WO2019218449A1 - 一种钙钛矿量子点制备方法及钙钛矿量子点溶液 - Google Patents

一种钙钛矿量子点制备方法及钙钛矿量子点溶液 Download PDF

Info

Publication number
WO2019218449A1
WO2019218449A1 PCT/CN2018/096195 CN2018096195W WO2019218449A1 WO 2019218449 A1 WO2019218449 A1 WO 2019218449A1 CN 2018096195 W CN2018096195 W CN 2018096195W WO 2019218449 A1 WO2019218449 A1 WO 2019218449A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
quantum dot
perovskite quantum
lead halide
polar alkyl
Prior art date
Application number
PCT/CN2018/096195
Other languages
English (en)
French (fr)
Inventor
陈旭
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/120,440 priority Critical patent/US10899964B2/en
Publication of WO2019218449A1 publication Critical patent/WO2019218449A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present application relates to the field of luminescent materials, and in particular to a method for preparing a perovskite quantum dot and a perovskite quantum dot solution.
  • Perovskite materials have been widely used in solar cells, lasers, and LEDs (Light Emitting) due to their high electron mobility, excellent electrical properties such as long exciton binding energy, and high optical fluorescence efficiency.
  • Lead-lead halogens (such as Cs 4 PbX 6 ) are an important material in perovskites.
  • the conventional method for synthesizing lead bismuth halogen Cs 4 PbX 6 is generally a high-temperature melting method, a mechanical grinding method, etc., and the synthesized particles are large in size, and the synthesized particles are also Cs 4 PbX 6 , CsPb 2 X 5 , CsPbX 3 , etc.
  • the mixture, the size of the synthetic particles is not uniform, the particles are impure, and the next step of research cannot be carried out, and the synthesis method is also complicated, the conditions are numerous, the steps are complicated, and the requirements for industrial production are not met.
  • the technical problem mainly solved by the present application is to provide a method for preparing a perovskite quantum dot and a perovskite quantum dot solution, which can solve the problem that the existing method for synthesizing the bismuth-lead-halide perovskite quantum dots is complicated and the synthetic particles are impure.
  • a technical solution adopted by the present application is to provide a method for preparing a perovskite quantum dot, comprising: providing a first solution containing barium oleate, a second solution containing lead halide, and containing double twelve a third solution of alkyl dimethyl bromide; adding the first solution, the second solution and the third solution to the non-polar alkyl solution in a predetermined ratio, and stirring to obtain a perovskite quantum dot solution;
  • the perovskite quantum dot solution comprises a pure phase of bismuth lead halogen;
  • the predetermined ratio is a molar ratio of lanthanum oleate, lead halide and dodecyldimethylamine bromide of 4:1:6;
  • the halogen element in the bismuth lead halide includes at least one of a chlorine element, a bromine element, and an iodine element.
  • a technical solution adopted by the present application is to provide a method for preparing a perovskite quantum dot, comprising: providing a first solution containing barium oleate, a second solution containing lead halide, and containing double twelve a third solution of alkyl dimethyl bromide; adding the first solution, the second solution and the third solution to the non-polar alkyl solution in a predetermined ratio, and stirring to obtain a perovskite quantum dot solution; Wherein, the perovskite quantum dot solution comprises a pure phase of bismuth lead halogen.
  • another technical solution adopted by the present application is to provide a perovskite quantum dot solution, the perovskite quantum dot solution comprising a pure phase of antimony lead halogen; the perovskite quantum dot solution is passed
  • the first solution, the second solution and the third solution are added to the non-polar alkyl solution in a predetermined ratio and stirred; wherein the first solution comprises strontium oleate, and the second solution comprises lead halide.
  • the third solution comprises dodecyldimethylammonium bromide.
  • the beneficial effects of the present application are: different from the prior art, in some embodiments of the present application, by using a first solution comprising strontium oleate, a second solution comprising lead halide and comprising a dodecyl group
  • the third solution of the brominated amine is added to the non-polar alkyl solution in a predetermined ratio, stirred, so that the solvent is sufficiently reacted, and the predetermined ratio is such that the finally obtained perovskite quantum dot solution is bismuth-lead, halo-calcium-titanium
  • the mineral nanoparticles are single and uniform in size, which is beneficial for further in-depth research, and the preparation method has simple steps, does not limit environmental conditions, and can be carried out under normal temperature and normal pressure, and meets the requirements of industrial production.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for preparing a perovskite quantum dot according to the present application
  • FIG. 2 is a schematic view showing a first embodiment of a method for preparing a perovskite quantum dot according to the present application using a three-necked flask as a synthesizing device;
  • FIG. 3 is a schematic flow chart of a second embodiment of a method for preparing a perovskite quantum dot according to the present application
  • FIG. 4 is a schematic structural view of an embodiment of a perovskite quantum dot solution of the present application.
  • Figure 5 is a TEM spectrum of synthetic particles in a perovskite quantum dot solution of the present application.
  • the first embodiment of the method for preparing a perovskite quantum dot of the present application comprises:
  • S101 providing a first solution comprising barium oleate, a second solution comprising lead halide, and a third solution comprising dodecyldimethylammonium bromide;
  • the halogen element X in the lead halide may be at least one of chlorine element (Cl), bromine element (Br) and iodine element (I), and the third solution may be containing dodecyldimethyl bromide A toluene solution of the amine (DDAB).
  • the first solution comprises oleic acid and cesium (Cs-oleate, Cs-OA )
  • the second solution comprises lead halide (PbCl 2, PbBr 2 or PbI 2)
  • the third solution contained didodecyl
  • DDAB dimethyl dioctadecyl ammonium bromide
  • the perovskite quantum dot solution comprises a pure phase of bismuth lead halogen.
  • a pure phase material is a substance that has a single physical and chemical nature and a high phase concentration.
  • the lead-acid halogen may be Cs 4 PbX 6 , CsPbX 3 or CsPb 2 X 5, etc., and may be selected according to actual needs, and is not specifically limited herein.
  • the halogen element X may be at least one of a chlorine element (Cl), a bromine element (Br), and an iodine element (I).
  • Cs 4 PbX 6 will be described as an example.
  • the preset ratio can be obtained from the analysis of the elements in the specific substance of the bismuth-lead halide to be prepared.
  • the preset ratio may specifically be a volume ratio of a solution, a molar ratio of a solute, or a mass ratio of a solute.
  • non-polar alkyl group includes at least one of n-hexane, dodecane, octadecane and squalane.
  • non-polar alkyl groups may be included in the non-polar alkyl solution, and are not specifically limited herein.
  • the first solution, the second solution, and the third solution may be simultaneously at a predetermined ratio, such as Cs-OA in the first solution, and in the second solution.
  • the lead halide and the DDAB in the third solution are directly stirred for a period of time (eg, 30 minutes) in a synthesis apparatus containing a non-polar alkyl solution (such as n-hexane) in a molar ratio of 4:1:6, so that Cs- The OA, lead halide and DDAB are fully reacted, and finally a perovskite quantum dot solution containing pure phase Cs 4 PbX 6 can be obtained.
  • the specific stirring time may be 30 to 60 minutes, or may be 20 to 30 minutes, and the specific setting is set according to the ratio of the solute and the solution, and is not specifically limited herein.
  • the synthesis apparatus may be a three-necked flask (as shown in Fig. 2), and a plurality of reactants may be simultaneously added, and a stirring rod may be added. Its narrow mouth prevents solution spillage or reduces evaporation of the solution, and can be used in conjunction with rubber stoppers to connect other glass equipment.
  • a certain amount (such as 10 ml) of a non-polar alkyl solution may be pre-charged into a three-necked flask and then poured from three mouths respectively.
  • a stirring device such as a stirring rod, etc.
  • the flask is deepened into the flask, and the flask can be The built-in liquid is stirred to finally obtain the desired perovskite quantum dot solution.
  • the synthesizing device may also be a beaker or other device capable of holding a liquid and stirring, which is not specifically limited herein.
  • the first solution containing strontium oleate, the second solution containing lead halide, and the third solution containing dodecyldimethylammonium bromide are added to the nonpolar alkyl group in a predetermined ratio.
  • stirring is performed to make the solvent sufficiently react, and the predetermined ratio is such that the bismuth-lead-halide perovskite nanoparticles in the finally obtained perovskite quantum dot solution are uniform and uniform in size, which is favorable for further in-depth study, and the preparation is carried out.
  • the method steps are simple, and the environmental conditions are not limited, and can be carried out under normal temperature and normal pressure, which meets the requirements of industrial production.
  • the second embodiment of the method for preparing a perovskite quantum dot of the present application comprises:
  • Cs 2 CO 3 cesium carbonate
  • barium carbonate is an inorganic compound which is a white solid at normal temperature and pressure, and is highly soluble in water, and is quickly absorbed in the air.
  • the aqueous solution of barium carbonate is strongly alkaline and can react with the acid to produce the corresponding barium salt and water, and emit carbon dioxide.
  • Oleic acid (OA) is a monounsaturated Omega-9 fatty acid found in plants and animals.
  • the 1-octadecylen (ODE) solution is a colorless liquid commonly used in organic synthesis.
  • the halogen element X in the lead halide (PbX 2 ) may be Cl, Br or I.
  • Oleyl amine (OLA) also known as 9-octadecylamine, is a C18 unsaturated amine, which is a colorless to pale yellow liquid or crystalline, irritating odor and corrosive.
  • DDAB bis-dodecyldimethylammonium bromide
  • the lanthanum oleate of the first solution, the lead halide in the second solution, and the DDAB in the third solution are added to the non-polar alkyl solution (such as a dodecyl solution) in a molar ratio of 4:1:6.
  • the mixture was stirred for 30 minutes to obtain a perovskite quantum dot solution containing pure phase Cs 4 PbX 6 .
  • the molar ratio of the solute in the first solution, the second solution and the third solution can be obtained according to the element analysis in the pure phase bismuth lead halogen finally obtained.
  • the predetermined ratio may also be a volume ratio of the solution, which may be specifically determined according to the final requirement of the element in the pure phase bismuth lead halogen and the solute in the first solution, the second solution, and the third solution.
  • the ratio is determined and is not specifically limited here.
  • the perovskite quantum dot comprises a pure phase bismuth lead halide.
  • the bismuth lead halide may be Cs 4 PbX 6 , CsPbX 3 or CsPb 2 X 5 or the like.
  • the perovskite quantum dots are prepared by the first or second embodiment of the perovskite quantum dot preparation process of the present application.
  • the perovskite quantum dot solution prepared by using the perovskite quantum dot preparation method of the present application may be processed to obtain a solid such as a perovskite quantum dot powder or a particle, and then a part of the solid is taken as a solid. The sample is viewed using a microscope or the like.
  • TEM transmission electron microscope
  • the synthesized particles (such as the Cs 4 PbX 6 perovskite nanometer example) are single and uniform. The quality is better, which is conducive to subsequent research.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请公开了一种钙钛矿量子点制备方法及钙钛矿量子点溶液,该制备方法包括:提供包含油酸铯的第一溶液、包含卤化铅的第二溶液和包含双十二烷基二甲基溴化胺的第三溶液;将第一溶液、第二溶液和第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌,以得到钙钛矿量子点溶液;其中,该钙钛矿量子点溶液包含纯相的铯铅卤。通过上述方式,本申请能够简单地得到包含纯相铯铅卤的钙钛矿量子点溶液。

Description

一种钙钛矿量子点制备方法及钙钛矿量子点溶液 【技术领域】
本申请涉及发光材料技术领域,特别是涉及一种钙钛矿量子点制备方法及钙钛矿量子点溶液。
【背景技术】
钙钛矿材料由于其电子迁移速率快,激子结合能大扩散距离长等优异的电学性能以及非常高的荧光量子效率等光学性质,近年来被广泛应用于太阳能电池、激光器、LED(Light Emitting Diode,发光二极管)、平板显示等方面的研究,其中,合成尺寸形貌均匀,分散性小,纯相的物质是研究的基础。铯铅卤(如Cs 4PbX 6)是钙钛矿中很重要的一种材料。现有合成铯铅卤Cs 4PbX 6的方法一般为高温熔融法,机械研磨法等,合成的粒子尺寸较大,且合成的粒子也为Cs 4PbX 6,CsPb 2X 5,CsPbX 3等的混合物,合成粒子大小不均匀,粒子不纯,无法进行下一步研究,而且合成的方法也较复杂,条件多,步骤复杂,不符合工业生产的需求。
【发明内容】
本申请主要解决的技术问题是提供一种钙钛矿量子点制备方法及钙钛矿量子点溶液,能够解决现有合成铯铅卤钙钛矿量子点方法复杂且合成粒子不纯的问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种钙钛矿量子点制备方法,包括:提供包含油酸铯的第一溶液、包含卤化铅的第二溶液和包含双十二烷基二甲基溴化胺的第三溶液;将第一溶液、第二溶液和第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌,以得到钙钛矿量子点溶液;其中,该钙钛矿量子点溶液包含纯相的铯铅卤;该预设比例是油酸铯、卤化铅及双十二烷基二甲基溴化胺的摩尔比为4∶1∶6;该铯铅卤中的卤元素包括氯元素、溴元 素和碘元素中的至少一种。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种钙钛矿量子点制备方法,包括:提供包含油酸铯的第一溶液、包含卤化铅的第二溶液和包含双十二烷基二甲基溴化胺的第三溶液;将第一溶液、第二溶液和第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌,以得到钙钛矿量子点溶液;其中,该钙钛矿量子点溶液包含纯相的铯铅卤。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种钙钛矿量子点溶液,该钙钛矿量子点溶液包含纯相的铯铅卤;该钙钛矿量子点溶液是通过将第一溶液、第二溶液和第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌后得到的;其中,该第一溶液包含油酸铯,该第二溶液包含卤化铅,该第三溶液包含双十二烷基二甲基溴化胺。
本申请的有益效果是:区别于现有技术的情况,本申请的部分实施例中,通过将包含油酸铯的第一溶液、包含卤化铅的第二溶液和包含双十二烷基二甲基溴化胺的第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌,使得溶剂充分反应,且该预设比例使得最终得到的钙钛矿量子点溶液中铯铅卤钙钛矿纳米粒子单一且尺寸均匀,有利于进行后续深入研究,且该制备方法步骤简单,不限制环境条件,在常温常压下即可以进行,符合工业生产的需求。
【附图说明】
图1是本申请钙钛矿量子点制备方法第一实施例的流程示意图;
图2是本申请钙钛矿量子点制备方法第一实施例中采用三口烧瓶作为合成装置的示意图;
图3是本申请钙钛矿量子点制备方法第二实施例的流程示意图;
图4是本申请钙钛矿量子点溶液一实施例的结构示意图;
图5是本申请钙钛矿量子点溶液中合成粒子的TEM谱图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请钙钛矿量子点制备方法第一实施例包括:
S101:提供包含油酸铯的第一溶液、包含卤化铅的第二溶液和包含双十二烷基二甲基溴化胺的第三溶液;
其中,卤化铅中的卤族元素X可以是氯元素(Cl)、溴元素(Br)和碘元素(I)中至少一种,该第三溶液可以是包含双十二烷基二甲基溴化胺(DDAB)的甲苯溶液。
该第一溶液中包含的油酸铯(Cs-oleate,Cs-OA)、该第二溶液中包含的卤化铅(PbCl 2、PbBr 2或PbI 2)和该第三溶液中包含的双十二烷基二甲基溴化胺(Dimethyl dioctadecyl ammonium bromide,DDAB)的比例可以根据实际需求而定,此处不做具体限定。
S102:将第一溶液、第二溶液和第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌,以得到钙钛矿量子点溶液。
其中,该钙钛矿量子点溶液包含纯相的铯铅卤。纯相物质是具有单一物理与化学性质且相浓度很高的物质。铯铅卤可以是Cs 4PbX 6、CsPbX 3或CsPb 2X 5等,具体可以根据实际需求选择,此处不做具体限定。其中,卤族元素X可以是氯元素(Cl)、溴元素(Br)和碘元素(I)中至少一种。本申请中以Cs 4PbX 6为例进行说明。
该预设比例可以根据所需制备的铯铅卤的具体物质中的元素分析得到。该预设比例具体可以是溶液的体积比、溶质的摩尔比或者溶质的质量比等。
其中,非极性烷基包括正己烷、十二烷、十八烷和角鲨烷中至少一种。当然,该非极性烷基溶液中也可以包含其他类型的非极性烷基,此处不做具体限 定。
具体地,在一个应用例中,在常温常压下,可以同时将第一溶液、第二溶液和第三溶液按照预设比例,如将第一溶液中的Cs-OA、第二溶液中的卤化铅和第三溶液中的DDAB按照4∶1∶6的摩尔比,加入装有非极性烷基溶液(如正己烷)的合成装置中直接搅拌一段时间(如30分钟),使得Cs-OA、卤化铅和DDAB充分反应,最终可以得到包含纯相Cs 4PbX 6的钙钛矿量子点溶液。其中,该具体搅拌时间可以是30~60分钟,也可以是20~30分钟,具体需要根据溶质和溶液的比例设置,此处不做具体限定。
该合成装置可以是三口烧瓶(如图2所示),可以同时加入多种反应物,还可以加搅拌棒。它的窄口可以防止溶液溅出或是减少溶液的蒸发,并可配合橡皮塞的使用,连接其它的玻璃器材。
具体地,在一个应用例中,在制备钙钛矿量子点溶液时,可以先将一定量(如10毫升)的非极性烷基溶液预先装入三口烧瓶内,然后分别从三个口中倒入第一溶液、第二溶液和第三溶液,然后再塞上橡皮塞,摇动该烧瓶进行搅拌,或者其中一个橡皮塞上装有搅拌装置(如搅拌棒等),深入该烧瓶内,可以对烧瓶内装的液体进行搅拌,最终可以得到所需的钙钛矿量子点溶液。
当然,该合成装置也可以是烧杯或其他可以盛装液体并进行搅拌的装置,此处不做具体限定。
本实施例中,通过将包含油酸铯的第一溶液、包含卤化铅的第二溶液和包含双十二烷基二甲基溴化胺的第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌,使得溶剂充分反应,且该预设比例使得最终得到的钙钛矿量子点溶液中铯铅卤钙钛矿纳米粒子单一且尺寸均匀,有利于进行后续深入研究,且该制备方法步骤简单,不限制环境条件,在常温常压下即可以进行,符合工业生产的需求。
如图3所示,本申请钙钛矿量子点制备方法第二实施例包括:
S201:将0.65克的碳酸铯、2.5毫升的油酸和18毫升的十八烯溶液混合抽 真空,并在120~150摄氏度下加热至固体溶解,得到包含油酸铯的第一溶液。
其中,碳酸铯(Cs 2CO 3)是一种无机化合物,常温常压下为白色固体,极易溶于水,在空气中放置迅速吸湿。碳酸铯水溶液呈强碱性,可以和酸反应,产生相应的铯盐和水,并放出二氧化碳。油酸(Oleic acid,OA)是一种单不饱和Omega-9脂肪酸,存在于动植物体内。十八烯(1-octadecylen,ODE)溶液是一种无色液体,常用于有机合成。
S202:将0.2毫摩尔的卤化铅、0.5毫升的油酸、0.5毫升的油胺和3毫升的十八烯溶液混合抽真空,并在150~200摄氏度下加热至固体溶解,得到包含卤化铅的第二溶液。
其中,该卤化铅(PbX 2)中的卤元素X可以是Cl、Br或I。该油胺(Oleyl amine,OLA)又称9-十八烯胺,为C18不饱和胺,是无色至淡黄色液体或结晶,刺激性气味,有腐蚀性。
S203:将0.2毫摩尔的双十二烷基二甲基溴化胺溶解于0.5摩尔的甲苯溶液中,得到包含双十二烷基二甲基溴化胺的第三溶液。
其中,双十二烷基二甲基溴化胺(DDAB),又称二-正-十二烷基,可用作阳离子表面活性剂。
S204:将第一溶液、第二溶液和第三溶液按照预设比例加入非极性烷基溶液中搅拌30分钟,以得到钙钛矿量子点溶液。
具体地,将第一溶液的油酸铯、第二溶液中的卤化铅和第三溶液中的DDAB按照4∶1∶6的摩尔比加入非极性烷基溶液(如十二烷基溶液)中搅拌30分钟,可以得到包含有纯相Cs 4PbX 6的钙钛矿量子点溶液。其中,该第一溶液、第二溶液和第三溶液中溶质的摩尔比可以根据最终需要得到的纯相铯铅卤中的元素分析得到。
当然,在其他实施例中,该预设比例也可以是溶液的体积比,具体可以根据最终需要得到的纯相铯铅卤中的元素以及第一溶液、第二溶液和第三溶液中溶质的比例确定,此处不做具体限定。
如图4所示,本申请钙钛矿量子点一实施例中,该钙钛矿量子点包含纯相的铯铅卤。
其中,该铯铅卤可以是Cs 4PbX 6、CsPbX 3或CsPb 2X 5等。该钙钛矿量子点是通过本申请钙钛矿量子点制备方法第一或第二实施例制备得到。
具体地,利用本申请钙钛矿量子点制备方法制备得到钙钛矿量子点溶液后,可以取用部分样本,利用显微镜等装置查看该样本,以查看制备得到的物质状态或性质是否符合纯相量子点的要求。当然,在其他实施例中,还可以将利用本申请钙钛矿量子点制备方法制备得到钙钛矿量子点溶液进行处理,得到钙钛矿量子点粉末或粒子等固体,然后取用部分固体作为样本,利用显微镜等装置查看。
例如,利用透射电子显微镜(Transmission Electron Microscope,TEM),可以看到在光学显微镜下无法看清的小于0.2um的细微结构或超微结构。
如图5所示,利用本申请钙钛矿量子点制备得到的钙钛矿量子点的TEM谱图中,可以看到,合成的粒子(如Cs 4PbX 6钙钛矿纳米例子)单一且均匀,质量比较好,有利于后续研究。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种钙钛矿量子点制备方法,其中,包括:
    提供包含油酸铯的第一溶液、包含卤化铅的第二溶液和包含双十二烷基二甲基溴化胺的第三溶液;
    将所述第一溶液、所述第二溶液和所述第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌,以得到钙钛矿量子点溶液;
    其中,所述钙钛矿量子点溶液包含纯相的铯铅卤;所述预设比例是所述油酸铯、所述卤化铅及所述双十二烷基二甲基溴化胺的摩尔比为4∶1∶6;所述铯铅卤中的卤元素包括氯元素、溴元素和碘元素中的至少一种。
  2. 根据权利要求1所述的制备方法,其中,所述非极性烷基溶液包含正己烷、十二烷、十八烷和角鲨烷中至少一种非极性烷基。
  3. 一种钙钛矿量子点制备方法,其中,包括:
    提供包含油酸铯的第一溶液、包含卤化铅的第二溶液和包含双十二烷基二甲基溴化胺的第三溶液;
    将所述第一溶液、所述第二溶液和所述第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌,以得到钙钛矿量子点溶液;
    其中,所述钙钛矿量子点溶液包含纯相的铯铅卤。
  4. 根据权利要求3所述的制备方法,其中,所述提供包含油酸铯的第一溶液包括:
    将0.65克的碳酸铯、2.5毫升的油酸和18毫升的十八烯溶液混合抽真空,并在120~150摄氏度下加热至固体溶解,得到所述第一溶液。
  5. 根据权利要求3所述的制备方法,其中,所述提供包含卤化铅的第二溶液包括:
    将0.2毫摩尔的卤化铅、0.5毫升的油酸、0.5毫升的油胺和3毫升的十八烯溶液混合抽真空,并在150~200摄氏度下加热至固体溶解,得到所述第二溶液。
  6. 根据权利要求3所述的制备方法,其中,所述提供包含双十二烷基二甲基溴化胺的第三溶液包括:
    将0.2毫摩尔的双十二烷基二甲基溴化胺溶解于0.5摩尔的甲苯溶液中,得到所述第三溶液。
  7. 根据权利要求3所述的制备方法,其中,所述将所述第一溶液、所述第二溶液和所述第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌,以得到钙钛矿量子点溶液包括:
    将所述第一溶液、所述第二溶液和所述第三溶液按照预设比例加入非极性烷基溶液中搅拌30分钟,得到所述钙钛矿量子点溶液。
  8. 根据权利要求3所述的制备方法,其中,所述预设比例是所述油酸铯、所述卤化铅及所述双十二烷基二甲基溴化胺的摩尔比为4∶1∶6。
  9. 根据权利要求7所述的制备方法,其中,所述非极性烷基溶液包含正己烷、十二烷、十八烷和角鲨烷中至少一种非极性烷基。
  10. 根据权利要求3所述的制备方法,其中,将所述第一溶液、所述第二溶液和所述第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌,以得到钙钛矿量子点溶液包括:
    将所述第一溶液、所述第二溶液和所述第三溶液按照预设比例加入装有所述非极性烷基溶液的三口烧瓶中进行搅拌,得到所述钙钛矿量子点溶液。
  11. 根据权利要求3所述的制备方法,其中,所述铯铅卤中的卤元素包括氯元素、溴元素和碘元素中的至少一种。
  12. 一种钙钛矿量子点溶液,其中,所述钙钛矿量子点溶液包含纯相的铯铅卤;所述钙钛矿量子点溶液是通过将第一溶液、第二溶液和第三溶液按照预设比例加入非极性烷基溶液中,进行搅拌后得到的;
    其中,所述第一溶液包含油酸铯,所述第二溶液包含卤化铅,所述第三溶液包含双十二烷基二甲基溴化胺。
  13. 根据权利要求12所述的钙钛矿量子点溶液,其中,所述第一溶液是通过将 0.65克的碳酸铯、2.5毫升的油酸和18毫升的十八烯溶液混合抽真空,并在120~150摄氏度下加热至固体溶解后得到的。
  14. 根据权利要求12所述的钙钛矿量子点溶液,其中,所述第二溶液是通过将0.2毫摩尔的卤化铅、0.5毫升的油酸、0.5毫升的油胺和3毫升的十八烯溶液混合抽真空,并在150~200摄氏度下加热至固体溶解后得到的。
  15. 根据权利要求12所述的钙钛矿量子点溶液,其中,所述第三溶液是通过将0.2毫摩尔的双十二烷基二甲基溴化胺溶解于0.5摩尔的甲苯溶液中得到的。
  16. 根据权利要求12所述的钙钛矿量子点溶液,其中,所述钙钛矿量子点溶液是通过将所述第一溶液、所述第二溶液和所述第三溶液按照预设比例加入非极性烷基溶液中搅拌30分钟后得到的。
  17. 根据权利要求12所述的钙钛矿量子点溶液,其中,所述预设比例是所述油酸铯、所述卤化铅及所述双十二烷基二甲基溴化胺的摩尔比为4∶1∶6。
  18. 根据权利要求16所述的钙钛矿量子点溶液,其中,所述非极性烷基溶液包含正己烷、十二烷、十八烷和角鲨烷中至少一种非极性烷基。
  19. 根据权利要求12所述的钙钛矿量子点溶液,其中,所述钙钛矿量子点溶液是通过将所述第一溶液、所述第二溶液和所述第三溶液按照预设比例加入装有所述非极性烷基溶液的三口烧瓶中进行搅拌后得到的。
  20. 根据权利要求12所述的钙钛矿量子点溶液,其中,所述铯铅卤中的卤元素包括氯元素、溴元素和碘元素中的至少一种。
PCT/CN2018/096195 2018-05-14 2018-07-19 一种钙钛矿量子点制备方法及钙钛矿量子点溶液 WO2019218449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/120,440 US10899964B2 (en) 2018-05-14 2018-09-03 Perovskite quantum dot preparation method and perovskite quantum dot solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810457127.4A CN108504355B (zh) 2018-05-14 2018-05-14 一种钙钛矿量子点制备方法及钙钛矿量子点溶液
CN201810457127.4 2018-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/120,440 Continuation US10899964B2 (en) 2018-05-14 2018-09-03 Perovskite quantum dot preparation method and perovskite quantum dot solution

Publications (1)

Publication Number Publication Date
WO2019218449A1 true WO2019218449A1 (zh) 2019-11-21

Family

ID=63400519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096195 WO2019218449A1 (zh) 2018-05-14 2018-07-19 一种钙钛矿量子点制备方法及钙钛矿量子点溶液

Country Status (2)

Country Link
CN (1) CN108504355B (zh)
WO (1) WO2019218449A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353972A (zh) * 2021-07-12 2021-09-07 河南科技大学 一种铅卤钙钛矿及其制备方法和离子液体卤盐在制备铅卤钙钛矿中的应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201817167D0 (en) 2018-10-22 2018-12-05 Univ Oxford Innovation Ltd Process for producing a layer with mixed solvent system
CN109504379A (zh) * 2018-10-25 2019-03-22 武汉华星光电半导体显示技术有限公司 无机卤化铅艳钙钛矿量子点制备方法及显示装置
CN111500288B (zh) * 2019-01-31 2023-06-02 隆达电子股份有限公司 钙钛矿纳米发光晶体的制造方法
CN111117598B (zh) * 2019-12-19 2021-02-09 华中科技大学 一种基于室温法ABXnY3-n钙钛矿纳米颗粒的配体调控方法及应用
CN116925742B (zh) * 2023-07-26 2024-01-30 桑若(厦门)光伏产业有限公司 一种配体自包覆钙钛矿量子点的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441074A (zh) * 2015-11-18 2016-03-30 重庆大学 一种基于对CsPbBr3钙钛矿量子点从蓝光到绿光调控的制备方法
CN105602560A (zh) * 2016-02-01 2016-05-25 南京理工大学 一种合成高稳定的金属卤化物钙钛矿/硫化铅异质结纳米晶的方法
WO2016088019A1 (en) * 2014-12-03 2016-06-09 Saule Sp. Z O.O. A film-forming compostion and a method for manufacturnig a photoactive film
WO2017077523A1 (en) * 2015-11-08 2017-05-11 King Abdullah University Of Science And Technology Air-stable surface-passivated perovskite quantum dots (qds), methods of making these qds, and methods of using these qds
CN107946485A (zh) * 2017-12-13 2018-04-20 合肥工业大学 一种通过共轭分子配体固液交换法制备铯铅溴量子点电致发光器件的方法
CN108002430A (zh) * 2018-01-30 2018-05-08 吉林大学 一种小尺寸高稳定性的Cs4PbBr6钙钛矿纳米晶的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331362B (zh) * 2015-12-07 2017-08-04 南京理工大学 一种室温大产率无机卤素钙钛矿荧光量子点的制备方法
CN105838366A (zh) * 2016-04-11 2016-08-10 武汉保丽量彩科技有限公司 一种发荧光铯铅卤族钙钛矿量子点材料及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088019A1 (en) * 2014-12-03 2016-06-09 Saule Sp. Z O.O. A film-forming compostion and a method for manufacturnig a photoactive film
WO2017077523A1 (en) * 2015-11-08 2017-05-11 King Abdullah University Of Science And Technology Air-stable surface-passivated perovskite quantum dots (qds), methods of making these qds, and methods of using these qds
CN105441074A (zh) * 2015-11-18 2016-03-30 重庆大学 一种基于对CsPbBr3钙钛矿量子点从蓝光到绿光调控的制备方法
CN105602560A (zh) * 2016-02-01 2016-05-25 南京理工大学 一种合成高稳定的金属卤化物钙钛矿/硫化铅异质结纳米晶的方法
CN107946485A (zh) * 2017-12-13 2018-04-20 合肥工业大学 一种通过共轭分子配体固液交换法制备铯铅溴量子点电致发光器件的方法
CN108002430A (zh) * 2018-01-30 2018-05-08 吉林大学 一种小尺寸高稳定性的Cs4PbBr6钙钛矿纳米晶的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAN, JUN ET AL.: "Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering", ADVANCED MATERIALS, vol. 28, no. 39, 16 August 2016 (2016-08-16), pages 8718 - 8725, XP055490558, ISSN: 0935-9648, DOI: 10.1002/adma.201600784 *
WU, HUA ET AL.: "Surface ligand modification of cesium lead bromide nanocrystals for improved light-emitting performance", NANOSCALE, vol. 10, no. 9, 25 January 2018 (2018-01-25), pages 4173 - 4178, XP055653614, ISSN: 2040-3364, DOI: 10.1039/C7NR09126E *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353972A (zh) * 2021-07-12 2021-09-07 河南科技大学 一种铅卤钙钛矿及其制备方法和离子液体卤盐在制备铅卤钙钛矿中的应用
CN113353972B (zh) * 2021-07-12 2024-03-26 河南科技大学 一种铅卤钙钛矿及其制备方法和离子液体卤盐在制备铅卤钙钛矿中的应用

Also Published As

Publication number Publication date
CN108504355A (zh) 2018-09-07
CN108504355B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2019218449A1 (zh) 一种钙钛矿量子点制备方法及钙钛矿量子点溶液
US10899964B2 (en) Perovskite quantum dot preparation method and perovskite quantum dot solution
Tang et al. Lead‐free halide double perovskite nanocrystals for light‐emitting applications: strategies for boosting efficiency and stability
Wang et al. Perovskite quantum dots for application in high color gamut backlighting display of light-emitting diodes
Ma et al. In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors
CN111205861B (zh) 一种Sb掺杂Cs2AInCl6双钙钛矿材料及其制备方法和应用
Zhang et al. Growth mechanism of CsPbBr 3 perovskite nanocrystals by a co-precipitation method in a CSTR system
Li et al. Solvothermal Route to Synthesize Well‐Dispersed YBO3: Eu Nanocrystals
US11180693B2 (en) Light converting luminescent composite material
CN108034418B (zh) 一种全无机铅卤钙钛矿纳米复合发光材料及制备方法和应用
Kumar et al. Sonochemical synthesis of CH3NH3PbI3 perovskite ultrafine nanocrystal sensitizers for solar energy applications
US20190055126A1 (en) Nanocrystal preparation method, nanocrystals, and apparatus for preparing and storing dissolved gas
CN108217718A (zh) 一种abx3钙钛矿纳米晶的合成方法及其产品和用途
Shwetharani et al. Review on recent advances of core-shell structured lead halide perovskites quantum dots
US20160336490A1 (en) Methods for preparing quantum dots with insulator coatings
CN105838366A (zh) 一种发荧光铯铅卤族钙钛矿量子点材料及其制备方法与应用
CN111171813A (zh) 一种全无机钙钛矿CsPbBr3量子点超晶格的制备方法
Dong et al. Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission
CN101249982A (zh) 硫化锌纳米粒子的制备方法及该方法制备得到的硫化锌纳米粒子
CN110156071A (zh) 一种高度有序的全无机钙钛矿纳米团簇组装体的制备方法
CN112552908A (zh) 钙钛矿量子点及其制备方法和应用
Wang et al. Nanocomposites of CsPbBr3 perovskite quantum dots embedded in Gd2O3: Eu3+ hollow spheres for LEDs application
CN111057542A (zh) 一种室温水乳液法制备CsPbX3钙钛矿量子点的方法
CN109980087A (zh) 一种钙钛矿量子点复合材料及其制备方法
Hu et al. Ligand-modified synthesis of shape-controllable and highly luminescent CsPbBr 3 perovskite nanocrystals under ambient conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918677

Country of ref document: EP

Kind code of ref document: A1