指抵抗は、直列腕共振子S1の対数を少なくすることで大きくなるが、直列腕共振子S1を除く直列腕共振子の対数を多くすることで、電極指抵抗の増加を抑制することができる。これにより、フィルタ10aの通過帯域内の挿入損失の劣化を抑制できる。
 また、例えば、複数の直列腕共振子および並列腕共振子P1のそれぞれのIDT電極は、圧電体層を有する圧電基板50上に形成されていてもよい。圧電基板50は、IDT電極が一方の主面上に形成された圧電体層と、圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である高音速支持基板と、高音速支持基板と圧電体層との間に配置され、圧電体層を伝搬するバルク波音速よりも、伝搬するバルク波音速が低速である低音速膜と、を備えていてもよい。
 複数の直列腕共振子および並列腕共振子P1がこのような積層構造の共振子を有することで、各共振子の共振周波数および反共振周波数におけるQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性表面波共振子を構成し得るので、当該弾性表面波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。このような積層構造の共振子を有するフィルタにおけるレイリー波リップルは大きくなり得るが、本発明では、直列腕共振子S1の対数を、複数の直列腕共振子のそれぞれの対数のうち最も少なくしているため、レイリー波リップルを抑制しつつ、挿入損失が小さいフィルタを構成することが可能となる。
 また、例えば、フィルタ10aは、並列腕共振子P1を含む複数の並列腕共振子を有し、複数の並列腕共振子のうち並列腕共振子P1の電極指対数は、複数の並列腕共振子のそれぞれの電極指対数のうち最も少なくてもよい。
 複数の並列腕共振子のうち共通端子20に最も近く接続される並列腕共振子P1についても、直列腕共振子S1と同様に共通端子20側に接続されるため、フィルタ10bに影響を与えやすい。このため、複数の並列腕共振子のそれぞれの対数のうち、並列腕共振子P1の対数を最も少なくすることで、弾性波共振子のレイリー波リップルによる、フィルタ10bの通過帯域内の挿入損失の劣化をより効果的に抑制できる。
 また、例えば、フィルタ10bは、第2経路上に配置された複数の直列腕共振子と、第2経路上に設けられた接続ノードであって、複数の直列腕共振子のうち共通端子20に最も近く接続された第2直列腕共振子よりも入出力端子21b側に設けられた接続ノードとグランドとの間に配置された少なくとも1つの並列腕共振子を有していてもよい。直列腕共振子S1の電極指対数は、第2直列腕共振子の電極指対数よりも少なくてもよい。
 直列腕共振子S1の対数をフィルタ10bが有する共通端子20に最も近く接続された第2直列腕共振子の対数よりも少なくするということは、言い換えると、フィルタ10bにおける第2直列腕共振子の対数を多くすることを意味する。フィルタ10bを構成する第2直列腕共振子の対数を多くすることで、フィルタ10b全体の電極指抵抗を小さくすることができ、フィルタ10bの通過帯域内の挿入損失の劣化をより効果的に抑制できる。
 また、例えば、直列腕共振子S1の電極指対数は、100対以下であってもよい。
 直列腕共振子S1の対数を具体的に100対以下とすることで、弾性波共振子のレイリー波リップルによる、フィルタ10bの通過帯域内の挿入損失の劣化をより効果的に抑制できる。
 また、例えば、フィルタ10aにおける複数の直列腕共振子は、少なくとも3つの直列腕共振子であってもよい。
 直列腕共振子S1の対数を少なくした場合、フィルタ10bの通過帯域内の挿入損失の劣化を抑制できるが、フィルタ10a全体の電極指抵抗は、直列腕共振子S1の対数を少なくした分大きくなり、フィルタ10aの通過帯域内の挿入損失の劣化の要因となる。このため、フィルタ10aを構成する直列腕共振子の数を多くし、直列腕共振子S1を除く他の直列腕共振子の対数を多くすることで、フィルタ10a全体の電極指抵抗を小さくでき、フィルタ10aの通過帯域内の挿入損失の劣化をより効果的に抑制できる。
 また、例えば、少なくとも3つの直列腕共振子のそれぞれの電極指対数は、互いに異なっていてもよい。
 例えば、直列腕共振子S1を除く直列腕共振子のそれぞれの対数が互いに同じ場合には、直列腕共振子S1を除く直列腕共振子によるレイリー波リップルが、1つの周波数に集中して発生してしまう。このため、直列腕共振子S1を除く直列腕共振子がフィルタ10bに影響を与えにくい共振子であっても、レイリー波リップルが、1つの周波数に集中して発生してしまうことで、フィルタ10aのリターンロスを増加させてしまうことがある。したがって、少なくとも3つの直列腕共振子のそれぞれの対数を互いに異ならせることで、フィルタ10aのリターンロスを増加させてしまうことを抑制でき、弾性波共振子のレイリー波リップルによる、フィルタ10bの通過帯域内の挿入損失の劣化をより効果的に抑制できる。
 また、例えば、フィルタ10aにおけるレイリー波リップルの発生周波数は、フィルタ10aの通過帯域の0.74倍から0.78倍の周波数である。
 (実施の形態2)
 実施の形態1に係るマルチプレクサは、高周波フロントエンド回路、さらには当該高周波フロントエンド回路を備える通信装置に適用することが可能である。そこで、本実施の形態では、このような高周波フロントエンド回路および通信装置について説明する。
 図9は、実施の形態2に係る高周波フロントエンド回路3および通信装置1の構成図である。アンテナ素子ANTと、高周波フロントエンド回路3と、RF信号処理回路70と、ベースバンド信号処理回路80とは、通信装置1を構成している。なお、アンテナ素子ANTは、通信装置1と別体に設けられていてもよい。
 高周波フロントエンド回路3は、実施の形態1に係るマルチプレクサ10と、スイッチ61aおよび61bと、ローノイズアンプ回路62aおよびパワーアンプ回路62bと、を備える。
 スイッチ61aは、マルチプレクサ10の入出力端子21a、21cおよび21eに接続された選択端子と、ローノイズアンプ回路62aに接続された共通端子とを有するスイッチ回路である。スイッチ61bは、マルチプレクサ10の入出力端子21b、21dおよび21fに接続された選択端子と、パワーアンプ回路62bに接続された共通端子とを有するスイッチ回路である。
 スイッチ61aおよび61bは、制御部(図示せず)からの制御信号にしたがって、共通端子とマルチプレクサ10におけるいずれか信号経路とを接続する、例えば、SPDT(Single Pole Double Throw)型のスイッチによって構成される。なお、共通端子と接続される選択端子は1つに限らず、複数であってもかまわない。つまり、高周波フロントエンド回路3は、キャリアアグリゲーションに対応してもかまわない。
 ローノイズアンプ回路62aは、アンテナ素子ANT、マルチプレクサ10およびスイッチ61aを経由した高周波信号(ここでは高周波受信信号)を増幅し、RF信号処理回路70へ出力する受信増幅回路である。パワーアンプ回路62bは、RF信号処理回路70から入力された高周波信号(ここでは高周波送信信号)を増幅し、スイッチ61bおよびマルチプレクサ10を介してアンテナ素子ANTへ出力する送信増幅回路である。
 RF信号処理回路70は、アンテナ素子ANTから受信信号経路を介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路80へ出力する。また、RF信号処理回路70は、ベースバンド信号処理回路80から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波信号を高周波フロントエンド回路3に出力する。RF信号処理回路70は、例えば、RFICである。
 ベースバンド信号処理回路80で処理された信号は、例えば、画像信号として画像表示のために、または、音声信号として通話のために使用される。
 なお、高周波フロントエンド回路3は、上述した各構成要素の間に、他の回路素子を備えていてもよい。
 また、通信装置1は、高周波信号の処理方式に応じて、ベースバンド信号処理回路80を備えていなくてもよい。
 以上説明したように、本発明の一態様に係る高周波フロントエンド回路3は、マルチプレクサ10と、マルチプレクサ10に接続された増幅回路と、を備える。
 これによれば、弾性波共振子のレイリー波リップルによる通過帯域内の挿入損失の劣化を抑制できる高周波フロントエンド回路を提供できる。
 また、本発明の一態様に係る通信装置1は、アンテナ素子ANTで送受信される高周波信号を処理するRF信号処理回路70と、アンテナ素子ANTとRF信号処理回路70との間で高周波信号を伝達する高周波フロントエンド回路3と、を備える。
 これによれば、弾性波共振子のレイリー波リップルによる通過帯域内の挿入損失の劣化を抑制できる通信装置を提供できる。
 (その他の実施の形態)
 以上、本発明の実施の形態に係るマルチプレクサ、高周波フロントエンド回路および通信装置について説明したが、本発明は、上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波フロントエンド回路および通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態では、マルチプレクサ10としてヘキサプレクサを例に説明したが、本発明は、例えば、2以上のフィルタのアンテナ端子が共通化されたマルチプレクサに適用することができる。
 また、例えば、上記実施の形態では、フィルタ10aは、複数の直列腕共振子として4つの直列腕共振子S1~S4を有していたが、2つ、3つまたは5つ以上の直列腕共振子を有していてもよい。
 また、例えば、上記実施の形態では、フィルタ10aは、3つの並列腕共振子P1~P3を有していたが、1つの並列腕共振子P1、または、並列腕共振子P1を含む2つまたは4つ以上の並列腕共振子を有していてもよい。
 また、例えば、上記実施の形態では、フィルタ10aは、複数の直列腕共振子と、複数の並列腕共振子を有していたが、これらに加え、縦結合型共振器を有していてもよい。
 また、例えば、上記実施の形態では、フィルタ10aが有する各共振子は、分割共振子により構成されていたが、分割共振子により構成されていなくてもよい。
 また、例えば、上記実施の形態では、フィルタ10b~10fは、弾性波フィルタであったが、弾性波フィルタでなくてもよく、LCフィルタ等であってもよい。
 また、フィルタ10b~10fは同一チップに形成されていても良い。圧電基板50が、IDT電極が一方の主面上に形成された圧電体層と、圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である高音速支持基板と、高音速支持基板と圧電体層との間に配置され、圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速である低音速膜と、を備えている場合は、フィルタ10b~10f通過帯域の周波数が離れていても、IDT電極のピッチを調整するだけで所望の通過帯域を実現することができる。
 本発明は、マルチバンドシステムに適用できるマルチプレクサ、フロントエンド回路および通信装置として、携帯電話などの通信機器に広く利用できる。
 1  通信装置
 3  高周波フロントエンド回路
 10  マルチプレクサ
 10a  フィルタ(第1フィルタ)
 10b  フィルタ(第2フィルタ)
 10c~10f  フィルタ
 11a、11b  櫛歯状電極
 20  共通端子
 21a  入出力端子(第1端子)
 21b  入出力端子(第2端子)
 21c~21f  入出力端子
 50  圧電基板
 51  密着層
 52  主電極層
 53  保護層
 61a、61b  スイッチ
 62a  ローノイズアンプ回路
 62b  パワーアンプ回路
 70  RF信号処理回路(RFIC)
 80  ベースバンド信号処理回路(BBIC)
 110a、110b  電極指
 111a、111b  バスバー電極
 401  共振子
 P1  並列腕共振子(第1並列腕共振子)
 P2、P3  並列腕共振子
 P1a、P1b、P3a、P3b、S1a、S1b、S2a、S2b、S2c、S3a、S3b、S4a、S4b  分割共振子
 S1  直列腕共振子(第1直列腕共振子)
 S2~S4  直列腕共振子
 x1~x3  接続ノード

Claims (10)

  1.  共通端子と第1端子とを結ぶ第1経路上に配置された第1フィルタと、
     前記共通端子と第2端子とを結ぶ第2経路上に配置され、前記第1フィルタにおけるレイリー波リップルの発生周波数が重なる通過帯域を有する第2フィルタと、を備え、
     前記第1フィルタは、
      前記第1経路上に配置された複数の直列腕共振子と、
      前記第1経路上に設けられた接続ノードであって、前記複数の直列腕共振子のうち前記共通端子に最も近く接続された第1直列腕共振子よりも前記第1端子側に設けられた接続ノードとグランドとの間に配置された第1並列腕共振子と、を有し、
     前記複数の直列腕共振子および前記第1並列腕共振子は、SH波をメインモードとして利用しており、
     前記第1直列腕共振子の電極指対数は、前記複数の直列腕共振子のそれぞれの電極指対数のうち最も少ない、
     マルチプレクサ。
  2.  前記複数の直列腕共振子および前記第1並列腕共振子のそれぞれのIDT電極は、圧電体層を有する基板上に形成され、
     前記基板は、
     前記IDT電極が一方の主面上に形成された圧電体層と、
     前記圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である高音速支持基板と、
     前記高音速支持基板と前記圧電体層との間に配置され、前記圧電体層を伝搬するバルク波音速よりも、伝搬するバルク波音速が低速である低音速膜と、を備える、
     請求項1に記載のマルチプレクサ。
  3.  前記第1フィルタは、前記第1並列腕共振子を含む複数の並列腕共振子を有し、
     前記複数の並列腕共振子のうち前記第1並列腕共振子の電極指対数は、前記複数の並列腕共振子のそれぞれの電極指対数のうち最も少ない、
     請求項1または2に記載のマルチプレクサ。
  4.  前記第2フィルタは、
      前記第2経路上に配置された複数の直列腕共振子と、
      前記第2経路上に設けられた接続ノードであって、前記複数の直列腕共振子のうち前記共通端子に最も近く接続された第2直列腕共振子よりも前記第2端子側に設けられた接続ノードとグランドとの間に配置された少なくとも1つの並列腕共振子と、を有し、
     前記第1直列腕共振子の電極指対数は、前記第2直列腕共振子の電極指対数よりも少ない、
     請求項1~3のいずれか1項に記載のマルチプレクサ。
  5.  前記第1直列腕共振子の電極指対数は、100対以下である、
     請求項1~4のいずれか1項に記載のマルチプレクサ。
  6.  前記第1フィルタにおける前記複数の直列腕共振子は、少なくとも3つの直列腕共振子である、
     請求項1~5のいずれか1項に記載のマルチプレクサ。
  7.  前記少なくとも3つの直列腕共振子のそれぞれの電極指対数は、互いに異なる、
     請求項6に記載のマルチプレクサ。
  8.  前記第1フィルタにおけるレイリー波リップルの発生周波数は、前記第1フィルタの通過帯域の0.74倍から0.78倍の周波数である、
     請求項1~7のいずれか1項に記載のマルチプレクサ。
  9.  請求項1~8のいずれか1項に記載のマルチプレクサと、
     前記マルチプレクサに接続された増幅回路と、を備える、
     高周波フロントエンド回路。
  10.  アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項9に記載の高周波フロントエンド回路と、を備える、
     通信装置。
PCT/JP2019/016578 2018-05-14 2019-04-18 マルチプレクサ、高周波フロントエンド回路および通信装置 WO2019220853A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980031978.5A CN112106297B (zh) 2018-05-14 2019-04-18 多工器、高频前端电路以及通信装置
JP2020519530A JP6733853B2 (ja) 2018-05-14 2019-04-18 マルチプレクサ、高周波フロントエンド回路および通信装置
KR1020207031687A KR102605779B1 (ko) 2018-05-14 2019-04-18 멀티플렉서, 고주파 프론트엔드 회로 및 통신 장치
US17/088,640 US11811393B2 (en) 2018-05-14 2020-11-04 Multiplexer, radio frequency front-end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-093245 2018-05-14
JP2018093245 2018-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/088,640 Continuation US11811393B2 (en) 2018-05-14 2020-11-04 Multiplexer, radio frequency front-end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2019220853A1 true WO2019220853A1 (ja) 2019-11-21

Family

ID=68540208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016578 WO2019220853A1 (ja) 2018-05-14 2019-04-18 マルチプレクサ、高周波フロントエンド回路および通信装置

Country Status (4)

Country Link
US (1) US11811393B2 (ja)
JP (1) JP6733853B2 (ja)
KR (1) KR102605779B1 (ja)
WO (1) WO2019220853A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009692A1 (ja) * 2020-07-08 2022-01-13 株式会社村田製作所 マルチプレクサ
WO2023176814A1 (ja) * 2022-03-18 2023-09-21 京セラ株式会社 ラダー型フィルタ、モジュール及び通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160562A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 分波器および通信装置
JP2011040817A (ja) * 2009-08-06 2011-02-24 Taiyo Yuden Co Ltd 分波器
WO2015033892A1 (ja) * 2013-09-06 2015-03-12 株式会社村田製作所 弾性波共振子、弾性波フィルタ装置及びデュプレクサ
WO2017217197A1 (ja) * 2016-06-14 2017-12-21 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112246A1 (ja) * 2003-06-16 2004-12-23 Murata Manufacturing Co., Ltd. 弾性表面波分波器
WO2012098816A1 (ja) * 2011-01-18 2012-07-26 株式会社村田製作所 弾性表面波フィルタ装置
JP2013081068A (ja) 2011-10-04 2013-05-02 Hitachi Media Electoronics Co Ltd ワンチップ漏洩表面弾性波装置
DE112016000289B4 (de) * 2015-01-07 2023-03-23 Murata Manufacturing Co., Ltd. Zusammengesetze Filtervorrichtung
WO2018003297A1 (ja) * 2016-06-29 2018-01-04 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6572842B2 (ja) * 2016-07-15 2019-09-11 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160562A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 分波器および通信装置
JP2011040817A (ja) * 2009-08-06 2011-02-24 Taiyo Yuden Co Ltd 分波器
WO2015033892A1 (ja) * 2013-09-06 2015-03-12 株式会社村田製作所 弾性波共振子、弾性波フィルタ装置及びデュプレクサ
WO2017217197A1 (ja) * 2016-06-14 2017-12-21 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009692A1 (ja) * 2020-07-08 2022-01-13 株式会社村田製作所 マルチプレクサ
WO2023176814A1 (ja) * 2022-03-18 2023-09-21 京セラ株式会社 ラダー型フィルタ、モジュール及び通信装置

Also Published As

Publication number Publication date
CN112106297A (zh) 2020-12-18
US11811393B2 (en) 2023-11-07
KR20200139228A (ko) 2020-12-11
JPWO2019220853A1 (ja) 2020-07-30
JP6733853B2 (ja) 2020-08-05
KR102605779B1 (ko) 2023-11-24
US20210050845A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP6590069B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6683256B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
CN109286384B (zh) 多工器、高频前端电路以及通信装置
JP6572842B2 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JP6645626B2 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
CN109417380B (zh) 多工器、高频前端电路及通信装置
WO2019111902A1 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JP2019106622A (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2018092511A1 (ja) 弾性表面波フィルタおよびマルチプレクサ
JP6750737B2 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JPWO2019131533A1 (ja) 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
JP6733853B2 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JP2019004364A (ja) 弾性波フィルタ及びマルチプレクサ
CN111164891B (zh) 多工器、高频前端电路以及通信装置
US11863162B2 (en) Filter, multiplexer, radio frequency front-end circuit, and communication device
CN112106297B (zh) 多工器、高频前端电路以及通信装置
JP6885473B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
CN111108689B (zh) 多工器、高频前端电路以及通信装置
WO2019065670A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519530

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207031687

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804103

Country of ref document: EP

Kind code of ref document: A1