WO2019215194A1 - Agencement convertisseur efficace pour un système de charge d'un véhicule électrique avec intégration d'un réseau électrique, d'un accumulateur à batteries et d'autres sources - Google Patents

Agencement convertisseur efficace pour un système de charge d'un véhicule électrique avec intégration d'un réseau électrique, d'un accumulateur à batteries et d'autres sources Download PDF

Info

Publication number
WO2019215194A1
WO2019215194A1 PCT/EP2019/061742 EP2019061742W WO2019215194A1 WO 2019215194 A1 WO2019215194 A1 WO 2019215194A1 EP 2019061742 W EP2019061742 W EP 2019061742W WO 2019215194 A1 WO2019215194 A1 WO 2019215194A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
charging system
battery
rectifier
power
Prior art date
Application number
PCT/EP2019/061742
Other languages
German (de)
English (en)
Inventor
Jan Giebel
Ralf Pfennigwerth
Karsten ROWOLD
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Priority to CN201980031184.9A priority Critical patent/CN112106285A/zh
Publication of WO2019215194A1 publication Critical patent/WO2019215194A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the invention relates to a charging system having the features of the preamble of patent claim 1.
  • High- / buck converters (with an efficiency of, for example, 98%) are cached in the DC high-voltage store (DC-HV home store). If now the vehicle is charged in the evening, then the solar power from the home DC-HV memory via the bidirectional rectifier (with an efficiency of 97%) via the buck-boost converter (with an efficiency of 98%, for example) in the AC network of the house.
  • a charging device in particular for motor vehicles with at least two power input terminals.
  • the power input terminals are each with different electrical Energy sources coupled.
  • a power output connection is present, which can be coupled to a battery, in particular a vehicle high-voltage battery.
  • a controllable switching device is provided, which is designed to switch on and / or interrupt an electrical connection between at least one of the power input terminals and power output terminals.
  • the charging device thus has a controllable switching device, with which the different energy sources can be connected to the battery such that a DC voltage for charging the battery is available safely.
  • the charging device is simpler and less expensive, since a variety of components can be used multiple times.
  • the converter electronics can be used for a variety of AC sources, a single rectifier.
  • Such a converter electronics is arranged between the power input terminals and the switching device.
  • the converter electronics has a controllable rectifier and a controllable voltage converter.
  • both DC voltage and AC voltage of different height can be converted into a DC voltage required for charging the battery.
  • the converter electronics is not arranged in a power input terminal, but assigned to the power output terminal.
  • a vehicle can thus one
  • the charging device is part of the motor vehicle.
  • Charger provides three power input terminals, which are each coupled via two separate electrical lines with the corresponding switching device.
  • the switching device each switch for each of
  • the switching device On the output side, the switching device is coupled to a power output terminal. Two of the power input terminals are each connected to a converter electronics in the form of a rectifier. The further power input terminal is coupled to a DC power source. The other two power input terminals can be connected with a
  • a single combined converter electronics which has a controllable rectifier and a voltage converter.
  • the voltage converter electronics can have a buck-boost converter, ie a DC-DC converter without galvanic isolation with a storage choke.
  • DE 10 2013 220 704 A1 discloses the double use of an inverter for the conductive and inductive charging of an electric vehicle.
  • the corresponding circuit has a DC-DC converter, a converter circuit and a switch.
  • the DC-DC converter is formed by a buck converter.
  • the DC-DC converter can provide a galvanic isolation between the
  • the converter circuit is connected to the DC voltage terminal, wherein the switch is configured to switchably connect the converter circuit to the conductive terminal or to the inductive terminal.
  • From JP H-07250405 A is known to load two batteries by means of a charging system, wherein the charging system comprises a converter and a timer.
  • the invention is therefore based on the object to design the charging system so that the energy or electricity can be distributed efficiently and efficiency optimized.
  • the charging system has at least one DC voltage connection, which is also referred to below as the DC power connection, and at least one AC voltage connection, which is also referred to below as the AC power connection, and a battery power connection, wherein the battery power connection to a battery, in particular a vehicle high-voltage battery connectable is.
  • the charging system includes a rectifier with the rectifier connected to the AC power port.
  • the charging system has a first DC-DC converter.
  • the rectifier is connected on the one hand to the AC power connection and on the other hand to the first DC-DC converter.
  • the first DC-DC converter is connected to the DC side of the rectifier.
  • the first DC-DC converter is designed in particular as a step-up / step-down converter.
  • the charging system has a galvanic isolating element, in particular in the form of a second DC-DC converter.
  • the first DC-DC converter is connected on the one hand to the rectifier and on the other hand to the galvanic separating element.
  • the galvanic isolation element is connected on the one hand to the first DC-DC converter and on the other hand to the battery power connection.
  • the at least one DC power connection is connected via a first switch group both to the rectifier and to the first DC-DC converter and via a second switch group both to the first DC-DC converter and to the DC switch galvanic separating element connected or connectable.
  • This embodiment of the charging system provides a charging system with a plurality of terminals or interfaces. This charging system can charge from any port to another port.
  • the rectifier, the first DC-DC converter and the galvanic separator work bidirectionally.
  • the special feature here is the common DC reference network and the use of only one up / down converter, which can form a completely variable connection of a source and a sink via the corresponding connections by an intelligent interconnection.
  • each DC source e.g. a photovoltaic system or a home storage to the inverter and the buck / boost converter are omitted.
  • the charging system enables the intelligent connection of the sinks and sources, so that only the least possible use of hardware has to be realized. By reducing the hardware components, the efficiency and the efficiency of the overall system are increased.
  • the required switches or switch groups can interconnect each source with each sink. This results in an increased efficiency, for example, when charging an e-vehicle from a home storage that has been charged by solar power.
  • the efficiency of the vehicle charge from the DC voltage sources such as photovoltaic system, home storage or fuel cell can be further increased over the two switch groups, since the required by the standards low-voltage network, the so-called IT network (Isole Terre network), is already complied with and thus the galvanic isolation can be bridged since the home storage and the photovoltaic system already have a grounding.
  • IT network Isole Terre network
  • the power path is reduced to photovoltaic system, buck converter and vehicle.
  • the boost / buck converter can be used to adjust the voltage levels between the individual sources and sinks. This allows a more compact and cheaper charging system than is currently state of the art.
  • Fig. 1 in a highly schematic view of an inventive charging system together with multiple sources and sinks.
  • the 1 shows a charging system 1 with at least one, in particular a plurality of DC terminals, which are referred to below as DC power terminals 2, 3.
  • a home memory 4 can be connected to the DC power connection 2 and, for example, a photovoltaic system 5 can be connected or connected to the DC power connection 3.
  • the charging system 1 has a battery power connection 6, wherein the battery power connection 6 can be connected or connected to a battery 7, in particular a vehicle high-voltage battery 7.
  • the charging system 1 has an AC voltage connection, which is referred to below as the AC power connection 8.
  • the AC power terminal 8 is connected to an AC network 9.
  • the AC network 9 can be formed, for example, by an AC voltage network with 220 volts or 1 10 volts and a frequency of 50 Hz.
  • the charging system 1 has a rectifier 10, the rectifier 10 being connected to the AC network 9, ie to the AC power connection 8, and to a DC voltage converter 11 on the DC side.
  • the first DC-DC converter 1 1 is designed in particular as a step-up / step-down converter.
  • the first DC-DC converter 1 1 is connected to the DC side of the rectifier 10.
  • the first DC-DC converter 1 1 is now on the other hand connected to a galvanic separating element 12.
  • the galvanic separator 12 may be formed by a second DC-DC converter.
  • the galvanic isolating element 12 is connected on the one hand to the first DC-DC converter 1 1 and on the other hand to the AC power connection 8.
  • the galvanic separator 12 allows galvanic isolation.
  • the galvanic separating element 12 can be bridged via the switches S2a and S2b.
  • the charging system 1 now has a first switch group S1 a and a second
  • the switch groups S1 a and S1 b each have a plurality of independently operable switch, which are assigned to each connected sources, DC power terminals 2, 3.
  • the at least one DC power connection 2, 3 is now connectable or connected via the first switch group S1 a both with the rectifier 10 and with the first DC-DC converter 1 1.
  • the at least one DC power connection 2, 3 can also be connected via the second switch group S1 b both to the first DC-DC converter 1 1 and to the galvanic isolating element 12 or the second DC-DC converter.
  • This charging system 1 now has several interfaces in the form of the DC power terminals 2, 3 of the AC power terminal 8 and the
  • This charging system 1 can charge from any port to another port. It is used a common DC voltage supply network. Furthermore, only a single buck-boost converter in the form of the first DC-DC converter 1 1 is used, which can form a completely variable with connection of a source and a sink through an intelligent interconnection. As a result, an inverter and the step-up / step-down converter can be dispensed with at any DC source, such as, for example, the home store 4 or the photovoltaic system 5.
  • an intelligent connection of the above-mentioned various electrical sources and sinks is possible, so that only the least possible use of hardware has to be realized. By reducing the hardware components, the efficiency and the efficiency of the overall system are increased.
  • the required switch assemblies S1 a and S1 b can be interconnected universally with each source and sink.
  • the power flow between the photovoltaic system 5 and the AC network 9 takes place in that the first switch group S1 a remains in the open position and the corresponding switch of the second switch group S1 b is closed, so that a connection between the photovoltaic system 5, the buck-boost converter 1 1 and the rectifier 10 up to the AC power terminal 8, ie the AC network 9, is provided.
  • the power flow between the AC network 9 and the home memory 4 is realized by the switch group S1 a remains in the open position and the corresponding of the switch group S1 b is closed, whereby a compound of the AC network via the rectifier 10, the buck-boost 1 1 and the home store 4 is provided.
  • the power flow between the home memory 4 and the motor vehicle, namely the battery 7 is provided by the fact that the corresponding switch of the first switch group S1 a is closed and the second switch group S1 b is opened, so that a connection between the home memory 4 on the high / Step-down converter 1 1 to the vehicle battery 7 is realized, wherein the switches S2a, S2b are closed in order to bridge the galvanic separating element 12.
  • the power flow between the photovoltaic system 5 and the vehicle in the form of the battery 7 results from the fact that the first switch group S1 a opened and the corresponding switch of the second switch group S1 b is closed, so that the photovoltaic system 5 is directly connected to the vehicle.
  • the home store 4 and the photovoltaic system 5 each have a ground, so that the galvanic separator 12 can be bridged when the vehicle battery 7 is loaded from the home store 4 or the photovoltaic system 5. The efficiency is thereby further increased.
  • the power flow between the photovoltaic system 5 and the home store 4 can be provided by closing both the switch of the switch group S1 a and the switch group S1 b associated with the photovoltaic system 5 and the home store 4, so that the photovoltaic system 5 transfers to the home store 4 the up / down converter 1 1 is connected.
  • the charging system 1 forms an intelligent charging station, which enables the efficiency-optimized integration of a photovoltaic system 5 and a home storage 4.
  • Other interfaces may be, for example, fuel cells, wind turbines, electrolyzers and others.
  • such a charging system can be used in a variety of applications, such as e-mobility, shipping, aerospace, home or industrial application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

La présente invention concerne un système de charge (1) comprenant au moins un branchement de puissance à tension continue (2, 3) et au moins un branchement puissance à tension alternative (8) avec un branchement de puissance de batterie (6). Le branchement de puissance de batterie (6) peut être relié à une batterie (7), en particulier à une batterie (7) haute tension de véhicule et le ou les branchements de puissance à tension alternative (8) sont reliés à un redresseur (10). Un premier convertisseur continu-continu (11) est prévu. L'énergie ou le courant peuvent être distribués de manière efficace et avec un rendement optimisé du fait que le premier convertisseur continu-continu (11) est relié au côté continu du redresseur (10), le premier convertisseur continu-continu (11) étant conçu en tant que convertisseur élévateur/réducteur et un élément de séparation galvanique (12) pouvant être relié au premier convertisseur continu-continu (11) et au branchement de puissance de batterie (6). Le ou les branchements de puissance à tension continue (2, 3) peuvent être reliés via un premier groupe d'interrupteurs (S1a) aussi bien au redresseur (10) qu'au premier convertisseur continu-continu (11) et via un second groupe d'interrupteurs (S1b) aussi bien au premier convertisseur continu-continu (11) qu'à l'élément de séparation galvanique (12).
PCT/EP2019/061742 2018-05-09 2019-05-07 Agencement convertisseur efficace pour un système de charge d'un véhicule électrique avec intégration d'un réseau électrique, d'un accumulateur à batteries et d'autres sources WO2019215194A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980031184.9A CN112106285A (zh) 2018-05-09 2019-05-07 用于连接电网、电池存储器和其它源的用于电动车辆的充电系统的高效变流器装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018111154.1A DE102018111154B4 (de) 2018-05-09 2018-05-09 Ladesystem
DE102018111154.1 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019215194A1 true WO2019215194A1 (fr) 2019-11-14

Family

ID=66448569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/061742 WO2019215194A1 (fr) 2018-05-09 2019-05-07 Agencement convertisseur efficace pour un système de charge d'un véhicule électrique avec intégration d'un réseau électrique, d'un accumulateur à batteries et d'autres sources

Country Status (3)

Country Link
CN (1) CN112106285A (fr)
DE (1) DE102018111154B4 (fr)
WO (1) WO2019215194A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020204625B4 (de) 2020-04-09 2023-02-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein DC/DC-Wandler-Einrichtung sowie Steuer/Regel-System für ein Stromnetz
DE102021206397A1 (de) 2021-06-22 2022-12-22 Volkswagen Aktiengesellschaft Kraftfahrzeug mit einem einen Elektromotor aufweisenden Hauptantrieb
CN114256918A (zh) * 2021-12-03 2022-03-29 摩拜(北京)信息技术有限公司 充电柜及其充电控制方法、装置、电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178461A (ja) * 1992-12-09 1994-06-24 Japan Storage Battery Co Ltd 系統連系電源システム
JPH07250405A (ja) 1994-03-11 1995-09-26 Fujitsu Denso Ltd 電気自動車用充電装置
US20120181990A1 (en) * 2011-01-19 2012-07-19 Denso Corporation Dc power supply apparatus
DE102011083020A1 (de) 2011-09-20 2013-03-21 Robert Bosch Gmbh Ladevorrichtung, insbesondere für Kraftfahrzeuge, Verfahren und Kraftfahrzeug
KR101287586B1 (ko) * 2012-01-31 2013-07-19 엘에스산전 주식회사 전기 자동차 배터리 충전 시스템
WO2014068735A1 (fr) * 2012-10-31 2014-05-08 Jfeエンジニアリング株式会社 Chargeur rapide
DE102013220704A1 (de) 2013-10-14 2015-04-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Doppelte nutzung eines umrichters zur konduktiven und induktiven ladung eines elektrofahrzeuges

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211323B2 (ja) * 1992-01-24 2001-09-25 株式会社明電舎 充電装置
JP5319236B2 (ja) * 2008-10-22 2013-10-16 日立建機株式会社 電源装置および作業機械
DE102009026936B4 (de) * 2009-06-15 2012-03-22 Christoph Ruhland Vorrichtung zum Anschluss an ein elektrisches Energieversorgungsnetz und Transportsystem
DE102011083741A1 (de) * 2011-09-29 2013-04-04 Siemens Ag Schaltungsanordnung
CN102545711B (zh) * 2012-02-17 2015-06-24 振发能源集团有限公司 一种新型的离网/并网一体化太阳能发电系统与控制方法
DE102014208192A1 (de) * 2014-04-30 2015-11-05 Robert Bosch Gmbh Vorrichtung und zum Verbinden eines Basis-Bordnetzes mit einem insbesondere sicherheitsrelevanten Teilnetz
US20170271874A1 (en) * 2016-03-18 2017-09-21 Solar-Ready Ltd Electrical Power Recovery Apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178461A (ja) * 1992-12-09 1994-06-24 Japan Storage Battery Co Ltd 系統連系電源システム
JPH07250405A (ja) 1994-03-11 1995-09-26 Fujitsu Denso Ltd 電気自動車用充電装置
US20120181990A1 (en) * 2011-01-19 2012-07-19 Denso Corporation Dc power supply apparatus
DE102011083020A1 (de) 2011-09-20 2013-03-21 Robert Bosch Gmbh Ladevorrichtung, insbesondere für Kraftfahrzeuge, Verfahren und Kraftfahrzeug
KR101287586B1 (ko) * 2012-01-31 2013-07-19 엘에스산전 주식회사 전기 자동차 배터리 충전 시스템
WO2014068735A1 (fr) * 2012-10-31 2014-05-08 Jfeエンジニアリング株式会社 Chargeur rapide
DE102013220704A1 (de) 2013-10-14 2015-04-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Doppelte nutzung eines umrichters zur konduktiven und induktiven ladung eines elektrofahrzeuges

Also Published As

Publication number Publication date
DE102018111154B4 (de) 2024-04-04
CN112106285A (zh) 2020-12-18
DE102018111154A1 (de) 2019-11-14

Similar Documents

Publication Publication Date Title
EP2619842B1 (fr) Réseau d'alimentation électrique et procédé pour charger au moins un élément accumulateur servant d'accumulateur d'énergie pour un circuit cc intermédiaire dans un réseau d'alimentation électrique
EP3014725B1 (fr) Dispositif accumulateur d'énergie doté d'un circuit d'alimentation en tension continue et procédé pour fournir une tension continue à partir d'un dispositif accumulateur d'énergie
EP2924839B1 (fr) Régime de secours monophasé d'un onduleur triphasé et onduleur correspondant
DE102016123924A1 (de) Modulare Leistungselektronik zum Laden eines elektrisch betriebenen Fahrzeugs
EP3024130B1 (fr) Dispositif convertisseur à courant continu
DE102017130474A1 (de) Transformatorvorrichtung für eine Ladestation für das elektrische Laden von Fahrzeugen mit wenigstens zwei Ladepunkten
WO2013000522A1 (fr) Ensemble condensateur conçu pour un circuit intermédiaire d'un transformateur de tension
DE102014105985A1 (de) Wandlermodul zur Umwandlung elektrischer Leistung und Wechselrichter für eine Photovoltaikanlage mit mindestens zwei Wandlermodulen
DE102010064325A1 (de) System mit einer elektrischen Maschine
EP3467990B1 (fr) Dispositif de fourniture d'énergie destiné à fournir de l'énergie électrique à au moins un terminal ainsi que procédé de fonctionnement d'un dispositif de fourniture d'énergie
DE102019211553A1 (de) Bidirektionale DC-Wallbox für Elektrofahrzeuge
DE102013212682A1 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
WO2019215194A1 (fr) Agencement convertisseur efficace pour un système de charge d'un véhicule électrique avec intégration d'un réseau électrique, d'un accumulateur à batteries et d'autres sources
DE102010013862A1 (de) Transformatorloser Direktumrichter
DE102014203159A1 (de) Brennstoffzellensystem in einem bipolaren Hochspannungsnetz und Verfahren zum Betreiben eines bipolaren Hochspannungsnetzes
EP3647108A1 (fr) Système de charge pour véhicules automobiles doté d'une pluralité de sources d'énergie
DE102014212935A1 (de) Vorrichtung zum Bereitstellen einer elektrischen Spannung mit seriellem Stack-Umrichter sowie Antriebsanordnung
DE102017120298A1 (de) Ladesäule, Anordnung mit mehreren solcher Ladesäulen sowie Verfahren zum Betreiben einer solchen Ladesäule
DE102014100256B4 (de) Modularer Stromrichter
DE102017130992A1 (de) Lade-/Entladeeinheit zur Anbindung eines mobilen elektrischen Energiespeichers an ein Spannungsnetz
DE102020007869A1 (de) Elektrisches Bordnetzsystem für ein elektrisch angetriebenes Fahrzeug und dazugehöriges Verfahren
DE102015200259A1 (de) Batteriesystem mit einem oder mehreren Strängen, die jeweils mehrere in Reihe zuschaltbare Batteriemodule umfassen, wobei mindestens ein Batteriemodul jedes Stranges zum Versorgen eines Niedervoltnetzes mit elektrischer Energie vorgesehen ist
DE102020130539B4 (de) Verfahren zum Betrieb eines Energieversorgungssystems, Energieversorgungssystem und Steuerungseinheit für ein Energieversorgungssystem
DE202017007328U1 (de) Lade-/Entladeeinheit zur Anbindung eines mobilen elektrischen Energiespeichers an ein Spannungsnetz
EP4348792A1 (fr) Système énergétique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19722887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19722887

Country of ref document: EP

Kind code of ref document: A1