WO2018019105A1 - 电子设备和用于电子设备的方法 - Google Patents

电子设备和用于电子设备的方法 Download PDF

Info

Publication number
WO2018019105A1
WO2018019105A1 PCT/CN2017/091932 CN2017091932W WO2018019105A1 WO 2018019105 A1 WO2018019105 A1 WO 2018019105A1 CN 2017091932 W CN2017091932 W CN 2017091932W WO 2018019105 A1 WO2018019105 A1 WO 2018019105A1
Authority
WO
WIPO (PCT)
Prior art keywords
high priority
electronic device
secondary system
cluster
priority
Prior art date
Application number
PCT/CN2017/091932
Other languages
English (en)
French (fr)
Inventor
赵友平
丁炜
孙晨
郭欣
Original Assignee
索尼公司
赵友平
丁炜
孙晨
郭欣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 赵友平, 丁炜, 孙晨, 郭欣 filed Critical 索尼公司
Priority to AU2017302958A priority Critical patent/AU2017302958B2/en
Priority to CN201780030543.XA priority patent/CN109155916B/zh
Priority to US16/311,180 priority patent/US10757578B2/en
Priority to CA3032018A priority patent/CA3032018A1/en
Priority to EP22183012.8A priority patent/EP4096266A1/en
Priority to EP17833408.2A priority patent/EP3493573B1/en
Publication of WO2018019105A1 publication Critical patent/WO2018019105A1/zh
Priority to US16/919,352 priority patent/US11277752B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular to spectrum resource management in a wireless communication system utilizing cognitive radio technology, and more particularly to an electronic device and a method for an electronic device.
  • an electronic device including: a processing circuit, The method is configured to: obtain a first set of high priority secondary systems based on mutual interference between the low priority secondary system and the high priority secondary system, wherein the high priority secondary system and the at least one low priority in the first set The mutual interference between the secondary systems is higher than a predetermined level; and the high priority secondary systems in the first set are clustered based on information related to the first set.
  • a method for an electronic device comprising: obtaining a first set of high priority secondary systems based on mutual interference between a low priority secondary system and a high priority secondary system, wherein Mutual interference between the high priority secondary system and the at least one low priority secondary system in the first set is higher than a predetermined level; and the high priority in the first set is based on information related to the first set System clustering.
  • An electronic device and method increases a low priority order while ensuring quality of service of a high priority sub system by clustering a high priority sub system in consideration of a low priority sub system The available spectrum resources of the system.
  • Figure 1 shows a schematic diagram of a scenario of a cognitive radio system
  • FIG. 2 is a functional block diagram showing an electronic device in accordance with one embodiment of the present application.
  • Figure 3 shows a schematic diagram of the determination of the interference area
  • FIG. 4 shows an example of a directed weighted graph constructed by taking 3 sub-systems as an example
  • Figure 5 shows a specific example of a flow chart of the clustering operation of the first set of high priority secondary systems
  • Figure 6 shows a specific example of a flow chart of the clustering operation of the second set of high priority secondary systems
  • FIG. 7 is a functional block diagram showing an electronic device according to another embodiment of the present application.
  • Figure 8 shows an example of an information flow
  • Figure 9 shows another example of the information flow
  • Figure 10 shows a schematic diagram of a simulation scenario
  • Figure 11 shows a graph of simulation results
  • Figure 12 shows another graph of the simulation results
  • Figure 13 shows a flow chart of a method for an electronic device in accordance with one embodiment of the present application
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a server
  • 15 is a block diagram of an exemplary structure of a general purpose personal computer in which methods and/or apparatus and/or systems in accordance with embodiments of the present invention may be implemented.
  • a plurality of cognitive transceivers constitute a Cognitive Radio System (CRS), or a Dynamic Spectrum Access (DSA) system.
  • CRS Cognitive Radio System
  • DSA Dynamic Spectrum Access
  • the cognitive radio system includes a primary system and a secondary system, wherein a system that has been authorized to use the spectrum is referred to as a primary system, and an unauthorized communication system that dynamically accesses the licensed spectrum according to a certain rule is referred to as a secondary system.
  • a functional module called Spectrum Coordinator (SC) is also set up to manage the secondary system and allocate resources for it.
  • a common spectrum coordinator (P-SC) that manages multiple spectrum coordinators can also be set.
  • the secondary system may also be a system with spectrum usage rights, but has a lower priority in spectrum usage than the primary system, for example, when the operator deploys a new base station to provide new services, the existing base station And the services provided are used as the primary system with priority in spectrum usage.
  • cognitive radio systems include broadcast television systems and wifi communication systems.
  • the broadcast television system is the main system and may include a primary user base station (such as a television tower) and a plurality of primary users (such as a television set).
  • the wifi communication system is a secondary system that includes a secondary user base station (e.g., a wifi access point) and a secondary user (e.g., a portable computer).
  • the spectrum of some channels on the digital broadcast television spectrum or the spectrum of adjacent channels can be dynamically utilized, and wifi communication can be performed without interfering with the reception of television signals.
  • the UHF band is allocated to broadcast television services, so the broadcast television system has the highest priority in this band and is the primary system.
  • spectrum resources not used by the broadcast television system in UHF during a certain period of time may be allocated to other communication systems such as the above-described wifi communication system or mobile communication system.
  • the communication mode in which the primary and secondary systems coexist requires that the application of the secondary system does not apply to the primary system.
  • the effects of adverse effects, or the spectrum utilization of the secondary system, can be controlled within the limits of the primary system.
  • multiple secondary systems may allocate primary system resources available for the secondary system.
  • the main system is a broadcast television system
  • the present application is not limited thereto, and the main system may also be other communication systems having legal spectrum usage rights, such as a mobile communication system.
  • the secondary system can also be used for other systems that need to use spectrum resources for communication, such as smart meter reading systems.
  • the secondary system is a wireless communication system, which can be understood as a combination of a plurality of devices having a transmitting and receiving function.
  • the wireless communication system can be a collection of all base stations and user equipment of the same mobile operator, or a collection of all base stations and user equipment of the same communication system using the same mobile operator.
  • the wireless communication system may also be a subset of the above set, for example, may be limited to base stations and user equipment in the management area of the spectrum coordinator.
  • the wireless communication system can also be a collection of base stations and user equipment of different mobile operators using the same communication system or a subset thereof similar to that previously described.
  • the wireless communication system can also be a collection of base stations and user equipment belonging to the same service provider or a subset thereof similar to that previously described.
  • the wireless communication system may be a subset of an LTE communication system, such as a collection of subsystems at the cell level, where the subsystem at the cell level includes, for example, one base station (macro base station or small base station) And one or more user devices.
  • the wireless communication system is not limited to the LTE communication system or a subset thereof, but may be other types of communication systems or a subset thereof, such as a WiFi communication system or a subset thereof.
  • a wireless communication system can also be understood as a cluster of devices formed by a plurality of user devices.
  • different sub-systems may have different priority levels in dynamically using spectrum resources, wherein high-priority sub-systems preferentially use spectrum resources than low-priority sub-systems.
  • a secondary system used by schools, hospitals, etc. can be used as a high priority secondary system, and others can be used as a low priority secondary system.
  • resource allocation it is generally only for high-priority subsystems, and low-priority subsystems are not considered, which may result in fewer available spectrum resources for low-priority subsystems.
  • the subsystem can access the idle licensed spectrum as a whole (ie, the current spectrum is not occupied by the primary system), and the secondary system is prevented from interfering with the primary system. .
  • Figure 1 shows a schematic diagram of a scenario of a cognitive radio system.
  • the secondary system is shown in Figure 1 as a transceiver pair.
  • the secondary system can be any of the wireless communication systems described above.
  • FIG. 1 is only an example for the sake of description.
  • the scenario in which the technology of the present application can be applied is not limited thereto.
  • the number of spectrum coordinators may be one or more, and the distribution of the secondary system. It can also be in various other forms.
  • the electronic device 100 includes a determining unit 101 configured to be based on mutual interference between a low priority secondary system and a high priority secondary system. Determining a first set of the high priority secondary systems, wherein mutual interference between the high priority secondary system and the at least one low priority secondary system in the first set is higher than a predetermined level; and the clustering unit 102 is The method is configured to cluster the high priority secondary systems in the first set based on information related to the first set.
  • the determining unit 101 and the clustering unit 102 can be implemented, for example, by one or more processing circuits, which can be implemented, for example, as a chip.
  • the determining unit 101 determines that the mutual interference with the low priority secondary system is high so that a high priority secondary system such as a quality of service requirement cannot be guaranteed as the first set, and the clustering unit 102 has a high priority in the first set
  • the secondary system performs clustering to minimize the number of clusters into which the high priority secondary system in the first set is divided, while ensuring the quality of service of these secondary systems.
  • the low priority secondary system can have more available spectrum resources.
  • clustering refers to grouping subsystems so that the secondary systems in the same group have less mutual interference when communicating using the same spectrum resources, for example, to meet their respective quality of service requirements. At the same time, different clusters use different spectrum resources. In this way, the utilization efficiency of spectrum resources can be improved while satisfying the service quality requirements of each subsystem.
  • the determining unit 101 is configured to determine the first set by determining interference sets for each of the low priority secondary systems and combining the interference sets, wherein the interference set packets A high priority sub-system comprising interference to the low priority sub-system that is higher than the first predetermined level and a high priority sub-system for which the low priority sub-system interferes with a second predetermined level.
  • the predetermined level of interference is represented by a predetermined Signal to Interference and Noise Ratio (SINR), which also represents the quality of service required by the secondary system.
  • SINR Signal to Interference and Noise Ratio
  • the determining unit 101 After obtaining the interference set for each of the low priority secondary systems, the determining unit 101 combines the interference sets to obtain the first set.
  • the determining unit 101 is configured to determine the interference radius and the basis for the moving secondary system.
  • the interference area is determined for its moving area to determine the interference set.
  • the interference radius can be obtained by taking the equal sign of equation (1) and obtaining it by transformation. And obtained, at this time Interference radius It is as shown in the following formula (3). It can be seen that the interference radius is different when the transmission power of the high priority subsystem is different.
  • the length of the interference radius extends outward from the point in the vertical direction, and the finally obtained area is the interference area.
  • a high priority secondary system in the interference zone can be added to the interference set.
  • the high-priority sub-system moves within a certain area
  • a similar manner can be used to obtain the interference radius based on the following equation (4) to obtain the interference region, wherein the equation (4) is obtained by taking the equation (2) Equal sign, and the interference radius obtained by the transformation
  • the high priority secondary system can be added to the interference set of the corresponding low priority secondary system.
  • the determining unit 101 may determine the moving area by referring to the history information or the geographical location database.
  • the clustering unit 102 clusters the high priority secondary systems in the first set. It should be understood that these high priority subsystems may be managed by one spectrum coordinator or by multiple spectrum coordinators.
  • the clustering unit 102 can be configured to cluster the high priority secondary systems in the first set as follows: select the most cumulative interference that is affected by other high priority secondary systems that are not clustered in the first set
  • the high-priority sub-system is the first member of the cluster; when adding a new member of the cluster, the high-priority system in the un-clustered high-priority system in the first set is selected to receive the highest priority of the cumulative interference of the existing members of the cluster.
  • the level system is such that the mutual interference between the members in the cluster after the addition is completed does not exceed the allowable value.
  • Such a clustering method can make each cluster The geographical distribution of members is relatively concentrated, helping to reduce the number of clusters.
  • the clustering manner is not limited to clustering the high priority secondary system in the first set, but can be applied to clustering of other various secondary systems, including but not limited to high priority other than the first set. Clustering of hierarchical systems, clustering of all high-priority subsystems, and so on.
  • the mutual interference between the members in the cluster does not exceed the allowable value, for example, by making the quality of service of each member in the cluster reach its quality of service requirement.
  • the SINR of each member in the cluster may be reached or exceeded its SINR threshold, or the difference between the SINR and the SINR threshold of each member may exceed a preset value, which may be based, for example, according to a preset value.
  • the number of secondary systems and the number of available resources are set.
  • the clustering unit 102 is also configured to create a new cluster if the number of existing clusters does not reach the number of available channels, if there is a high priority secondary system that cannot be added to the existing cluster.
  • a high-priority sub-system is added to an existing cluster, if there is a subsystem in the cluster that cannot meet its quality of service requirements, such as the SINR threshold, the high-priority subsystem cannot be added to the existing cluster.
  • the clustering is stopped, and the current clustering result is output, and the un-clustered high-priority subsystem does not participate in spectrum allocation, that is, the spectrum cannot be obtained. right.
  • clustering unit 102 can determine the interference relationship between high priority subsystems by establishing a directed weighting map.
  • the directed weighting map can be constructed, for example, based on the position and transmit power of the high priority secondary system.
  • the set, w ij represents the relative interference of the secondary system i by the secondary system j, and w i represents the cumulative relative interference experienced by the secondary system i, as shown in the following equations (5) and (6), respectively.
  • d ji represents the distance between the transmitter of the secondary system j and the receiver of the secondary system i
  • d ii represents the transmitter of the secondary system i
  • C s represents the set of subsystems belonging to the cluster s.
  • FIG. 4 shows an example of a directed weighted graph constructed by taking three high priority sub-systems as an example.
  • the three sub-systems are vertices, which are indicated by the serial numbers 1, 2, and 3 respectively.
  • the two vertices are connected as directed edges, and the w ij marked on the directional edges is weighted.
  • the subscripts are the two vertices of the edge.
  • Serial number For example, when there is a secondary system 1 in cluster 1, and when adding a new member, the interference of the secondary system 1 subjected to the secondary systems 2 and 3 is compared, that is, w 21 and w 31 are compared, and the larger one is selected.
  • the secondary system is added to cluster 1 and it is determined whether the SINR of each secondary system in cluster 1 reaches its threshold at this time. If the threshold is reached, it indicates that the secondary system can be added to cluster 1. Similar comparisons and additions are made when there are more secondary systems.
  • clustering may be performed in the same manner as described above, or clustering may be performed in other manners, and may be clustered independently or based on the clustering result of the first set.
  • Clusters which are all non-limiting.
  • the determining unit 101 may be further configured to use a high priority sub-system other than the first set as the second set, wherein the mutual interaction between the high priority sub-system in the second set and each low-priority sub-system The interference is below a predetermined level, and the clustering unit 102 clusters the high priority subsystem based on the information related to the first set and the second set.
  • clustering unit 102 can be configured to perform clustering to minimize the number of clusters ultimately obtained. In this way, the number of spectrum resources that can be used by the low priority subsystem can be maximized.
  • the clustering unit 102 is configured to first cluster the high priority secondary systems in the first set and to cluster the high priority secondary systems in the second set based on the results of the clustering. For example, the clustering unit 102 adds the high priority secondary system in the second set to the existing cluster obtained by clustering the high priority secondary system in the first set, and A new cluster is created if it cannot be added to an existing cluster and the number of existing clusters does not reach the number of available channels.
  • FIG. 5 shows the flow of the clustering operation of the first set in this example.
  • the high priority secondary system in the first set is placed in the unclustered set in step A11; in step A12, the initial value of the cluster number t is set to 1; in step A13, the cluster A is t) initialized to an empty set, and the secondary system that has the largest cumulative interference from other subsystems in the unclustered set is added to the cluster A(t) from the unclustered set, and then added to the cluster A(t) in step A14.
  • This secondary system in the cluster is removed from the clustered collection.
  • step A15 it is judged whether or not the un-clustered set is empty. If it is empty, indicating that the clustering is over, the process proceeds to step A23, and the clustering result of the first set is output.
  • step A17 the secondary system that is the largest cumulative interference from the existing subsystems in the cluster is selected from the candidate set and added to A(t). It is determined in step A18 whether each member in the cluster satisfies its SINR requirement, that is, whether the SINR is higher than its threshold. If it is higher than the threshold, it indicates that the secondary system added in step A17 can be added to the cluster, and the process returns to step A14 to continue the operation of joining the cluster members.
  • step A19 the SINR value of the secondary system in the cluster is lower than the threshold, indicating that the secondary system added in step A17 cannot be added to the cluster
  • the process proceeds to step A19, and the newly added time is removed from the cluster.
  • the system then removes the secondary system from the candidate set.
  • step A20 it is judged in step A20 whether the candidate set is empty, and if it is not empty, it returns to step A17 to try to join other secondary systems in the candidate set. Otherwise, it is necessary to create a new cluster, so the sequence number t of the cluster is incremented by one in step A21, and it is judged in step A22 whether the number of clusters exceeds the number of available channels.
  • step A22 If the determination in A22 is YES, it means that a new cluster cannot be created, and the process proceeds to step A23, the clustering ends and the clustering result of the first set is output. Otherwise, if the determination in the A22 is NO, the process returns to the step A13 to continue the clustering.
  • FIG. 6 shows one specific example of a flowchart of the clustering operation of the second set in this example.
  • the sequence number of the step is shown in Figure 5.
  • step A24 the clustering result of the first set is input, assuming that there are T clusters at this time; in step A25, all un-clustered high-priority subsystems are added to the un-clustered set;
  • step A26 the initial value of the sequence number t of the cluster is set to 1; in step A27, it is determined whether the sequence number t is greater than T, and if the determination is no, the current cluster is a cluster created in the cluster of the first set, and then A new member is added to the cluster, and the process proceeds to step A30.
  • step A28 Initialize cluster A(t) to an empty set in step A28, and never divide The sub-system in the cluster set that is selected to be most heavily interfered by the other sub-systems in the un-clustered set is added to the cluster A(t), and then the sub-system that is added to the cluster in step A29 is never clustered. Removed.
  • step A30 it is judged whether or not the un-clustered set is empty. If it is empty, indicating that the clustering is over, the process proceeds to step A38, and the final clustering result is output. Otherwise, proceeding to step A31, all high priority sub-systems in the un-clustered set are added to the candidate set. Then, in step A32, the secondary system that is most affected by the accumulated interference of the existing subsystems in the cluster is selected from the candidate set and added to A(t). It is determined in step A33 whether each member in the cluster satisfies its SINR requirement, such as whether the SINR is above its threshold.
  • step A32 If it is higher than the threshold, it indicates that the secondary system added in step A32 can be added to the cluster, and the process returns to step A27 to continue the operation of joining the cluster members. Otherwise, the process proceeds to step A34, the secondary system just joined is removed from the cluster and the secondary system is removed from the candidate set. Next, it is judged in step A35 whether the candidate set is empty. If it is not empty, it returns to step A32 to try to join other secondary systems in the candidate set. Otherwise, it is necessary to create a new cluster, so the sequence number t of the cluster is incremented by 1 in step A36, and it is judged in step A37 whether the number of clusters exceeds the number of available channels.
  • step A37 If the determination in A37 is YES, it means that a new cluster cannot be created, and the process proceeds to step A38, the clustering ends and the clustering result is output. Otherwise, if the determination in A37 is NO, the process returns to step A27 to continue clustering.
  • the clustering unit 102 can be configured to first cluster the high priority secondary systems in the second set and cluster the high priority secondary systems in the first set based on the results of the clustering.
  • the specific clustering method can be, for example, the manner described above, and will not be repeated here.
  • the clustering unit 102 can also set different weights to the high priority subsystems in the first set and the second set, respectively; and the high priority secondary systems in the first set and the second set, respectively At the same time, clustering is performed, and the cumulative interferences of the high-priority subsystems are weighted by using the corresponding weights at the time of clustering.
  • the high priority sub-systems in the first set and the second set are distinguished by weights. The manner of clustering has not changed, but the cumulative interference experienced by the high-priority subsystem is weighted corresponding to the category of the high-priority subsystem.
  • a directed weighting map including all high priority secondary systems in the second set of the first set may be established, but cumulative interference received by a certain high priority secondary system is calculated based on the directed weighted graph (eg After being subjected to cumulative interference by unsplittered high-priority subsystems or by cumulative interference from existing subsystems in the cluster, the cumulative weights are weighted using corresponding weights.
  • the weight of the high priority secondary system in the first set is ⁇ 1
  • the weight of the high priority secondary system in the second set is ⁇ 2 .
  • weights higher than the weights of the high priority subsystems in the second set may be set to the higher priority subsystems in the first set, ie may be set to ⁇ 1 > ⁇ 2 .
  • the high priority system in the first set can be preferentially clustered.
  • the electronic device 100 classifies a high priority secondary system according to interference between a low priority secondary system and a high priority secondary system, and performs clustering and spectrum resource allocation based on the result of the classification, The available spectrum of the low priority subsystem is effectively increased while ensuring the quality of service of the high priority subsystem.
  • the implementation of the clustering performed by the clustering unit 102 in the present embodiment is not limited to those described above, but may be in any suitable manner.
  • FIG. 7 shows a functional block diagram of an electronic device 200 in accordance with one embodiment of the present application.
  • the electronic device 200 includes, in addition to the determining unit 101 and the clustering unit 102 described with reference to FIG. 2, a transceiver unit 201 configured to receive information about at least one of the following:
  • the operations of determining unit 101 and clustering unit 102 are: subsystem priority, geographic location, transmit power, and quality of service requirements.
  • the determining unit 101 may determine a high priority secondary system and a low priority secondary system based on the information, thereby determining mutual interference between them and determining the first set based on the mutual interference.
  • the clustering unit 102 performs clustering based on the above information related to the high priority secondary system in the first set.
  • the clustering unit 102 can construct a directed weighting map based on the information to determine an interference relationship between the high priority secondary systems and to cluster according to the interference relationship. Further, for the second set, the determining unit 101 and the clustering unit 102 perform similar operations, and specific details have been given in the first embodiment, and are not repeated here.
  • the secondary system is managed by a single spectrum coordinator.
  • the electronic device 200 is for example located in a spectrum coordinator or connected to a spectrum coordinator.
  • the transceiving unit 201 receives the above information from the low priority subsystem and the high priority subsystem.
  • the operations of the determining unit 101 and the clustering unit 102 described in the first embodiment relate only to the secondary system managed by the same spectrum coordinator.
  • the transceiver unit 201 is also configured to use a spectrum coordinator The spectrum assigned to the high priority sub-system is notified to the corresponding high priority sub-system based on the result of the clustering.
  • FIG. 8 shows an example of an information flow for information interaction between the spectrum coordinator and the secondary system. It should be understood that this information flow is for illustrative purposes only and is not limiting.
  • the spectrum coordinator may include any one of the electronic devices 100 and 200 described above or can implement at least a part of its functions.
  • the secondary system managed by the spectrum coordinator reports information about its priority, geographic location, transmit power, and quality of service requirements such as SINR thresholds.
  • the SC determines a first set based on the information, that is, a set of high priority sub-systems that interfere with each other with at least one low priority system that exceeds a predetermined level.
  • the SC then clusters the high priority secondary system based on the set and allocates the spectrum based on the result of the clustering.
  • the SC notifies the corresponding high priority system to the allocated spectrum.
  • the secondary systems are each managed by multiple spectrum coordinators.
  • the electronic device 200 is, for example, located in or connected to a common spectrum coordinator that controls a plurality of spectrum coordinators.
  • the secondary system in the overlapping area is uniformly clustered by the common spectrum coordinator, and the sensitive information of the user is not required between the spectrum coordinators, which is beneficial to protect privacy and improve security.
  • a common spectrum coordinator can be set to control the operation of SC1 and SC2.
  • the common spectrum coordinator may determine and then notify each spectrum coordinator according to the geographical location information; or the respective management regions may be exchanged between the respective spectrum coordinators to determine the overlap region, such as, for example, It is implemented by means of broadcasting.
  • the transceiving unit 201 is configured to receive the above-described related information of the secondary system it manages from the respective spectrum coordinators.
  • the determining unit 101 determines an interference set of each low priority secondary system based on the information, such as the interference set of SS1 and SS2 determined in FIG. 1, and obtains the first set by combining the interference sets.
  • the clustering unit 102 then clusters the high priority secondary systems in the first set.
  • the transceiving unit 201 is further configured to transmit the result of the clustering to the corresponding spectrum coordinator such that the spectrum coordinator allocates spectrum resources for the high priority sub-system it manages according to the result of the clustering.
  • the result of clustering may include the identity of the high priority secondary system managed by the corresponding spectrum coordinator and the cluster identity of the cluster in which it is located. For example, you can identify the cluster with The spectrum resources are set to correspond one-to-one, so that the spectrum coordinator can determine the spectrum resources to be allocated to the high priority subsystem belonging to the cluster according to the cluster identifier.
  • FIG. 9 shows an example of an information flow of information interaction in this example. It should be understood that this information flow is for illustrative purposes only and is not limiting.
  • the public spectrum coordinator may include any one of the electronic devices 100 and 200 described above or be capable of realizing at least a part of its functions.
  • the secondary system managed by the spectrum coordinator includes information to which the high priority secondary system and the low priority secondary system report respective priorities, geographic locations, transmit power, and quality of service requirements such as SINR thresholds;
  • the secondary system managed by SC2 also reports this information to it in the same way.
  • SC1 and SC2 then report this information to the P-SC.
  • the P-SC determines a first set based on the information, that is, a set of high priority sub-systems that interfere with each other with at least one low priority system that exceeds a predetermined level.
  • the SC clusters the high priority secondary systems managed by SC1 and SC2 based on the set, and provides the clustered results, such as the identifier of the high priority secondary system and the cluster identifier of the cluster in question, to the corresponding spectrum coordinator.
  • the spectrum coordinator allocates a spectrum to the high priority subsystem it manages based on the clustering result and notifies the corresponding high priority subsystem.
  • the electronic device 200 may also be located in the spectrum coordinator in the absence of the common spectrum coordinator.
  • the transceiver unit 201 receives the above-mentioned related information from other spectrum coordinators (such as information of priority, geographical location, transmission power, and quality of service requirements of each secondary system it manages), and the determining unit 101 and the clustering unit 102 After the above determining and clustering operations are performed, after the clustering is completed, the transceiver unit 201 transmits the clustered result to the corresponding spectrum coordinator.
  • the relevant details have been described in detail in the foregoing and will not be repeated here.
  • Figure 10 shows a schematic diagram of a simulation scenario.
  • the high priority sub-system and the low priority sub-system share the same spectrum pool, assuming that only one pair of users in each sub-system is communicating in a given time interval.
  • the transmitter is at the center of the secondary system
  • the receiver is at the edge of the secondary system
  • the transmitters of the high priority subsystem are randomly and evenly distributed in the 100 m ⁇ 100 m area
  • the transmitter of the low priority sub system is located at the center of the entire area.
  • Each sub-system has a service radius of 20 meters and only considers large-scale fading.
  • the simulation parameters are set as follows: the number of high priority subsystems is 8 or 15, the number of low priority subsystems is 1, the number of available channels is 5, the SINR threshold is 15 dB, the transmission power is 0 dBm, and the path loss index is 3.
  • FIG. 11 shows a cumulative distribution of the number of clusters obtained by clustering the high-priority system of the first set in the case of determining the first set (as indicated by a solid line), and further, FIG.
  • 11 also shows a cumulative distribution of the number of clusters of the first set obtained by clustering the high-priority subsystems by using the clustering method described in the present application without distinguishing between the first set and the second set (as indicated by a broken line), And a cumulative distribution of the number of clusters of the first set obtained when clustering the high priority subsystem using a sequential dyeing algorithm (as indicated by the dashed line with dots).
  • the method for distinguishing the first set and the second set for clustering proposed in the present application can reduce the clustering of the high priority sub-system in the first set with respect to the method of not distinguishing and the traditional sequential dyeing algorithm.
  • the number, that is, the available spectrum of the low priority secondary system is increased.
  • Fig. 12 shows the simulation results corresponding to Fig. 11 when the number of high priority sub-systems is 15, and 1000 cycle simulations are also performed. It can be seen that when the number of high priority sub-systems increases, the advantage of the algorithm of the present application in reducing the number of clusters of the high priority sub-system in the first set is more obvious than the sequential dyeing method.
  • the number of clusters of the first set obtained by the algorithm of the present application is 2 to 5; In the case where the hierarchical systems are randomly distributed in a certain area, the number of clusters of the first set obtained by the algorithm of the present application is 2 to 7.
  • FIG. 13 shows a flow chart of a method for an electronic device according to an embodiment of the present application, the method comprising: obtaining the high priority based on mutual interference between a low priority secondary system and a high priority secondary system a first set of secondary systems (S11), wherein mutual interference between the high priority secondary system and the at least one low priority secondary system in the first set is higher than a predetermined level; and based on being associated with the first set Information to cluster the high priority secondary system in the first set (S12).
  • S11 first set of secondary systems
  • the first set may be determined, for example, by determining an interference set for each low priority secondary system and combining the interference sets in step S11, wherein the interference set includes a higher interference to the low priority secondary system than the first predetermined level
  • the priority sub-system and the low-priority sub-system cause high-priority sub-systems with interference higher than the second predetermined level.
  • the predetermined level of interference is represented by a predetermined signal to interference and noise ratio.
  • a secondary system for a mobile can determine its interference radius to determine its interference region based on its mobile region to determine the above-described interference set.
  • the moving area can be determined by referring to historical information or a geographic location database.
  • clustering is performed in step S12 to minimize the number of clusters divided by the high priority subsystem in the first set.
  • a high priority secondary system other than the first set is also used as the second set in step S11, wherein the mutual interaction between the high priority secondary system and the second low priority secondary system in the second set The interference is below the predetermined level.
  • the high priority secondary system is clustered based on the information related to the first set and the second set in step S12. For example, clustering is performed to minimize the number of clusters ultimately obtained.
  • the high priority secondary systems in the first set may be clustered first, and the high priority secondary systems in the second set may be clustered based on the results of the clustering.
  • the high priority secondary system in the second set may also be clustered first, and the high priority secondary system in the first set may be clustered based on the result of the clustering.
  • weights may be set to the high priority secondary systems in the first set and the second set, respectively, and the high priority secondary systems in the first set and the second set are simultaneously clustered, and used in clustering
  • the corresponding weights weight the cumulative interference experienced by the high priority subsystem. For example, a high priority system in the first set can be set to a higher priority than in the second set The weight of the system is higher.
  • the high priority secondary system in the first set may be clustered as follows: selecting a high priority secondary system with the largest cumulative interference of other high priority secondary systems that are not clustered in the first set as a cluster The first member of the cluster; when adding a new member of the cluster, select the high-priority sub-system in the high-priority sub-system of the un-clustered in the first set that is most affected by the existing members of the cluster, so that the addition is satisfied After the completion, the mutual interference between the members in the cluster does not exceed the allowable value. In the case where the number of existing clusters does not reach the number of available channels, if there is a high priority secondary system that cannot be added to the existing cluster, a new cluster is created.
  • the high priority secondary system in the second set when the high priority secondary system in the second set is clustered, it is added to the existing cluster obtained by clustering the high priority secondary system in the first set, and cannot be added to A new cluster is created in the existing cluster and the number of existing clusters does not reach the number of available channels.
  • the interference relationship between the high priority subsystems can be judged by establishing the directed weighting graph.
  • the high priority secondary system in the first set and the high priority secondary system in the second set can be independently clustered.
  • the above method may be performed by the spectrum coordinator, although not shown in the figure, the above method may further include the following steps: from the low priority system and the high priority
  • the system receives information regarding at least one of: for the processing of steps S11 and S12: secondary system priority, geographic location, transmit power, and quality of service requirements; prioritizing the spectrum coordinator based on clustered results
  • the spectrum allocated by the secondary system informs the corresponding high priority subsystem.
  • the above methods may be performed by a common spectrum coordinator or by a spectrum coordinator.
  • the above method may further comprise the step of receiving, from each spectrum coordinator, information of at least one of the sub-systems it manages for the processing of steps S11 and S12: sub-system priority Level, geographic location, transmit power, and quality of service requirements; the clustered results are sent to the corresponding spectrum coordinator.
  • the result of clustering may include the identity of the high priority secondary system managed by the corresponding spectrum coordinator and the cluster identity of the cluster in which it resides.
  • the electronic device and method according to the present application can achieve one or more of the following effects: increasing the available spectrum of the low priority secondary system; ensuring the quality of service of the high priority secondary system; avoiding between the spectrum coordinators Interact sensitive information of the secondary system to protect privacy and improve security.
  • the electronic devices 100 to 200 can be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the electronic devices 100 to 200 may be control modules mounted on a server (such as an integrated circuit module including a single wafer, and a card or blade inserted into a slot of the blade server).
  • the base stations in the above mentioned secondary systems can be implemented as any type of evolved Node B (eNB), such as macro eNBs and small eNBs.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of user equipments to be described below can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the user equipment in the secondary system can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal ( Such as car navigation equipment).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a server 700 to which the technology of the present disclosure can be applied.
  • Server 700 includes a processor 701, a memory 702, a storage device 703, a network interface 704, and a bus 706.
  • the processor 701 can be, for example, a central processing unit (CPU) or a digital signal processor. (DSP), and controls the functions of the server 700.
  • the memory 702 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 701.
  • the storage device 703 may include a storage medium such as a semiconductor memory and a hard disk.
  • Network interface 704 is a wired communication interface for connecting server 700 to wired communication network 705.
  • the wired communication network 705 can be a core network such as an Evolved Packet Core Network (EPC) or a packet data network (PDN) such as the Internet.
  • EPC Evolved Packet Core Network
  • PDN packet data network
  • the bus 706 connects the processor 701, the memory 702, the storage device 703, and the network interface 704 to each other.
  • Bus 706 can include two or more buses (such as a high speed bus and a low speed bus) each having a different speed.
  • the determining unit 101, the clustering unit 102, and the like described with reference to FIGS. 2 and 7 can be implemented by the processor 701.
  • the processor 701 can perform the first set determining operation and the clustering operation of the present application by performing operations of the determining unit 101 and the clustering unit 102.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 1500 shown in FIG. 15), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 1501 executes various processes in accordance with a program stored in a read only memory (ROM) 1502 or a program loaded from a storage portion 1508 to a random access memory (RAM) 1503.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1501 executes various processes and the like is also stored as needed.
  • the CPU 1501, the ROM 1502, and the RAM 1503 are connected to each other via a bus 1504.
  • Input/output interface 1505 is also coupled to bus 1504.
  • the following components are connected to the input/output interface 1505: an input portion 1506 (including a keyboard, a mouse, etc.), an output portion 1507 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage portion 1508 (including a hard disk or the like), the communication portion 1509 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 1509 performs communication processing via a network such as the Internet.
  • the driver 1510 can also be connected to the input/output interface 1505 as needed.
  • a removable medium 1511 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1510 as needed, so that the computer program read therefrom is installed into the storage portion 1508 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1511.
  • such a storage medium is not limited to the removable medium 1511 shown in FIG. 15 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 1511 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1502, a hard disk included in the storage portion 1508, or the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种电子设备和用于电子设备的方法,该电子设备包括处理电路,被配置为:基于低优先级次系统与高优先级次系统之间的相互干扰确定高优先级次系统的第一集合,其中,第一集合中的高优先级次系统与至少一个低优先级次系统之间的相互干扰高于预定水平;以及基于与第一集合相关的信息,来对第一集合中的高优先级次系统分簇。

Description

电子设备和用于电子设备的方法
本申请要求于2016年7月29日提交中国专利局、申请号为201610616418.4、发明名称为“电子设备和用于电子设备的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及利用认知无线电技术的无线通信系统中的频谱资源管理,更具体地涉及一种电子设备和用于电子设备的方法。
背景技术
随着无线通信技术的发展,用户对高品质、高速度、新服务的服务需求越来越高。无线通讯运营商和设备商要不断改进系统以满足用户的需求。这需要大量的频谱资源来支持不断出现的新服务和满足高速通信需求,频谱资源例如可以用时间、频率、带宽、可容许最大发射功率等参数来量化。
目前,有限的频谱资源已经分配给固定的运营商和服务,新的可用频谱是非常稀少的或者是价格昂贵的。而大量的实测结果表明已分配的授权频谱的利用率普遍不高。在这种情况下,提出了动态频谱利用的概念,即动态地利用那些已经分配给某些服务但是却没有被充分利用的频谱资源。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种电子设备,包括:处理电路, 被配置为:基于低优先级次系统与高优先级次系统之间的相互干扰获得高优先级次系统的第一集合,其中,第一集合中的高优先级次系统与至少一个低优先级次系统之间的相互干扰高于预定水平;以及基于与第一集合相关的信息,来对第一集合中的高优先级次系统分簇。
根据本申请的另一个方面,提供了一种用于电子设备的方法,包括:基于低优先级次系统与高优先级次系统之间的相互干扰获得高优先级次系统的第一集合,其中,第一集合中的高优先级次系统与至少一个低优先级次系统之间的相互干扰高于预定水平;以及基于与第一集合相关的信息,来对第一集合中的高优先级次系统分簇。
依据本发明的其它方面,还提供了用于电子设备的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现这些方法的计算机程序代码的计算机可读存储介质。
根据本申请的实施例的电子设备和方法通过在考虑低优先级次系统的情况下对高优先级次系统进行分簇,在保证高优先级次系统的服务质量的同时增加了低优先级次系统的可用频谱资源。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的上述以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了认知无线电系统的场景的一个示意图
图2是示出了根据本申请的一个实施例的电子设备的功能模块框图;
图3示出了干扰区域的确定的示意图;
图4示出了以3个次系统为例所构建的有向加权图的示例;
图5示出了第一集合的高优先级次系统的分簇操作的流程图的一个具体示例;
图6示出了第二集合的高优先级次系统的分簇操作的流程图的一个具体示例;
图7是示出了根据本申请的另一个实施例的电子设备的功能模块框图;
图8示出了信息流程的一个示例;
图9示出了信息流程的另一个示例;
图10示出了仿真场景的一个示意图;
图11示出了仿真结果的曲线图;
图12示出了仿真结果的另一个曲线图;
图13示出了根据本申请的一个实施例的用于电子设备的方法的流程图;
图14示出了服务器的示意性配置的示例的框图;以及
图15是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/ 或处理步骤,而省略了与本发明关系不大的其他细节。
认知无线电系统
认知无线电(Cognitive Radio,CR)技术作为软件无线电技术的一个智能化演进,能够使非授权用户通过一定的规则动态接入授权频谱,极大地提高了实际的频谱利用率。多个具有认知功能的收发机构成认知无线电系统(Cognitive Radio System,CRS),或称为动态频谱接入(Dynamic Spectrum Access,DSA)系统。可以认为,认知无线电系统包括主系统和次系统,其中,已被授权使用频谱的系统被称为主系统,根据一定的规则动态接入该授权频谱的非授权通信系统被称为次系统。此外,还设置称为频谱协调器(Spectrum Coordinator,SC)的功能模块来管理次系统并为其分配资源。进一步地,还可以设置管理多个频谱协调器的公共频谱协调器(P-SC)。
可替选地,次系统也可以是具有频谱使用权的系统,但是在频谱使用上具有比主系统低的优先级别,例如,运营商在部署新的基站以提供新服务的时候,已有基站以及提供的服务被作为主系统而具有频谱使用优先权。
作为一个应用实例,认知无线电系统包括广播电视系统和wifi通信系统。其中,由于广播电视频谱本身就是分配给广播电视系统使用的,因此广播电视系统是主系统,可以包括主用户基站(例如电视塔)和多个主用户(例如电视机)。wifi通信系统是次系统,分别包括次用户基站(例如wifi接入点)和次用户(例如便携式计算机)。在该认知无线电系统中,可以动态地利用数字广播电视频谱上某些没有播放节目的频道的频谱或者相邻频道的频谱,在不干扰电视信号接收的情况下,进行wifi通信。
具体地,UHF频段是划分给广播电视服务的,因此广播电视系统在该频段具有最高的优先级别,是主系统。此外,UHF中广播电视系统在某一时段、某一区域所不使用的频谱资源可以分配给其他通信系统例如上述的wifi通信系统或者移动通信系统使用。
这种主次系统共存的通讯方式要求次系统的应用对主系统的应用不 造成不良影响,或者说次系统的频谱利用所造成的影响能被控制在主系统容许的范围之内。在保证对主系统的干扰在一定范围内、即不超过其干扰门限的情况下,多个次系统可以对可供次系统使用的主系统资源进行分配。
本领域的技术人员应该理解,虽然上述例举了主系统为广播电视系统的情形,但是本申请并不限于此,主系统也可以为其他具有合法频谱使用权的通信系统,例如移动通信系统,而次系统也可以为其他需要利用频谱资源进行通信的系统,比如智能抄表系统。
在本申请的实施例中,次系统为无线通信系统,可以理解为具有发送和接收功能的多个设备的组合。例如,无线通信系统可以为同一移动运营商的所有基站和用户设备的集合,或者同一移动运营商使用相同通信制式的所有基站和用户设备的集合。无线通信系统也可以是上述集合的子集,例如可以限定于频谱协调器的管理区域中的基站和用户设备。此外,无线通信系统还可以为使用相同通信制式的不同移动运营商的基站和用户设备的集合或者其类似于前文所述的子集。另一方面,无线通信系统还可以为属于同一服务提供商的基站和用户设备的集合或者其类似于前文所述的子集。作为示例,在LTE通信系统的情况下,无线通信系统可以是LTE通信系统的子集,例如小区级别的子系统的集合,其中,小区级别的子系统例如包括一个基站(宏基站或小基站)和一个或多个用户设备。当然,无线通信系统并不限于LTE通信系统或者其子集,还可以是其他类型的通信系统或者其子集,比如WiFi通信系统或者其子集等。此外,在一些示例中,例如在设备到设备通信场景中,无线通信系统还可以理解为多个用户设备形成的设备簇。
此外,不同的次系统在动态使用频谱资源方面可以具有不同的优先级别,其中,高优先级次系统比低优先级次系统优先使用频谱资源。例如对于WiFi通信系统,学校、医院等所使用的次系统可以作为高优先级次系统,其他的可以作为低优先级次系统。例如,在进行资源分配时,一般仅针对高优先级次系统,而不考虑低优先级次系统,这可能导致低优先级次系统的可用频谱资源较少。本申请的技术应用于高优先级次系统和低优先级次系统时,次系统可作为整体接入空闲的授权频谱(即,当前频谱没有被主系统占用),避免次系统对主系统产生干扰。
图1示出了认知无线电系统的场景的一个示意图。为了简洁,在图1中将次系统示出为收发机对。但是应该理解,这仅是示例,次系统可以为上文所述的任何无线通信系统。
在图1所示的场景中,存在两个频谱协调器SC1和SC2,其管理区域相互交叠,其中,实线连接的次系统由SC2管理,虚线连接的次系统由SC1管理,横线填充的次系统SS1和SS2为低优先级次系统,其余为高优先级次系统。应该理解,图1仅是一个为了描述而示出的示例,本申请的技术所能够应用的场景并不限于此,例如,频谱协调器的数量可以为1个或者更多个,次系统的分布也可以为其他各种形式。
<第一实施例>
图2示出了根据本申请的一个实施例的电子设备100的功能模块框图,电子设备100包括:确定单元101,被配置为基于低优先级次系统与高优先级次系统之间的相互干扰确定所述高优先级次系统的第一集合,其中,第一集合中的高优先级次系统与至少一个低优先级次系统之间的相互干扰高于预定水平;以及分簇单元102,被配置为基于与第一集合相关的信息,来对第一集合中的高优先级次系统分簇。
其中,确定单元101和分簇单元102例如可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
确定单元101确定与低优先级次系统之间的相互干扰较高以至于比如不能保证服务质量要求的高优先级次系统作为第一集合,并且分簇单元102对第一集合中的高优先级次系统进行分簇,以在保证这些次系统的服务质量的前提下,最小化第一集合中的高优先级次系统所分成的簇的数量。这样,低优先级次系统可以有更多的可用频谱资源。在本申请中,分簇指的是对次系统进行分组,以使得同一组中的次系统在使用相同的频谱资源同时进行通信时其间的相互干扰较小,例如能够满足各自的服务质量需求,同时,不同的簇使用不同的频谱资源。这样,可以提高频谱资源的利用效率,同时满足各个次系统的服务质量需求。
在一个示例中,确定单元101被配置为通过确定每一个低优先级次系统的干扰集合并合并这些干扰集合来确定第一集合,其中干扰集合包 括对该低优先级次系统的干扰高于第一预定水平的高优先级次系统以及该低优先级次系统对其造成的干扰高于第二预定水平的高优先级次系统。
例如,在低优先级次系统的位置固定时,可以通过下式(1)来判断低优先级次系统m对高优先级次系统n产生的干扰是否会超过第一预定水平,并且类似地可以通过下式(2)来判断高优先级次系统n对低优先级次系统m产生的干扰是否会超过第二预定水平。在这里,干扰的预定水平用预定的信干噪比(Signal to interference and noise ratio,SINR)表示,SINR也代表了次系统所要求的服务质量。
Figure PCTCN2017091932-appb-000001
Figure PCTCN2017091932-appb-000002
其中,
Figure PCTCN2017091932-appb-000003
表示高优先级次系统n的发射功率,
Figure PCTCN2017091932-appb-000004
表示低优先级次系统m的发射功率,
Figure PCTCN2017091932-appb-000005
表示低优先级次系统m的发射机和高优先级次系统n的接收机间的距离,
Figure PCTCN2017091932-appb-000006
表示高优先级次系统n的发射机和低优先级次系统m的接收机间的距离,
Figure PCTCN2017091932-appb-000007
表示高优先级次系统n的收发机间的距离,
Figure PCTCN2017091932-appb-000008
表示低优先级次系统m的收发机间的距离,α表示路径损耗指数,σ2表示噪声功率,
Figure PCTCN2017091932-appb-000009
Figure PCTCN2017091932-appb-000010
分别表示高优先级次系统n的接收机和低优先级次系统m所需要达到的SINR门限值。可以看出,当式(1)成立时,低优先级次系统m对高优先级次系统n产生的干扰会超过第一预定水平;以及/或者当式(2)成立时,高优先级次系统n对低优先级次系统m产生的干扰会超过第二预定水平,从而可以将高优先级次系统n加入到低优先级次系统m的干扰集合中。在获得了每一个低优先级次系统的干扰集合后,确定单元101将这些干扰集合合并以获得第一集合。
另一方面,在低优先级次系统在一定区域内移动时,如果根据其位置变化来实时更新干扰集合以及进行分簇等,会导致系统信令开销过高,因此可以替代地确定移动区域对应的干扰区域,如图3所示。在这种情况下,确定单元101被配置为针对移动的次系统确定其干扰半径从而基 于其移动区域而确定其干扰区域,以确定干扰集合。
干扰半径可以通过将式(1)取等号,并且通过变换求得
Figure PCTCN2017091932-appb-000011
而获得,此时求得的
Figure PCTCN2017091932-appb-000012
即为干扰半径
Figure PCTCN2017091932-appb-000013
如下式(3)所示。可以看出,高优先级次系统的发射功率不同时,干扰半径也不同。
Figure PCTCN2017091932-appb-000014
如图3所示,针对移动区域的边界上的每个点,从该点沿垂线方向向外延伸干扰半径的长度,最终获得的区域即为干扰区域。处于该干扰区域中的高优先级次系统可以被加入干扰集合中。
此外,当高优先级次系统在一定区域内移动时,可以使用类似的方式基于下式(4)来获得其干扰半径进而获得其干扰区域,其中式(4)是通过将式(2)取等号,并且通过变换求得的干扰半径
Figure PCTCN2017091932-appb-000015
当干扰区域中存在低优先级次系统时,该高优先级次系统可以被加入到相应低优先级次系统的干扰集合中。
Figure PCTCN2017091932-appb-000016
作为示例,确定单元101可以通过参考历史信息或地理位置数据库来确定移动区域。
在确定单元101确定每一个低优先级次系统的干扰集合并合并以获得第一集合之后,分簇单元102对第一集合中的高优先级次系统进行分簇。应该理解,这些高优先级次系统可能由一个频谱协调器管理,也可能由多个频谱协调器管理。
示例性地,分簇单元102可以被配置为如下对第一集合中的高优先级次系统进行分簇:选择受到第一集合中的未分簇的其他高优先级次系统的累积干扰最大的高优先级次系统作为簇的第一个成员;在添加簇的新成员时,选择第一集合中未分簇的高优先级次系统中受到该簇的已有成员的累积干扰最大的高优先级次系统,使得满足添加完成后簇内各个成员之间的相互干扰不超过容许值。这样的分簇方式可以使得各个簇的 成员的地理位置分布相对集中,有助于减少簇的数量。并且,该分簇方式并不限于对第一集合中的高优先级次系统进行分簇,而是可以应用于其他各种次系统的分簇,包括但不限于对第一集合以外的高优先级次系统的分簇,对所有高优先级次系统的分簇等等。
其中,簇内各个成员之间的相互干扰不超过容许值例如通过使得簇内每个成员的服务质量能够达到其服务质量需求来衡量。示例性地,可以使簇内每个成员的SINR达到或超过其SINR门限值,或者使得每个成员的SINR与SINR门限值的差值超过一预设值,该预设值例如可以根据次系统的数量和可用资源数量来设定。
分簇单元102还被配置为在已有的簇的数目未达到可用信道数的情况下,如果存在无法添加到已有簇的高优先级次系统,则创建新的簇。当一个高优先级次系统加入到已有的簇后,簇内存在不能达到其服务质量需求比如SINR门限值的次系统时,说明该高优先级次系统不能加入到已有的簇中。另一方面,如果已有的簇的数目已达到可用信道数,则停止分簇,输出当前的分簇结果,未分簇的高优先级次系统不参与频谱分配,即,无法获得频谱的使用权。
此外,以上虽然示出了在添加簇的新成员时选择受到该簇的已有成员的累积干扰最大的高优先级次系统的示例,但是也可以选择受到该簇的已有成员的累积干扰最小的高优先级次系统。
在一个示例中,分簇单元102可以通过建立有向加权图来判断高优先级次系统之间的干扰关系。有向加权图例如可以根据高优先级次系统的位置和发射功率来构建。有向加权图可以表示为G=(V,E,W),其中V代表高优先级次系统构成的集合,E代表次系统间的有向边集合,W代表所有有向边权重wij的集合,wij代表次系统i受到次系统j的相对干扰,wi代表次系统i受到的累积相对干扰,分别如下式(5)和(6)所示。
Figure PCTCN2017091932-appb-000017
Figure PCTCN2017091932-appb-000018
其中,Pj和Pi分别表示次系统j与次系统i的发射功率,dji表示次系 统j的发射机和次系统i的接收机之间的距离,dii表示次系统i的发射机和接收机之间的距离,Cs表示属于簇s的次系统的集合。通过比较wi值,可以选择例如受到该簇的已有成员的累积干扰最大的高优先级次系统。
为了便于理解,图4示出了以3个高优先级次系统为例所构建的有向加权图的示例。其中,3个次系统为顶点,分别用序号1、2、3来指示,连接两个顶点的为有向边,有向边上所标的wij为权重,下标分别为边的两个顶点的序号。例如,当簇1内有一个次系统1并且在添加新的成员时,比较次系统2和3所受到的次系统1的干扰,即比较w21和w31,选择较大的一个所对应的次系统加入到簇1中并且判断此时簇1内各个次系统的SINR是否达到其门限值,如果能够达到其门限值,则说明可以将该次系统加入到簇1中。当存在更多的次系统时,进行类似的比较和添加。
对于第一集合以外的高优先级次系统,可以采用与上述相同的方式进行分簇,也可以采用其他的方式进行分簇,并且可以独立地分簇或基于对第一集合的分簇结果分簇,这都是非限制性的。
作为示例,确定单元101还可以被配置为将第一集合以外的高优先级次系统作为第二集合,其中第二集合中的高优先级次系统与每一个低优先级次系统之间的相互干扰均低于预定水平,并且分簇单元102基于与第一集合和第二集合相关的信息,来对高优先级次系统分簇。
例如,分簇单元102可以被配置为进行分簇以最小化最终获得的簇的数量。这样,可以使得低优先级次系统能够使用的频谱资源的数量最大化。
在一个示例中,分簇单元102被配置为首先对第一集合中的高优先级次系统进行分簇,并且基于分簇的结果对第二集合中的高优先级次系统进行分簇。例如,分簇单元102在对第二集合中的高优先级次系统进行分簇时将其添加到通过对第一集合中的高优先级次系统进行分簇获得的已有的簇中,并且在无法添加到已有的簇中并且已有的簇的数目未达到可用信道数的情况下创建新的簇。
为了便于理解,图5示出了该示例中的第一集合的分簇操作的流程 图的一个具体示例。应该理解,图5仅是说明性的,而不是限制性的,分簇单元102所执行的操作并不限于此。
例如,在步骤A11中将第一集合中的高优先级次系统放入未分簇集合中;在步骤A12中,将簇的序号t的初始值设置为1;在步骤A13中将簇A(t)初始化为空集,并且从未分簇集合中选择受到未分簇集合中的其他次系统的累积干扰最大的次系统加到簇A(t)中,随后在步骤A14中将被加入到簇中的该次系统从未分簇集合中移除。在步骤A15中判断未分簇集合是否为空,如果为空,说明分簇结束,则进行到步骤A23,输出第一集合的分簇结果。否则进行到步骤A16,将未分簇集合中的所有高优先级次系统加入到候选集合中。然后在步骤A17中从候选集合中选择受到簇内已有次系统的累积干扰最大的次系统加入到A(t)中。在步骤A18中判断对于簇中的每个成员,是否满足其SINR要求,即SINR是否高于其门限值。如果高于门限值,说明步骤A17中加入的次系统能够被加入该簇中,处理返回到步骤A14,以继续加入簇成员的操作。否则,如果簇内有次系统的SINR值低于其门限值,说明步骤A17中加入的次系统不能被加入该簇中,则处理进行至步骤A19,从该簇中移除刚刚加入的次系统并且从候选集合中移除该次系统。接着在步骤A20中判断候选集合是否为空,如果不为空,则返回至步骤A17,来尝试加入候选集合中其它的次系统。否则说明需要创建新的簇,因此在步骤A21中将簇的序号t加1,并且在步骤A22中判断簇的数目是否超过可用信道数。如果在A22中判断为是,则说明无法创建新的簇,进行到步骤A23,分簇结束并且输出第一集合的分簇结果。否则,如果在A22中判断为否,则处理返回至步骤A13继续进行分簇。
图6示出了该示例中的第二集合的分簇操作的流程图的一个具体示例。其中,步骤的序号接图5。在步骤A24中,输入第一集合的分簇结果,假设此时已有T个簇;在步骤A25中,将所有的未分簇的高优先级次系统加入到未分簇集合中;在步骤A26中,将簇的序号t的初始值设置为1;在步骤A27中,判断序号t是否大于T,如果判断为否,说明当前簇是第一集合的分簇中创建的簇,接下来要在该簇中加入新成员,处理进行到步骤A30。否则,如果判断t大于T,则说明要创建新的簇,处理进行到步骤A28。在步骤A28中将簇A(t)初始化为空集,并且从未分 簇集合中选择受到未分簇集合中的其他次系统的累积干扰最大的次系统加到簇A(t)中,随后在步骤A29中将被加入到簇中的该次系统从未分簇集合中移除。
在步骤A30中判断未分簇集合是否为空,如果为空,说明分簇结束,则进行到步骤A38,输出最终的分簇结果。否则进行到步骤A31,将未分簇集合中的所有高优先级次系统加入到候选集合中。然后在步骤A32中从候选集合中选择受到簇内已有次系统的累积干扰最大的次系统加入到A(t)中。在步骤A33中判断对于簇中的每个成员,是否满足其SINR要求,例如SINR是否高于其门限值。如果高于门限值,说明步骤A32中加入的次系统能够被加入该簇中,处理返回到步骤A27,以继续加入簇成员的操作。否则,处理进行到步骤A34,从该簇中移除刚刚加入的次系统并且从候选集合中移除该次系统。接着在步骤A35中判断候选集合是否为空,如果不为空,则返回至步骤A32,来尝试加入候选集合中其它的次系统。否则说明需要创建新的簇,因此在步骤A36中将簇的序号t加1,并且在步骤A37中判断簇的数目是否超过可用信道数。如果在A37中判断为是,则说明无法创建新的簇,进行到步骤A38,分簇结束并且输出分簇结果。否则,如果在A37中判断为否,则处理返回至步骤A27继续进行分簇。
或者,分簇单元102可以被配置为首先对第二集合中的高优先级次系统进行分簇,并且基于分簇的结果对第一集合中的高优先级次系统进行分簇。具体的分簇方法例如可以采用上文所述的方式,在此不再重复。
在另一个示例中,分簇单元102还可以分别向第一集合和第二集合中的高优先级次系统设置不同的权值;以及对第一集合和第二集合中的高优先级次系统同时分簇,在分簇时使用对应权值对高优先级次系统所受到的累积干扰进行加权。在该示例中,通过权值来区分第一集合和第二集合中的高优先级次系统。分簇的方式并没有改变,只是对高优先级次系统受到的累积干扰进行了与该高优先级次系统的类别对应的加权。
具体地,例如可以建立包括第一集合第二集合中的所有高优先级次系统的有向加权图,但是,在基于有向加权图计算出某一高优先级次系统受到的累积干扰(比如受到未分簇的高优先级次系统的累积干扰或者受到簇内已有次系统的累积干扰)后,使用相应的权值来对该累积干扰 进行加权。比如,第一集合中的高优先级次系统的权值为β1,第二集合中的高优先级次系统的权值为β2
示例性地,可以向第一集合中的高优先级次系统设置比第二集合中的高优先级次系统的权值更高的权值,即可以设置为β12。这样,例如可以优先对第一集合中的高优先级系统进行分簇。
根据本申请的实施例的电子设备100通过根据低优先级次系统与高优先级次系统之间的干扰对高优先级次系统进行分类,并基于分类的结果进行分簇和频谱资源分配,可以在保证高优先级次系统的服务质量的前提下有效地增加低优先级次系统的可用频谱。
应该理解,本实施例中分簇单元102所进行的分簇的实现方式并不限于上文中所述的那些,而是可以采用任何适当的方式。
<第二实施例>
图7示出了根据本申请的一个实施例的电子设备200的功能模块框图。如图7所示,电子设备200除了包括参照图2所描述的确定单元101和分簇单元102之外,还包括:收发单元201,被配置为接收关于如下中的至少之一的信息以用于确定单元101和分簇单元102的操作:次系统优先级、地理位置、发射功率和服务质量需求。例如,确定单元101可以基于这些信息来确定高优先级次系统和低优先级次系统,进而确定它们之间的相互干扰并根据该相互干扰来确定第一集合。分簇单元102基于与第一集合中的高优先级次系统相关的上述信息来进行分簇。如前所述,分簇单元102可以基于这些信息来构建有向加权图,从而确定高优先级次系统之间的干扰关系并根据该干扰关系来分簇。此外,对于第二集合,确定单元101和分簇单元102执行类似的操作,具体细节在第一实施例中已经给出,在此不再重复。
在一个示例中,次系统由单个频谱协调器管理。电子设备200例如位于频谱协调器中或连接到频谱协调器。在这种情况下,收发单元201从低优先级次系统和高优先级次系统接收上述信息。
在第一实施例中所述的确定单元101和分簇单元102的操作仅涉及同一频谱协调器管理的次系统。收发单元201还被配置为将频谱协调器 基于分簇的结果而为高优先级次系统分配的频谱通知相应的高优先级次系统。
为了便于理解,图8示出了频谱协调器与次系统间进行信息交互的信息流程的一个示例。应该理解,该信息流程仅是为了说明的用途,而不是限制性的。其中,频谱协调器可以包括前文所述的电子设备100和200中的任意一个或者能够实现其至少一部分功能。
首先,频谱协调器(SC)所管理的次系统向其报告各自的优先级、地理位置、发射功率和服务质量需求比如SINR门限等的信息。SC根据这些信息来确定第一集合,即与至少一个低优先级系统的相互干扰超过预定水平的高优先级次系统的集合。然后,SC基于该集合对高优先级次系统进行分簇,并且基于分簇的结果来分配频谱。SC将分配的频谱通知给相应的高优先级次系统。
在另一个示例中,次系统分别由多个频谱协调器管理。电子设备200例如位于对多个频谱协调器进行控制的公共频谱协调器中或连接到该公共频谱协调器。在该示例中,由公共频谱协调器对交叠区域中的次系统统一进行分簇,并且频谱协调器之间不需要交互敏感的用户信息,有利于保护隐私以及提高安全性。
如图1中所示的场景中,可以设置公共频谱协调器来控制SC1和SC2的操作。关于交叠区域的确定,可以由公共频谱协调器根据地理位置信息来确定然后通知各个频谱协调器;也可以在各个频谱协调器之间交互各自的管理区域从而确定交叠区域,这种交互例如通过广播的方式实现。
在该示例中,收发单元201被配置为从各个频谱协调器接收其管理的次系统的上述相关信息。确定单元101基于这些信息来确定各个低优先级次系统的干扰集合,如图1中所确定的SS1和SS2的干扰集合,并且通过合并这些干扰集合来获得第一集合。然后,分簇单元102对第一集合中的高优先级次系统进行分簇。
此外,收发单元201还被配置为将分簇的结果发送给相应的频谱协调器,以使得频谱协调器根据该分簇的结果来为其管理的高优先级次系统分配频谱资源。示例性地,分簇的结果可以包括相应的频谱协调器管理的高优先级次系统的标识和所在簇的簇标识。例如,可以将簇标识与 频谱资源设置为一一对应的,从而频谱协调器可以根据簇标识来确定要分配给属于该簇的高优先级次系统的频谱资源。
为了便于理解,图9示出了该示例中的信息交互的信息流程的一个示例。应该理解,该信息流程仅是为了说明的用途,而不是限制性的。其中,公共频谱协调器可以包括前文所述的电子设备100和200中的任意一个或者能够实现其至少一部分功能。
首先,频谱协调器(SC1)所管理的次系统包括高优先级次系统和低优先级次系统向其报告各自的优先级、地理位置、发射功率和服务质量需求比如SINR门限等的信息;并且SC2所管理的次系统也向同样地向其报告这些信息。然后,SC1和SC2将这些信息报告给P-SC。P-SC根据这些信息来确定第一集合,即与至少一个低优先级系统的相互干扰超过预定水平的高优先级次系统的集合。然后,SC基于该集合对SC1和SC2所管理的高优先级次系统进行分簇,并且将分簇的结果比如高优先级次系统的标识和所在簇的簇标识提供给相应的频谱协调器。频谱协调器根据该分簇结果来为其管理的高优先级次系统分配频谱并通知给相应的高优先级次系统。
以上虽然描述了电子设备200位于公共频谱协调器或连接到公共频谱协调器的情形,但是在不存在公共频谱协调器的情况下,电子设备200也可以位于频谱协调器中。具体地,收发单元201接收来自其他频谱协调器的上述相关信息(比如其管理的各个次系统的优先级、地理位置、发射功率和服务质量需求等的信息),确定单元101和分簇单元102执行上述确定和分簇操作,在分簇完成后,收发单元201将分簇的结果发送给相应的频谱协调器。相关的细节在前文中已经详细描述,在此不再重复。
下面通过一个仿真示例来示出本申请的分簇技术所带来的系统性能的提升。图10示出了仿真场景的示意图。其中,高优先级次系统和低优先级次系统共享同一频谱池,假设在给定的时间间隔内,每个次系统里仅有一对用户在通信。发射机处于次系统的中心,接收机处于次系统边缘,高优先级次系统的发射机随机均匀分布在100米×100米区域内,低优先级次系统的发射机位于整个区域的中心。每个次系统的服务半径为20米,仅考虑大尺度衰落。
仿真参数设置如下:高优先级次系统数量8或15个,低优先级次系统的数量为1个,可用信道数为5个,SINR门限为15dB,发射功率为0dBm,路径损耗指数为3。
在仿真中,设置高优先级次系统数为8,并且改变这8个次系统的位置,进行了1000次循环仿真。图11示出了在确定第一集合的情况下对第一集合的高优先级次系统进行分簇得到的分簇数的累积分布(如实线所示),此外,图11中还示出了在不区分第一集合和第二集合而采用本申请中所述的分簇方法对高优先级次系统进行分簇时得到的第一集合的分簇数的累积分布(如虚线所示),以及在使用顺序染色算法对高优先级次系统进行分簇时得到的第一集合的分簇数的累积分布(如带圆点的虚线所示)。
可以看出,本申请所提出的区分第一集合和第二集合进行分簇的方法相对于不进行区分的方法和传统的顺序染色算法,能够降低第一集合内高优先级次系统的分簇数,即,增加了低优先级次系统的可用频谱。
类似地,图12示出了高优先级次系统数为15时与图11相对应的仿真结果,也进行了1000次循环仿真。可以看出,在高优先级次系统数增多时,与顺序染色法相比,本申请的算法降低第一集合内高优先级次系统的分簇数的优势更加明显。
此外,可以看出,在8个高优先级次系统在一定区域内随机分布的情况下,采用本申请的算法所获得的第一集合的簇的数目为2至5个;在15个高优先级次系统在一定区域内随机分布的情况下,采用本申请的算法所获得的第一集合的簇的数目为2至7个。
<第三实施例>
在上文的实施方式中描述电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的方法可以完全由计算机可执行的程序来 实现,尽管这些方法也可以采用电子设备的硬件和/或固件。
图13示出了根据本申请的一个实施例的用于电子设备的方法的流程图,该方法包括:基于低优先级次系统与高优先级次系统之间的相互干扰获得所述高优先级次系统的第一集合(S11),其中,第一集合中的高优先级次系统与至少一个低优先级次系统之间的相互干扰高于预定水平;以及基于与所述第一集合相关的信息,来对第一集合中的高优先级次系统分簇(S12)。
在步骤S11中例如可以通过确定每一个低优先级次系统的干扰集合并合并这些干扰集合来确定第一集合,其中干扰集合包括对该低优先级次系统的干扰高于第一预定水平的高优先级次系统以及该低优先级次系统对其造成的干扰高于第二预定水平的高优先级次系统。示例性地,干扰的预定水平用预定的信干噪比表示。
例如,针对移动的次系统可以确定其干扰半径从而基于其移动区域而确定其干扰区域,以确定上述干扰集合。可以通过参考历史信息或地理位置数据库来确定移动区域。
在一个示例中,在步骤S12中执行分簇以最小化第一集合中的高优先级次系统所分成的簇的数量。
在另一个示例中,在步骤S11中还将第一集合以外的高优先级次系统作为第二集合,其中第二集合中的高优先级次系统与每一个低优先级次系统之间的相互干扰均低于预定水平。在步骤S12中基于与第一集合和第二集合相关的信息,来对高优先级次系统分簇。例如,执行分簇以最小化最终获得的簇的数量。
例如,可以首先对第一集合中的高优先级次系统进行分簇,并且基于分簇的结果对第二集合中的高优先级次系统进行分簇。也可以首先对第二集合中的高优先级次系统进行分簇,并且基于分簇的结果对第一集合中的高优先级次系统进行分簇。
或者,可以分别向第一集合和第二集合中的高优先级次系统设置不同的权值,并且对第一集合和第二集合中的高优先级次系统同时分簇,在分簇时使用对应权值对高优先级次系统所受到的累积干扰进行加权。例如,可以向第一集合中的高优先级系统设置比第二集合中的高优先级 系统的权值更高的权值。
作为一个示例,可以如下对第一集合中的高优先级次系统进行分簇:选择受到第一集合中的未分簇的其他高优先级次系统的累积干扰最大的高优先级次系统作为簇的第一个成员;在添加簇的新成员时,选择第一集合中未分簇的高优先级次系统中受到该簇的已有成员的累积干扰最大的高优先级次系统,使得满足添加完成后簇内各个成员之间的相互干扰不超过容许值。在已有的簇的数目未达到可用信道数的情况下,如果存在无法添加到已有簇的高优先级次系统,则创建新的簇。
此外,在对第二集合中的高优先级次系统进行分簇时将其添加到通过对第一集合中的高优先级次系统进行分簇获得的已有的簇中,并且在无法添加到已有的簇中且已有的簇的数目未达到可用信道数的情况下创建新的簇。
其中,可以通过建立有向加权图来判断高优先级次系统之间的干扰关系。
此外,还可以对第一集合中的高优先级次系统和第二集合中的高优先级次系统独立进行分簇。
在次系统由单个频谱协调器管理的情况下,上述方法可以由频谱协调器端执行,虽然图中未示出,但是上述方法还可以包括如下步骤:从低优先级次系统与高优先级次系统接收关于如下中的至少之一的信息以用于步骤S11和S12的处理:次系统优先级、地理位置、发射功率和服务质量需求;将频谱协调器基于分簇的结果而为高优先级次系统分配的频谱通知相应的高优先级次系统。
在次系统分别由多个频谱协调器管理的情况下,上述方法可以由公共频谱协调器执行,或者由一个频谱协调器执行。虽然图中未示出,但是上述方法还可以包括如下步骤:从各个频谱协调器接收其管理的次系统的关于如下中的至少之一的信息以用于步骤S11和S12的处理:次系统优先级、地理位置、发射功率和服务质量需求;将分簇的结果发送给相应的频谱协调器。例如,分簇的结果可以包括相应的频谱协调器管理的高优先级次系统的标识和所在簇的簇标识。
注意,上述各个方法可以结合或单独使用,其细节在第一至第二实 施例中已经进行了详细描述,在此不再重复。
综上所述,根据本申请的电子设备和方法能够实现如下效果中的一个或多个:增加低优先级次系统的可用频谱;保证高优先级次系统的服务质量;避免在频谱协调器间交互次系统的敏感信息,保护隐私,提升安全性。
<应用示例>
本公开内容的技术能够应用于各种产品。例如,电子设备100至200可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。电子设备100至200可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
此外,以上提到的次系统中的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,次系统中的用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于电子设备的应用示例]
图14是示出可以应用本公开内容的技术的服务器700的示意性配置的示例的框图。服务器700包括处理器701、存储器702、存储装置703、网络接口704以及总线706。
处理器701可以为例如中央处理单元(CPU)或数字信号处理器 (DSP),并且控制服务器700的功能。存储器702包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器701执行的程序。存储装置703可以包括存储介质,诸如半导体存储器和硬盘。
网络接口704为用于将服务器700连接到有线通信网络705的有线通信接口。有线通信网络705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线706将处理器701、存储器702、存储装置703和网络接口704彼此连接。总线706可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
在图14所示的服务器700中,参照图2和图7描述的确定单元101、分簇单元102等可以由处理器701实现。例如,处理器701可以通过执行确定单元101和分簇单元102的操作而执行本申请的第一集合确定操作和分簇操作。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图15所示的通用计算机1500)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图15中,中央处理单元(CPU)1501根据只读存储器(ROM)1502中存储的程序或从存储部分1508加载到随机存取存储器(RAM)1503的程序执行各种处理。在RAM 1503中,也根据需要存储当CPU 1501执行各种处理等等时所需的数据。CPU 1501、ROM 1502和RAM 1503经由总线1504彼此连接。输入/输出接口1505也连接到总线1504。
下述部件连接到输入/输出接口1505:输入部分1506(包括键盘、鼠标等等)、输出部分1507(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1508(包括硬盘等)、通信部分1509(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1509经由网络比如因特网执行通信处理。根据需要,驱动器1510也可连接到输入/输出接口1505。可移除介质1511比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1510上,使得从中读出的计算机程序根据需要被安装到存储部分1508中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1511安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图15所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1511。可移除介质1511的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1502、存储部分1508中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外, 在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (25)

  1. 一种电子设备,包括:
    处理电路,被配置为:
    基于低优先级次系统与高优先级次系统之间的相互干扰确定所述高优先级次系统的第一集合,其中,所述第一集合中的高优先级次系统与至少一个低优先级次系统之间的相互干扰高于预定水平;以及
    基于与所述第一集合相关的信息,来对所述第一集合中的所述高优先级次系统分簇。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为执行所述分簇以最小化所述第一集合中的所述高优先级次系统所分成的簇的数量。
  3. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为将所述第一集合以外的高优先级次系统作为第二集合,其中所述第二集合中的高优先级次系统与每一个低优先级次系统之间的相互干扰均低于所述预定水平;以及
    所述处理电路基于与所述第一集合和所述第二集合相关的信息,来对所述高优先级次系统分簇。
  4. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为执行所述分簇以最小化最终获得的簇的数量。
  5. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为首先对所述第一集合中的高优先级次系统进行分簇,并且基于分簇的结果对所述第二集合中的高优先级次系统进行分簇。
  6. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为首先对所述第二集合中的高优先级次系统进行分簇,并且基于分簇的结果对所述第一集合中的高优先级次系统进行分簇。
  7. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为:
    分别向所述第一集合和所述第二集合中的高优先级次系统设置不同的权值;以及
    对所述第一集合和所述第二集合中的高优先级次系统同时分簇,在分簇时使用对应权值对高优先级次系统所受到的累积干扰进行加权。
  8. 根据权利要求7所述的电子设备,其中,所述处理电路被配置为向所述第一集合中的高优先级次系统设置比所述第二集合中的高优先级次系统的权值高的权值。
  9. 根据权利要求5所述的电子设备,其中,所述处理电路被配置为:
    选择受到所述第一集合中的未分簇的其他高优先级次系统的累积干扰最大的高优先级次系统作为簇的第一个成员;
    在添加簇的新成员时,选择所述第一集合中未分簇的高优先级次系统中受到该簇的已有成员的累积干扰最大的高优先级次系统,使得满足添加完成后簇内各个成员之间的相互干扰不超过容许值,。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为在已有的簇的数目未达到可用信道数的情况下,如果存在无法添加到已有簇的高优先级次系统,则创建新的簇。
  11. 根据权利要求9所述的电子设备,其中,所述处理电路被配置为在对所述第二集合中的高优先级次系统进行分簇时将其添加到通过对所述第一集合中的高优先级次系统进行分簇获得的已有的簇中,并且在无法添加到已有的簇中且已有的簇的数目未达到可用信道数的情况下创建新的簇。
  12. 根据权利要求9所述的电子设备,其中,所述处理电路被配置为通过建立有向加权图来判断高优先级次系统之间的干扰关系。
  13. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为对所述第一集合中的高优先级次系统和所述第二集合中的高优先级次系统独立进行分簇。
  14. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为通过确定每一个低优先级次系统的干扰集合并合并这些干扰集合来确定所述第一集合,其中所述干扰集合包括对该低优先级次系统的干扰高于第一预定水平的高优先级次系统以及该低优先级次系统对其造成的干扰高于第二预定水平的高优先级次系统。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路被配置为针对移动的次系统确定其干扰半径从而基于其移动区域而确定其干扰区域,以确定所述干扰集合。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路被配置为通过参考历史信息或地理位置数据库来确定所述移动区域。
  17. 根据权利要求1所述的电子设备,其中,所述干扰的预定水平用预定的信干噪比表示。
  18. 根据权利要求1所述的电子设备,其中,所有次系统由单个频谱协调器管理。
  19. 根据权利要求18所述的电子设备,还包括:
    收发单元,被配置为从所述低优先级次系统与所述高优先级次系统接收关于如下中的至少之一的信息以用于所述处理电路的处理:次系统优先级、地理位置、发射功率和服务质量需求。
  20. 根据权利要求19所述的电子设备,其中,所述收发单元还被配置为将频谱协调器基于所述处理电路的分簇的结果而为所述高优先级次系统分配的频谱通知相应的高优先级次系统。
  21. 根据权利要求1所述的电子设备,其中,次系统分别由多个频谱协调器管理。
  22. 根据权利要求21所述的电子设备,还包括:
    收发单元,被配置为从各个频谱协调器接收其管理的次系统的关于如下中的至少之一的信息以用于所述处理电路的处理:次系统优先级、地理位置、发射功率和服务质量需求。
  23. 根据权利要求22所述的电子设备,其中,所述收发单元还被配置为将所述处理电路的分簇的结果发送给相应的频谱协调器。
  24. 根据权利要求23所述的电子设备,其中,所述分簇的结果包括相应的频谱协调器管理的高优先级次系统的标识和所在簇的簇标识。
  25. 一种用于电子设备的方法,包括:
    基于低优先级次系统与高优先级次系统之间的相互干扰获得所述高 优先级次系统的第一集合,其中,所述第一集合中的高优先级次系统与至少一个低优先级次系统之间的相互干扰高于预定水平;以及
    基于与所述第一集合相关的信息,来对所述第一集合中的所述高优先级次系统分簇。
PCT/CN2017/091932 2016-07-29 2017-07-06 电子设备和用于电子设备的方法 WO2018019105A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2017302958A AU2017302958B2 (en) 2016-07-29 2017-07-06 Electronic device and method for the electronic device
CN201780030543.XA CN109155916B (zh) 2016-07-29 2017-07-06 电子设备和用于电子设备的方法
US16/311,180 US10757578B2 (en) 2016-07-29 2017-07-06 Electronic device and method for the electronic device for clustering of high priority level secondary systems
CA3032018A CA3032018A1 (en) 2016-07-29 2017-07-06 Electronic device and method for the electronic device
EP22183012.8A EP4096266A1 (en) 2016-07-29 2017-07-06 Electronic device and method for the electronic device
EP17833408.2A EP3493573B1 (en) 2016-07-29 2017-07-06 Electronic device and method for the electronic device
US16/919,352 US11277752B2 (en) 2016-07-29 2020-07-02 Electronic device and method for the electronic device for clustering of high priority level secondary systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610616418.4 2016-07-29
CN201610616418.4A CN107666720A (zh) 2016-07-29 2016-07-29 电子设备和用于电子设备的方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/311,180 A-371-Of-International US10757578B2 (en) 2016-07-29 2017-07-06 Electronic device and method for the electronic device for clustering of high priority level secondary systems
US16/919,352 Continuation US11277752B2 (en) 2016-07-29 2020-07-02 Electronic device and method for the electronic device for clustering of high priority level secondary systems

Publications (1)

Publication Number Publication Date
WO2018019105A1 true WO2018019105A1 (zh) 2018-02-01

Family

ID=61015564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091932 WO2018019105A1 (zh) 2016-07-29 2017-07-06 电子设备和用于电子设备的方法

Country Status (7)

Country Link
US (2) US10757578B2 (zh)
EP (2) EP3493573B1 (zh)
CN (2) CN107666720A (zh)
AU (1) AU2017302958B2 (zh)
CA (1) CA3032018A1 (zh)
TW (1) TWI733773B (zh)
WO (1) WO2018019105A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533292B (zh) * 2019-09-19 2022-09-27 成都鼎桥通信技术有限公司 载波的分配方法、装置及基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100322159A1 (en) * 2009-06-23 2010-12-23 Mediatek Inc. Pta method and apparatus utilizing the same
CN102595419A (zh) * 2011-01-04 2012-07-18 中国移动通信集团公司 一种认知无线电网络中的频谱分配方法和系统
CN104144482A (zh) * 2013-05-08 2014-11-12 中兴通讯股份有限公司 一种干扰分配方法、系统、数据库和重配置管理节点
CN105578474A (zh) * 2014-10-22 2016-05-11 索尼公司 频谱管理装置和方法、用于无线通信的装置和方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8254844B2 (en) * 2009-05-29 2012-08-28 Motorola Solutions, Inc. Method and apparatus for utilizing a transmission polarization to reduce interference with a primary incumbent signal
US8351861B2 (en) * 2010-09-30 2013-01-08 Deutsche Telekom Ag Opportunistic spectrum access in mobile cognitive radio networks
US8504087B2 (en) * 2010-12-17 2013-08-06 Spectrum Bridge, Inc. System and method for controlling access to spectrum for wireless communications
CN108495319B (zh) * 2012-09-07 2022-07-01 索尼公司 无线传输资源管理设备和方法
JP6373279B2 (ja) * 2013-01-28 2018-08-15 インターデイジタル パテント ホールディングス インコーポレイテッド スペクトル協調のための方法および装置
BR112015017342A2 (pt) * 2013-01-28 2017-07-11 Sony Corp sistema, e, mídia legível por computador
CN105165049B (zh) * 2013-05-08 2019-11-05 索尼公司 通信控制装置、通信控制方法和信息处理设备
KR20150002316A (ko) * 2013-06-28 2015-01-07 삼성전기주식회사 무선 통신 장치 및 이를 이용한 운용 방법
US20150103778A1 (en) * 2013-10-11 2015-04-16 Electronics And Telecommunications Research Institute Cooperation multi-input multi-output transmitting or receiving method
WO2015144222A1 (en) * 2014-03-27 2015-10-01 Huawei Technologies Duesseldorf Gmbh Spectrum manager and method for allocating a shared frequency spectrum to operators in a wireless communication system as well as a corresponding base station
US9872195B2 (en) * 2014-04-10 2018-01-16 Samsung Electronics Co., Ltd. Method and system for providing data communication through a cluster head for machine type communication (MTC) based group communication
CN104202747A (zh) * 2014-04-17 2014-12-10 中兴通讯股份有限公司 一种频谱管理的方法、设备和系统
CN105101269A (zh) * 2014-05-08 2015-11-25 中兴通讯股份有限公司 干扰分布的获取方法、干扰分布的上报方法、装置及系统
CN104144432A (zh) 2014-05-30 2014-11-12 南京泰通科技有限公司 一种gsm-r微功率光纤分布式装置
CN104065600B (zh) * 2014-06-05 2017-12-26 京信通信系统(中国)有限公司 一种抑制控制信道干扰的方法及装置
US9326152B1 (en) * 2014-11-04 2016-04-26 Alcatel Lucent Dynamic scheduling of non-interfering clusters in a distributed diversity communications system
CN105657718B (zh) * 2014-11-14 2021-02-02 索尼公司 无线电资源管理系统和无线电资源管理方法
US9661503B2 (en) * 2015-05-14 2017-05-23 King Fahd University Of Petroleum And Minerals Spectrum-efficient secondary users grouping method for two-tier cognitive radio networks
US9706411B2 (en) * 2015-11-19 2017-07-11 T-Mobile Usa, Inc. Small cell planning tool
US9820280B2 (en) * 2015-12-28 2017-11-14 T-Mobile Usa, Inc. Overlaying wireless networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100322159A1 (en) * 2009-06-23 2010-12-23 Mediatek Inc. Pta method and apparatus utilizing the same
CN102595419A (zh) * 2011-01-04 2012-07-18 中国移动通信集团公司 一种认知无线电网络中的频谱分配方法和系统
CN104144482A (zh) * 2013-05-08 2014-11-12 中兴通讯股份有限公司 一种干扰分配方法、系统、数据库和重配置管理节点
CN105578474A (zh) * 2014-10-22 2016-05-11 索尼公司 频谱管理装置和方法、用于无线通信的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3493573A4 *

Also Published As

Publication number Publication date
CN107666720A (zh) 2018-02-06
AU2017302958A1 (en) 2019-02-14
US10757578B2 (en) 2020-08-25
EP3493573A4 (en) 2019-06-26
CN109155916B (zh) 2023-04-21
EP4096266A1 (en) 2022-11-30
US20190182677A1 (en) 2019-06-13
AU2017302958B2 (en) 2022-03-31
TWI733773B (zh) 2021-07-21
EP3493573A1 (en) 2019-06-05
EP3493573B1 (en) 2022-08-31
CA3032018A1 (en) 2018-02-01
CN109155916A (zh) 2019-01-04
TW201804828A (zh) 2018-02-01
US20200344612A1 (en) 2020-10-29
US11277752B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
US11412389B2 (en) Communication control device, communication control method, and wireless communication device
US11589367B2 (en) Electronic devices and method for use in resource management devices, databases and objects
JP6038348B2 (ja) デバイス間通信のためのリソース割当方法、装置及びプログラム
WO2016062172A1 (zh) 频谱管理装置和方法、用于无线通信的装置和方法
US11700630B2 (en) Electronic device and method for the electronic device
WO2019170070A1 (zh) 用于无线通信的电子设备、方法和计算机可读存储介质
EP3000270A1 (en) Apparatus and method in wireless communication system
WO2019206073A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11706630B2 (en) Spectrum management device, system and method, and computer-readable storage medium
US11895635B2 (en) Methods and apparatus for managing spectrum allocation in wireless networks
CN113711636A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11277752B2 (en) Electronic device and method for the electronic device for clustering of high priority level secondary systems
WO2019214543A1 (zh) 频谱管理装置和方法、无线网络管理装置和方法以及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3032018

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017302958

Country of ref document: AU

Date of ref document: 20170706

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017833408

Country of ref document: EP

Effective date: 20190226