WO2019214543A1 - 频谱管理装置和方法、无线网络管理装置和方法以及介质 - Google Patents

频谱管理装置和方法、无线网络管理装置和方法以及介质 Download PDF

Info

Publication number
WO2019214543A1
WO2019214543A1 PCT/CN2019/085495 CN2019085495W WO2019214543A1 WO 2019214543 A1 WO2019214543 A1 WO 2019214543A1 CN 2019085495 W CN2019085495 W CN 2019085495W WO 2019214543 A1 WO2019214543 A1 WO 2019214543A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
wireless network
network management
electronic device
management device
Prior art date
Application number
PCT/CN2019/085495
Other languages
English (en)
French (fr)
Inventor
郭欣
孙晨
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司 filed Critical 索尼公司
Priority to US16/964,214 priority Critical patent/US11589240B2/en
Priority to CN201980008248.3A priority patent/CN111587602A/zh
Priority to KR1020207034692A priority patent/KR102629719B1/ko
Publication of WO2019214543A1 publication Critical patent/WO2019214543A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present disclosure generally relates to the field of wireless communications. More specifically, it relates to an electronic device for spectrum management, a spectrum management method, a wireless network management device, a wireless network management method, and a computer readable medium.
  • the frequency band currently open for sharing is called an Unlicensed Frequency Band, and includes, for example, 3.5 GHz, 5 GHz, 6 GHz, and the like.
  • Graph theory has a natural advantage for systematic representation of network information, whether it is physical or logical.
  • the rich models and algorithms accumulated in graph theory research are effective solutions for network resource allocation, so they are currently highly valued by the industry.
  • More and more standards adopt a method of constructing a network graph model and performing resource allocation based on the model, such as the Spectrum Access System (SAS) developed by the Wireless Innovation Forum (WINNF) organization.
  • SAS Spectrum Access System
  • WINNF Wireless Innovation Forum
  • BRAN Broadband Radio Access Networks
  • Graphs have a rich topology, and different topologies have different characteristics. Subtle topological changes may cause great differences in the results of resource allocation based on graph theory, resulting in unstable resource allocation results, which affect the scalability of the network. That is, any changes need to reconstruct the graph, recalculate the spectrum allocation, and then notify all network nodes to reconfigure. In particular, when the resource allocation period is long, if the resource allocation is performed only according to the instantaneous network topology, the network state change requirement in a long time interval cannot be met.
  • the present invention has been made in view of at least some of the above problems.
  • an electronic device for spectrum management includes processing circuitry configured to generate measurement configuration information and to control to transmit measurement configuration information to one or more wireless network management devices.
  • the measurement configuration information includes a measurement mode including at least one of the following: the wireless device management device managed by the electronic device performs measurement, and the measurement is performed by one or more specific nodes of the wireless network management device.
  • a spectrum management method includes generating measurement configuration information and transmitting measurement configuration information to one or more wireless network management devices.
  • the measurement configuration information includes a measurement mode including at least one of the following: the wireless device management device managed by the electronic device performs measurement, and the measurement is performed by one or more specific nodes of the wireless network management device.
  • a wireless network management device includes processing circuitry configured to control to receive measurement configuration information from a spectrum management device.
  • the measurement configuration information includes a measurement mode including at least one of the following: the measurement by the wireless network management device, and the measurement by one or more specific nodes of the wireless network management device.
  • the processing circuit is also configured to control the measurement based on the measurement mode.
  • a wireless network management method includes the step of receiving measurement configuration information from a spectrum management device.
  • the measurement configuration information includes a measurement mode including at least one of the following: the measurement by the wireless network management device, and the measurement by one or more specific nodes of the wireless network management device.
  • the wireless network management method also includes the step of controlling the measurement based on the measurement method.
  • Embodiments of the present disclosure also include a computer readable medium including executable instructions that, when executed by an information processing apparatus, cause an information processing apparatus to perform a method according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram showing a configuration example of an electronic device for spectrum management according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration example of an electronic device for spectrum management according to another embodiment
  • FIG. 3 is a flowchart showing an example of a procedure of a spectrum management method according to an embodiment of the present invention
  • FIG. 4 is a block diagram showing a configuration example of a wireless network management device according to an embodiment of the present invention.
  • FIG. 5 is a flowchart showing an example of a procedure of a wireless network management method according to an embodiment of the present invention
  • Figure 6 shows the signaling flow associated with the first measurement
  • Figure 7 shows the signaling flow associated with the second measurement
  • FIG. 8 shows an example of a process for determining the resource redistribution decision
  • FIG. 9 is a schematic diagram for explaining types of topology maps
  • FIG. 10 is a schematic diagram for explaining resource allocation based on network topology classification
  • FIG. 11 shows an example of the structure of a logical entity for resource management
  • FIG 12 illustrates the coexistence between different citizen broadband radio service devices (CBSD);
  • FIG. 13 is a block diagram showing an exemplary structure of a computer that implements the method and apparatus of the present disclosure
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 15 is a block diagram showing an example of a schematic configuration of a gNB (a base station in a 5G system) to which the technology of the present disclosure can be applied.
  • a gNB a base station in a 5G system
  • the electronic device 100 for spectrum management includes a processing circuit 110.
  • the processing circuit 110 can be implemented, for example, as a specific chip, a chipset, or a central processing unit (CPU) or the like.
  • the processing circuit 110 includes a generating unit 111 and a transmitting unit 113. It should be noted that although the generating unit 111 and the transmitting unit 113 are shown in the form of functional blocks in the drawings, it should be understood that the functions of these units may also be implemented by the processing circuit 110 as a whole, and not necessarily by processing. The discrete components of the circuit 110 are implemented. In addition, although the processing circuit 110 is illustrated in a block in the drawing, the electronic device 100 may include a plurality of processing circuits, and may distribute the functions of the generating unit 111 and the transmitting unit 113 into a plurality of processing circuits, thereby being processed by a plurality of The circuits work together to perform these functions.
  • the generating unit 111 is configured to generate measurement configuration information.
  • the measurement configuration information may include a measurement mode, which may include measurement by a wireless network management device managed by the electronic device or by one or more specific nodes of the wireless network management device.
  • a particular node may include, for example, a User Equipment (UE) or a node dedicated to making measurements (hereinafter may be referred to as a dedicated node).
  • UE User Equipment
  • dedicated node a node dedicated to making measurements
  • the measurement configuration information may further include measurement object information, which may include, for example, information related to an operation mode of the wireless network management device and information related to an interference mode of the wireless network management device by the neighboring wireless network. .
  • the information related to the operational mode may include, for example, the cumulative working duration of the wireless network management device for a predetermined period of time, the continuous working duration of the wireless network management device for a predetermined period of time, or the distribution of consecutive idle durations, and the like.
  • the information related to the interference mode may include, for example, a distribution of interference from a neighboring wireless network that the wireless network management device is subjected to for a predetermined period of time.
  • the transmitting unit 113 is configured to perform control to transmit the measurement configuration information generated by the generating unit 111 to one or more wireless network management devices.
  • the electronic device 100 may be applied to a citizen broadband wireless service (CBRS) on a 3.5 GHz band, and the electronic device 100 may be configured on a spectrum access system (SAS) or a coexistence manager (CxM) side, and a wireless network
  • the management device includes a Civil Broadband Wireless Service Device (CBSD).
  • the electronic device 100 may be applied to a 5 GHz broadband system, the electronic device 100 may be configured on the C3 entity side, and the wireless network management device may include a wireless access system (WAS) or a wireless local area network (RLAN) ).
  • WAS wireless access system
  • RLAN wireless local area network
  • the present invention is not limited thereto, but is equally applicable to other unlicensed frequency bands.
  • the use of the unlicensed spectrum in the embodiment of the present invention satisfies the usage requirements on the corresponding unlicensed spectrum, such as protection of the primary user (Incumbent user) or protection of higher priority users.
  • FIG. 2 shows a configuration example of an electronic device for spectrum management according to an embodiment.
  • the electronic device 200 includes a processing circuit 210 including a generating unit 211, a transmitting unit 213, a receiving unit 215, and a determining unit 217.
  • the generating unit 211 and the transmitting unit 213 are similar to the generating unit 111 and the transmitting unit 113 explained earlier with reference to FIG.
  • the receiving unit 215 is configured to control to receive measurements from one or more wireless network management devices for determining resource allocations to the wireless network management device.
  • resource allocation may include initial configuration or redistribution of resources.
  • the determining unit 217 is configured to determine a distribution of statistical results of interference received by the plurality of wireless network management devices from the neighboring wireless network based on the measurement results related to the plurality of wireless network management devices.
  • the determining unit 217 is further configured to determine a type of topology of the plurality of wireless network management devices based on the distribution of the statistical results, and determine the resource allocation based on the determined type of the topology.
  • the process may be described as: setting, by the spectrum management device (SM), a first measurement configuration for the wireless network management device (WNM), and transmitting the first measurement configuration to the WNM; the WNM receives the first measurement configuration, and parses the measurement requirement To determine if a second measurement is needed.
  • SM spectrum management device
  • WNM wireless network management device
  • a second measurement configuration is set for the UE and/or the dedicated node and sent to the UE and/or the dedicated node. If the second measurement is not needed, the WNM can perform corresponding measurement and report to the SM according to the first measurement configuration.
  • the UE or the special node may perform corresponding measurement according to the second measurement configuration and report the second measurement result to the WNM, and then the WNM processes the received result to form a first measurement result. And reporting to the SM according to the first measurement configuration.
  • the first measurement configuration may be generated by the SM and sent to the WNM, where the configuration is parsed, measured, and reported by the WNM.
  • the WNM is typically the access node of the wireless network (eg, the eNB of the cellular communication network, the gNB, or the access point (AP) of the WiFi).
  • the first measurement related signaling flow is shown in FIG. 6.
  • the measurement object may include an operating mode of the wireless network and an interference mode from the neighboring wireless network.
  • the working mode of the wireless network may include the cumulative working time of the wireless network, such as the accumulated working time of the wireless network in a given time window.
  • the operating mode of the wireless network may include a distribution of continuous working hours (or consecutive idle durations) of the wireless network, such as the mean and variance of consecutive working hours (or consecutive idle durations) in a given time window.
  • the interference pattern from the neighboring wireless network may include the distribution of interference from the neighboring wireless network received by the wireless network in a given time window, such as the mean and variance of the received signal strength.
  • the interference mode can include a list of IDs of neighboring wireless networks.
  • the measurement manner of the distribution may also be included, for example, including WNM measurement results (referred to as measurement mode 1), measurement results of nodes uniformly distributed in the wireless network range (referred to as measurement mode 2), wireless network and neighbor wireless network The measurement result of the node covering the edge area (refer to measurement mode 3).
  • the measurement result is periodically submitted to the SM, wherein the reporting period of each wireless network may be determined by the SM, and the period may be, for example, in hours or days;
  • the measurement report is only performed when the trigger event occurs or is detected by the wireless network, and the trigger event may include, for example, the result of the measurement object within the scope of the event definition, or the result quantization level of the measurement object changes.
  • the working time can be accumulated in a specified time window to obtain the cumulative working time of the wireless network.
  • the parameters of the continuous working duration (or continuous idle duration) can be counted within a specified time window, and then the duration distribution, for example including the mean and the variance, can be calculated to determine the continuous working duration (or continuous idle duration) of the wireless network. distributed.
  • the signal strength (RSRP) of the neighboring wireless network can be measured within a defined time window, and the distribution of the signal strength, including, for example, the mean and variance, is calculated after completion to determine the interference pattern from the neighboring wireless network.
  • the measurement report is triggered in a corresponding manner according to the report configuration.
  • the WNM reports the required information to the SM according to the first measurement configuration.
  • the reported measurement can be a measurement sample or a distribution based on the measurement sample (eg, including mean and variance). Which form of measurement results to use for reporting needs to be based on the measurement configuration instructions.
  • the SM may consider factors such as information interaction overhead and information usage purpose when measuring the configuration setting indication. For example, the overhead required to report distribution information is small compared to the report sample.
  • the distribution information is sufficient for the description of the network topology characteristics, so the sample information reporting is not necessary.
  • the WNM After the WNM receives the first measurement configuration, it parses it to determine if a second measurement is needed.
  • the node that performs the measurement can include one of the following situations:
  • Case 2 Measurement by the UE. If this is the case, the WNM needs to set a second measurement configuration for the UE and send it to the UE. The process is shown in FIG. 7;
  • Case 3 Measurement is performed by a dedicated node. If this is the case, the WNM needs to set a second measurement configuration for the dedicated node and send it to the dedicated node.
  • the WNM determines whether a second measurement is needed according to the measurement object, the measurement mode, and the measurement capability of the network node (WNM, UE, and/or special node) in the first measurement configuration.
  • the corresponding information can be obtained by the WNM without requiring the second measurement
  • the measurement configuration includes a measurement mode, it needs to be performed according to the measurement mode.
  • the measurement is performed by the WNM, and the second measurement is not required; for the aforementioned measurement mode 2 (measurement result of nodes uniformly distributed in the wireless network range) and measurement mode 3 (wireless)
  • the second measurement is required for the network and neighbor wireless networks to cover the measurements of the nodes in the edge region.
  • the UE has measurement capability, the UE measurement is selected; if the UE has no measurement capability (including busy traffic) and is equipped with a dedicated measurement node, special node measurement can be selected.
  • the WNM performs corresponding measurement and reports to the SM according to the first measurement configuration.
  • the UE or the special node performs the corresponding measurement and reports to the WNM according to the second measurement configuration, and the WNM processes the received second measurement result to form a first measurement result, and then reports it to the first measurement configuration according to the first measurement configuration.
  • SM short term evolution
  • the spectrum allocating device SM generates a statistical network topology map according to the received first measurement result, and classifies the topology map based on the fitting.
  • the spectrum allocation apparatus allocates a method for resource redistribution decision caused by wireless network change based on classification.
  • the determining unit 217 is further configured to generate a topology map of the plurality of wireless network management devices based on the measurement results.
  • the wireless network management device corresponds to the vertices of the topology map
  • the interference between the wireless network management devices corresponds to the edge of the topology map.
  • the wireless network management device that satisfies the following conditions may be determined as a vertex of the topology map: the accumulated working time exceeds a preset threshold; and/or the ratio of the accumulated working time to the average continuous working time exceeds a preset threshold.
  • the edge of the topology map may be determined based on the following conditions: two wireless network management devices connected to the edge satisfy the condition as a vertex of the topology map; and at least one of the two wireless network management devices is measured from the other The average signal strength exceeds a preset threshold.
  • the determining unit 217 may be further configured to determine the weight of the edge by: for the undirected graph, determining the weight based on at least one of the following modes: Large value, small value, mean value, weighted sum; for the directed graph, the corresponding weight is determined for each direction based on the mean value of the interference intensity in the direction.
  • the specific edge weight may be the interference strength measurement result or the corresponding quantization level.
  • the determining unit 217 may determine the type of the topology based on the weighting degree of the vertices of the topology map.
  • the weighting is the sum of the weights of the edges to which the vertices are connected.
  • the following shows an example way to generate a statistical network topology map.
  • the vertices in the statistical network topology map are determined according to the working mode of the wireless network in the measurement result.
  • the requirements of the apex wireless network include, for example, the working duration exceeds a certain preset threshold, which indicates that the working time is long enough to interact with other surrounding wireless networks; the ratio of the working duration to the distributed mean exceeds a certain preset threshold, and the representation
  • the frequent occurrence of services and the interaction with other wireless networks around them continue for a long time; according to the interference patterns from the neighboring wireless networks in the measurement results, the edges in the statistical network topology map and the rights on the edges are determined.
  • the requirement to be an edge in the topology diagram includes, for example, that both wireless networks belong to vertices in the network topology diagram; at least one of the two wireless networks detects that the average of the signal strengths from the other wireless network exceeds a certain preset threshold; Set the edge weight. If it is an undirected graph, you can select, for example, the maximum, minimum, mean, and weighted sum of the interference intensities in both directions. If it is a directed graph, you can represent the mean value of the interference in that direction in different directions. .
  • the specific edge weight may be the interference strength measurement result or the corresponding quantization level.
  • the distribution of key parameters of the statistical network topology map is matched, and the key parameters include, for example, the degree of the vertices, the path length between the vertices, and the clustering coefficient of the connectivity of the graph.
  • the weighting of the vertices will be described below as an example.
  • the degree of the vertices of the graph is the number of edges to which the vertices are connected.
  • the weight of the vertices is the sum of the weights of the edges of the vertices connected.
  • the physical meaning of the weighting degree is the aggregate interference received by the wireless network corresponding to the vertex.
  • the aggregate interference refers to assuming that a wireless network connected to the edge of the wireless network in the topology network and the wireless network use the same spectrum resource to transmit simultaneously, and the wireless network receives statistical results of interference from other wireless networks. This statistical result can be, for example, the sum of the interference intensities.
  • the topology of the graph has many types, including, for example, a random network (Random Network) and a scale-free network (Scale-Free Network).
  • Random Network Random Network
  • Scale-Free Network Scale-Free Network
  • the distribution of vertex degrees in a random network conforms to the Poisson distribution.
  • the degree is mainly distributed around the mean, while the probability of larger or smaller degrees is exponentially decayed, as shown in (a) of Figure 9.
  • the circular vertices correspond to the wireless network, and the edges between the vertices indicate that there is interference between the wireless networks corresponding to the vertices, and the weight of each edge is assumed to be 1, and the weight of the vertices is degraded to degrees.
  • the distribution of vertex degrees in a scale-free network conforms to a power exponential distribution.
  • Scale-free exponent scale-free index
  • the fitting of the above two distributions can be performed using the vertex weighting, and the classification of the corresponding topology is determined with the best result.
  • the determining unit 217 may be further configured to determine a manner of resource reallocation caused by a change of the wireless network management device corresponding to the vertex based on the determined type of the topology and the type of the vertex.
  • the types of topologies can include random networks and scale-free networks.
  • the method for reallocating resources may include: for a random network, local correction may be attempted for resource allocation; for a scale-free network, further consideration is needed for the degree of influence of the vertices in the topology network, and the vertices with a greater degree of influence Topology changes need to re-allocate resources for the overall structure; topological changes caused by less affected vertices can try local correction for resource allocation.
  • the vertex gradation corresponds to a different spectrum.
  • the box represents the assignable spectrum, for example, the spectrum is divided into three assignable channels, identified as 1, 2, and 3, respectively.
  • (b) in FIG. 10 illustrates that a wireless network is added to the network topology diagram of (a) in 10, corresponding to the newly added dashed vertex a, and the interference between the wireless network corresponding to the vertex a and other wireless networks is as shown in FIG. Shown on the dotted line.
  • vertex a initiates a spectrum resource request to the SM, and the method for resource reallocation includes, for example:
  • the local correction allocation that is, the SM reserves the resource allocation result of the vertex in the (a) topology diagram in FIG. 10, and uses the allocation result as a constraint to allocate a spectrum for the newly added vertex a. For example, if all the conditions are met, the spectrum resource that can be allocated for the newly added vertex is channel 2.
  • the method for determining resource redistribution based on random network characteristics includes, for example:
  • Random network characteristics Because the degree of influence generated by vertices in the network is close to symmetry, when the vertices in the network are removed or added, the impact on the overall allocation result is small, so only the local correction of the resource allocation result satisfies the resource allocation constraint of the whole network. The possibility is higher. Therefore, in a random network, when the nodes are removed or added, the local correction allocation method can be performed first, and only when the local correction method cannot satisfy the spectrum requirements of all nodes, then the full reallocation is considered.
  • Scale-free network characteristics Because the degree of influence of vertices in the network is severely asymmetrical, a small number of vertices have more chances to connect with other vertices. Once these vertices are removed or added, the network structure will be greatly affected. The local correction of resource allocation results will not enable the resources to be effectively utilized. The new structure should be re-allocated to ensure the effective use of resources. Therefore, in the scale-free network, it is necessary to distinguish whether the removed or added node is a Hub point, and the Hub point can be determined according to the weighting degree in the fitting result. If the node removed or added is a Hub Point, you need to select the full reassignment method. If it is not a Hub point, the local correction allocation method can be performed first, and then the full re-allocation is considered only when the local correction method cannot satisfy the spectrum requirements of all nodes.
  • embodiments of the present invention can be applied to a citizen broadband wireless service or a 5 GHz broadband system in the 3.5 GHz band.
  • a citizen broadband wireless service or a 5 GHz broadband system in the 3.5 GHz band.
  • Example 1 3.5GHz CBRS
  • SAS Spectrum Access System
  • DoD Department of Defense
  • FCC Federal Communications Commission
  • Incumbent users represent the highest level, and incumbent users include the above DoD radar system, Fixed Satellite Service (FSS), and privileged terrestrial wireless operations for a limited time;
  • FSS Fixed Satellite Service
  • the citizen broadband wireless service further includes two levels of priority access license (PAL) and General Authorized Access (GAA).
  • PAL priority access license
  • GAA General Authorized Access
  • CBRS allocates resources in units of census tract.
  • PAL can use the spectrum in the range of 3550-3650MHz and distribute it in 10MHz units for 10 years.
  • the total spectrum of all PALs in each census area is not More than 70MHz, where the spectrum of each PAL does not exceed 40MHz.
  • GAA can use the spectrum in the range of 3550-3700MHz without guaranteeing harmful interference to high-level users.
  • the logical entities used for resource management mainly include SAS and Domain Proxy. Referring to FIG. 11, the domain proxy interacts with the SAS on behalf of the individual CBSD or the network CBSD to obtain the CDSD service. Of course, CBSD can also directly access the SAS to obtain services without using a domain proxy.
  • CBRS-A The CBRS Alliance (CBRS-A) organization develops a Technical Specification (TS) that provides coexistence between different CBSDs.
  • TS Technical Specification
  • CxM Coexistence Manager
  • CxG Coexistence Group
  • CxG Coexistence Group
  • the spectrum allocation apparatus SM may be a SAS or a CxM
  • the wireless network management apparatus WNM may be a CBSD
  • the user equipment UE may be an end user equipment (EUD).
  • EUD end user equipment
  • the structural configuration is, for example, that the SAS manages the CBSD and generates a first measurement configuration for the CBSD.
  • CBSD generates a second measurement configuration for the EUD if required for measurement.
  • the SAS manages the CxG, and generates a first measurement configuration for the unit set in the GxG.
  • the unit set in the GxG may be one or more CBSDs.
  • the unit set in the GxG generates a second measurement configuration for the EUD if required by the measurement.
  • CxM manages CBSD, which generates a first measurement configuration for CBSD, and CBSD generates a second measurement configuration for EUD.
  • the CxM manages the CxG, and generates a first measurement configuration for the unit set in the GxG.
  • the unit set in the GxG may be one or more CBSDs.
  • the unit set in the GxG generates a second measurement configuration for the EUD if required by the measurement.
  • Example 2 5GHz broadband system
  • BRAN Broadband Wireless Access Network
  • the logical entity used for management in this system is called C3 (Central Controller and Coordinator), and its concrete physical entity is called C3 Instance.
  • C3 entity may be multiple C3 entities of distributed interconnection, and realize central coordination of the management object through information interaction.
  • the management object in this system is called WAS/RLAN.
  • the spectrum allocation device SM may be a C3 entity
  • the wireless network management device WNM may be a WAS/RLANs
  • the user equipment UE may be a subscriber of a WAS/RLANs.
  • the spectrum management method includes step S310 to generate measurement configuration information.
  • the measurement configuration information includes a measurement mode including at least one of the following: the wireless device management device managed by the electronic device performs measurement, and the measurement is performed by one or more specific nodes of the wireless network management device.
  • the spectrum management method further includes a step S320 of transmitting measurement configuration information to one or more wireless network management devices.
  • the embodiment of the invention further includes a wireless network management device.
  • the wireless network management device 400 includes a processing circuit 410.
  • the processing circuit 410 includes a reception control unit 411 and a measurement control unit 413.
  • the reception control unit 411 is configured to perform control to receive measurement configuration information from the spectrum management device.
  • the measurement configuration information includes a measurement mode including at least one of the following: the measurement by the wireless network management device, and the measurement by one or more specific nodes of the wireless network management device.
  • the measurement control unit 413 is configured to control the measurement based on the measurement mode.
  • the wireless network management method includes step S510 of receiving measurement configuration information from a spectrum management apparatus.
  • the measurement configuration information includes a measurement mode including at least one of the following: the measurement by the wireless network management device, and the measurement by one or more specific nodes of the wireless network management device.
  • the wireless network management method further includes a step S520 of controlling the measurement based on the measurement mode.
  • embodiments of the present disclosure also include a computer readable medium including executable instructions that, when executed by an information processing apparatus, cause an information processing apparatus to perform a wireless communication method according to an embodiment of the present disclosure.
  • the various steps of the above methods, as well as the various constituent modules and/or units of the above-described apparatus may be implemented as software, firmware, hardware or a combination thereof.
  • a program constituting software for implementing the above method may be installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 1300 shown in FIG. 13), which is installed.
  • a dedicated hardware structure for example, the general-purpose computer 1300 shown in FIG. 13
  • an arithmetic processing unit i.e., CPU 1301 executes various processes in accordance with a program stored in a read only memory (ROM) 1302 or a program loaded from a storage portion 1308 to a random access memory (RAM) 1303.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 executes various processes and the like is also stored as needed.
  • the CPU 1301, the ROM 1302, and the RAM 1303 are linked to each other via a bus 1304.
  • Input/output interface 1305 is also linked to bus 1304.
  • the following components are linked to an input/output interface 1305: an input portion 1306 (including a keyboard, a mouse, etc.), an output portion 1307 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.)
  • the storage portion 1308 (including a hard disk or the like), the communication portion 1309 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 1309 performs communication processing via a network such as the Internet.
  • the driver 1310 can also be linked to the input/output interface 1305 as needed.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1310 as needed, so that the computer program read therefrom is installed into the storage portion 1308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1311.
  • such a storage medium is not limited to the removable medium 1311 shown in FIG. 13 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the detachable medium 1311 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 1302, a hard disk included in the storage portion 1308, or the like, in which programs are stored, and distributed to the user together with the device containing them.
  • Embodiments of the present invention also relate to a program product for storing a machine readable instruction code.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • Embodiments of the present application also relate to the following electronic devices.
  • the electronic device can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the electronic device can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the electronic device can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the electronic device can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or Vehicle terminal (such as car navigation equipment).
  • the electronic device may be a wireless communication module (such as an integrated circuit module including a single or a plurality of wafers) mounted on each of the above terminals.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone 2500 to which the technology of the present disclosure can be applied.
  • the smart phone 2500 includes a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, an imaging device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, and one or more An antenna switch 2515, one or more antennas 2516, a bus 2517, a battery 2518, and an auxiliary controller 2519.
  • the processor 2501 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 2500.
  • the memory 2502 includes a RAM and a ROM, and stores data and programs executed by the processor 2501.
  • the storage device 2503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2504 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2500.
  • USB universal serial bus
  • the image pickup device 2506 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 2507 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2508 converts the sound input to the smartphone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2510, and receives an operation or information input from a user.
  • the display device 2510 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2500.
  • the speaker 2511 converts the audio signal output from the smartphone 2500 into a sound.
  • the wireless communication interface 2512 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2512 may generally include, for example, a baseband (BB) processor 2513 and radio frequency (RF) circuitry 2514.
  • the BB processor 2513 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2516.
  • the wireless communication interface 2512 can be a chip module on which the BB processor 2513 and the RF circuit 2514 are integrated. As shown in FIG.
  • the wireless communication interface 2512 can include a plurality of BB processors 2513 and a plurality of RF circuits 2514.
  • FIG. 14 illustrates an example in which the wireless communication interface 2512 includes a plurality of BB processors 2513 and a plurality of RF circuits 2514, the wireless communication interface 2512 may also include a single BB processor 2513 or a single RF circuit 2514.
  • wireless communication interface 2512 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2512 can include a BB processor 2513 and RF circuitry 2514 for each wireless communication scheme.
  • Each of the antenna switches 2515 switches the connection destination of the antenna 2516 between a plurality of circuits included in the wireless communication interface 2512, such as circuits for different wireless communication schemes.
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2512 to transmit and receive wireless signals.
  • smart phone 2500 can include multiple antennas 2516.
  • FIG. 14 shows an example in which the smartphone 2500 includes a plurality of antennas 2516, the smartphone 2500 may also include a single antenna 2516.
  • smart phone 2500 can include an antenna 2516 for each wireless communication scheme.
  • the antenna switch 2515 can be omitted from the configuration of the smartphone 2500.
  • the bus 2517 has a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, an imaging device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, and an auxiliary controller 2519. connection.
  • Battery 2518 provides power to various blocks of smart phone 2500 shown in FIG. 14 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 2519 operates the minimum required function of the smartphone 2500, for example, in a sleep mode.
  • the transceiver of the device on the user equipment side can be implemented by the wireless communication interface 2512.
  • the processing circuitry of the electronic device or information processing device on the user equipment side and/or at least a portion of the functions of the various units may also be implemented by the processor 2501 or the secondary controller 2519.
  • the power consumption of the battery 2518 can be reduced by performing a portion of the functions of the processor 2501 by the auxiliary controller 2519.
  • the processor 2501 or the auxiliary controller 2519 may perform at least a part of the processing circuit of the electronic device or the information processing device on the user device side and/or the functions of the respective units by executing the program stored in the memory 2502 or the storage device 2503.
  • the gNB 2300 includes a plurality of antennas 2310 and base station devices 2320.
  • the base station device 2320 and each antenna 2310 may be connected to each other via a radio frequency (RF) cable.
  • RF radio frequency
  • Each of the antennas 2310 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 2320 to transmit and receive wireless signals.
  • the gNB 2300 may include a plurality of antennas 2310.
  • multiple antennas 2310 can be compatible with multiple frequency bands used by gNB 2300.
  • the base station device 2320 includes a controller 2321, a memory 2322, a network interface 2323, and a wireless communication interface 2325.
  • the controller 2321 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 2320. For example, controller 2321 generates data packets based on data in signals processed by wireless communication interface 2325 and delivers the generated packets via network interface 2323. The controller 2321 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 2321 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 2322 includes a RAM and a ROM, and stores programs executed by the controller 2321 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 2323 is a communication interface for connecting the base station device 2320 to the core network 2324. Controller 2321 can communicate with a core network node or another gNB via network interface 2323. In this case, the gNB 2300 and the core network node or other gNBs can be connected to each other through logical interfaces such as an S1 interface and an X2 interface.
  • the network interface 2323 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 2323 is a wireless communication interface, the network interface 2323 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2325.
  • the wireless communication interface 2325 supports any cellular communication schemes, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the gNB 2300 via the antenna 2310.
  • Wireless communication interface 2325 can typically include, for example, BB processor 2326 and RF circuitry 2327.
  • the BB processor 2326 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 2326 may have some or all of the above described logic functions.
  • the BB processor 2326 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 2326 to change.
  • the module can be a card or blade that is inserted into the slot of the base station device 2320. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2310.
  • the wireless communication interface 2325 can include a plurality of BB processors 2326.
  • multiple BB processors 2326 can be compatible with multiple frequency bands used by gNB 2300.
  • the wireless communication interface 2325 can include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 can be compatible with multiple antenna elements.
  • FIG. 15 illustrates an example in which the wireless communication interface 2325 includes a plurality of BB processors 2326 and a plurality of RF circuits 2327, the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327.
  • the transceiver of the wireless communication device on the base station side can be implemented by the wireless communication interface 2325.
  • the processing circuitry of the base station side or the processing circuitry of the wireless communication device and/or at least a portion of the functionality of each unit may also be implemented by controller 2321.
  • the controller 2321 may perform at least a part of the functions of the processing circuit and/or the units of the electronic device or the wireless communication device on the base station side by executing the program stored in the memory 2322.
  • the method of the present invention is not limited to being performed in the chronological order described in the specification, and may be performed in other chronological order, in parallel, or independently. Therefore, the order of execution of the methods described in the present specification does not limit the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及频谱管理装置和方法、无线网络管理装置和方法以及介质。根据一个实施例,一种用于频谱管理的电子装置包括处理电路,处理电路被配置为生成测量配置信息以及进行控制以将测量配置信息发送给一个或多个无线网络管理装置。测量配置信息包括测量方式,测量方式包括以下方式中的至少一种:电子装置管理的无线网络管理装置进行测量,以及无线网络管理装置的一个或多个特定的节点进行测量。

Description

频谱管理装置和方法、无线网络管理装置和方法以及介质 技术领域
本公开一般涉及无线通信领域。更具体地,涉及用于频谱管理的电子装置、频谱管理方法、无线网络管理装置、无线网络管理方法以及计算机可读介质。
背景技术
随着无线设备数量及无线业务多样性的快速增长,频谱稀缺问题日益严重。一种有前景的解决方案是频谱共享,通过共存协调实现多个系统共享目标频段,提升资源使用效率。目前被开放用于共享的频段称作非授权频段(Unlicensed Frequency Band),例如包括3.5GHz、5GHz、6GHz等。
图论对于系统化表示网络信息,不论是物理结构还是逻辑结构,有着天然的优势。图论研究中积累的丰富模型和算法为网络资源分配有效解决方案,因此当前备受工业界重视。越来越多的标准采用构造网络图模型并基于该模型进行资源分配的方法,例如包括无线创新论坛(Wireless Innovation Forum(WINNF))组织制定的频谱访问系统(Spectrum Access System,SAS),其研究3.5GHz频段上多系统间的共存管理,以及欧洲委员会(European Commission)发起的项目宽带无线接入网络(Broadband Radio Access Networks(BRAN)),其研究无线接入系统/无线局域网(WAS/RLAN)在5GHz频段的中央协作。
发明内容
图具有丰富的拓扑结构,不同的拓扑结构具有不同的特性。细微的拓扑变化可能使得基于图论的资源分配结果产生极大的差异,导致资源分配结果不稳定,从而影响网络的扩展性。即,任何变化都需要重新构造图、重新计算频谱分配,再通知所有网络节点进行重配置。特别是当资源分配周期较长,如果仅依据瞬时网络拓扑结构进行资源分配,无法满足较长时间间隔内网络状态变化的需求。
针对以上问题中的至少一部分提出了本发明。
在下文中给出了关于本发明实施例的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,以下概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据一个实施例,一种用于频谱管理的电子装置包括处理电路,处理电路被配置为生成测量配置信息以及进行控制以将测量配置信息发送给一个或多个无线网络管理装置。测量配置信息包括测量方式,测量方式包括以下方式中的至少一种:电子装置管理的无线网络管理装置进行测量,以及无线网络管理装置的一个或多个特定的节点进行测量。
根据另一个实施例,一种频谱管理方法包括生成测量配置信息以及将测量配置信息发送给一个或多个无线网络管理装置。测量配置信息包括测量方式,测量方式包括以下方式中的至少一种:电子装置管理的无线网络管理装置进行测量,以及无线网络管理装置的一个或多个特定的节点进行测量。
根据又一个实施例,一种无线网络管理装置包括处理电路,处理电路被配置为进行控制以从频谱管理装置接收测量配置信息。测量配置信息包括测量方式,测量方式包括以下方式中的至少一种:由无线网络管理装置进行测量,以及无线网络管理装置的一个或多个特定的节点进行测量。处理电路还被配置为基于测量方式来控制测量。
根据再一个实施例,一种无线网络管理方法包括从频谱管理装置接收测量配置信息的步骤。测量配置信息包括测量方式,测量方式包括以下方式中的至少一种:由无线网络管理装置进行测量,以及无线网络管理装置的一个或多个特定的节点进行测量。无线网络管理方法还包括基于测量方式来控制测量的步骤。
本公开实施例还包括计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行根据本公开实施例的方法。
通过本公开实施例,有利于提高资源分配结果的稳定性以及网络的可扩展性。
附图说明
本发明可以通过参考下文中结合附图所给出的描述而得到更好的理解, 其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本发明的原理和优点。在附图中:
图1是示出根据本发明的一个实施例的用于频谱管理的电子装置的配置示例的框图;
图2是示出根据另一个实施例的用于频谱管理的电子装置的配置示例的框图;
图3是示出根据本发明的一个实施例的频谱管理方法的过程示例的流程图;
图4是示出根据本发明的一个实施例的无线网络管理装置的配置示例的框图;
图5是示出根据本发明的一个实施例的无线网络管理方法的过程示例的流程图;
图6示出了与第一测量相关的信令流程;
图7示出了与第二测量相关的信令流程;
图8示出了确定资源重分配决的策确的过程示例;
图9是用于说明拓扑图的类型的示意图;
图10是用于说明基于网络拓扑分类进行资源分配的示意图;
图11示出了用于资源管理的逻辑实体的结构示例;
图12示出了不同公民宽带无线电服务设备(CBSD)之间的共存;
图13是示出实现本公开的方法和设备的计算机的示例性结构的框图;
图14是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图15是示出可以应用本公开内容的技术的gNB(5G系统中的基站)的示意性配置的示例的框图。
具体实施方式
下面将参照附图来说明本发明的实施例。在本发明的一个附图或一种实 施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。
如图1所示,根据本实施例的用于频谱管理的电子装置100包括处理电路110。处理电路110例如可以实现为特定芯片、芯片组或者中央处理单元(CPU)等。
处理电路110包括生成单元111和发送单元113。需要指出,虽然附图中以功能块的形式示出了生成单元111和发送单元113,然而应理解,这些单元的功能也可以由处理电路110作为一个整体来实现,而并不一定是通过处理电路110中分立的实际部件来实现。另外,虽然图中以一个框示出处理电路110,然而电子装置100可以包括多个处理电路,并且可以将生成单元111和发送单元113的功能分布到多个处理电路中,从而由多个处理电路协同操作来执行这些功能。
生成单元111被配置为生成测量配置信息。测量配置信息可以包括测量方式,测量方式可以包括由电子装置管理的无线网络管理装置进行测量或者由无线网络管理装置的一个或多个特定的节点进行测量。
更具体地,特定的节点例如可以包括用户设备(UE)或专门用于进行测量的节点(下文中可称为专门节点)。
此外,根据一个实施例,测量配置信息还可以包括测量对象信息,测量对象信息例如可以包括与无线网络管理装置的工作模式有关的信息以及与无线网络管理装置受到邻近无线网络的干扰模式有关的信息。
更具体地,与工作模式有关的信息例如可以包括无线网络管理装置在预定时间段内的累计工作时长、无线网络管理装置在预定时间段内的连续工作时长或者连续空闲时长的分布等。与干扰模式有关的信息例如可以包括无线网络管理装置在预定时间段内受到的来自邻近无线网络的干扰的分布。
发送单元113被配置为进行控制以将生成单元111所生成的测量配置信息发送给一个或多个无线网络管理装置。
根据一个实施例的电子装置100可以应用于3.5GHz频段上的公民宽带无线服务(CBRS),电子装置100可以被配置在频谱接入系统(SAS)或共存管理器(CxM)侧,并且无线网络管理装置包括民用宽带无线服务装置(CBSD)。
根据另一个实施例的电子装置100可以应用于5GHz宽带系统(Broadband System),电子装置100可以被配置在C3实体侧,并且无线网络管理装置可以包括无线接入系统(WAS)或无线局域网(RLAN)。
虽然本公开中以3.5GHz和5GHz为例进行说明,然而本发明不限于此,而是对其它非授权频段同样适用。此外,本发明实施例中对非授权频谱的使用满足对应非授权频谱上的使用要求,例如对该频段上主用户(Incumbent user)的保护或者对较高优先级用户的保护。
图2示出了根据一个实施例的用于频谱管理的电子装置的配置示例。电子装置200包括处理电路210,处理电路包括生成单元211、发送单元213、接收单元215和确定单元217。生成单元211和发送单元213与前面参照图1说明的生成单元111和发送单元113类似。
接收单元215被配置为进行控制以接收来自一个或多个无线网络管理装置的测量结果以用于确定对无线网络管理装置的资源分配。这里,资源分配可以包括资源的初始配置或重分配。
确定单元217被配置为基于与多个无线网络管理装置有关的测量结果,确定多个无线网络管理装置受到的来自邻近无线网络的干扰的统计结果的分布。
根据一个实施例,确定单元217还被配置为基于统计结果的分布确定多个无线网络管理装置的拓扑结构的类型,并且基于所确定的拓扑结构的类型来确定资源分配。
接下来,结合具体示例说明根据本发明实施例的统计网络拓扑的测量的示例方式。该过程可以描述为:由频谱管理装置(SM)为无线网络管理装置(WNM)设定第一测量配置,并将第一测量配置发送给WNM;WNM接收到第一测量配置,解析该测量需求,以确定是否需要第二测量。
如果需要第二测量,则为UE和/或专门节点设定第二测量配置,并发送给UE和/或专门节点。如果不需要第二测量,则WNM可以根据第一测量配置进行相应测量及上报给SM。
此外,在需要第二测量的情况下,UE或者专门节点可以根据第二测量配置进行相应测量及上报第二测量结果给WNM,再由WNM对收到的结果进行处理以形成第一测量结果,再根据第一测量配置上报给SM。
接下来,对第一测量进行更详细的说明。
第一测量配置可以由SM产生,发送给WNM,由WNM对该配置进行解析、测量和结果上报。WNM通常是所在无线网络的接入节点(例如,蜂窝通信网的eNB、gNB、或者WiFi的接入点(AP))。第一测量相关信令流程如图6所示。
测量对象可以包括无线网络的工作模式以及来自邻居无线网络的干扰模式。
无线网络的工作模式可以包括无线网络的累计工作时长,例如给定时间窗口中该无线网络的累计工作时间。或者,无线网络的工作模式可以包括无线网络的连续工作时长(或者连续空闲时长)的分布,例如给定时间窗口中连续工作时长(或者连续空闲时长)的均值和方差。
来自邻居无线网络的干扰模式可以包括给定时间窗口中无线网络接收到的来自邻居无线网络的干扰的分布,例如信号接收强度的均值和方差。此外,干扰模式可以包括邻居无线网络的ID列表。更进一步,还可以包括该分布的测量方式,例如包括WNM测量结果(称为测量方式1)、无线网络范围内均匀分布的节点的测量结果(称为测量方式2)、无线网络与邻居无线网络覆盖边缘区域的节点的测量结果(称为测量方式3)。
此外,例如可以通过以下方式来进行测量的报告:
将测量结果周期性地提交给SM,其中每个无线网络的报告周期可以由SM决定,周期例如可以是以小时为单位或者天为单位;
只在接到来自SM的测量请求时进行测量报告;或者
只在触发事件发生或被无线网络检测到时进行测量报告,触发事件例如可以包括测量对象的结果在事件定义的范围内,或者测量对象的结果量化等级发生变化等。
接下来,说明测量的示例方式。根据测量配置,可以在规定的时间窗口内进行工作时间累加以得出无线网络的累计工作时长。根据测量配置,可以在规定的时间窗口内统计连续工作时长(或者连续空闲时长)的参数,然后计算时长分布,例如包括均值和方差,以确定无线网络的连续工作时长(或者连续空闲时长)的分布。根据测量配置,可以在规定的时间窗口内测量邻居无线网络的信号强度(RSRP),完成后计算该信号强度的分布,例如包括均值和方差,以确定来自邻居无线网络的干扰模式。
接下来,说明测量报告的触发方式的示例。根据报告配置,以相应的方 式触发测量报告。WNM根据第一测量配置将所需信息报告给SM。
所报告的测量结果可以是测量样本,也可以根据测量样本拟合的分布(例如包含均值和方差)。采用哪种形式的测量结果进行上报需要根据测量配置指示。SM在测量配置设定该指示时例如可以考虑信息交互开销和信息使用目的等因素。例如,与报告样本相比,报告分布信息所需的开销较小。此外,在测量结果用于分析网络拓扑特性进而决定资源分配的类型的情况下,对于网络拓扑特性的描述,分布的信息已经足够进行判断,因此样本信息上报并非必要。
在WNM收到第一测量配置后,对其进行解析,以判断是否需要第二测量。实施测量的节点可以包括以下情形之一:
情形1:由WNM进行测量;
情形2:由UE进行测量,如果是该情形,WNM需要为UE设定第二测量配置,并发送给UE,流程如图7所示;
情形3:由专门节点进行测量,如果是该情形,WNM需要为专门节点设定第二测量配置,并发送给专门节点。
WNM根据第一测量配置中的测量对象、测量方式、以及网络节点(WNM、UE和/或专门节点)的测量能力决定是否需要第二测量。
当测量对象为无线网络的工作模式时,对应的信息可以由WNM获得,而不需要第二测量;
当测量对象为来自邻居无线网络的干扰模式,如果测量配置包含测量方式,则需要按照测量方式进行。例如,对于前述测量方式1(由WNM测量结果),则由WNM进行测量,不需要第二测量;对于前述测量方式2(无线网络范围内均匀分布的节点的测量结果)和测量方式3(无线网络与邻居无线网络覆盖边缘区域的节点的测量结果),则需要第二测量。并且如果UE有测量能力,则选择UE测量;如果UE没有测量能力(包括业务繁忙)并且配备了专门测量节点,则可以选用专门节点测量。
对于上述情形1,WNM根据第一测量配置进行相应测量及上报给SM。
对于上述情形2和情形3,UE或者专门节点根据第二测量配置进行相应测量及上报给WNM,WNM对收到的第二测量结果进行处理形成第一测量结果,再根据第一测量配置上报给SM。
接下来,结合实施例说明统计网络拓扑图(G)的拟合和分类,及资源分配。 该过程如图8所示,频谱分配装置SM根据接收到的第一测量结果,生成统计网络拓扑图、对该拓扑图基于拟合进行分类。频谱分配装置基于分类,对无线网络变化引起的资源重分配决策分配方法。
继续参照图2,根据一个实施例,确定单元217还被配置为基于测量结果生成多个无线网络管理装置的拓扑图。在该拓扑图中,无线网络管理装置对应于拓扑图的顶点,无线网络管理装置间的干扰对应于拓扑图的边。
可以为将满足以下条件的无线网络管理装置确定为所述拓扑图的顶点:累计工作时长超过预设阈值;以及/或者累计工作时长与平均连续工作时长之比超过预设阈值。
此外,可以基于以下条件确定为拓扑图的边:边所连接的两个无线网络管理装置满足作为拓扑图的顶点的条件;并且在两个无线网络管理装置中的至少一个测得来自另一个的信号强度的均值超过预设阈值。
根据一个实施例,确定单元217还可以被配置为通过以下方式确定边的权值:对于无向图,基于以下方式中的至少一种确定所述权值:两个方向的干扰强度均值中较大值、较小值、均值、加权和;对于有向图,分别针对每个方向基于该方向上的干扰强度均值确定相应权值。具体的边权可以是干扰强度测量结果,也可以是对应的量化等级。
进一步地,确定单元217可以基于拓扑图的顶点的加权度确定拓扑结构的类型。加权度为顶点所连接的边的权值之和。
接下来,以前述示例中描述的情形1和情形2为例说明统计网络拓扑图的拟合和分类的示例方式。情形3与情形2的区别是测量节点是专门节点,而非普通UE。
下面说明生成统计网络拓扑图的示例方式。
根据测量结果中的无线网络的工作模式,确定统计网络拓扑图中顶点。成为顶点的无线网络的要求例如包括:工作时长超过一定预设阈值,其表示工作时足够长,和周围其它无线网络相互影响时间长;工作时长与分布均值的比值超过一定预设阈值,其表示业务出现的频繁,和周围其它无线网络相互影响持续也较长;根据测量结果中的来自邻居无线网络的干扰模式,确定统计网络拓扑图中的边以及边上的权。
成为拓扑图中的边的要求例如包括:两个无线网络都属于网络拓扑图中的顶点;两个无线网络中,至少一个测得来自另一个无线网络的信号强度的 均值超过一定预设阈值;设定边权,如果是无向图,可以选择例如两个方向的干扰强度均值最大值、最小值、均值、加权和,如果是有向图,可以分别在不同方向表示该方向的干扰强度均值。此外,具体的边权可以是干扰强度测量结果,也可以是对应的量化等级。
下面说明统计网络拓扑图的拟合和分类的示例方式。
对统计网络拓扑图的关键参数的分布进行拟合,这些关键参数例如包括:顶点的度(degree),顶点间路径长度(path length),图的联通性的簇化系数(clustering coefficient)等。
以下以顶点的加权度为例进行说明。图顶点的度为顶点连接的边的个数,在一些实施例中顶点的加权度为顶点连接的边的权值之和。本发明实施例定义的拓扑图中,加权度的物理意义是顶点对应的无线网络受到的聚合干扰。其中聚合干扰是指,假设拓扑网络中与所述无线网络以边相连的无线网络与所述无线网络使用相同频谱资源同时进行发射,所述无线网络受到的来自其它无线网络的干扰的统计结果,该统计结果例如可以是干扰强度之和。
图的拓扑有多种类型,例如包括随机网络(Random Network)和无标度网络(Scale-Free Network)。
随机网络中顶点度的分布符合泊松(Poisson)分布特性,度主要分布在均值周围,而较大或者较小的度的概率呈指数衰减,如图9中的(a)所示。在图9中,圆形顶点对应无线网络,顶点间的边说明顶点对应的无线网络之间存在干扰,每个边的权假设为1,则顶点的加权度退化为度。
无标度网络中顶点度的分布符合幂指数分布,度为j的顶点概率为P(j)=j^(-a),其中j>0,a>0,a称为无标度指数(scale-free exponent),如图9中的(b)所示。从图中可以看出,顶点1和2与其它顶点相比,度的值高的多,这类节点称为中心(Hub)点。
作为示例,可以利用顶点加权度进行以上两种分布的拟合,以最佳的结果确定对应拓扑的分类。
接下来,说明基于网络拓扑分类进行资源分配的示例实施方式。
根据一个实施例,确定单元217还可以被配置为基于所确定的拓扑结构的类型以及顶点的类型,确定与该顶点相对应的无线网络管理装置的变化所引起的资源重分配的方式。
如前所述,拓扑结构的类型可以包括随机网络和无标度网络。相应地, 资源重分配的方式可以包括:对于随机网络,可以尝试局部修正进行资源分配;对于无标度网络,需要进一步考虑顶点在拓扑网络中产生的影响程度,影响程度较大的顶点引起的拓扑变化需要针对整体结构重新进行资源分配;影响程度较小的顶点引起的拓扑变化可以尝试局部修正进行资源分配。
接下来,结合具体示例说明基于网络拓扑分类的资源分配。
参见图10中的(a)所示的网络拓扑图,顶点灰度对应不同的频谱。方框表示可分配的频谱,例如图示将该频谱划分为有3个可分配的信道,分别标识为1、2、3。图10中的(b)示意在10中的(a)的网络拓扑图中新增了一个无线网络,对应新增的虚线顶点a,该顶点a对应的无线网络与其它无线网络间的干扰如虚线边所示。现在顶点a向SM发起频谱资源请求,资源重分配的方法例如包括:
完全重新分配,即SM将图10中的(a)的拓扑图中的所有顶点的资源分配结果全部取消,根据图10中的(b)的拓扑图中的结构为图中所有顶点重新分配频谱资源,并满足图10中的(b)中顶点间的频谱分配约束条件;拓扑图的频谱分配约束条件为:以边相连的两个顶点不能分配到相同频谱资源。
局部修正分配,即SM保留图10中的(a)拓扑图中的顶点的资源分配结果,并以该分配结果作为约束条件,为新增的顶点a分配频谱。例如,满足所有条件,为新增顶点可分配的频谱资源为信道2。
基于随机网络特性决策资源重分配方法例如包括:
随机网络特性:因为顶点在网络中产生的影响程度接近对称,所以当该网络中的顶点去除或者添加对整体分配结果影响较小,所以仅通过资源分配结果的局部修正满足全网资源分配约束的可能性较高。所以,在随机网络中,当去除或者添加的节点时,可以先进行局部修正分配方法,只有当局部修正方法无法满足所有节点频谱需求时,再考虑完全重新分配。
无标度网络特性:因为顶点在网络中产生的影响程度严重不对称,少量的顶点拥有更多和其它顶点连接的机会。一旦这些顶点去除或者添加,会对网络结构产生较大影响,资源分配结果的局部修正无法使资源得到有效利用,应该对新结构重新进行资源分配,以保证资源的有效利用。所以,在无标度网络中需要区分去除或者添加的节点是否是Hub点,Hub点可以根据拟合结果中的加权度确定。如果去除或者添加的节点是Hub点,则需要选择完全重新分配方法。如果不是Hub点,可以先进行局部修正分配方法,只有当局部修正方法无法满足所有节点频谱需求时,再考虑完全重新分配。
如前所述,本发明实施例可以应用于3.5GHz频段上的公民宽带无线服务或5GHz宽带系统。接下来,对这两中应用实例进行进一步说明。
实例一:3.5GHz的CBRS
WINNF组织制定的频谱访问系统(SAS)研究3.5GHz频段上多系统间的共存管理。在美国3.5GHz频带一直用于国防部(Department of Defense,DoD)雷达系统,目前联邦通信委员会(Federal Communications Commission,FCC)在讨论将该频段通过频谱共享的方式用于商用。该共享系统是SAS的一部分,包含三个等级:
Incumbent用户代表最高等级,incumbent用户包含上述DoD雷达系统,固定卫星服务(Fixed Satellite Service,FSS),以及有限时间内的特权陆地无线业务(grandfathered terrestrial wireless operations);
其它统称公民宽带无线服务设备(Citizens Broadband Radio Service Device,CBSD),公民宽带无线服务进一步包含优先访问许可证(priority access license,PAL)以及普通授权访问(General Authorized Access,GAA)两个等级。
频谱使用上,需要保护Incumbent用户不受到来自CBSD的有害干扰,并且需要保护PAL不受到来自GAA的有害干扰。CBRS以人口普查区(census tract)为单位进行资源分配,PAL可以使用3550-3650MHz范围内的频谱,以10MHz为单位以3年为期限发放,每个人口普查区的所有PAL所占总频谱不超过70MHz,其中每个PAL的频谱不超过40MHz。GAA在保证不对高级别用户产生有害干扰的前提下,可以使用3550-3700MHz范围内的频谱。用于资源管理的逻辑实体主要包括SAS以及域代理(Domain Proxy),参见图11,其中域代理代表个体CBSD或者网络CBSD与SAS进行交互为CDSD获得服务。当然,CBSD也可以不通过域代理直接与SAS进行交互获得服务。
CBRS联盟(CBRS-A)组织制定技术规范(TS),提供不同CBSD之间的共存。CBRS-A管理的共存组(Coexistence Group,CxG)中逻辑实体共存管理器(Coexistence Manager,CxM)负责遵循SAS的规则,管理GAA用户之间的共存,参见图12。
在本发明实施例应用于3.5GHz的CBRS的情况下,频谱分配装置SM可以为SAS或者CxM,无线网络管理装置WNM可以为CBSD,用户设备UE可以为终端用户设备(EUD)。
结构配置例如为,SAS管理CBSD,为CBSD生成第一测量配置。如果 测量需要,CBSD为EUD生成第二测量配置。SAS管理CxG,为GxG中的单位集合生成第一测量配置,GxG中的单位集合可能是一个或者多个CBSD。如果测量需要,GxG中的单位集合再为EUD生成第二测量配置。CxM管理CBSD,为CBSD生成第一测量配置,CBSD为EUD生成第二测量配置。CxM管理CxG,为GxG中的单位集合生成第一测量配置,GxG中的单位集合可能是一个或者多个CBSD。如果测量需要,GxG中的单位集合再为EUD生成第二测量配置。
实例二:5GHz宽带系统
开发用于5G宽带系统的技术是欧洲委员会(European Commission)的目标之一。研究成果包括宽带无线接入网络(BRAN)的项目:WAS/RLAN在5GHz频段的中央协作。
该系统中用于管理的逻辑实体叫做C3(中央控制和协调器(Central Controller and Coordinator)),其具体化的物理实体叫做C3实体(C3 Instance)。C3实体的实现可以是分布式互联互通的多个C3实体,通过信息交互实现对管理对象的中央协调。
该系统中的管理对象叫做WAS/RLAN。
在本发明实施例应用于5G宽带系统的情况下,频谱分配装置SM可以为C3实体,无线网络管理装置WNM可以为WAS/RLANs,用户设备UE可以为WAS/RLANs的订户(Subscriber)。
在前面针对装置的实施例的描述过程中,显然也公开了一些过程和方法。接下来,在不重复前面描述过的细节的情况下,给出对根据实施例的频谱管理方法的说明。
如图3所示,频谱管理方法包括步骤S310,生成测量配置信息。测量配置信息包括测量方式,测量方式包括以下方式中的至少一种:电子装置管理的无线网络管理装置进行测量,以及无线网络管理装置的一个或多个特定的节点进行测量。
频谱管理方法还包括步骤S320,将测量配置信息发送给一个或多个无线网络管理装置。
此外,本发明实施例还包括无线网络管理装置。
如图4所示,无线网络管理装置400包括处理电路410。处理电路410包括接收控制单元411和测量控制单元413。
接收控制单元411被配置为进行控制以从频谱管理装置接收测量配置信息。测量配置信息包括测量方式,测量方式包括以下方式中的至少一种:由无线网络管理装置进行测量,以及无线网络管理装置的一个或多个特定的节点进行测量。
测量控制单元413被配置为基于该测量方式来控制测量。
如图5所示,根据一个实施例的无线网络管理方法包括步骤S510,从频谱管理装置接收测量配置信息。测量配置信息包括测量方式,测量方式包括以下方式中的至少一种:由无线网络管理装置进行测量,以及无线网络管理装置的一个或多个特定的节点进行测量。
无线网络管理方法还包括步骤S520,基于测量方式来控制测量。
此外,本公开实施例还包括计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行根据本公开实施例的无线通信方法。
作为示例,上述方法的各个步骤以及上述装置的各个组成模块和/或单元可以实施为软件、固件、硬件或其组合。在通过软件或固件实现的情况下,可以从存储介质或网络向具有专用硬件结构的计算机(例如图13所示的通用计算机1300)安装构成用于实施上述方法的软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图13中,运算处理单元(即CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM 1303中,也根据需要存储当CPU 1301执行各种处理等等时所需的数据。CPU 1301、ROM 1302和RAM 1303经由总线1304彼此链路。输入/输出接口1305也链路到总线1304。
下述部件链路到输入/输出接口1305:输入部分1306(包括键盘、鼠标等等)、输出部分1307(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1308(包括硬盘等)、通信部分1309(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1309经由网络比如因特网执行通信处理。根据需要,驱动器1310也可链路到输入/输出接口1305。可拆卸介质1311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1310上,使得从中读出的计算机程序根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1311安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图13所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1311。可拆卸介质1311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本发明的实施例还涉及一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
本申请的实施例还涉及以下电子设备。在电子设备用于基站侧的情况下,电子设备可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,电子设备可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。电子设备可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备用于用户设备侧的情况下,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。此外,电子设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个或多个晶片的集成电路模块)。
[关于终端设备的应用示例]
图14是示出可以应用本公开内容的技术的智能电话2500的示意性配置的示例的框图。智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线 开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。
处理器2501可以为例如CPU或片上系统(SoC),并且控制智能电话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2512通常可以包括例如基带(BB)处理器2513和射频(RF)电路2514。BB处理器2513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以为其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图14所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。虽然图14示出其中无线通信接口2512包括多个BB处理器2513和多个RF电路2514的示例,但是无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO 天线中的多个天线元件),并且用于无线通信接口2512传送和接收无线信号。如图14所示,智能电话2500可以包括多个天线2516。虽然图14示出其中智能电话2500包括多个天线2516的示例,但是智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,天线开关2515可以从智能电话2500的配置中省略。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向图14所示的智能电话2500的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话2500的最小必需功能。
在图14所示的智能电话2500中,用户设备侧的设备的收发装置可以由无线通信接口2512实现。用户设备侧的电子装置或信息处理设备的处理电路和/或各单元的功能的至少一部分也可以由处理器2501或辅助控制器2519实现。例如,可以通过由辅助控制器2519执行处理器2501的部分功能而减少电池2518的电力消耗。此外,处理器2501或辅助控制器2519可以通过执行存储器2502或存储装置2503中存储的程序而执行用户设备侧的电子装置或信息处理设备的处理电路和/或各单元的功能的至少一部分。
[关于基站的应用示例]
图15是示出可以应用本公开内容的技术的gNB的示意性配置的示例的框图。gNB 2300包括多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由射频(RF)线缆彼此连接。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图15所示,gNB 2300可以包括多个天线2310。例如,多个天线2310可以与gNB 2300使用的多个频带兼容。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高 层的各种功能。例如,控制器2321根据由无线通信接口2325处理的信号中的数据来生成数据分组,并经由网络接口2323来传递所生成的分组。控制器2321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323而与核心网节点或另外的gNB进行通信。在此情况下,gNB 2300与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2323为无线通信接口,则与由无线通信接口2325使用的频带相比,网络接口2323可以使用较高频带用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2310来提供到位于gNB 2300的小区中的终端的无线连接。无线通信接口2325通常可以包括例如BB处理器2326和RF电路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为插入到基站设备2320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。
如图15所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与gNB 2300使用的多个频带兼容。如图15所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图15示出其中无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
在图15所示的gNB 2300中,基站侧的无线通信设备的收发装置可以由无线通信接口2325实现。基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分也可以由控制器2321实现。例如,控制器2321可以通过执行存储在存储器2322中的程序而执行基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分。
在上面对本发明具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以用相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。
在上述实施例和示例中,采用了数字组成的附图标记来表示各个步骤和/或单元。本领域的普通技术人员应理解,这些附图标记只是为了便于叙述和绘图,而并非表示其顺序或任何其他限定。
此外,本发明的方法不限于按照说明书中描述的时间顺序来执行,也可以按照其他的时间顺序地、并行地或独立地执行。因此,本说明书中描述的方法的执行顺序不对本发明的技术范围构成限制。
尽管上面已经通过对本发明的具体实施例的描述对本发明进行了披露,但是,应该理解,上述的所有实施例和示例均是示例性的,而非限制性的。本领域的技术人员可在所附权利要求的精神和范围内设计对本发明的各种修改、改进或者等同物。这些修改、改进或者等同物也应当被认为包括在本发明的保护范围内。

Claims (21)

  1. 一种用于频谱管理的电子装置,包括:
    处理电路,所述处理电路被配置为
    生成测量配置信息,所述测量配置信息包括测量方式,所述测量方式包括以下方式中的至少一种:所述电子装置管理的无线网络管理装置进行测量,以及所述无线网络管理装置的一个或多个特定的节点进行测量;以及
    进行控制以将所述测量配置信息发送给一个或多个所述无线网络管理装置。
  2. 根据权利要求1所述的电子装置,所述处理电路还被配置为:
    进行控制以接收来自一个或多个所述无线网络管理装置的测量结果以用于确定对所述无线网络管理装置的资源分配。
  3. 根据权利要求2所述的电子装置,所述处理电路还被配置为:基于与多个无线网络管理装置有关的测量结果,确定所述多个无线网络管理装置受到的来自邻近无线网络的干扰的统计结果的分布。
  4. 根据权利要求3所述的电子装置,所述处理电路还被配置为:基于所述统计结果的分布确定所述多个无线网络管理装置的拓扑结构的类型,并且所述资源分配是基于所确定的拓扑结构的类型确定的。
  5. 根据权利要求1所述的电子装置,其中,所述测量配置信息还包括测量对象信息,所述测量对象信息包括:
    与无线网络管理装置的工作模式有关的信息;以及
    与无线网络管理装置受到邻近无线网络的干扰模式有关的信息。
  6. 根据权利要求5所述的电子装置,其中,与工作模式有关的信息包 括:
    无线网络管理装置在预定时间段内的累计工作时长;以及/或者
    无线网络管理装置在预定时间段内的连续工作时长或者连续空闲时长的分布。
  7. 根据权利要求5所述的电子装置,其中,与干扰模式有关的信息包括:
    无线网络管理装置在预定时间段内受到的来自邻近无线网络的干扰的分布。
  8. 根据权利要求2所述的电子装置,所述处理电路还被配置为:
    基于所述测量结果生成所述多个无线网络管理装置的拓扑图,其中,无线网络管理装置对应于所述拓扑图的顶点,无线网络管理装置间的干扰对应于所述拓扑图的边。
  9. 根据权利要求8所述的电子装置,其中,所述处理电路被配置为将满足以下条件的无线网络管理装置确定为所述拓扑图的顶点:
    累计工作时长超过预设阈值;以及/或者
    累计工作时长与平均连续工作时长之比超过预设阈值。
  10. 根据权利要求9所述的电子装置,其中,所述处理电路被配置为基于以下条件确定为所述拓扑图的边:
    所述边所连接的两个无线网络管理装置满足作为所述拓扑图的顶点的条件;并且
    在所述两个无线网络管理装置中的至少一个测得来自另一个的信号强度的均值超过预设阈值。
  11. 根据权利要求10所述的电子装置,所述处理电路还被配置为通过以下方式确定所述边的权值:
    对于无向图,基于以下方式中的至少一种确定所述权值:两个方向的干扰强度均值中较大值、较小值、均值、加权和;
    对于有向图,分别针对每个方向基于该方向上的干扰强度均值确定相应权值。
  12. 根据权利要求11所述的电子装置,其中,所述处理电路被配置为基于所述拓扑图的顶点的加权度确定所述拓扑结构的类型,其中所述加权度为顶点所连接的边的所述权值之和。
  13. 根据权利要求4所述的电子装置,所述处理电路还被配置为:
    基于所确定的拓扑结构的类型以及顶点的类型,确定与该顶点相对应的无线网络管理装置的变化所引起的资源重分配的方式。
  14. 根据权利要求13所述的电子装置,其中,所述拓扑结构的类型包括随机网络和无标度网络,并且所述资源重分配的方式包括:
    对于随机网络,尝试局部修正进行资源分配;以及
    对于无标度网络,基于顶点在拓扑网络中产生的影响程度,对于影响程度较大的顶点引起的拓扑变化,针对整体结构重新进行资源分配,对于影响程度较小的顶点引起的拓扑变化,尝试局部修正以进行资源分配。
  15. 根据权利要求1至14中任一项所述的电子装置,其中,所述电子装置被配置在频谱接入系统SAS或共存管理器CxM侧,并且所述无线网络管理装置包括民用宽带无线服务装置CBSD。
  16. 根据权利要求1至14中任一项所述的电子装置,其中,所述电子装置被配置在C3实体侧,并且所述无线网络管理装置包括无线接入系统WAS或无线局域网RLAN。
  17. 一种频谱管理方法,包括:
    生成测量配置信息,所述测量配置信息包括测量方式,所述测量方式包括以下方式中的至少一种:所述电子装置管理的无线网络管理装置进行测量,以及所述无线网络管理装置的一个或多个特定的节点进行测量;以及
    将所述测量配置信息发送给一个或多个所述无线网络管理装置。
  18. 一种无线网络管理装置,包括:
    处理电路,所述处理电路被配置为
    进行控制以从频谱管理装置接收测量配置信息,所述测量配置信息包括测量方式,测量方式包括以下方式中的至少一种:由所述无线网络管理装置进行测量,以及所述无线网络管理装置的一个或多个特定的节点进行测量;以及
    基于所述测量方式来控制测量。
  19. 根据权利要求18所述的管理装置,当测量方式包括无线网络管理装置的一个或多个特定的节点进行测量时,所述处理电路还被配置为:
    生成第二测量配置并发送给所述一个或多个特定的节点;
    接收来自所述一个或多个特定的节点的第二测量结果;
    根据第二测量结果,生成第一测量结果;
    将第一测量结果报告给用于频谱管理的电子装置。
  20. 一种无线网络管理方法,包括:
    从频谱管理装置接收测量配置信息,所述测量配置信息包括测量方式,测量方式包括以下方式中的至少一种:由无线网络管理装置进行测量,以及所述无线网络管理装置的一个或多个特定的节点进行测量;以及
    基于所述测量方式来控制测量。
  21. 一种计算机可读介质,其包括可执行指令,当所述可执行指令被信息处理设备执行时,使得所述信息处理设备执行根据权利要求17或20所述的方法。
PCT/CN2019/085495 2018-05-10 2019-05-05 频谱管理装置和方法、无线网络管理装置和方法以及介质 WO2019214543A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/964,214 US11589240B2 (en) 2018-05-10 2019-05-05 Spectrum management apparatus and method, wireless network management apparatus and method, and medium
CN201980008248.3A CN111587602A (zh) 2018-05-10 2019-05-05 频谱管理装置和方法、无线网络管理装置和方法以及介质
KR1020207034692A KR102629719B1 (ko) 2018-05-10 2019-05-05 스펙트럼 관리 장치 및 방법, 무선 네트워크 관리 장치 및 방법, 및 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810443092.9 2018-05-10
CN201810443092.9A CN110475259A (zh) 2018-05-10 2018-05-10 频谱管理装置和方法、无线网络管理装置和方法以及介质

Publications (1)

Publication Number Publication Date
WO2019214543A1 true WO2019214543A1 (zh) 2019-11-14

Family

ID=68467695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085495 WO2019214543A1 (zh) 2018-05-10 2019-05-05 频谱管理装置和方法、无线网络管理装置和方法以及介质

Country Status (4)

Country Link
US (1) US11589240B2 (zh)
KR (1) KR102629719B1 (zh)
CN (2) CN110475259A (zh)
WO (1) WO2019214543A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11394482B2 (en) 2020-11-06 2022-07-19 Charter Communications Operating, Llc Jamming mitigation in CBRS network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640219A (zh) * 2015-02-02 2015-05-20 厦门大学 一种干扰协调的子帧配置方法及装置
CN105453637A (zh) * 2013-07-31 2016-03-30 三星电子株式会社 用于在无线通信系统中在无线接入点之间执行协调的方法和设备
EP3051860A1 (en) * 2013-09-24 2016-08-03 Samsung Electronics Co., Ltd. Device and method for analyzing network topology in wireless communication system
CN106454856A (zh) * 2016-11-17 2017-02-22 浙江工业大学 认知无线电中基于图论着色和层次分析法的频谱分配方法
CN106937294A (zh) * 2015-12-30 2017-07-07 上海无线通信研究中心 一种网络间频谱资源协调方法及其基站

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898604B2 (ja) * 2007-09-05 2012-03-21 Kddi株式会社 無線フレーム制御装置、無線フレーム制御方法、および無線通信装置
US20100061434A1 (en) * 2008-09-07 2010-03-11 Conexant Systems, Inc. DSL Loop Topology Recognition Based on the Insertion Loss (Hlog) Measurements
EP2624651B1 (en) 2010-09-28 2019-06-12 Nec Corporation Wireless communication system, wireless-resource determination method therefor, communication management device, and control method and control program for said communication management device
KR20120070297A (ko) * 2010-12-21 2012-06-29 한국전자통신연구원 펨토셀 기지국 탐색 시스템 및 방법
US9066303B2 (en) 2012-06-25 2015-06-23 Hitachi, Ltd. Power control in LTE-advanced heterogeneous networks
US9386469B2 (en) * 2012-10-01 2016-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for RF performance metric estimation
EP2954714A2 (en) * 2013-02-07 2015-12-16 Interdigital Patent Holdings, Inc. Interference measurements and management in directional mesh networks
CN103763708B (zh) * 2014-01-23 2017-07-14 上海无线通信研究中心 一种网络频谱共享方法
KR20170007819A (ko) * 2014-05-30 2017-01-20 후아웨이 테크놀러지 컴퍼니 리미티드 무선 네트워크 제어 방법 및 무선 네트워크 제어기
CN105636088B (zh) * 2014-10-31 2019-02-01 华为技术有限公司 一种处理小区间干扰的方法、设备、控制装置及基站
CN112333715A (zh) * 2015-09-15 2021-02-05 索尼公司 电子设备及频谱管理方法、基站侧的电子设备及方法
KR101809667B1 (ko) * 2015-12-04 2017-12-15 진태원 천연 미네랄복합체 성분이 함유된 고성능 사료첨가제 제조방법
CN108024352A (zh) * 2016-11-03 2018-05-11 索尼公司 用于资源管理装置、数据库和对象的电子设备和方法
US11032717B2 (en) * 2017-10-03 2021-06-08 Samsung Electronics Co., Ltd. Method and apparatus for improving coexistence performance by measurements in wireless communication systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453637A (zh) * 2013-07-31 2016-03-30 三星电子株式会社 用于在无线通信系统中在无线接入点之间执行协调的方法和设备
EP3051860A1 (en) * 2013-09-24 2016-08-03 Samsung Electronics Co., Ltd. Device and method for analyzing network topology in wireless communication system
CN104640219A (zh) * 2015-02-02 2015-05-20 厦门大学 一种干扰协调的子帧配置方法及装置
CN106937294A (zh) * 2015-12-30 2017-07-07 上海无线通信研究中心 一种网络间频谱资源协调方法及其基站
CN106454856A (zh) * 2016-11-17 2017-02-22 浙江工业大学 认知无线电中基于图论着色和层次分析法的频谱分配方法

Also Published As

Publication number Publication date
KR20210008011A (ko) 2021-01-20
KR102629719B1 (ko) 2024-01-29
CN111587602A (zh) 2020-08-25
US20210044983A1 (en) 2021-02-11
US11589240B2 (en) 2023-02-21
CN110475259A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
JP6442763B2 (ja) 共同電力制御及びチャネル割り当てを用いた空白帯域におけるスペクトル共有
US8934909B2 (en) Method and apparatus for providing communication offloading to unlicensed bands
US11736949B2 (en) Electronic device, wireless communication method and computer readable medium
US11589367B2 (en) Electronic devices and method for use in resource management devices, databases and objects
WO2016062172A1 (zh) 频谱管理装置和方法、用于无线通信的装置和方法
WO2019170070A1 (zh) 用于无线通信的电子设备、方法和计算机可读存储介质
WO2015109841A1 (zh) 认知无线电系统频谱资源配置方法和装置
WO2019206073A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN107302764B (zh) 无线通信方法和无线通信设备
WO2013044804A1 (zh) 一种同频干扰协调方法和装置
US20230164756A1 (en) Method and system for oran-cbrs interworking in wireless network
JP7074134B2 (ja) 制御装置、基地局、端末装置、方法及び記録媒体
WO2017121378A1 (zh) 网络管理侧和用户设备侧的装置及方法、中央管理装置
WO2019214543A1 (zh) 频谱管理装置和方法、无线网络管理装置和方法以及介质
WO2019174531A1 (zh) 电子装置、频谱管理方法以及控制方法
WO2017124997A1 (zh) 频谱管理装置及方法、基站侧和用户设备侧的装置及方法
WO2018205877A1 (zh) 用于无线通信的电子设备和方法
WO2018019105A1 (zh) 电子设备和用于电子设备的方法
TWI648998B (zh) 無線資源搶占方法、無線通訊系統以及無線接入節點
WO2019072125A1 (zh) 电子装置、无线通信方法以及计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207034692

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19800208

Country of ref document: EP

Kind code of ref document: A1