WO2019218705A1 - 显示设备 - Google Patents

显示设备 Download PDF

Info

Publication number
WO2019218705A1
WO2019218705A1 PCT/CN2019/070544 CN2019070544W WO2019218705A1 WO 2019218705 A1 WO2019218705 A1 WO 2019218705A1 CN 2019070544 W CN2019070544 W CN 2019070544W WO 2019218705 A1 WO2019218705 A1 WO 2019218705A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
compensation
image signal
image
Prior art date
Application number
PCT/CN2019/070544
Other languages
English (en)
French (fr)
Inventor
杜鹏
郭祖强
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019218705A1 publication Critical patent/WO2019218705A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device such as a projection display device.
  • spatial light modulators are widely used in the field of projection display, and spatial light modulators generally include LCD, LCOS, DMD, and the like. According to the number of spatial light modulators, it can be divided into single-chip, two-piece and three-chip three-in-one systems. In a two-chip system, there is both time series splitting and spatial splitting.
  • the light source provides blue laser light with yellow fluorescent (B+Y) timing light.
  • the first sequential light source provides blue light illumination, and one of the spatial light modulators modulates the blue light image, and the second timed light source provides yellow light illumination.
  • the light machine is divided into red light and green light, respectively, to illuminate two spatial light modulators, and simultaneously modulate red and green light images.
  • the two-chip system can efficiently utilize the yellow illumination, but the problem is that the broad spectrum of yellow light is divided into red and green light, and the brightness or color purity of the base color is low, for example, in order to obtain color purity.
  • a good red light will distribute most of the light in the orange light to green light.
  • the brightness of the test red light will be lower, and the color purity of the green light will also decrease accordingly.
  • a light source provides time-series blue and yellow illumination light
  • a split light lens splits two spatial light modulators (SLM1 and SLM2) respectively, and a spatial light modulator ( SLM1 and SLM2) receive the image signal to modulate the illumination light, generate modulated light to be combined in the spectroscopic lens, and finally project a color image through the lens.
  • the optical lens may be a Green-pass coating or a Red-pass coating.
  • the light source provides blue illumination light, and illuminates the spatial light modulator SLM-1 to generate a blue light image; at the second timing, the light source provides yellow illumination light, and the split lens is divided into red light. And the green light respectively illuminates the spatial light modulator SLM-1 and the spatial light modulator SLM-2 to generate a red light image and a green light image, respectively, as can be seen from Fig. 2, in the first time series spatial light modulator SLM-2 is When idle, the light energy is not maximized.
  • the yellow light is usually generated by the blue light excitation light to excite the yellow light phosphor, and the spectrum is wide. Therefore, the brightness and color purity of the two primary colors interact with each other, and finally, in order to match the white light coordinates conforming to the human eye, the light is split according to the ratio of red and green light, so that the color purity of the red and green light is not high, so The image displayed by the display device has a narrow color gamut.
  • the present invention provides a display device that can realize a wider color gamut.
  • a display device includes a controller, a light source driver, a light source device and a light modulation device, the light source device comprising an excitation light source, a wavelength conversion device and a compensation light source, the light modulation device comprising a first spatial light modulator and a second spatial light a modulator for transmitting a driving signal to the light source driver and an image signal of an image to the light modulating device, the light source driver receiving a driving signal from the controller to control the excitation light source to emit Excitation light and controlling the compensation light source to emit first compensation light and second compensation light, the excitation light being a first color light, wherein the first compensation light and the second compensation light are used to expand the display device a color gamut range, the wavelength conversion device is configured to receive a portion of the excitation light to generate a second color light and a third color light, wherein the image signal of the image includes a first color image signal and a second color image signal of each pixel a third color image signal, the first spatial light modulator being used for a first time period
  • the compensation light source is added to generate compensation light, which not only ensures that the brightness of the light source device is increased, but also makes the light source device The color gamut of the emitted light is expanded, thereby making the color gamut of the image finally displayed by the display device wider.
  • the first and second spatial light modulators perform image modulation in both time periods, which improves the utilization of the light modulation device, so that the light emitted by the light source device is maximized.
  • 1 is a schematic structural view of a display device.
  • FIG. 2 is a timing diagram of image modulation of two spatial light modulators of the display device of FIG. 1.
  • FIG. 3 is a schematic view showing the spectrum of light emitted from a light source of the display device shown in FIG. 1.
  • FIG. 4 is a schematic structural view of a display device according to a first embodiment of the present invention.
  • FIG. 5 is a schematic illustration of a wavelength conversion device of the display device of Figure 4.
  • FIG. 6 is a schematic diagram of a color gamut range of the display device shown in FIG.
  • FIG. 7 is a schematic diagram of a light source control timing and an image modulation timing of the display device shown in FIG. 4.
  • FIG. 7 is a schematic diagram of a light source control timing and an image modulation timing of the display device shown in FIG. 4.
  • FIG. 8 is a schematic diagram of a light source control timing and an image modulation timing of a display device according to a second embodiment of the present invention.
  • FIG. 9 is a timing chart of light source control of a display device according to a third embodiment of the present invention.
  • Fig. 10 is a timing chart showing the light source control of the display device according to the third embodiment of the present invention and its modified embodiment.
  • FIG. 11 is a timing chart of image modulation of a display device according to a fourth embodiment of the present invention.
  • Fig. 12 is a timing chart showing the image modulation of the display device according to the embodiment of the fifth embodiment of the present invention.
  • Fig. 13 is a schematic diagram showing the principle of generation and processing of a corrected image signal of the display device of the fifth embodiment of the present invention.
  • Compensating light source 133 Compensating light source 133
  • Second spatial light modulator 142 Second spatial light modulator 142
  • FIG. 4 is a schematic structural diagram of a display device according to a first embodiment of the present invention.
  • the display device 100 is a projection display device, and the display device 100 includes a controller 110, a light source driver 120, a light source device 130, and a light modulation device 140.
  • the controller 110 is configured to emit a driving signal to the light source driver 120 to control the light source device 130 to emit light through the light source driver 120, and the controller 110 is further configured to emit an image signal of an image to the light modulating device 140, so that the light modulating device 140 according to the light modulating device 140 The image signal of the image modulates light emitted by the light source device 130 to produce image light.
  • the light source device 130 includes an excitation light source 131, a wavelength conversion device 132, and a compensation light source 133.
  • the excitation light source 131 is for emitting excitation light
  • the wavelength conversion device 132 is for receiving the excitation light and converting the excitation light into a laser light.
  • the excitation light source 131 is a laser light source, such as a blue laser light source
  • the excitation light is the first color light B, that is, the blue laser light.
  • the wavelength conversion device 132 has a wavelength conversion material (such as a yellow fluorescent material) for generating yellow fluorescence as the received laser light Y.
  • the laser light Y is a mixed light of the second color light R1 and the third color light G1, specifically,
  • the second color light R1 is red light in yellow fluorescence (ie, red fluorescence), and the third color light G1 is green light (ie, green fluorescence) in yellow fluorescence.
  • FIG. 5 is a schematic diagram of the wavelength conversion device 132 of the display device 100 of FIG.
  • the wavelength conversion device 132 may be a color wheel including a first segment region 132a and a second segment region 132b disposed in the circumferential direction.
  • the first segment region 132a may be provided with a scattering material for receiving excitation light and The excitation light is scattered to emit the first color light B, and a wavelength converting material may be disposed on the second segment region 132b for receiving the excitation light and generating a laser light.
  • the excitation light source 131 and the wavelength conversion device 132 constitute a B+Y light source for emitting the first color light B and the received laser light Y, wherein the received laser light Y includes the second color light R1 and the third color light G1.
  • the light source device 130 may further include a light splitting element for splitting the laser light into the second color light R1 and the third color light G1.
  • the compensation light source 133 is configured to emit at least one of the first compensation light R2 and the second compensation light G2. It can be understood that the first compensation light R2 and the second compensation light G2 are used to expand the color gamut range of the display device. Specifically, the first compensation light R2 is the same color as the second color light R1 of the laser light Y and the color purity is greater than the second color light R1 of the laser light Y, and the color of the second color light G1 of the second compensation light G2 and the laser light Y The same and the color purity is greater than the third color light G1 that is subjected to the laser light Y.
  • the first compensation light R2 and the second compensation light G2 are both laser light, such as red laser light and green laser light
  • the compensation light source 133 includes a laser light source 134 for emitting red laser light and a laser light source 135 for emitting green laser light.
  • the second color light may be green fluorescence
  • the third color light is red fluorescence
  • the first compensation light and the second compensation light are respectively green laser and red laser.
  • FIG. 6 is a schematic diagram of a color gamut range of the display device 100 shown in FIG. 4 (ie, a color gamut range of light emitted by the light source device 130).
  • the color gamut of the mixed light of the first, second, and third color lights B, R1, and G1 ranges from the first color gamut range F1, and the first color light B and the first color
  • the color gamut of the mixed light of the second compensation light R2, G2 is the second color gamut range F2
  • the second color gamut range F2 includes the first color gamut range F1 and includes a partial color gamut outside the first color gamut Range P.
  • the color gamut of the mixed light of the first, second, and third color lights B, R1, G1 and the first and second compensation lights is a third color gamut range F3, and the third color gamut range F3 is located at the first Any gamut range between the gamut range F1 and the second gamut range F2. It can be understood that the first color gamut range F1, the second color gamut range F2, and the third color gamut range F3 are all triangular regions, and the first, second, and third color gamut ranges F1, F2, and F3 are the same color of three.
  • the vertices are on the same straight line, for example, the three green vertices (g1, g2, and g3) of the first, second, and third color gamut ranges F1, F2, and F3 are on the same straight line, and the light source driver 120 controls the light source device.
  • the light mixing ratio of the first, second, and third color lights and the first and second compensation lights emitted by the light source device 130 may be such that the color gamut of the light emitted by the light source device 130 is in the first color gamut range F1 and the second color
  • the domain range F2 and the third color gamut range F3 dynamically change.
  • the first gamut range may be a DCI gamut range, such as a gamut range DCI-P3; and the second gamut range F2 may be a REC gamut range, such as a gamut range REC.2020.
  • the controller 110 is configured to receive original image data of the image sent by the signal source, and determine, according to the original image data of the image, the color gamut range of the image and the color gamut range output according to the image.
  • the ratio and timing of the first and second compensation lights R2, G2, and the control light modulation device 140 perform image modulation according to the image signal of the image and the corresponding modulation timing to generate brightness and color of the original image data of the image. A consistent range of image light.
  • the light source driver 120 controls the light mixing ratios of the first, second, and third color lights B, R1, G1 and the first and second compensation lights R2, G2 emitted by the light source device 130.
  • the color gamut range of the light emitted by the light source device 130 is varied as the color gamut range of the image changes, and the color gamut range of the image light output by the light modulating device 140 varies with the gamut range of the image.
  • display device 100 implements a dynamic color gamut.
  • the light modulating device 140 includes a first spatial light modulator 141 and a second spatial light modulator 142, wherein the first spatial light modulator 141 and the second spatial light modulator 142 may both be DMD spatial light modulators.
  • the first spatial light modulator 141 is configured to modulate the first color light to generate image light according to the first color image signal, and modulate the second color light to generate image light according to the second color image signal
  • the second spatial light modulator 142 is configured to modulate at least one of the first compensation light and the second compensation light by one of the first color image signal, the second color image signal, and the third color image signal. Generating image light and modulating the third color light to generate image light in accordance with the third color image signal.
  • FIG. 7 is a schematic diagram of the light source control timing and image modulation timing of the display device 100 shown in FIG.
  • the modulation time of the image includes a first time period and a second time period.
  • the image signal of the image includes a first color image signal B 0 , a second color image signal R 0 , and a third color image signal G 0 of each pixel.
  • the light source driver 120 receives the driving signal from the controller 110 to control the excitation light source 131 to emit excitation light, which is the first color light B, and the excitation light is guided to the first spatial light modulator 141.
  • the light source driver 120 receives the driving signal from the controller 110 to control the excitation light source 131 to emit excitation light, the wavelength conversion device 132 converts the excitation light into the received laser light Y, and the received laser light Y includes the second color light R1 and the third.
  • the color light G1, the second color light R1 is directed to the first spatial light modulator 141, and the third color light G1 is directed to the second spatial light modulator 142.
  • the light source driver 120 further controls the compensation light source 133 to emit at least one of the first compensation light R2 and the second compensation light G2 according to the driving signal, and the first compensation light R2 and the first
  • the two color lights R1 are the same color and the color purity is greater than the second color light R1
  • the second compensation light G2 is the same color as the third color light G1 and the color purity is greater than the third color light G1
  • the first compensation light R2 and the second compensation light G2 At least one of them is directed to the light modulation device 140.
  • the light source driver 110 can control the intensity of the first compensation light R2 and the second compensation light G2 emitted by the light source 133 according to the color gamut range of the original image data of the image.
  • the first spatial light modulator 141 receives the first color light B and the first compensation light R2 in the first time period, so the first spatial light modulator 141 is based on the first color in the first time period.
  • the image signal B 0 modulates the first color light B and the first compensation light R2 to generate image light
  • the second spatial light modulator 142 receives the second compensation light G2 in the first time period, so the second spatial light modulator 142 is in the
  • the first time period modulates the second compensation light G2 according to the first color image signal B 0 to generate image light.
  • the first spatial light modulator 141 receives the second color light R1 and the first compensation light R2 in the second time period, so the first spatial light modulator 141 modulates the second color according to the second color image signal R 0 in the second time period.
  • the light R1 and the first compensation light R2 generate image light
  • the second spatial light modulator 142 receives the third color light G1 and the second compensation light G2 in the second time period, so the second spatial light modulator 142 is in the second
  • the time period modulates the third color light G1 and the second compensation light G2 according to the third color image signal G 0 to generate image light.
  • the compensation light source 133 is added to generate the compensation light, which not only ensures that the second color light emitted by the light source device 130 is increased (including the laser light Y).
  • the laser light also expands the color gamut of the light emitted by the light source device 130, thereby causing the color gamut of the image finally displayed by the display device 100 to be wider.
  • the first and second spatial light modulators 141, 142 perform image modulation for both time periods, improving the utilization of the light modulation device 140, so that the light emitted by the light source device 130 is maximized.
  • FIG. 8 is a schematic diagram of a light source control timing and an image modulation timing of a display device according to a second embodiment of the present invention.
  • the display device of the second embodiment is substantially the same as the display device of the first embodiment, that is, the above description of the display device of the first embodiment is basically applicable to the display device of the second embodiment, and the difference between the two Mainly in the second embodiment, in the first time period, the light source driver controls the intensity of the first compensation light R2 emitted by the compensation light source according to the color gamut range of the original image data of the image, and controls the second issued by the compensation light source.
  • the intensity of the compensation light G2 is a constant value (such as a maximum value), and the second spatial light modulator modulates at least one of the first compensation light and the second compensation light (such as the second compensation light) according to the corrected image signal.
  • the G2 image light is generated, and the corrected image signal is obtained according to at least one of the first color image signal, the second color image signal, and the third color image signal.
  • the corrected image signal is the first a times the color image signal B 0
  • the a is a constant greater than or equal to 0 and less than or equal to 1
  • a can also be a constant operator. It can be understood that the value of a can be based on The original image data brightness or gamut range of the image is determined.
  • the intensity of the compensation light source that emits the second compensation light G2 is a constant value, but the correction image signal input to the second spatial light modulator 142 is calculated by the constant operator a, which can be achieved with the first embodiment. The same technical effect.
  • the light source driver controls the intensity of the excitation light emitted by the excitation light source during the first time period to be greater than the intensity of the second time period.
  • the driving current of the excitation light source in the first period of time may be controlled to be greater than the driving current in the second period of time.
  • the second color light finally emitted by the display device not only improves the color purity, but also increases the brightness, but the first color light B The brightness is not improved. Therefore, in the third embodiment, by increasing the light intensity of the first color light B in the first time period, the first color light B can be compensated to increase the brightness of the first color light B. effect.
  • the duty ratio of the excitation light in the first period of time may be increased (ie, the first color light B is emitted from the B+Y source).
  • the ratio of the first color light B is compensated to achieve the effect of increasing the brightness of the first color light B.
  • the light intensity of the excitation light source 131 may be the same in the first time period and the second time period, but in the case where the modulation time of one image is constant, the first time period may be longer than that in the third embodiment.
  • the first time period, correspondingly, the second time period may be shorter than the second time period in the third embodiment.
  • the length of the first segment area of the wavelength conversion device of the display device may be long.
  • the length of the second segment area can be correspondingly reduced.
  • the grayscale values of the image signals of the respective colors need to be adjusted accordingly, that is, the two spatial light modulators (especially digital modulators such as DMD) are new.
  • the duty cycle is achieved internally by 8 bits or other bits of gray.
  • the third embodiment mainly compensates the first color light B emitted by the light source device by means of amplitude modulation.
  • the modified embodiment of the third embodiment mainly uses the first color light B emitted by the light source device by means of frequency modulation. Compensating, the two can achieve a basically consistent technical effect.
  • FIG. 11 is a schematic diagram showing a light source control timing and an image modulation timing of a display device according to a fourth embodiment of the present invention.
  • the display device of the fourth embodiment is substantially the same as the display device of the second embodiment, that is, the above description of the display device of the second embodiment is basically applicable to the display device of the fourth embodiment, and the difference between the two Mainly in the fourth embodiment, the second spatial light modulator generates image light according to the corrected image signal f(H) modulating the second compensation light G2 in the first time period, and the corrected image signal f(H) may be according to the first color.
  • At least one of the image signal B 0 , the second color image signal R 0 , and the third color image signal G 0 is calculated and obtained.
  • the corrected image signal f(H) a*f(B)+b* f(G), wherein a is a constant greater than or equal to 0 and less than or equal to 1, b is a constant greater than 0 and less than or equal to 1-a, and f(B) and f(G) respectively represent the first color image signal B 0 and The third color image signal G 0 .
  • the intensity of the second compensation light G2 emitted by the compensation light source may be constant (eg, the maximum value), and the second spatial light modulator performs the second compensation light G2 according to the corrected image signal calculated by the image operator H.
  • the modulation can be used on the one hand to correct the first color light B (blue light primary color) and the other part to compensate for the brightness and color purity of the third color light G1.
  • the second spatial light modulator compensates for the second compensation light G2 in both time periods, the brightness of the image can be increased or the same brightness can be maintained to reduce the use of the number of compensation light sources, thereby reducing the cost.
  • the second spatial light modulator input signal of the first time period includes both the correction signal of the first color light B and the signal of the third color image, and the signal cannot overflow the gray scale
  • Some linear operators specifically used in this embodiment implement image signal calculation.
  • another constant operator b is introduced while accessing the third color image signal, so that
  • the two spatial light modulators are maximized during the first time period.
  • the number of compensation light sources for providing the second compensation light G2 to the second spatial light modulator is reduced, and the cost is reduced.
  • the second spatial light modulator is in the In the case where a period of time does not contribute luminance to the second period of time, the number of compensation light sources G2 can be reduced to 1/(1+b).
  • the second spatial light modulator is further configured to generate the image light by modulating the second compensation light G2 according to the corrected image signal f(L) in the first time period, and the corrected image signal f(L) may be according to the first color image. At least one of the signal B 0 , the second color image signal R 0 , and the third color image signal G 0 is calculated.
  • ⁇ f(B) ⁇ , Gmax is the maximum value max ⁇ f(G) ⁇ in the third color image signal G 0 of each pixel in the image data.
  • the step of correcting the generation and processing of the image signal f(L) may include:
  • the corrected image signal f(L) is supplied to the second spatial light modulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种显示设备包括控制器、光源驱动器、光源装置及光调制装置。所述光源装置包括激发光源、波长转换装置及补偿光源,光调制装置包括第一及第二空间光调制器。控制器用于发出驱动信号至光源驱动器以及发出图像信号至光调制装置。激发光源发出第一颜色光,波长转换装置产生第二颜色光及第三颜色光,光源驱动器控制补偿光源发出第一补偿光与第二补偿光中的至少一种。第一空间光调制器在第一时间段依调制第一颜色光与至少一种补偿光产生图像光以及在第二时间段调制第二颜色光,第二空间光调制器在第一时间段调制至少一种补偿光以及在第二时间段调制第三颜色光。

Description

显示设备 技术领域
本发明涉及显示技术领域,尤其涉及一种显示设备,如投影显示设备。
背景技术
目前,空间光调制器(SLM)在投影显示领域获得广泛应用,空间光调制器一般包括LCD、LCOS、DMD等。根据空间光调制器数量进行分类,可分为单片式、双片式与三片式3中系统。在双片式系统中,既存在时序分光,又存在空间分光。通常光源提供蓝激光加黄色荧光(B+Y)的时序光,第一个时序光源提供蓝光照明光,由其中一片空间光调制器对蓝光图像进行调制,第二个时序光源提供黄光照明光,经过光机分为红光和绿光照明光分别照射两片空间光调制器,并同时调制红光和绿光图像。双片式系统能够高效地利用黄光照明光,但会存在的问题是:宽光谱的黄光分为红光和绿光,分得基色的亮度或色纯度较低,例如,为了得到色纯度较好的红光,则将橙光段的光大部分分给绿光,测试红光的亮度会较低,并且绿光的色纯度也相应降低。
具体地,如图1所示,在一种显示设备中,光源提供时序的蓝光和黄光照明光,在分光镜片处分光分别照射两片空间光调制器(SLM1与SLM2),空间光调制器(SLM1与SLM2)接收图像信号对照明光进行调制,产生调制光在分光镜片合光,最终经过镜头投影出彩色图像。其中,光镜片可以是Green-pass镀膜,也可以是Red-pass镀膜。
如图2所示,在第一个时序,光源提供蓝光照明光,并照射空间光调制器SLM-1产生蓝光图像;在第二个时序,光源提供黄光照明光,经分光镜片分为红光和绿光分别照明空间光调制器SLM-1和空间光 调制器SLM-2,分别产生红光图像和绿光图像,从图2可以看出,在第一时序空间光调制器SLM-2是闲置的,光能量没有得到最大化利用。
另外,如图3所示,由于红光和绿光是由黄光分光获得,黄光通常由蓝光激发光激发黄光荧光粉产生,光谱较宽。因此两种基色光的亮度及色纯度相互影响,最终为了配比出符合人眼视觉的白光坐标,根据红绿光亮度比例进行分光,这样得到红绿光的色纯度都不会高,因此所述显示设备显示的图像的色域较窄。
发明内容
有鉴于此,本发明提供一种可实现较宽色域的显示设备。
一种显示设备包括控制器、光源驱动器、光源装置及光调制装置,所述光源装置包括激发光源、波长转换装置及补偿光源,所述光调制装置包括第一空间光调制器及第二空间光调制器,所述控制器用于发出驱动信号至所述光源驱动器以及发出一幅图像的图像信号至所述光调制装置,所述光源驱动器接收所述控制器发出的驱动信号控制所述激发光源发出激发光以及控制所述补偿光源发出第一补偿光与第二补偿光,所述激发光为第一颜色光,所述第一补偿光与所述第二补偿光用于拓展所述显示设备的色域范围,所述波长转换装置用于接收一部分所述激发光产生第二颜色光及第三颜色光,该幅图像的图像信号包括各像素的第一颜色图像信号、第二颜色图像信号及第三颜色图像信号,所述第一空间光调制器用于在一幅图像的调制周期内的第一时间段依据所述第一颜色图像信号调制所述第一颜色光与所述第一补偿光与所述第二补偿光中的至少一种产生图像光以及在该幅图像的调制周期内的第二时间段依据所述第二颜色图像信号调制所述第二颜色光产生图像光,所述第二空间光调制器用于在所述第一时间段调制所述第一补偿光与第二补偿光中的至少一种产生图像光以及在所述第二时间段依据所述第三颜色图像信号调制所述第三颜色光产生图像光。
与现有技术相比较,本发明显示设备中,在所述激发光及受激光的基础上,增加了补偿光源发出补偿光,不仅保证增加所述光源装置 的亮度,也可以使得所述光源装置发出的光的色域得到了扩展,进而使得所述显示设备最终显示的图像的色域较宽。此外,所述第一及第二两个空间光调制器在两个时间段均进行图像调制,提高了所述光调制装置的利用率,使得光源装置发出的光得到最大化利用。
附图说明
图1是一种显示设备的结构示意图。
图2是图1所示显示设备的两个空间光调制器的图像调制时序示意图。
图3是图1所示显示设备的光源发出的光的光谱示意图。
图4是本发明第一实施方式的显示设备的结构示意图。
图5是图4所示显示设备的波长转换装置的示意图。
图6是图4所示显示设备的色域范围示意图。
图7是图4所示显示设备的光源控制时序及图像调制时序示意图。
图8是本发明第二实施方式的显示设备的光源控制时序及图像调制时序示意图。
图9是本发明第三实施方式的显示设备的光源控制时序示意图。
图10是本发明第三实施方式及其变更实施方式的显示设备的光源控制时序示意图。
图11是本发明第四实施方式的显示设备的图像调制时序示意图。
图12是本发明第五实施方式的变更实施方式的显示设备的图像调制时序示意图。
图13是本发明第五实施方式的显示设备的校正图像信号产生及处理的原理示意图。
主要元件符号说明
显示设备          100
控制器            110
光源驱动器        120
光源装置           130
光调制装置         140
激发光源           131
波长转换装置       132
补偿光源           133
激光光源           134、135
第一空间光调制器   141
第二空间光调制器   142
第一色域范围       F1
第二色域范围       F2
部分色域范围       P
第一颜色光         B
受激光             Y
第二颜色光         R1
第三颜色光         G1
第一补偿光         R2
第二补偿光         G2
第一颜色图像信号   B 0
第二颜色图像信号   R 0
第三颜色图像信号   G 0
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
请参阅图4,图4是本发明第一实施方式的显示设备的结构示意图。本实施方式中,显示设备100为投影显示设备,显示设备100包括控制器110、光源驱动器120、光源装置130、及光调制装置140。控制器110用于发出驱动信号至光源驱动器120以通过光源驱动器120控制光源装置130发光,控制器110还用于发出一幅图像的图像信号至光调制装置140,以使光调制装置140依据该幅图像的图像信 号调制光源装置130发出的光从而产生图像光。
具体地,光源装置130包括激发光源131、波长转换装置132及补偿光源133。激发光源131用于发出激发光,波长转换装置132用于接收激发光并将激发光转换为受激光。本实施方式中,激发光源131为激光光源,如蓝色激光光源,激发光为第一颜色光B,即蓝色激光。波长转换装置132具有波长转换材料(如黄色荧光材料),用于产生黄色荧光作为受激光Y,可以理解,受激光Y为第二颜色光R1与第三颜色光G1的混合光,具体地,第二颜色光R1为黄色荧光中的红色光(即红色荧光),第三颜色光G1为黄色荧光中的绿色光(即绿色荧光)。
请参阅图5,图5是图4所示显示设备100的波长转换装置132的示意图。波长转换装置132可以为色轮,包括沿圆周方向依序设置的第一分段区域132a及第二分段区域132b,第一分段区域132a上可以设置散射材料,用于接收激发光并对激发光进行散射从而发出所述第一颜色光B,第二分段区域132b上可以设置波长转换材料,用于接收激发光并产生受激光。可以理解,激发光源131与波长转换装置132组成B+Y光源,用于发出第一颜色光B与受激光Y,其中受激光Y包括第二颜色光R1与第三颜色光G1。可以理解,光源装置130可以进一步包括分光元件,用于将所述受激光分光为第二颜色光R1与第三颜色光G1。
补偿光源133用于发出第一补偿光R2与第二补偿光G2中的至少一种,可以理解,第一补偿光R2与第二补偿光G2用于拓展显示设备的色域范围。具体地,第一补偿光R2与受激光Y的第二颜色光R1颜色相同且色纯度大于受激光Y的第二颜色光R1,第二补偿光G2与受激光Y的第三颜色光G1颜色相同且色纯度大于受激光Y的第三颜色光G1。本实施方式中,第一补偿光R2与第二补偿光G2均为激光,如红色激光与绿色激光,补偿光源133包括用于发出红色激光的激光光源134及用于发出绿色激光的激光光源135。可以理解,在变更实施方式中,第二颜色光可以为绿色荧光,第三颜色光为红色荧光,第一补偿光与第二补偿光对应地分别为绿色激光与红色激光。
请参阅图6,图6是图4所示显示设备100的色域范围(即所述光源装置130发出的光的色域范围)示意图。具体来说,光源装置130发出的光中,第一、第二及第三颜色光B、R1、G1的混合光的色域范围为第一色域范围F1,第一颜色光B及第一、第二补偿光R2、G2的混合光的色域范围为第二色域范围F2,第二色域范围F2包括第一色域范围F1且包括位于第一色域范围之外的部分色域范围P。第一、第二及第三颜色光B、R1、G1及第一、第二补偿光的混合光的色域范围为第三色域范围F3,第三色域范围F3为位于所述第一色域范围F1与第二色域范围F2之间任意一个色域范围。可以理解,第一色域范围F1、第二色域范围F2及第三色域范围F3均为三角形区域,且第一、第二及第三色域范围F1、F2及F3的同一颜色的三个顶点在同一条直线上,如第一、第二及第三色域范围F1、F2及F3的三个绿色顶点(g1、g2及g3)在同一条直线上,通过光源驱动器120控制光源装置130发出的第一、第二及第三颜色光及所述第一、第二补偿光的混光比例可以使得光源装置130发出的光的色域范围在第一色域范围F1、第二色域范围F2及第三色域范围F3内动态变化。其中,第一色域范围可以为DCI色域范围,如色域范围DCI-P3;第二色域范围F2可以为REC色域范围,如色域范围REC.2020。
可以理解,控制器110用于接收信号源发出的该幅图像的原始图像数据,并判断依据该幅图像的原始图像数据判断该幅图像的色域范围以及依据该幅图像的色域范围输出所述驱动信号至光源驱动器120及输出该幅图像的图像信号至光调制装置140,从而通过光源驱动器120控制光源装置130发出的第一、第二及第三颜色光B、R1、G1及所述第一、第二补偿光R2、G2的比例及时序,以及控制光调制装置140依据该幅图像的图像信号及对应的调制时序进行图像调制进而产生与该幅图像的原始图像数据的亮度及色域范围一致的图像光。具体地,可以理解,通过光源驱动器120控制光源装置130发出的第一、第二及第三颜色光B、R1、G1及所述第一、第二补偿光R2、G2的混光比例,可以使得光源装置130发出的光的色域范围随着该幅图像的 色域范围的变化而变化,光调制装置140输出的图像光的色域范围随着该幅图像的色域范围的变化而变化,从而显示设备100实现动态色域。
本实施方式中,光调制装置140包括第一空间光调制器141及第二空间光调制器142,其中第一空间光调制器141及第二空间光调制器142可以均为DMD空间光调制器。所述第一空间光调制器141用于依据所述第一颜色图像信号调制所述第一颜色光产生图像光以及依据所述第二颜色图像信号调制所述第二颜色光产生图像光,所述第二空间光调制器142用于所述第一颜色图像信号、第二颜色图像信号及第三颜色图像信号中的一种调制所述第一补偿光与第二补偿光中的至少一种产生图像光以及依据所述第三颜色图像信号调制所述第三颜色光产生图像光。
请参阅图7,图7是图4所示显示设备100的光源控制时序及图像调制时序示意图。该幅图像的调制时间包括第一时间段与第二时间段。该幅图像的图像信号包括各像素的第一颜色图像信号B 0、第二颜色图像信号R 0及第三颜色图像信号G 0
在第一时间段,光源驱动器120接收控制器110发出的驱动信号控制激发光源131发出激发光,激发光为第一颜色光B,激发光被引导至第一空间光调制器141。
在第二时间段,光源驱动器120接收控制器110发出的驱动信号控制激发光源131发出激发光,波长转换装置132将激发光转换为受激光Y,受激光Y包括第二颜色光R1与第三颜色光G1,第二颜色光R1被引导至第一空间光调制器141,第三颜色光G1被引导至第二空间光调制器142。
进一步地,在第一时间段与第二时间段,光源驱动器120还依据驱动信号控制补偿光源133发出第一补偿光R2与第二补偿光G2中的至少一种,第一补偿光R2与第二颜色光R1颜色相同且色纯度大于第二颜色光R1,第二补偿光G2与第三颜色光G1颜色相同且色纯度大于第三颜色光G1,第一补偿光R2与第二补偿光G2中的至少一种被 引导至光调制装置140。其中,光源驱动器110可以依据该幅图像的原始图像数据的色域范围控制补偿光源133发出的第一补偿光R2与第二补偿光G2的强度。
具体地,本实施方式中,第一空间光调制器141在第一时间段接收第一颜色光B及第一补偿光R2,故第一空间光调制器141在第一时间段依据第一颜色图像信号B 0调制第一颜色光B及第一补偿光R2产生图像光,第二空间光调制器142在第一时间段接收第二补偿光G2,故第二空间光调制器142在所述第一时间段依据第一颜色图像信号B 0调制第二补偿光G2产生图像光。
第一空间光调制器141在第二时间段接收第二颜色光R1及第一补偿光R2,故第一空间光调制器141在第二时间段依据第二颜色图像信号R 0调制第二颜色光R1及第一补偿光R2产生图像光,第二空间光调制器142在第二时间段接收第三颜色光G1与第二补偿光G2,故第二空间光调制器142在所述第二时间段依据第三颜色图像信号G 0调制第三颜色光G1与第二补偿光G2产生图像光。
与现有技术相比较,本发明显示设备100中,在激发光及受激光的基础上,增加了补偿光源133发出补偿光,不仅保证增加光源装置130发出的第二颜色光(包括受激光Y的第二颜色光R1与第一补偿光R2)及第三颜色光(包括受激光Y的第三颜色光G1与第二补偿光G2)的亮度,进一步地,由于补偿光的色纯度大于受激光,也使得光源装置130发出的光的色域得到了扩展,进而使得显示设备100最终显示的图像的色域较宽。此外,第一及第二两个空间光调制器141、142在两个时间段均进行图像调制,提高了光调制装置140的利用率,使得光源装置130发出的光得到最大化利用。
请参阅图8,图8是本发明第二实施方式的显示设备的光源控制时序及图像调制时序示意图。第二实施方式的显示设备与第一实施方式的显示设备基本相同,也就是说,上述对第一实施方式的显示设备的描述基本上可以适用于第二实施方式的显示设备,二者的区别主要在于:第二实施方式中,在第一时间段,光源驱动器依据该幅图像的 原始图像数据的色域范围控制补偿光源发出的第一补偿光R2的强度,以及控制补偿光源发出的第二补偿光G2的强度为恒定值(如最大值),第二空间光调制器则在依据校正图像信号调制第一补偿光与第二补偿光中的至少一种(如所述第二补偿光)产生G2图像光,校正图像信号是依据第一颜色图像信号、第二颜色图像信号及第三颜色图像信号中的至少一种计算获得,本实施方式中,所述校正图像信号为所述第一颜色图像信号B 0的a倍,所述a为大于等于0小于等于1的常数,a也可以成为常数算子,可以理解,a的取值可以依据该幅图像的原始图像数据亮度或色域范围来确定。
所述第二实施方式中,发出第二补偿光G2的补偿光源的强度为恒定值,但是通过常数算子a计算输入第二空间光调制器142的校正图像信号,可以达到与第一实施方式同样的技术效果。
图9是本发明第三实施方式的显示设备的光源控制时序示意图。第三实施方式的显示设备与第一实施方式的显示设备基本相同,也就是说,上述对第一实施方式的显示设备的描述基本上可以适用于第三实施方式的显示设备,二者的区别主要在于:第三实施方式中,光源驱动器控制激发光源在第一时间段发出的激发光的强度大于在第二时间段的强度。具体地,可以控制激发光源在第一时间段的驱动电流大于在第二时间段的驱动电流。
因第一及第二实施方式中,通过增加第一及第二补偿光R2与G2,显示设备最终发出的第二颜色光不仅色纯度提高了,亮度也提高了,但由于第一颜色光B的亮度并没有提高,因此,在第三实施方式中,通过在第一时间段增加第一颜色光B的光强度,可以对第一颜色光B进行补偿,达到提高第一颜色光B亮度的效果。
此外,如图10所示,在第三实施方式的一种变更实施方式中,也可以通过增加第一时间段的激发光的占空比(即第一颜色光B在B+Y光源出光的占比)来对第一颜色光B进行补偿,达到提高第一颜色光B亮度的效果。该变更实施方式中,激发光源131在第一时间段与第二时间段的光强度可以相同,但在一幅图像的调制时间不变的情况下, 第一时间段可以长于第三实施方式中的第一时间段,相应地,第二时间段可以短于第三实施方式中的第二时间段,具体地,所述显示设备的波长转换装置的第一分段区域的长度可以变长,第二分段区域的长度可以相应减少。此外,由于第一时间段与第二时间段时间的变化,各颜色的图像信号的灰阶值需要相应调整,即使得所述两个空间光调制器(特别是DMD等数字调制器)在新的占空比内下实现8bit或其他位数的各灰度级。
可以理解,所述第三实施方式主要通过调幅的方式对光源装置发出的第一颜色光B进行补偿,第三实施方式的变更实施方式主要通过调频的方式对光源装置发出的第一颜色光B进行补偿,二者可以达到基本一致的技术效果。
图11是本发明第四实施方式的显示设备的光源控制时序及图像调制时序示意图。第四实施方式的显示设备与第二实施方式的显示设备基本相同,也就是说,上述对第二实施方式的显示设备的描述基本上可以适用于第四实施方式的显示设备,二者的区别主要在于:第四实施方式中,第二空间光调制器在第一时间段依据校正图像信号f(H)调制第二补偿光G2产生图像光,校正图像信号f(H)可以依据第一颜色图像信号B 0、第二颜色图像信号R 0及第三颜色图像信号G 0中的至少一种计算获得,本实施方式中,校正图像信号f(H)=a*f(B)+b*f(G),其中,a为大于等于0小于等于1的常数,b为大于0且小于等于1-a的常数,f(B)与f(G)分别代表第一颜色图像信号B 0与第三颜色图像信号G 0
第四实施方式中,补偿光源发出的第二补偿光G2的强度可以恒定(如为最大值),第二空间光调制器依据利用图像算子H计算的校正图像信号对第二补偿光G2进行调制,可以一方面用于修正第一颜色光B(蓝光基色),另一部分用于补偿第三颜色光G1的亮度和色纯度。
由于第二空间光调制器在两个时间段均进行第二补偿光G2的补偿,因此可以提高图像的亮度或保持同样的亮度而减少补偿光源数量 的使用,进而降低成本。
进一步地,在校正图像信号算法上,第一时间段的第二空间光调制器输入信号既包含了第一颜色光B的修正信号,又包含第三颜色图像的信号,并且信号不能溢出灰阶,本实施方式具体采用的一些线性算子实现图像信号计算,如在第二实施方式中常数算子a的基础上,在接入第三颜色图像信号的同时引入另一个常数算子b,使得最终输入第二空间光调制器的新图像信号f(H)=a*f(B)+b*f(G),其中b>0且b≤1-a,当b=1-a时第二空间光调制器在第一时间段得到最大化利用。
综上所述,考虑到为了保持图像亮度,减少给第二空间光调制器提供第二补偿光G2的补偿光源的数量、降低成本,根据上述图像算法H,在第二空间光调制器在第一时间段对其第二时间段无亮度贡献的情况下,补偿光源G2的数量可以降低到原来1/(1+b)。
图12是本发明第四实施方式的显示设备的光源控制时序及图像调制时序示意图。第五实施方式的显示设备与第四实施方式的显示设备基本相同,也就是说,上述对第四实施方式的显示设备的描述基本上可以适用于第五实施方式的显示设备,二者的区别主要在于:第二空间光调制器还用于在第一时间段依据校正图像信号f(L)调制所述第二补偿光G2产生图像光,校正图像信号f(L)可以依据第一颜色图像信号B 0、第二颜色图像信号R 0及第三颜色图像信号G 0中的至少一种计算获得,本实施方式中,校正图像信号f(L)=a*f(B)+b*f(G),其中,a为大于等于0小于等于1的常数,假设所述校正图像信号f(L)为n bit的图像信号,b=(2 n-1)/Gmax-a*Bmax/Gmax,f(B)与f(G)分别代表第一颜色图像信号B 0与第三颜色图像信号G 0,Bmax为该幅图像数据中各像素的第一颜色图像信号B 0中的最大值max{f(B)},Gmax为该幅图像数据中各像素的第三颜色图像信号G 0中的最大值max{f(G)}。
具体地,如图13所示,校正图像信号f(L)的产生及处理的步骤可以包括:
接收该幅图像的各像素的第一颜色图像信号B 0及第三颜色图像信号G 0
获取该幅图像数据中各像素的第一颜色图像信号B 0中的最大值Bmax与该幅图像数据中各像素的第三颜色图像信号G 0中的最大值Gmax;
依据公式b=(2 n-1)/Gmax-a*Bmax/Gmax计算b值;
利用公式f(L)=a*f(B)+b*f(G)计算校正图像信号f(L);
将校正图像信号f(L)提供至第二空间光调制器。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种显示设备,其特征在于:所述显示设备包括控制器、光源驱动器、光源装置及光调制装置,所述光源装置包括激发光源、波长转换装置及补偿光源,所述光调制装置包括第一空间光调制器及第二空间光调制器;
    所述控制器用于发出驱动信号至所述光源驱动器以及发出一幅图像的图像信号至所述光调制装置;
    所述光源驱动器接收所述控制器发出的驱动信号控制所述激发光源发出激发光以及控制所述补偿光源发出第一补偿光与第二补偿光,所述激发光为第一颜色光,所述第一补偿光与所述第二补偿光用于拓展所述显示设备的色域范围;
    所述波长转换装置用于接收一部分所述激发光产生第二颜色光及第三颜色光,该幅图像的图像信号包括各像素的第一颜色图像信号、第二颜色图像信号及第三颜色图像信号;
    所述第一空间光调制器用于在一幅图像的调制周期内的第一时间段依据所述第一颜色图像信号调制所述第一颜色光与所述第一补偿光与所述第二补偿光中的至少一种产生图像光以及在该幅图像的调制周期内的第二时间段依据所述第二颜色图像信号调制所述第二颜色光产生图像光;
    所述第二空间光调制器用于在所述第一时间段依据校正图像信号或所述第一颜色图像信号、第二颜色图像信号及第三颜色图像信号中的一种调制所述第一补偿光与第二补偿光中的至少一种产生图像光以及在所述第二时间段依据所述第三颜色图像信号调制所述第三颜色光产生图像光,其中,所述校正图像信号是依据所述第一颜色图像信号、第二颜色图像信号及第三颜色图像信号中的至少一种计算获得。
  2. 如权利要求1所述的显示设备,其特征在于:所述第一补偿光与所述第二颜色光颜色相同,所述第二补偿光与所述第三颜色光颜色相同,在所述第一时间段,所述第一空间光调制器调制所述第一颜色光与所述第二补偿光产生图像光,所述第二空间光调制器调制所述第 一补偿光产生图像光。
  3. 如权利要求2所述的显示设备,其特征在于:所述第一补偿光的色纯度大于所述第二颜色光,所述第二补偿光的色纯度大于所述第三颜色光。
  4. 如权利要求2所述的显示设备,其特征在于:所述第一空间光调制器在所述第二时间段还接收所述第一补偿光,且所述第一空间光调制器在所述第二时间段还依据所述第二颜色图像信号调制所述第二颜色光及所述第一补偿光产生图像光,所述第二空间光调制器在所述第二时间段还接收所述第二补偿光,且所述第二空间光调制器还用于在所述第二时间段依据所述第三颜色图像信号调制所述第三颜色光及所述第二补偿光产生图像光。
  5. 如权利要求1-4项任意一项所述的显示设备,其特征在于:通过所述光源驱动器控制所述光源装置发出的第一、第二及第三颜色光及所述第一、第二补偿光的比例及时序,以及控制所述光调制装置依据所述图像信号及时序进行图像调制进而产生与所述原始图像数据的亮度及色域范围一致的图像光。
  6. 如权利要求2所述的显示设备,其特征在于:所述第一空间光调制器在所述第二时间段还接收所述第一补偿光,且所述第一空间光调制器还用于在所述第一时间段还依据所述第一颜色图像信号调制所述第一颜色光及所述第一补偿光产生图像光,所述第二空间光调制器在所述第二时间段还接收所述第二补偿光,且所述第二空间光调制器还用于在所述第一时间段依据所述校正图像信号调制所述第二补偿光产生图像光,所述校正图像信号为所述第一颜色图像信号的a倍,所述a为大于等于0小于等于1的常数。
  7. 如权利要求2所述的显示设备,其特征在于:所述光源驱动器还用于接收所述控制器发出的驱动信号控制所述激发光源发出的激发光,使得所述激发光源在所述第一时间段发出的激发光的强度大于在所述第二时间段的强度。
  8. 如权利要求2所述的显示设备,其特征在于:所述第一空间光 调制器在所述第二时间段还接收所述第一补偿光,且所述第一空间光调制器还用于在所述第一时间段还依据所述第一颜色图像信号调制所述第一颜色光及所述第一补偿光产生图像光,所述第二空间光调制器在所述第二时间段还接收所述第二补偿光,且所述第二空间光调制器还用于在所述第一时间段依据所述校正图像信号f(H)调制所述第二补偿光产生图像光,所述校正图像信号f(H)=a*f(B)+b*f(G),其中,a为大于等于0小于等于1的常数,b为大于0且小于等于1-a的常数,f(B)与f(G)分别代表所述第一颜色图像信号与第三颜色图像信号。
  9. 如权利要求2所述的显示设备,其特征在于:所述第一空间光调制器在所述第二时间段还接收所述第一补偿光,且所述第一空间光调制器还用于在所述第一时间段还依据所述第一颜色图像信号调制所述第一颜色光及所述第一补偿光产生图像光,所述第二空间光调制器在所述第二时间段还接收所述第二补偿光,且所述第二空间光调制器还用于在所述第一时间段依据所述校正图像信号f(L)调制所述第二补偿光产生图像光,所述校正图像信号f(L)=a*f(B)+b*f(G),其中,a为大于等于0小于等于1的常数,假设所述校正图像信号为n bit,b=(2 n-1)/Gmax-a*Bmax/Gmax,f(B)与f(G)分别代表所述第一颜色图像信号与第三颜色图像信号,Bmax为该幅图像数据中各像素的第一颜色图像信号中的最大值max{f(B)},Gmax为该幅图像数据中各像素的第三颜色图像信号中的最大值max{f(G)}。
  10. 如权利要求1所述的显示设备,其特征在于:所述激发光源为蓝色激光光源,所述第一颜色光为蓝色激光,所述第二颜色光为红色荧光及绿色荧光中的一种,所述第三颜色光为红色荧光及绿色荧光中的另外一种,所述补偿光源包括激光光源,所述第一补偿光为红色激光与绿色激光中与所述第二颜色光颜色相同的一种,所述第二补偿光为红色激光与绿色激光中与所述第三颜色光颜色相同的一种。
PCT/CN2019/070544 2018-05-17 2019-01-05 显示设备 WO2019218705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810475690.4 2018-05-17
CN201810475690.4A CN110505460B (zh) 2018-05-17 2018-05-17 显示设备

Publications (1)

Publication Number Publication Date
WO2019218705A1 true WO2019218705A1 (zh) 2019-11-21

Family

ID=68539391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070544 WO2019218705A1 (zh) 2018-05-17 2019-01-05 显示设备

Country Status (2)

Country Link
CN (1) CN110505460B (zh)
WO (1) WO2019218705A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960864A (zh) * 2020-07-21 2022-01-21 深圳光峰科技股份有限公司 投影系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252300A (ja) * 2011-06-07 2012-12-20 Panasonic Corp 画像表示装置
CN105739226A (zh) * 2014-12-08 2016-07-06 深圳市绎立锐光科技开发有限公司 投影系统
CN106154713A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 光源系统和投影系统
CN106371272A (zh) * 2015-07-20 2017-02-01 深圳市光峰光电技术有限公司 合光的控制系统及投影机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101455078A (zh) * 2006-05-26 2009-06-10 伊斯曼柯达公司 具有增加的光展量的数字影院投影系统
JP2010039158A (ja) * 2008-08-05 2010-02-18 Epson Toyocom Corp プロジェクタ用光学物品及びプロジェクタ用光学物品の製造方法
JP4711021B2 (ja) * 2009-06-30 2011-06-29 カシオ計算機株式会社 投影装置
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252300A (ja) * 2011-06-07 2012-12-20 Panasonic Corp 画像表示装置
CN105739226A (zh) * 2014-12-08 2016-07-06 深圳市绎立锐光科技开发有限公司 投影系统
CN106154713A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 光源系统和投影系统
CN106371272A (zh) * 2015-07-20 2017-02-01 深圳市光峰光电技术有限公司 合光的控制系统及投影机

Also Published As

Publication number Publication date
CN110505460A (zh) 2019-11-26
CN110505460B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
US9667929B2 (en) Display uniformity compensation method, optical modulation apparatus, signal processor, and projection system
JP5305884B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP4222392B2 (ja) 画像表示装置および画像表示方法
JP5284321B2 (ja) 画像表示装置
JP2008268890A (ja) フィールドシーケンシャル照明システムにおける定色点のための色管理制御装置
JP2004140800A (ja) 映像表示装置
WO2007026885A1 (ja) レーザ画像形成装置およびカラー画像形成方法
JPH09244548A (ja) 表示装置
CN105304026B (zh) 具有背光源的显示设备
JP4969135B2 (ja) 画像調整方法
WO2019174271A1 (zh) 显示设备
WO2012032644A1 (ja) 画像投射装置および色補正方法
KR20090082861A (ko) 화상 표시 장치 및 전자 기기
WO2019218705A1 (zh) 显示设备
WO2020042566A1 (zh) 动态调节显示系统色域的系统、方法及显示系统
CN110278423B (zh) 显示设备
WO2014162590A1 (ja) プロジェクタおよびその制御方法
WO2020015364A1 (zh) 显示设备及投影系统
JP6732841B2 (ja) 画像投射装置
WO2019024363A1 (zh) 显示设备及显示方法
JP2019113652A (ja) 液晶表示装置
US8525823B2 (en) Liquid crystal display device
WO2019174272A1 (zh) 显示设备及显示方法
WO2019024361A1 (zh) 显示设备及显示方法
WO2014112032A1 (ja) 画像表示装置および画像表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804168

Country of ref document: EP

Kind code of ref document: A1