WO2019215351A1 - Oxidador catalítico - Google Patents

Oxidador catalítico Download PDF

Info

Publication number
WO2019215351A1
WO2019215351A1 PCT/ES2018/070343 ES2018070343W WO2019215351A1 WO 2019215351 A1 WO2019215351 A1 WO 2019215351A1 ES 2018070343 W ES2018070343 W ES 2018070343W WO 2019215351 A1 WO2019215351 A1 WO 2019215351A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidation chamber
catalytic oxidizer
chamber
particles
oxidizer according
Prior art date
Application number
PCT/ES2018/070343
Other languages
English (en)
French (fr)
Inventor
Victor DE AVILA RUEDA
Original Assignee
CALISALVO DURAN, Luis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CALISALVO DURAN, Luis filed Critical CALISALVO DURAN, Luis
Priority to US16/965,496 priority Critical patent/US11506379B2/en
Priority to EP18745993.8A priority patent/EP3792553B8/en
Priority to PCT/ES2018/070343 priority patent/WO2019215351A1/es
Publication of WO2019215351A1 publication Critical patent/WO2019215351A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B5/00Combustion apparatus with arrangements for burning uncombusted material from primary combustion
    • F23B5/02Combustion apparatus with arrangements for burning uncombusted material from primary combustion in main combustion chamber
    • F23B5/025Combustion apparatus with arrangements for burning uncombusted material from primary combustion in main combustion chamber recirculating uncombusted solids to combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B7/00Combustion techniques; Other solid-fuel combustion apparatus
    • F23B7/002Combustion techniques; Other solid-fuel combustion apparatus characterised by gas flow arrangements
    • F23B7/007Combustion techniques; Other solid-fuel combustion apparatus characterised by gas flow arrangements with fluegas recirculation to combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/006Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/008Incineration of waste; Incinerator constructions; Details, accessories or control therefor adapted for burning two or more kinds, e.g. liquid and solid, of waste being fed through separate inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/32Incineration of waste; Incinerator constructions; Details, accessories or control therefor the waste being subjected to a whirling movement, e.g. cyclonic incinerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2203/00Flame cooling methods otherwise than by staging or recirculation
    • F23C2203/30Injection of tempering fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/30Combustion in a pressurised chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/12Waste feed arrangements using conveyors
    • F23G2205/121Screw conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/00001Exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/20Intercepting solids by baffles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Definitions

  • the present invention can be included within the technical sector of waste recovery, in particular recovery through incineration. More specifically, the present invention aims at a catalytic oxidizer for energy recovery of waste, which provides greater combustion efficiency and releases reduced amounts of contaminants.
  • European application EP1486729A1 describes an incinerator comprising a combustion chamber provided with an inner wall, as well as a plurality of spray tubes of combustion-promoting fluid, the spray tubes being arranged to protrude from a position in the inner wall, extending in vertical direction, and directed towards the outside of the combustion chamber from the other positions.
  • the spray tubes form a concentric triple tube structure, comprising: an air supply tube, located more internally; a gas / steam supply tube, immediately outside the air supply tube, to supply steam and / or flammable gas; and a water tube, more exterior.
  • Spray holes are formed in the spray tubes, in positions facing a circumferential direction of the combustion chamber, to cause high-speed eddies in the combustion chamber when the spray tubes spray the combustion-promoting liquid.
  • European application EP1091 172A1 describes an incinerator that includes a cylindrical combustion chamber, as well as an air chamber within the combustion chamber, to supply air to the combustion chamber through a blower.
  • Air supply tubes are available (configured in an inverted C-shape), installed in the combustion chamber, communicated with the air chamber and oriented towards the center of the incinerator. The area around the inverted C-shaped air supply tubes constitutes the center of the combustion chamber.
  • Branched air supply tubes are also available, on one side of the horizontal tubes of the upper and lower air supply tubes that maintain constant air circulation in constant direction. Compressed air blown from the branched air supply tubes from the horizontal tube circulates inside the combustion chamber.
  • Branched air supply tubes are horizontally and vertically staggered on the vertical side of the inverted C-shaped air supply tube, to blow air in several directions. Additionally, by including a steam generator and a liquid accumulation device, the incinerator is capable of handling any type of waste
  • the present invention describes a catalytic oxidizer for catalytically treating varied residues, which provides a better energy use and a reduction in the emission of pollutants.
  • the catalytic oxidizer according to the invention has as function a revaiorization of residues, and for this it comprises a cylindrical oxidation chamber, intended to be fed with catalytically oxidizable residues, and comprising a chamber body and at least one wall that surrounds externally The camera body.
  • the waste enters the inside of the reaction chamber (in particular the chamber body) through waste feeding means.
  • the invention is characterized by oxidizer contribution means, which comprise first oxidizer contribution means, connected with the lower part of the oxidation chamber, for introducing into the oxidation chamber pressurized oxygen gas at a rate comprising tangential component .
  • the oxidizer incorporates a particle recircuation system, which in turn comprises a particle separator, at the top of the oxidation chamber, to trap hot particles of ashes and unburned particles, and a transport system, to transport the trapped particles, from the separator to the base of the oxidation chamber.
  • a particle recircuation system which in turn comprises a particle separator, at the top of the oxidation chamber, to trap hot particles of ashes and unburned particles, and a transport system, to transport the trapped particles, from the separator to the base of the oxidation chamber.
  • a gas recirculation system the gases are collected from the top of the combustion chamber, through a suction pump, and returned to the bottom of the combustion chamber, through pipes, to take advantage of the enthalpy of combustion gases.
  • Figure 1 Shows an elevational sectional view of the catalytic oxidizer object of the invention.
  • Figure 2. Shows a cross-sectional view along the plane A-A ’of Figure 1.
  • Figure 3. Shows a detailed scheme of an ash and slag extraction system.
  • the present invention describes a catalytic oxidizer designed to heat treat any material, in particular (and preferably) waste material, containing oxidizable elements.
  • the process is based on reducing the ignition point and providing a higher level of oxygen without increasing the level of nitrogen.
  • the ignition temperature is reduced by 20%, which improves the performance of the catalytic oxidation process.
  • the material with which the oxidizer is constructed, and the use of a certain volume of ashes favor a greater energy use of the chemical oxidation reactions (in particular, combustion) that occur, which results in savings in fuel consumption (given a predetermined power) and a reduction in the formation of pollutants.
  • the catalytic oxidizer comprises a cylindrical oxidation chamber, intended to be fed with residues to be catalytically oxidized, in particular incinerated, by catalytic combustion.
  • the oxidation chamber comprises a chamber body (1) preferably made of stainless steel, and at least one protective wall (2, 3), preferably of refractory material, which surrounds the chamber body (1) externally.
  • the chamber body (1) is externally surrounded by two protective walls (2, 3) coaxially arranged: a first inner protective wall (2) and a second outermost protective wall (3).
  • the oxidation chamber may be internally coated with a thermal shield of protective plates (5, 6) fixed to the chamber body (1).
  • the protective plates (5, 8) of the thermal shield comprise first protective plates (5), in the lower part, whose mission is to protect the combustion chamber, both from high temperatures and from corrosion and wear.
  • the first protective plates (5) can be, for example, stainless steel or higher.
  • the thermal shield can include second protective plates (6), in the upper part, to protect the oxidation chamber against high temperatures.
  • the second protective plates (6) can be, for example, made of steel, although not necessarily stainless, such as carbon steel.
  • the protective plates (5, 6) are detachably attached to the chamber body, which allows replacing the protective plates (5, 6), either when they are damaged by wear or the effect of temperature, either during Pre-scheduled maintenance
  • An additional effect of the presence of the heat shield is to reflect energy into the oxidation chamber.
  • a thermal insulating coating (7) such as carbon fiber, porcelain material, etc., can be arranged between the first protective wall (5) and the chamber body (1).
  • the oxidation chamber further comprises cooling means, for cooling the first protective wall (5) and the second protective wall (6).
  • the cooling means comprise a liquid cooling jacket (8) that bathes with a cooling liquid, for example, with water, the inside of the first protective wall (2), to cool said first protective wall (2) .
  • the cooling means may include cooling tubes (9), on the bottom of the first protective wall (2), and surrounded by the liquid cooling jacket (8), through which a cooling liquid is circulated, such What water for example.
  • the liquid cooling jacket (8) is fed with liquid (such as water) from a tank (not shown), which can be for example a condensate tank.
  • the coolant that circulates through the cooling tubes (9) is transformed into steam by absorbing heat from the oxidation chamber, which can then be used, after an optional passage through a degasser (not shown), in a steam generator or in a heat exchanger to take advantage of its thermal energy at low pressure.
  • the cooling means may additionally include an air jacket (10) that bathes the second protective wall (3) with air, to cool said second protective wall (3).
  • the cooling liquid and the cooling liquid can circulate respectively through the liquid cooling chamber (8) and to the cooling tubes (9) through respective cooling inlets and cooling outlets (not shown), which may preferably be located in diametraimente opposite locations of the camera body (1).
  • the chamber body (1) is provided with a first door (4) that serves to allow the access of operators and machinery for inspection, maintenance and repair tasks.
  • the first door (4) is preferably liquid cooled, for example water, internally.
  • the catalytic oxidizer is capable of receiving oxidizable wastes in the oxidation chamber that are in different states of aggregation: gaseous waste, liquid waste, powder residue, and solid waste with a size, for example, up to 30 cm.
  • the oxidizer can be fed, both simultaneously and separately, with residues of different nature and state of aggregation.
  • the catalytic oxidizer comprises waste feeding means (12, 13, 14, 15).
  • the waste feed means (12, 13, 14, 15) comprise solid feed media (12), powder feed media (13), gas feed media (14) and feed media liquids (15).
  • the solid feed means (12) are communicated with the upper part of the oxidation chamber.
  • the powder feed means (13), the gas feed means (14) and the liquid feed means (15) are preferably communicated with the lower part of the oxidation chamber.
  • the feeding means (12, 13, 14, 15) can have mechanisms known in the state of the art, depending on the state of aggregation of the residue, for example: augers, belts, pipes, hoppers, etc.
  • an input gate (16) in the middle part of the oxidizer which allows a discharge of material (either crushed or previously crushed) of, for example, up to 30 cm in size maximum, from where it falls by gravity to the center of the oxidation chamber, to be oxidized.
  • material either crushed or previously crushed
  • a dynamic weighing hopper can optionally be installed before the belt or screw, to dose the residue, especially in the case of biomass.
  • the solid residue fed does not necessarily have to be homogeneous in size or composition.
  • the corresponding means of feeding liquids (15), powders (13) and gas (14), located in the lower part of the oxidation chamber introduce the residues in a tangential way, to diminish the Impact of the residues on the operation of a vortex (17) that is formed in the center of the lower part of the oxidation chamber, so that the speed and pressure of an oxygenated gas provided as a oxidizer, it causes the oxidized particles to circulate attached to the chamber body (1), so that the ashes produced are captured in the upper part and can be recovered in the upper part of the oxidation chamber, together with the unburned ones by the vortex (17).
  • the catalytic oxidizer additionally incorporates oxidising contribution means, to introduce into the oxidation chamber oxygenated gas, either, for example, through pure oxygen, air or some other gas or gas mixture.
  • the oxidizer contribution means comprise first oxidizer contribution means (18), which are connected to the intermediate part of the oxidation chamber, to introduce pressurized air at a speed comprising tangential component, preferably also ascending component.
  • the oxidizer contribution means may also include second oxidizer contribution means to provide atmospheric air.
  • the oxidizer can handle about 50 tons of waste per day, operating 24 hours a day.
  • the oxidation chamber incorporates a home where a flame is kept that burns the mixed waste and the oxidizer.
  • the home may comprise an ignition inlet, to supply an ignition fuel, such as, for example, natural gas, as well as a torch (20), preferably retractable, to cause the flame at each start-up. of home.
  • the home can additionally comprise a support entrance, to supply a support fuel, as it was! oii or natural gas, to maintain a necessary calorific contribution in the event that with the waste it is not enough to obtain a minimum adequate operating threshold temperature, for example, 850-900 S C.
  • the ignition fuel for example, natural gas
  • the ignition fuel is preferably provided through a line equipped with a system of pressure gauges and pressure regulators that control the feeding conditions, so that there is no risk in its handling .
  • a device like the one described in the present invention is extraordinarily flexible, since it can work with solids
  • a layer of waste for example, biomass
  • base a lower part of the oxidation chamber
  • the ignition fuel is then supplied, until a regime temperature is reached.
  • a supplementary feed of residues for example, biomass
  • the temperature of the oxidizer during start-up is preferably slightly higher than the regime temperature (for example, around 5% , that is, about 900 Q G). If the temperature falls below a predetermined threshold value (for example, 5% above the operating temperature), an additional supply of ignition fuel is activated. Once the regime is stabilized, it remains stable until a controlled shutdown occurs, if necessary.
  • Combustion gases circulate within the catalytic oxidizer and, as will be explained in greater detail below, hot ashes and unburned flyers resulting from the exothermic reactions. Since the ashes and the unburned are transferred by the catalytic oxidizer, they contribute to their high thermal energy. In this way, the temperature remains stable within the catalytic oxidizer, especially within the oxidation chamber. On the other hand, a part of the ashes and the unburned, due to gravity, is deposited in the base of the oxidation chamber, so it serves as a heat reserve, reducing the ignition temperature, and therefore accelerating the oxidation.
  • the thermal energy carried by the ashes and the unburned serves to favor the oxidation of the wastes, either during their circulation through the oxidation chamber, as well as when they accumulate at the base of said oxidation chamber.
  • the catalytic oxidizer has an extraction system, to remove ashes and slags, avoiding an indefinite accumulation that would eventually block the oxidation chamber.
  • the extraction system comprises an exclusive (21) and at least one gate (22, 23).
  • a first gate (22) is displaced or tilted in a controlled manner to allow the particles to pass to the exclusive (21), from where they are evicted.
  • the first gate (22) may be water cooled.
  • the extraction system may include a second gate (23), which can also be moved or tilted in a controlled manner, to dislodge the particles, once cooled, from the exclusive (21).
  • a control unit can order displacement or tilting of the first gate (22) and, where appropriate, of the second gate (23), depending on the volume of particles accumulated, weight, temperature, etc. .
  • the oxidation chamber requires an excess of air, which is desired to be maintained at relatively low levels, to avoid formation of NO x compound.
  • the excess air is preferably around 15%, to carry out the correct oxidation of the fed waste.
  • the supply of pressurized air to generate the cyclonic vortex (17) within the oxidation chamber provides improvements that will be discussed below.
  • the first oxidizer supply means (18) as explained above, provide an inlet of oxygenated gas (air, generally) under pressure, provided with a velocity having a tangential component, to create the vortex, and preferably also an ascending component.
  • the action of pressurized air and the presence of ashes and unburned cause the creation of the vortex (17) of high turbulence that, together with the cylindrical shape of the combustion chamber, favor the oxidation process and increase the time of residence of the particles, passing from 2 s, which is a typical residence time of other available technologies, to more than 4 s, with temperatures above 900 S C.
  • the vortex (17) achieves that the gases they move radially, rather than essentially vertically, which favors lengthening residence time.
  • the vortex (17) causes the residues to mix intimately with the oxygen, thereby accelerating oxidation of carbon and hydrogen and oxidation is therefore improved.
  • aita turbulence generated by the vortex (17) inside the oxidation chamber helps prevent the formation of cold spots and allows to maintain uniform the temperature of the catalytic oxidizer as a function of height, that is, it generates radial isotherms, which eliminates / reduces the generation of unburned.
  • the oxidation rate so high that it is achieved is key so that, even using materials of equal calorific value, high temperatures can be reached more quickly.
  • the first oxidizer supply means (18) ensures a high speed of cyclonic air at the base of the oxidation chamber.
  • said first oxidizer supply means (18) comprise high diameter nozzles to provide a high air outlet velocity.
  • the nozzles have a larger diameter (for example, double) in the lower part of the oxidation chamber, with respect to the upper part. In this way, the supply of oxygen gas is more efficient and adequate at the oxygen levels that are required to achieve complete oxidation.
  • the nozzles are cooled externally, (for example, by means of water) to be able to withstand the high operating temperatures at the base of the oxidation chamber, which can be approximately 900 e C.
  • the oxidation chamber incorporates a recirculation system for recirculating ashes and unburned, where the recirculation system comprises a particle separator (24), arranged superiorly to the oxidation chamber, to trap hot particles of ashes and unburned, and a transport system, such as, for example, conduits (25), to move the trapped particles, from the particle separator (24) to the base of the oxidation chamber.
  • the separator of Particles (24) are also preferably cooled by water, in order to withstand high temperatures, both of the gases and of the ash particles in burns.
  • the particle separator (24) allows to trap particles that have not been adequately valued energetically (oxidized) in the oxidation chamber.
  • the recirculation system can additionally incorporate a suction (26) to suck combustion gases from the upper part of the oxidation chamber, where the combustion gases are transferred to the base of the oxidation chamber together with the ashes and the unburned, through the means of transport (27), in particular, through the pipes.
  • a suction (26) to suck combustion gases from the upper part of the oxidation chamber, where the combustion gases are transferred to the base of the oxidation chamber together with the ashes and the unburned, through the means of transport (27), in particular, through the pipes.
  • a plurality of pipes (27) can be arranged.
  • the particle separator (24) operates by shock, without the need for moisture, for which it comprises a housing (28) provided with a lower opening, to receive the combustion gases together with the particles of burning and ashes, and a top opening to allow combustion gases to escape.
  • a housing (28) provided with a lower opening, to receive the combustion gases together with the particles of burning and ashes, and a top opening to allow combustion gases to escape.
  • Inside the housing (28) there is at least one shock body (29) configured and arranged to intercept the gases, ashes and unburned ones, so that the gases surround the shock body (29) and leave the separator through the upper opening, and the particles are retained, to be recovered by the aforementioned transport system (25) and taken to the base of the oxidation chamber.
  • the transport system (25) may include elements such as auger screws or equivalent means for moving the particles towards transport conduits that take them to the base of the oxidation chamber.
  • the particle separator (24), at least the body or the shock bodies (29), is separable for replacement.
  • the housing
  • the particle separator (24) may comprise a second door (1 1), at the bottom, and a third door (27), at the top, to allow access to operators and instruments for inspection, repairs and maintenance.
  • the second door (11) and the second door (27) are internally cooled by liquid, for example water.
  • the gases leaving the catalytic oxidizer are substantially free of contaminating elements, whereby said gases can be subsequently used in a recovery boiler to obtain high quality steam.
  • the catalytic oxidizer of the invention stands out for its reduced thermal inertia, due to the composition of its walls, absent from refractory brick, whereby ignition and shutdown are greatly simplified, thus reducing maintenance costs, as well as Fuel consumption costs necessary to reach the reference temperature.
  • the catalytic oxidizer has a very small number of moving parts, whereby the maintenance cost is considerably reduced.
  • the catalytic oxidizer is fed with a relatively reduced excess of oxygen, around 15%, favoring a very reduced generation of NO x , which in turn reduces the needs of treatment equipment for said NG X pollutant gases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Incineration Of Waste (AREA)

Abstract

Comprende: a) primeros medios de aporte de comburente (18), conectados con la parte inferior de la cámara de oxidación, para introducir en la cámara de oxidación gas oxigenado, a presión a una velocidad que comprende componente tangencial; b) sistema de recirculación de partículas, que comprende: separador de partículas (24), en la parte superior de la cámara de oxidación, para atrapar partículas calientes de cenizas e inquemados, y sistema de transporte (25), para trasladar las partículas atrapadas, desde el separador de partículas (24) hasta la base de la cámara de oxidación; y c) sistema de recirculado de gases, que comprende: succionador (26) para succionar gases de combustión de la parte superior de la cámara de oxidación, y conducciones (27) para trasladar los gases succionados a la base de la cámara de oxidación. Proporciona una transferencia térmica optimizada que reduce la emisión de contaminantes en valorización de residuos.

Description

OXIDADOR CATALÍTICO
OBJETO DE LA INVENCIÓN La presente invención se puede incluir dentro del sector técnico de la valorización de residuos, en particular de la valorización por medio de incineración. De manera más concreta, la presente invención tiene por objeto un oxidador catalítico para valorización energética de residuos, que proporciona un mayor rendimiento de combustión y libera cantidades reducidas de contaminantes.
ANTECEDENTES DE LA INVENCIÓN
La solicitud europea EP1486729A1 describe un incinerador que comprende una cámara de combustión dotada de una pared interior, así como una pluralidad de tubos rociadores de fluido promotor de combustión, estando los tubos rociadores dispuestos como para sobresalir de una posición en la pared interior, extendiéndose en dirección vertical, y dirigidos hacia el exterior de la cámara de combustión desde las otras posiciones. Los tubos rociadores forman una estructura de triple tubo concéntrico, que comprende: un tubo de suministro de aire, localizado más interiormente; un tubo de suministro de gas / vapor, inmediatamente exterior al tubo de suministro de aire, para suministrar vapor y / o gas inflamable; y un tubo de agua, más exterior. En los tubos rociadores están formados agujeros de rociamiento, en posiciones enfrentadas a una dirección circunferencial de la cámara de combustión, para provocar remolinos de alta velocidad en la cámara de combustión cuando los tubos rociadores rocían el líquido promotor de combustión.
Por otra parte, la solicitud europea EP1091 172A1 , describe un incinerador que incluye una cámara de combustión cilindrica, así como una cámara de aire dentro de la cámara de combustión, para suministrar aire a la cámara de combustión a través de una soplante. Se dispone de tubos de suministro de aire (configurados en forma de C invertida), instalados en la cámara de combustión, comunicados con la cámara de aire y orientados hacia el centro del incinerador. El área en torno a ios tubos de suministro de aire en forma de C invertida constituye el centro de la cámara de combustión. Se dispone asimismo de tubos de suministro de aire ramificados, en un lado de los tubos horizontales de los tubos de suministro de aire superiores e inferiores que mantienen circulación constante de aire en dirección constante. El aire comprimido soplado desde ¡os tubos de suministro de aire ramificados desde el tubo horizontal circula en el Interior de la cámara de combustión. Tubos de suministro de aire ramificados están horizontal y verticalmente escalonados sobre el lado vertical del tubo de suministro de aire en forma de C invertida, para soplar aire en varias direcciones. Adicionalmente, por incluir un generador de vapor y un dispositivo de acumulación de líquido, el incinerador es capaz de manejar cualquier tipo de residuos
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención describe un oxidador catalítico para tratar catalíticamente residuos variados, que proporciona un mejor aprovechamiento energético y una reducción en la emisión de contaminantes.
El oxidador catalítico de acuerdo con la invención tiene como función una revaiorización de residuos, y para ello comprende una cámara de oxidación cilindrica, destinada a ser alimentada con residuos catalíticamente oxidables, y que comprende un cuerpo de cámara y al menos una pared que rodea exteriormente el cuerpo de cámara.
Los residuos acceden al interior de la cámara de reacción (en particular el cuerpo de cámara) a través de medios de alimentación de residuos.
La invención se caracteriza por unos medios de aporte de comburente, que comprenden primeros medios de aporte de comburente, conectados con la parte inferior de la cámara de oxidación, para introducir en la cámara de oxidación gas oxigenado a presión a una velocidad que comprende componente tangencial.
Adicionaimente, el oxidador incopora un sistema de recircuiación de partículas, que comprende a su vez un separador de partículas, en la parte superior de la cámara de oxidación, para atrapar partículas calientes de cenizas e inquemados, y un sistema de transporte, para trasladar las partículas atrapadas, desde el separador hasta la base de ¡a cámara de oxidación. A través de un sistema de recirculado de gases, los gases son recogidos de la parte superior de ¡a cámara de combustión, a través de un succionador, y devueltos a la parte inferior de la cámara de combustión, a través de unas conducciones, para aprovechar la entalpia de los gases de combustión.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 Muestra una vista de sección en alzado del oxidador catalítico objeto de la invención.
Figura 2.- Muestra una vista en sección transversal por el plano A-A’ de la figura 1.
Figura 3.- Muestra un esquema detallado de un sistema de extracción de cenizas y escorias.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Seguidamente se ofrece, con ayuda de las figuras 1 -3 antes mencionadas, una descripción detallada de un ejemplo de realización preferente de un oxidador catalítico objeto de la presente invención.
La presente invención describe un oxidador catalítico diseñado para tratar térmicamente cualquier material, en particular (y preferentemente) material de residuos, que contenga elementos oxidables. El proceso se fundamenta en disminuir el punto de ignición y en aportar un mayor nivel de oxígeno sin aumentar el nivel de nitrógeno. Según será explicado más adelante, mediante el oxidador catalítico de la presente invención, la temperatura de ignición se reduce en un 20 %, lo cual mejora el rendimiento del proceso de oxidación catalítica. El material con el que está construido el oxidador, y el uso de un volumen determinado de cenizas, favorecen un mayor aprovechamiento energético de las reacciones químicas de oxidación (en particular, de combustión) que se producen, lo cual redunda en un ahorro en consumo de combustible (dada una potencia predeterminada) y en una reducción en la formación de compuestos contaminantes.
El oxidador catalítico comprende una cámara de oxidación de forma cilindrica, destinada a ser alimentada con residuos para ser oxidados de manera catalítica, en particular, incinerados, mediante combustión catalítica. La cámara de oxidación comprende un cuerpo de cámara (1 ) fabricado preferentemente en acero inoxidable, y al menos una pared protectora (2, 3), preferentemente de material refractario, que rodea exteriormente el cuerpo de cámara (1 ). De manera preferente, el cuerpo de cámara (1 ) está exteriormente rodeado por dos paredes protectoras (2, 3) dispuestas coaxialmente: una primera pared protectora (2) más interior y una segunda pared protectora (3) más exterior.
La cámara de oxidación puede estar revestida interiormente con un escudo térmico de placas protectoras (5, 6) fijadas ai cuerpo de cámara (1 ). Preferentemente, las placas protectoras (5, 8) del escudo térmico comprenden primeras placas protectoras (5), en la parte inferior, cuya misión es proteger la cámara de combustión, tanto de temperaturas elevadas como de corrosión y desgaste. Las primeras placas protectoras (5) pueden ser, por ejemplo, de acero inoxidable o superior. Asimismo, el escudo térmico puede incluir segundas placas protectoras (6), en la parte superior, para proteger la cámara de oxidación frente a temperaturas elevadas.
Las segundas placas protectoras (6) pueden ser, por ejemplo, de acero, aunque no necesariamente inoxidable, tal que acero ai carbono. Preferentemente, las placas protectoras (5, 6) están fijadas al cuerpo de cámara de manera separable, lo cual permite sustituir las placas protectoras (5, 6), ya sea cuando se encuentran deterioradas por desgaste o efecto de la temperatura, ya sea durante un mantenimiento pre-programado. Un efecto adicional de la presencia del escudo térmico es reflejar energía hacia el interior de la cámara de oxidación. De manera opcional, entre la primera pared protectora (5) y el cuerpo de cámara (1 ) puede disponerse un revestimiento aislante térmico (7), tal como de fibra de carbono, material porcelánico, etc. La cámara de oxidación comprende adicionalmente medios de refrigeración, para refrigerar la primera pared protectora (5) y la segunda pared protectora (6). En particular, los medios de refrigeración comprenden una camisa de refrigeración líquida (8) que baña con un líquido de refrigeración, por ejemplo, con agua, el interior de la primera pared protectora (2), para refrigerar dicha primera pared protectora (2). Adicionalmente, los medios de refrigeración pueden incluir tubos de refrigeración (9), en el inferior de la primera pared protectora (2), y rodeados por la camisa de refrigeración líquida (8), por ios que se hace circular un líquido refrigerante, tal que agua por ejemplo. De manera preferente, la camisa de refrigeración líquida (8) es alimentada con líquido (tal que agua) proveniente de un tanque (no mostrado), que puede ser por ejemplo un tanque de condensados. El líquido refrigerante que circula por los tubos de refrigeración (9) se transforma en vapor al absorber calor de la cámara de oxidación, que posteriormente puede ser empleado, tras un paso opcional por un desgasificador (no mostrado), en un generador de vapor o en un intercambiador de calor para aprovechar su energía térmica a baja presión. Por otra parte, los medios de refrigeración pueden incluir adieionaimente una camisa de aire (10) que baña con aire la segunda pared protectora (3), para refrigerar dicha segunda pared protectora (3).
El líquido de refrigeración y el líquido refrigerante pueden circular respectivamente por la cámara de refrigeración líquida (8) y a los tubos de refrigeración (9) a través de respectivas entradas de refrigeración y salidas de refrigeración (no representadas), que preferentemente pueden estar localizadas en localizaciones diametraimente opuestas del cuerpo de cámara (1 ).
En la parte inferior, el cuerpo de cámara (1 ) está dotado de una primera puerta (4) que sirve para permitir el acceso de operarios y maquinaria para tareas de inspección, mantenimiento y reparación. La primera puerta (4) está preferentemente refrigerada por líquido, por ejemplo agua, internamente.
El oxidador catalítico está capacitado para recibir en la cámara de oxidación residuos oxidables que se encuentren en distintos estados de agregación: residuos gaseosos, residuos líquidos, residuos en polvo, y residuos sólidos con un tamaño, por ejemplo, de hasta 30 cm. En concreto, el oxidador puede ser alimentado, tanto simultánea como separadamente, con residuos de diversa naturaleza y estado de agregación. Para ello, el oxidador catalítico comprende medios de alimentación de residuos (12, 13, 14, 15). En concreto, los medios de alimentación de residuos (12, 13, 14, 15) comprenden medios de alimentación de sólidos (12), medios de alimentación de polvo (13), medios de alimentación de gases (14) y medios de alimentación de líquidos (15).
De acuerdo con un ejemplo, los medios de alimentación de sólidos (12) están comunicados con la parte superior de la cámara de oxidación. Por otra parte, los medios de alimentación de polvo (13), ios medios de alimentación de gases (14) y ios medios de alimentación de líquido (15) están comunicados preferentemente con la parte inferior de la cámara de oxidación. Los medios de alimentación (12, 13, 14, 15) pueden contar con mecanismos conocidos en el estado de la técnica, en función del estado de agregación del residuo, por ejemplo: tornillos sinfines, cintas, tuberías, tolvas, etc.
Respecto de la alimentación de sólidos, se cuenta preferentemente con una compuerta de entrada (16) en la parte media del oxidador, que permite una descarga de material (ya sea sin triturar o previamente triturado) de, por ejemplo, hasta 30 cm de dimensión máxima, desde donde cae por gravedad al centro de la cámara de oxidación, para ser oxidado. Para el caso específico de biomasa, se prefiere emplear un tornillo helicoidal o una cinta transportadora, en ambos casos accionados opcionalmente por medio de un motor dotado de variador de velocidad. Una tolva de pesaje dinámico puede opcionalmente instalarse previamente a la cinta o ai tornillo, para dosificar el residuo, sobre todo en caso de biomasa. El residuo sólido alimentado no necesariamente tiene que ser homogéneo en tamaño o en composición.
En lo que se refiere a la alimentación de líquidos, pulverulentos y gas, ios correspondientes medios de alimentación de líquidos (15), de pulverulentos (13) y de gas (14), localizados en la parte baja de la cámara de oxidación, introducen los residuos de manera tangencial, para disminuir el Impacto de los residuos sobre el funcionamiento de un vórtice (17) que se forma en el centro de la parte inferior de la cámara de oxidación, de modo que la velocidad y la presión de un gas oxigenado aportado como comburente provoca que las partículas oxidadas circulen pegadas ai cuerpo de cámara (1 ), a fin de que las cenizas producidas sean captadas en la parte superior y puedan ser recuperadas en la parte superior de la cámara de oxidación, junto con los inquemados arrastrados por el vórtice (17). El oxidador catalítico incorpora adicionalmente medios de aporte de comburente, para introducir en la cámara de oxidación gas oxigenado, ya sea, por ejemplo, a través de oxígeno puro, de aire o de algún otro gas o mezcla de gases. Los medios de aporte de comburente comprenden unos primeros medios de aporte de comburente (18), que están conectados con la parte intermedia de la cámara de oxidación, para introducir aire a presión a una velocidad que comprende componente tangencial, preferentemente también componente ascendente. De manera opcional, los medios de aporte de comburente pueden incluir además segundos medios de aporte de comburente para aportar aire atmosférico.
Para dar una idea del alcance del oxidador objeto de la presente invención, se proporcionan seguidamente algunos datos de dimensionamiento. El oxidador puede manejar unas 50 toneladas diarias de residuos, en régimen de funcionamiento de 24 h diarias.
Considerando una relación de 12 kg de aire por kg de residuos, más un exceso de aire (llevándolo al extremo) de un 30 %, el caudal de aire sería de 37500 kg / h. Si consideramos, para estar de! lado de ia seguridad, un caudal de aire de 40000 kg / h, dicho caudal de aire se puede suministrar mediante, por ejemplo, cuatro turboventiladores CRIT-2D-712-30 Kw (de Soler y Palau), no representados, cuyos caudales nominal y máximo son, respectivamente, de 10000 y 13500 m3 / h a nivel del mar.
Para llevar a cabo la oxidación (combustión catalítica) de ios residuos, la cámara de oxidación incorpora un hogar donde se mantiene una llama que quema los residuos y el comburente mezclados. A modo de ejemplo, el hogar puede comprender una entrada de encendido, para suministrar un combustible de encendido, tal que, por ejemplo, gas natural, así como una antorcha (20), preferentemente retráctil, para provocar la llama en cada puesta en marcha del hogar. El hogar puede comprender adicionalmente una entrada de apoyo, para suministrar un combustible de apoyo, tai como fue! oii o gas natural, para mantener un aporte calorífico necesario en el caso de que con los residuos no baste para obtener una temperatura umbral mínima de funcionamiento adecuado, por ejemplo, 850-900 SC. Por otra parte, el combustible de encendido, por ejemplo, gas natural, se aporta preferentemente a través de una línea equipada con un sistema de manómetros y reguladores de presión que controlan las condiciones de alimentación, de tal forma que no exista riesgo en su manejo. Un equipo como el que se describe en la presente invención resulta extraordinariamente flexible, puesto que puede trabajar con sólidos
Seguidamente se describe un procedimiento preferente, a modo de ejemplo, para arrancar la cámara de oxidación. Primeramente, se dispone una capa de residuos, por ejemplo, biomasa, en una parte inferior de la cámara de oxidación, denominada “base”. A continuación, se suministra el combustible de encendido, hasta que se alcanza una temperatura de régimen. Seguidamente, se inicia una alimentación suplementaria de residuos (por ejemplo, biomasa), manteniendo la temperatura de régimen. De manera progresiva se va disminuyendo la aportación de combustible de encendido y aumentando la de residuo, hasta que la operación se vuelve auto- sostenible únicamente con residuo. Para evitar que existan puntos en los que se produce una combustión a temperatura menor que la de régimen, la temperatura del oxidador durante el arranque es, de manera preferente, ligeramente superior a la temperatura de régimen (por ejemplo, en torno a un 5 %, es decir, unos 900 QG). Si la temperatura baja de un valor umbral predeterminado, (por ejemplo, un 5 % por encima de la temperatura de régimen) se activa una aportación adicional de combustible de encendido. Una vez estabilizado el régimen, se mantiene estable hasta que se produce un apagado controlado, en caso de que resulte necesario.
Dentro del oxidador catalítico circulan gases de combustión y, según se explicará en mayor detalle más adelante, cenizas e inquemados volantes calientes producto de las reacciones exotérmicas. Puesto que las cenizas y los inquemados se trasladan por el oxidador catalítico, contribuyen a trasladar a su vez su elevada energía térmica. De esta manera, la temperatura se mantiene estable dentro del oxidador catalítico, sobre todo dentro de la cámara de oxidación. Por otro lado, una parte de las cenizas y los inquemados, por efecto de la gravedad, se deposita en la base de la cámara de oxidación, por lo que sirve de reserva de calor, reduciendo la temperatura de ignición, y por tanto acelerando la oxidación. Es decir, la energía térmica portada por las cenizas y los inquemados sirve para favorecer la oxidación de ios residuos, ya sea durante su circulación por la cámara de oxidación, así como también cuando se acumulan en la base de dicha cámara de oxidación. El oxidador catalítico cuenta con un sistema de extracción, para retirar cenizas y escorias, evitando una acumulación indefinida que acabaría por bloquear la cámara de oxidación. El sistema de extracción comprende una exclusa (21 ) y al menos una compuerta (22, 23). En particular, una primera compuerta (22) es desplazadle o basculante de manera controlada para dejar pasar las partículas a la exclusa (21 ), desde donde son desalojadas. La primera compuerta (22) puede estar refrigerada por agua. De manera preferente, para evitar desalojar partículas calientes, el sistema de extracción puede incluir una segunda compuerta (23), asimismo desplazable o basculante de manera controlada, para desalojar las partículas, una vez enfriadas, desde la exclusa (21 ). En este sentido, una unidad de control puede ordenar desplazamiento o basculación de la primera compuerta (22) y, en su caso, de la segunda compuerta (23), en función del volumen de partículas acumulado, del peso, de la temperatura, etc.
La cámara de oxidación requiere de un exceso de aire, que se desea mantener en niveles relativamente bajos, para evitar formación de compuesto NOx. En particular, el exceso de aire es preferentemente de en torno ai 15 %, para llevar a cabo la correcta oxidación de los residuos alimentados. Adicionalmente, se ha llegado a la conclusión de que la aportación de aire a presión para generar el vórtice (17) ciclónico dentro de la cámara de oxidación proporciona mejoras que serán discutidas seguidamente. En particular, los primeros medios de aporte de comburente (18), tai como se ha explicado anteriormente, proporcionan una entrada de gas oxigenado (aire, generalmente) a presión, dotados de una velocidad que presenta una componente tangencial, para crear el vórtice, y preferentemente también una componente ascendente.
En consecuencia, la acción del aire a presión y la presencia de cenizas e inquemados, provocan la creación del vórtice (17) de elevada turbulencia que, junto con la forma cilindrica de la cámara de combustión, favorecen el proceso de oxidación e incrementan el tiempo de residencia de las partículas, pasando de 2 s, que es un tiempo de residencia típico de otras tecnologías disponibles, a más de 4 s, con temperaturas superiores a 900 SC. Por una parte, el vórtice (17) consigue que ios gases se desplacen radialmente, en lugar de esencialmente en vertical, lo cual favorece alargar el tiempo de residencia. Por otra parte, el vórtice (17) provoca que ios residuos se mezclen íntimamente con el oxígeno, con lo que se acelera la oxidación de carbono e hidrógeno y se mejora por tanto la oxidación. Esto produce una mezcla muy elevada del oxígeno con ios halógenos a lo largo del todo el oxidador, con io cual ios halógenos se oxidan con mayor facilidad y por tanto son eliminados, debido ai aumentado tiempo de permanencia. También permite asegurar que los niveles de oxígeno al final de la zona de oxidación se mantengan por encima de los necesarios para asegurar una oxidación completa.
Adicionalmente, la creación de aita turbulencia generada por el vórtice (17) dentro de la cámara de oxidación ayuda a prevenir la formación de puntos fríos y permite mantener uniforme ia temperatura del oxidador catalítico en función de la altura, es decir, genera isotermas radiales, lo que elimina / reduce la generación de inquemados. La velocidad de oxidación tan elevada que se consigue es clave para que, aun empleando materiales de igual poder calorífico, se puedan alcanzar elevadas temperaturas más rápidamente.
Los primeros medios de aporte de comburente (18) aseguran una elevada velocidad de aire ciclónico en la base de la cámara de oxidación. Para lograr esto, dichos primeros medios de aporte de comburente (18) comprenden toberas de diámetro elevado para proporcionar una elevada velocidad de salida de aire. Adicionalmente, las toberas presentan mayor diámetro (por ejemplo, el doble) en la parte baja de la cámara de oxidación, respecto de la parte alta. De este modo, la alimentación de gas oxigenado resulta más eficiente y adecuada a ios niveles de oxígeno que se requieren para lograr una oxidación completa. Las toberas se encuentran enfriadas exteriormente, (por ejemplo, por medio de agua) para poder soportar las elevadas temperaturas de operación en ia base de la cámara de oxidación, que pueden ser de aproximadamente 900 eC.
Tal como se ha indicado anteriormente, las cenizas y ios inquemados desempeñan un papel muy importante en el rendimiento del oxidador catalítico de ia invención. En particular, la cámara de oxidación incorpora un sistema de recirculación para recircular cenizas e inquemados, donde el sistema de recirculación comprende un separador de partículas (24), dispuesto superiormente a la cámara de oxidación, para atrapar partículas calientes de cenizas e inquemados, y un sistema de transporte, tal que, por ejemplo, conducciones (25), para trasladar las partículas atrapadas, desde el separador de partículas (24) hasta la base de la cámara de oxidación. Ei separador de partículas (24) asimismo preferentemente está enfriado por agua, para poder soportar ¡as elevadas temperaturas, tanto de ¡os gases como de las partículas de cenizas en ¡nquemados. El separador de partículas (24) permite atrapar ¡as partículas que no han sido adecuadamente valorizadas energéticamente (oxidadas) en la cámara de oxidación.
De manera preferente, el sistema de recirculación puede incorporar adicionalmente un succionador (26) para succionar gases de combustión de la parte superior de la cámara de oxidación, donde los gases de combustión son trasladados a ¡a base de la cámara de oxidación junto con las cenizas y los inquemados, a través de los medios de transporte (27), en particular, a través de las conducciones.
Para mejorar el rendimiento del sistema de recirculación, pueden disponerse una pluralidad de conducciones (27). De manera preferente, se dispone de tres conducciones (27) que pueden estar localizadas separadas por 90e, según se muestra en la figura 1 , en la que se aprecian dos de las tres conducciones (27).
De manera preferente, el separador de partículas (24) funciona por choque, sin necesidad de humedad, para lo cual comprende una carcasa (28) dotada de una abertura inferior, para recibir ¡os gases de combustión junto con ¡as partículas de ¡nquemados y cenizas, y una abertura superior para permitir ¡a salida de ¡os gases de combustión. En el Interior de ¡a carcasa (28) existe al menos un cuerpo de choque (29) configurado y dispuesto para interceptar los gases, las cenizas y ¡os inquemados, de modo que los gases rodean el cuerpo de choque (29) y abandonan el separador por ¡a abertura superior, y las partículas quedan retenidas, para ser recuperadas por el sistema de transporte (25) antes mencionado y ser llevadas a ¡a base de la cámara de oxidación. El sistema de transporte (25) puede Incluir elementos tales como tornillos sinfines o medios equivalente para trasladar las partículas hacia unos conductos de transporte que las llevan a ¡a base de la cámara de oxidación. De acuerdo con un ejemplo preferente, el separador de partículas (24), ai menos el cuerpo o ¡os cuerpos de choque (29), son separables para sustitución. La carcasa está (28) preferentemente refrigerada, por ejemplo, mediante agua.
El separador de partículas (24) puede comprender una segunda puerta (1 1 ), en la parte inferior, y una tercera puerta (27), en la parte superior, para permitir el acceso de operarios e instrumental para inspección, reparaciones y mantenimiento. De manera preferente, ¡a segunda puerta (1 1 ) y ¡a segunda puerta (27) están internamente refrigeradas por líquido, por ejemplo agua.
Los gases que salen del oxidador catalítico están sustanciaimente más libres de elementos contaminantes, con lo cual dichos gases pueden ser aprovechados posteriormente en una caldera de recuperación para obtener vapor de alta calidad.
El oxidador catalítico de la invención destaca por su reducida inercia térmica, debido a la composición de sus paredes, ausente de ladrillo refractario, por lo que el encendido y el apagado se simplifican notablemente, reduciéndose de esta manera los costes de mantenimiento, así como los costes de consumo de combustible necesario para alcanzar la temperatura de referencia.
Por otra parte, puesto que la mayor parte de las partículas de cenizas e inquemados se recuperan internamente, se reduce o elimina la necesidad de incluir sistemas de filtrado adicionales.
Además, el oxidador catalítico posee un número muy reducido de piezas móviles, con lo cual el coste de mantenimiento se reduce considerablemente.
Finalmente, el oxidador catalítico es alimentado con un exceso de oxígeno relativamente reducido, en torno ai 15 %, favoreciéndose una generación muy reducida de NOx, lo cual a su vez reduce las necesidades de equipos de tratamiento de dichos gases contaminantes NGX.

Claims

REIVINDICACIONES
1 Oxidador catalítico para revalorizar residuos, que comprende:
- una cámara de oxidación cilindrica, destinada a ser alimentada con residuos catalíticamente oxidables, y que comprende un cuerpo de cámara (1 ) y al menos una pared que rodea exteriormente el cuerpo de cámara;
- medios de alimentación de residuos (12, 13, 14, 15), para alimentar la cámara de oxidación con los residuos oxidables;
caracterizado por que comprende adicionalmente:
- medios de aporte de comburente (18), que comprenden primeros medios de aporte de comburente (18), conectados con la parte inferior de la cámara de oxidación, y orientados para introducir en la cámara de oxidación gas oxigenado a presión a una velocidad que comprende componente tangencial; y
- un sistema de recirculación, que comprende:
- un separador de partículas (24), en la parte superior de la cámara de oxidación, para atrapar partículas calientes de cenizas e inquemados,
- un succionador (28) para succionar gases de combustión de la parte superior de la cámara de oxidación,
y
- un sistema de transporte (25), para trasladar las partículas atrapadas en el separador de partículas (24), junto con los gases de combustión succionados en el succionador (26) desde el separador hasta la base de la cámara de oxidación.
2.- Oxidador catalítico de acuerdo con la reivindicación 1 , caracterizado por que ios primeros medios de aporte de comburente (18) están configurados y orientados para proporcionar ai gas oxigenado una velocidad que comprende además componente ascendente.
3.- Oxidador catalítico de acuerdo con una cualquiera de ¡as reivindicaciones 1 -2, caracterizado por que ¡os primeros medios de aporte de comburente (18) comprenden toberas que presentan mayor diámetro en la parte alta de la cámara de oxidación, respecto de la parte baja.
4.- Oxidador catalítico de acuerdo con una cualquiera de las reivindicaciones 1 -2, caracterizado por que el separador de partículas (24) comprende:
- una carcasa (28) dotada de una abertura inferior, para recibir ios gases de combustión junto con las partículas de inquemados y cenizas, y
- una abertura superior para permitir la salida de ios gases de combustión limpios, donde en el interior de la carcasa existe al menos un cuerpo de choque (29) configurado y dispuesto para interceptar ios gases, las cenizas y los inquemados, con el fin de que los gases rodeen el cuerpo de choque (29) y abandonen el separador de partículas (24) por la abertura superior, y las partículas queden retenidas.
5.- Oxidador catalítico, de acuerdo con una cualquiera de las reivindicaciones 1 -4, caracterizado por que comprende adicionalmente un escudo térmico, que reviste interiormente la cámara de oxidación, y que comprende placas protectoras (5, 6) fijadas al cuerpo de cámara.
6.- Oxidador catalítico de acuerdo con la reivindicación 5, caracterizado por que el escudo térmico comprende primeras placas protectoras (5), en la parte inferior, cuya misión es proteger la cámara de combustión, tanto de temperaturas elevadas como de corrosión y desgaste.
7.- Oxidador catalítico de acuerdo con una cualquiera de las reivindicaciones 6-7, caracterizado por que el escudo térmico comprende segundas placas protectoras (6), en la parte superior, para proteger la cámara de oxidación frente a temperaturas elevadas.
8.- Oxidador catalítico de acuerdo con una cualquiera de las reivindicaciones 5-6, caracterizado por que las placas protectoras (5, 6) están fijadas al cuerpo de cámara (1 ) de manera removible, para permitir sustitución.
9.- Oxidador catalítico de acuerdo con una cualquiera de las reivindicaciones 1 -8, caracterizado por que comprende adicionalmente ai menos una pared protectora (2, 3) que rodea exteriormente la cámara de oxidación.
10.- Oxidador catalítico de acuerdo con la reivindicación 9, caracterizado por que comprende dos paredes protectoras (2, 3} dispuestas coaxialmente: una primera pared protectora (2) más interior y una segunda pared protectora (3) más exterior.
1 1.- Oxidador catalítico de acuerdo con la reivindicación 9, caracterizado por que comprende adicionalmente un revestimiento aislante térmico (7), entre la primera pared protectora (2) y el escudo térmico.
12.- Oxidador catalítico de acuerdo con la una cualquiera de las reivindicaciones 9-1 1 , caracterizado por que la cámara de oxidación comprende adicionalmente medios de refrigeración, para refrigerar la primera pared protectora (2) y la segunda pared protectora (3), donde ios medios de refrigeración comprenden una camisa de refrigeración líquida (8) que baña con un líquido refrigerador la primera pared protectora (2).
13.- Oxidador catalítico, de acuerdo con la reivindicación 12, caracterizado por que ios medios de refrigeración comprenden adicionalmente tubos de refrigeración (9), bañados por la camisa de refrigeración líquida (8), y destinados a que por ellos circule un líquido refrigerante.
14.- Oxidador catalítico de acuerdo con una cualquiera de las reivindicaciones 12-13, caracterizado por que los medios de refrigeración comprenden adicionalmente una camisa de aire (10) que baña con aire la segunda pared protectora (3), para refrigerar dicha segunda pared protectora (3).
15- Oxidador catalítico de acuerdo con la una cualquiera de las reivindicaciones 1 -14, caracterizado por que los medios de alimentación de residuos {12, 13, 14, 15) comprenden: medios de alimentación de sólidos (12), medios de alimentación de polvo (13), medios de alimentación de gases (14) y medios de alimentación de líquidos (15), para suministrar, tanto simultáneamente como por separado, residuos de diversa naturaleza y estado de agregación.
18.- Oxidador catalítico de acuerdo con la reivindicación 15, caracterizado por que los medios de alimentación de sólidos (12) están comunicados con la parte alta de la cámara de oxidación, mientras que los medios de alimentación de líquidos (15), los medios de alimentación de polvo (13) y los medios de alimentación de gases (14) están comunicados con la parte baja de la cámara de oxidación.
17.- Oxidador catalítico de acuerdo con una cualquiera de las reivindicaciones 1 -16, caracterizado por que adicionalmente comprende un sistema de extracción, para retirar cenizas y escorias que caen por gravedad a una parte inferior, denominada base, de la cámara de oxidación, donde el sistema de extracción comprende:
una exclusa (21 ); y
- al menos una compuerta (22, 23), que comprende una primera compuerta (22) desplazadle o basculante de manera controlable para dejar pasar las partículas a la exclusa (21 ), desde donde son desalojadas
18.- Oxidador catalítico de acuerdo con la reivindicación 17, caracterizado por que el sistema de extracción comprende una segunda compuerta (23), asimismo desplazadle o basculante de manera controlada, para desalojar las partículas, una vez enfriadas, desde la exclusa (21 ).
19.- Oxidador catalítico de acuerdo con una cualquiera de las reivindicaciones 17-18, caracterizado por que adicionalmente comprende una unidad de control para ordenar desplazamiento o bascuiación de la primera compuerta (22) y/o, de la segunda compuerta (23), en función de parámetros predeterminados, tales como: volumen, peso, temperatura, etc., de las partículas acumuladas.
20.- Oxidador catalítico, de acuerdo con una cualquiera de las reivindicaciones 1 -19, caracterizado por que el cuerpo de cámara (1 ) comprende interiormente una primera puerta (4) para permitir el acceso de operarios e instrumental.
21.- Oxidador catalítico, de acuerdo con una cualquiera de las reivindicaciones 1 -20, caracterizado por que el separador de partículas (24) comprende una segunda puerta (1 1 ), en la parte interior, y una tercera puerta (27), en la parte superior, para permitir el acceso de operarios e instrumental.
22.- Oxidador catalítico, de acuerdo con una cualquiera de las reivindicaciones 20-21 , caracterizado por que las puertas (4, 1 1 , 27) están internamente refrigeradas por líquido.
PCT/ES2018/070343 2018-05-07 2018-05-07 Oxidador catalítico WO2019215351A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/965,496 US11506379B2 (en) 2018-05-07 2018-05-07 Catalytic oxidizer
EP18745993.8A EP3792553B8 (en) 2018-05-07 2018-05-07 Catalytic oxidizer
PCT/ES2018/070343 WO2019215351A1 (es) 2018-05-07 2018-05-07 Oxidador catalítico

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2018/070343 WO2019215351A1 (es) 2018-05-07 2018-05-07 Oxidador catalítico

Publications (1)

Publication Number Publication Date
WO2019215351A1 true WO2019215351A1 (es) 2019-11-14

Family

ID=63014577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070343 WO2019215351A1 (es) 2018-05-07 2018-05-07 Oxidador catalítico

Country Status (3)

Country Link
US (1) US11506379B2 (es)
EP (1) EP3792553B8 (es)
WO (1) WO2019215351A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116974U (es) * 1974-03-08 1975-09-23
US4976209A (en) * 1986-10-11 1990-12-11 Erithglen Limited Furnaces for incinerating waste material
JPH07332638A (ja) * 1994-06-08 1995-12-22 Saburo Katayose ゴミ焼却炉
EP1091172A1 (en) 1999-10-04 2001-04-11 Yotaro Uchida Air inlets for incinerator
EP1486729A1 (en) 2002-03-12 2004-12-15 Sanyo Industries Co., Ltd. Incinerator

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648629A (en) * 1970-07-09 1972-03-14 Pyro Magnetics Corp Apparatus for the destruction of refuse
US3658017A (en) * 1971-01-04 1972-04-25 Gen Electric Incinerator
US3727563A (en) * 1971-07-02 1973-04-17 Gen Electric Incinerator
JPS5380836A (en) * 1976-12-27 1978-07-17 Hokkaido Sugar Co Method of dustless combustion and combustion furnace therefor
US4300460A (en) * 1978-03-10 1981-11-17 Enterprises International Inc. Method for generating heat from waste fuel
US4598653A (en) * 1984-09-12 1986-07-08 Stearns Catalytic World Corporation Combustion system for burning fuel having various particle sizes
US4815418A (en) * 1987-03-23 1989-03-28 Ube Industries, Inc. Two fluidized bed type boiler
US4745884A (en) * 1987-05-28 1988-05-24 Riley Stoker Corporation Fluidized bed steam generating system
DK0409037T3 (da) * 1989-07-19 1995-02-20 Siemens Ag Forbrændingskammer og fremgangsmåde til forbrænding af i det mindste delvist brændbare stoffer
DK168246B1 (da) * 1991-02-15 1994-02-28 Atlas Ind As Fremgangsmåde til afbrænding af biologisk affald
AU685766B2 (en) * 1993-03-03 1998-01-29 Ebara Corporation Pressurized internal circulating fluidized-bed boiler
SE517042C2 (sv) * 1993-12-21 2002-04-09 Alstom Power Sweden Holding Ab Förfarande och anordning för efterförbränning och samtidig avskiljning av partiklar
ES2188974T3 (es) * 1996-09-04 2003-07-01 Ebara Corp Procedimiento de gasificacion de desechos utilizando un horno de fusion rotativo.
US6269755B1 (en) * 1998-08-03 2001-08-07 Independent Stave Company, Inc. Burners with high turndown ratio
US20020081247A1 (en) * 2000-12-26 2002-06-27 Dodson Christopher E. Apparatus and method for producing amorphous silica ash
US20110100272A1 (en) * 2009-08-20 2011-05-05 Robert Joel Hasselbring Vortex incinerator
US11835231B2 (en) * 2014-04-22 2023-12-05 James Brent VanNatta Thermogenic vortex combustor
US20170248307A1 (en) * 2016-02-26 2017-08-31 We2E Vortex combustion boiler
US10364985B2 (en) * 2016-12-12 2019-07-30 Olen Creative Group, LLC. Bio-fuel furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116974U (es) * 1974-03-08 1975-09-23
US4976209A (en) * 1986-10-11 1990-12-11 Erithglen Limited Furnaces for incinerating waste material
JPH07332638A (ja) * 1994-06-08 1995-12-22 Saburo Katayose ゴミ焼却炉
EP1091172A1 (en) 1999-10-04 2001-04-11 Yotaro Uchida Air inlets for incinerator
EP1486729A1 (en) 2002-03-12 2004-12-15 Sanyo Industries Co., Ltd. Incinerator

Also Published As

Publication number Publication date
EP3792553B1 (en) 2024-03-20
EP3792553B8 (en) 2024-06-05
EP3792553A1 (en) 2021-03-17
US11506379B2 (en) 2022-11-22
US20210048189A1 (en) 2021-02-18
EP3792553C0 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
US4746290A (en) Method and apparatus for treating waste containing organic contaminants
JP4766562B2 (ja) 木質ペレット焚き蒸気ボイラ
US4583468A (en) Method and apparatus for combustion of diverse materials and heat utilization
ES2602608T3 (es) Sistema de horno con recirculación interna de gas de combustión
PL200778B1 (pl) Układ i sposób do spalania granulowanego, stałego paliwa
US4766822A (en) Method and apparatus for treating waste containing organic contaminants
US4925389A (en) Method and apparatus for treating waste containing organic contaminants
WO2019215351A1 (es) Oxidador catalítico
CA2375334A1 (en) Incinerator for waste management
EP1091172B1 (en) Air inlets for incinerator
US11781080B2 (en) Gasification apparatus with controller for negative pressure
JP2005530981A (ja) 温度制御型焼却炉乾燥機用火格子
EP0126619A2 (en) Improvements in and relating to a method and apparatus for combustion of materials
JP2008275180A (ja) 廃棄物溶融処理方法および設備
JP2015209992A (ja) 廃棄物焼却処理装置及び廃棄物焼却処理方法
WO2011074364A1 (ja) 固形燃料の燃焼装置
AU773058B2 (en) Combustion system and process for rice hulls and other combustible material
JP2006153371A (ja) 産業廃棄物焼却用竪型ごみ焼却炉の燃焼制御方法
JP4056233B2 (ja) 二段旋回流動層式焼却炉によって発生した燃焼ガス中のダイオキシン類の合成を抑制する燃焼方法。
JP5947043B2 (ja) 循環流動炉
JP2023149960A (ja) 焼却装置
JPH0626612A (ja) 循環流動床における液体燃料の燃焼方法
JP4078342B2 (ja) 旋回流燃焼炉
JPH1114029A (ja) 循環流動層燃焼装置及びその運転方法
KR930006370A (ko) 폐열 이용 장치가 구성된 쓰레기 처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018745993

Country of ref document: EP

Effective date: 20201207