WO2018205877A1 - 用于无线通信的电子设备和方法 - Google Patents

用于无线通信的电子设备和方法 Download PDF

Info

Publication number
WO2018205877A1
WO2018205877A1 PCT/CN2018/085430 CN2018085430W WO2018205877A1 WO 2018205877 A1 WO2018205877 A1 WO 2018205877A1 CN 2018085430 W CN2018085430 W CN 2018085430W WO 2018205877 A1 WO2018205877 A1 WO 2018205877A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
access point
collaboration
electronic device
interference
Prior art date
Application number
PCT/CN2018/085430
Other languages
English (en)
French (fr)
Inventor
赵友平
祝东芝
孙晨
郭欣
刘康怡
丁炜
Original Assignee
索尼公司
赵友平
祝东芝
孙晨
郭欣
刘康怡
丁炜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 赵友平, 祝东芝, 孙晨, 郭欣, 刘康怡, 丁炜 filed Critical 索尼公司
Priority to CN201880010016.7A priority Critical patent/CN110249649B/zh
Priority to US16/492,159 priority patent/US11095405B2/en
Publication of WO2018205877A1 publication Critical patent/WO2018205877A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular to joint cooperative access point selection and spectrum allocation in a User Centric Network (UCN), and more particularly to an electronic device for wireless communication. And methods.
  • UCN User Centric Network
  • UCN user-centric networks
  • the traditional network-centric resource management scheme tends to maximize the utility of the entire network, and it is easy to allocate more wireless resources to users with better channel conditions, such as a typical water injection algorithm.
  • a base station is used as a center to radiate power to the surroundings, and an area that can be effectively covered is called a cell, and a user located within an effective coverage of a base station is connected to the base station. If it leaves, it switches to other base stations.
  • the base station allocates resources to users in its coverage area, and most of them focus on optimizing the overall performance of the network.
  • the number of users far exceeds the number of base stations. Users located at the edge of the cell are subject to strong inter-cell interference. If they do not cooperate with other base stations, it is difficult to meet their needs. However, due to the regular configuration of the network, it is easy to select a cooperative base station. In an ultra-dense small cell network, the number of access points (APs) with low transmission power is equivalent to the number of users, and the AP configuration is flexible and irregular. Therefore, how to select a cooperative base station to satisfy each user's Quality of service needs have become a difficult point.
  • APs access points
  • an electronic device for wireless communication comprising: processing circuitry configured to: for each user, a statistical model based on distribution of access points within a predetermined range around the user And a communication quality requirement of the user to determine a collaboration scope of the user; and determining an access point cooperation set of the user based on the collaboration scope, wherein the access point in the access point cooperation set is allocated to the user for cooperative transmission.
  • an electronic device for wireless communication comprising: processing circuitry configured to: acquire a statistical model representing an distribution of access points within a predetermined range around a user; and based on the statistics The model and the communication quality requirements of the user determine the scope of collaboration of the user, the scope of collaboration being provided to the management device for allocation of the access point of the user.
  • an electronic device for wireless communication comprising: processing circuitry configured to: acquire location information and communication quality requirements of a user and indicate access within a predetermined range around the user A statistical model of the point distribution; and determining a scope of collaboration of the user based on the statistical model and the communication quality requirements of the user, the scope of cooperation being provided to the management device for allocation of the access point of the user.
  • a method for wireless communication comprising: for each user, based on a statistical model representing a distribution of access points within a predetermined range around the user and a communication quality requirement of the user Determining the collaboration scope of the user; and determining an access point collaboration set of the user based on the collaboration scope of the user, wherein the access point in the access point collaboration set is assigned to the user for collaborative transmission.
  • a method for wireless communication comprising: obtaining a statistical model representing an distribution of access points within a predetermined range around a user; and based on the statistical model and communication quality of the user It is required to determine the scope of collaboration of the user whose scope of collaboration is provided to the management device for the assignment of the access point of the user.
  • an electronic device for wireless communication comprising: acquiring a location information and a communication quality requirement of a user, and a statistical model indicating an access point distribution within a predetermined range around the user; And determining a collaboration scope of the user based on the statistical model and a communication quality requirement of the user, the collaboration scope of the user being provided to the management device for allocation of the access point of the user.
  • the electronic device and method according to the present application can quickly and efficiently select an access point for a user having different quality of service requirements, and improve the use efficiency of the access point while ensuring the quality of service demand of the user.
  • Figure 1 shows a schematic diagram of a scene of a UCN
  • FIG. 2 shows a functional block diagram of an electronic device for wireless communication in accordance with one embodiment of the present application
  • Figure 3 shows an illustrative example of an AP distribution
  • FIG. 5 illustrates a functional block diagram of an electronic device for wireless communication in accordance with one embodiment of the present application
  • Figure 6 shows an example of an access point collaboration set
  • Figure 7 shows an example of an SIR table
  • Figure 8 shows a graph of an example of a utility function
  • FIG. 9 is a schematic diagram showing the flow of information between a user, an access point, and a spectrum management device
  • FIG. 10 illustrates a functional block diagram of an electronic device for wireless communication in accordance with another embodiment of the present application.
  • FIG. 11 shows a functional block diagram of an electronic device for wireless communication in accordance with another embodiment of the present application.
  • Figure 12 shows a schematic flow chart of joint access point selection and spectrum allocation in a UCN network
  • Figure 13 shows a flow chart of a method for wireless communication in accordance with one embodiment of the present application
  • FIG. 14 shows a flow chart of a method for wireless communication in accordance with one embodiment of the present application.
  • Figure 15 shows a flow chart of a method for wireless communication in accordance with one embodiment of the present application
  • Figure 16 shows a simulation scenario 1 of UCN
  • Figure 17 is a graph showing a comparison of the cumulative density function (CDF) of the user success rate in the case of using different algorithms in the simulation scenario 1;
  • CDF cumulative density function
  • Figure 18 is a graph showing a comparison of CDFs of the total number of APs used in the case of different scenarios using the simulation scenario 1;
  • Figure 19 shows a simulation scenario 2 of UCN
  • Figure 20 is a graph showing a comparison of cumulative density functions (CDF) of user success rates in the case of using different algorithms under simulation scenario 2;
  • CDF cumulative density functions
  • Figure 21 is a graph showing a comparison of CDFs of the total number of APs used in the case of different scenarios using the simulation scenario 2;
  • Figure 22 shows a simulation scenario 3 of UCN
  • Figure 23 is a graph showing a comparison of the cumulative density function (CDF) of the user success rate in the case of using different algorithms in the simulation scenario 3;
  • CDF cumulative density function
  • Figure 24 is a graph showing a comparison of CDFs of the total number of APs used in the case of different scenarios using the simulation scenario 3;
  • 25 is a block diagram showing an example of a schematic configuration of a server 700 to which the technology of the present disclosure can be applied;
  • 26 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 27 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 28 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 29 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 30 is a block diagram of an exemplary structure of a general purpose personal computer in which methods and/or apparatus and/or systems in accordance with embodiments of the present invention may be implemented.
  • FIG. 1 shows a schematic diagram of a scene of a UCN.
  • UE user equipment
  • SC Spectrum Coordinator
  • the AP described herein may be any node that provides network communication services, such as a base station, a small base station, a mobile base station, and the like.
  • a base station can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the UE or user may be any terminal device or a wireless communication device that provides the service.
  • the terminal device may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal (such as a car navigation device).
  • the terminal device can also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • the present embodiment provides an electronic device 100 for wireless communication
  • FIG. 2 shows a functional block diagram of the electronic 100.
  • the electronic device 100 includes: a first determining unit 101 configured to, based on each user, a statistical model based on a distribution of access points within a predetermined range around the user and a communication quality requirement of the user Determining the collaboration scope of the user; and the second determining unit 102 is configured to determine the access point cooperation set of the user based on the cooperation scope, wherein the access point in the access point cooperation set is allocated to the user for cooperative transmission.
  • the first determining unit 101 and the second determining unit 102 can be implemented by one or more processing circuits, which can be implemented, for example, as a chip.
  • the electronic device 100 may be, for example, located on the management device (i.e., SC) shown in Fig. 1, or communicably connected to the SC.
  • the first determining unit 101 may construct a statistical model or determine a parameter of a preset statistical model based on an actual distribution of the access points. Specifically, the first determining unit 101 can learn the geographical location information of each access point and the geographical location information of each user, and according to the information, the first determining unit 101 can fit the statistical geometric model of the access point distribution. Alternatively, according to a general situation, for example, a statistical geometric Poisson Point Process (PPP) model may be adopted as the statistical geometric model, and the first determining unit 101 may determine the strength parameter ⁇ a of the PPP model according to the geographical location information. , thus determining the statistical model of the distribution of access points.
  • PPP Poisson Point Process
  • the first determining unit 101 may also adopt the same statistical model with the same parameters for each user, that is, the cooperation scope of the user only depends on User communication quality requirements.
  • the distribution of the access points can also be pre-modeled.
  • the established statistical model may be stored in advance in the memory for use by the first determining unit 101.
  • the user's communication quality requirements can be expressed, for example, by a Signal to Interference and Noise Ratio (SINR) threshold.
  • SINR Signal to Interference and Noise Ratio
  • the SINR will be used as an evaluation parameter of the communication quality of the user in the following description, but it should be understood that the present application is not limited thereto, and other parameters capable of representing the communication quality of the user may also be employed.
  • the first determining unit 101 determines the collaboration scope of the user according to the foregoing statistical model and the communication quality requirement of the user, where the access point within the collaboration scope of the user can be accessed as the user. Access point candidates, in other words, these access points can provide the user with a sufficiently strong useful signal.
  • the second determining unit 102 may further determine, within the scope of the collaboration, for example, according to a specific rule or standard, the access point collaboration set of the user, according to the specific rule or standard, compared with other access points within the collaboration scope, The determined access points in the set of access point collaborations will provide better performance when assigned to users for collaborative transmission.
  • an access point in an access point collaboration set can provide the user with a sufficiently strong useful signal without interfering with other users.
  • the first determining unit 101 may calculate the SINR of the user according to a statistical model, for example, when determining the cooperation range of the user. For example, it may be assumed that the AP within the cooperation range can provide a useful signal to the user, and the AP outside the cooperation range will provide an interference signal. . In this way, a range of APs when the user's SINR is just above its SINR threshold can be obtained as a collaboration range, and APs within the collaboration range can be used to form an access point collaboration set.
  • the first determining unit 101 is further configured to determine, for each user, an interference range of the user based on the collaboration scope of the user, where the access point in the interference range of the user is serving other users This will cause interference to this user.
  • the collaboration range and the interference range can be represented by the cooperation radius and the interference radius, respectively.
  • Figure 3 shows an illustrative example of an AP distribution in which the distribution of APs conforms to the PPP model and the intensity parameter is ⁇ a .
  • the user k is taken as an example
  • the circular range covered by the dotted line is the cooperation range
  • the circular range between the solid line and the broken line is the interference range
  • the radius shown in the figure can be respectively used. with To represent.
  • the interference radius can be set according to the ratio of the received useful signal threshold and the received interference signal threshold of the user receiver. Radius of collaboration The ratio m is used and the ratio m is used to specifically determine the cooperation radius and the interference radius. It should be understood that this parameter can be further optimized. Taking user k as an example, the ratio of the interference radius to the cooperation radius is as shown in the following equation (1).
  • To receive a useful power threshold for example, a signal that is higher than the noise level by 3 dB or more can be set;
  • To receive the interference power threshold for example, a signal lower than the noise level of 3 dB or lower can be set.
  • the following formula (2) should be satisfied, that is, the user's signal to interference and noise ratio calculated based on the statistical model is greater than or equal to the signal to interference and noise ratio threshold.
  • SINR k for the estimated user k signal to interference noise ratio, SINR k th k-th user's SINR threshold, ⁇ C (k) is the k th user collaboration AP set, ⁇ I (k ) is the interference AP set of the kth user, P i is the signal transmission power of the i th access point, ⁇ is the path loss of free space at d 0 (d 0 1m), and ⁇ is the path loss exponent, d ik is the distance between the i-th access point and the user k,
  • the noise power at the user's receiver depends on the signal bandwidth and the noise figure at the user's receiver.
  • the first determining unit 101 may calculate the SINR of the user based on the PPP model described above, and calculate the cooperation radius of the user by making the calculated SINR greater than or equal to the SINR threshold. As shown in the following formula (3):
  • FIG. 4 shows an illustrative example of the relationship between the cooperation radius and the AP density and the communication quality requirements of the user. Among them, it is assumed that APs use the same transmit power, and the path loss in free space is the same, the path loss index is the same, and the user receiver has the same noise figure. In (a) and (b) of FIG. 4, the user has the same communication quality requirement, but the AP density of the user in (a) of FIG.
  • the electronic device 100 may further include: a transceiver unit 103 configured to receive location information and communication quality requirements of respective users.
  • the transceiver unit 103 can be implemented, for example, as a transceiver, an antenna, or the like.
  • the transceiver unit 103 may be further configured to receive at least one of: information of each user's received useful signal threshold and received interference signal threshold, location information of each access point, and maximum transmit power.
  • the location information and the maximum transmit power information of each access point may also be pre-stored in the memory at system initialization.
  • the communication between the transceiver unit 103 and the user may be performed, for example, in a wireless manner or via an AP; the communication between the transceiver unit 103 and the AP may be performed in a wired or wireless manner.
  • the second determining unit 102 may determine the access point cooperation set of the user, for example, based on the collaboration scope of the user and the interference range of other users. For example, the second determining unit 102 selects an access point that is within the user's collaboration range and is outside the interference range of any other user to constitute the user's access point collaboration set. In other words, the access point in the access point cooperation set can provide the user with a sufficiently strong user signal, but does not cause interference to other users. Assuming that the total number of APs is N, the corpus of APs is represented as ⁇ , and the total number of users is K.
  • the access point cooperation set of the kth user can be expressed as:
  • ⁇ C(k) is all APs located within the cooperation radius of user k
  • ⁇ I(k) is all APs located within the user k interference radius.
  • Figure 6 shows an example of an access point collaboration set.
  • the AP 1 is located in the cooperation radius of the UE 1 and is also located in the interference radius of the UE 2 , so the AP 1 is not included in the access point cooperation set of the UE 1 ; the AP 2 is located in the cooperation radius of the UE 2 . At the same time, it is also within the interference radius of UE 1 , so AP 2 is not included in the access point cooperation set of UE 1 .
  • the user may, for example, randomly or arbitrarily select an access point in the access point collaboration set for collaborative transmission. In this way, the assignment of the collaborative AP to each user is performed.
  • each user can select a group of cooperating APs, but in the same time slot, each AP can only serve one user.
  • the user randomly selects access points in the access point collaboration set for cooperative transmission, and continuously increases the number of cooperative APs until their communication quality requirements such as the SINR threshold are reached. If the communication quality requirements of all users are met, the operation ends. If there are users who cannot meet their communication quality requirements, then these users are assigned a new channel (or spectrum) and the assignment process of the cooperative AP as described above is repeated.
  • the first determining unit 101 and the second determining unit 102 have the communication quality requirements for the new frequency band if the user who does not meet the communication quality requirement exists when the access point allocation of all users is completed. The user assigns an access point.
  • the transceiver unit 103 may notify the access point, such as the AP-UE pair to be coordinated and the corresponding spectrum to be used by the AP-UE, to the access point. For collaborative communication.
  • the electronic device 100 performs the allocation of the cooperative AP by using the AP-based statistical model and the communication quality requirement of the user, and can quickly and efficiently select an appropriate AP for each user, and ensure communication of each user.
  • the decline in quality improves the efficiency of access points.
  • the second determining unit 102 may also cooperate from the access point according to the ratio of the useful signal provided by the access point to the user and the total interference to other users (hereinafter referred to as SIR). Select an access point for collaborative transmission. In this way, the second determining unit 102 can, for example, preferentially select the access point with the highest ratio; and/or the second determining unit 102 can select a pair of UEs and APs that are most advantageous for the improvement of the overall communication quality.
  • SIR total interference to other users
  • the second determining unit 102 may calculate the ratio SIR described above based on location information of respective users and access points and transmission power of the access point.
  • the above ratio is not obtained by measurement, but is estimated by existing parameters.
  • the specific calculation is as shown in the following formula (6).
  • the number of the access point AP Collaboration assume the k-th user is set contains N k, SIR ji, j represents the j assumed that the user access point in the coordinated cooperation of the i-th user as the access point AP JI j (the UE j )
  • d ji, k indicates the cooperative AP ji to the The distance of k users.
  • FIG. 7 shows an example of an SIR table in which there are a total of K users, and the number of APs included in the access point cooperation set of the kth user is N k .
  • the second determining unit 102 is configured to repeat the operation of assigning an access point to each user: a user and access point pair consisting of each user's access point corresponding to the largest ratio from the user The user and access point pair that produces the highest boost of all users and utility values is selected, and the user and access point pair are no longer considered in the next allocation, where the utility value reflects the overall communication quality of all users.
  • the second determining unit 102 selects, for each user, an AP with the largest SIR according to the SIR table, and the AP and the user constitute an AP-UE pair of the user. Then, an AP-UE pair that can maximize the sum of the utility values of all users is selected from the AP-UE pairs of all users, and the AP is allocated to the corresponding UE.
  • the above operation is repeated, and when the communication quality of the user reaches its communication quality requirement, the allocation of the access point to the user is stopped. For example, when the user's SINR is satisfied At this time, the allocation of the AP to the user is stopped, where ⁇ is a preset margin.
  • the utility value reflects the overall communication quality of all users. Therefore, the above configuration is equivalent to stopping the allocation process when continuing to allocate the AP cannot improve the overall communication quality or setting the overall communication quality to be lowered. Similarly, if there are users who do not meet their communication quality requirements, the first determining unit 101 and the second determining unit 102 can allocate an access point for the user whose communication quality requirement is not reached on the new frequency band.
  • the utility value is a function of the communication quality of the user, and the communication quality of the user is calculated based on the location information of the user and each access point and the transmission power of each access point.
  • the communication quality of the user can be expressed by the SINR shown in equation (2).
  • the sum utility value is the sum of the utility values for each user.
  • the user's utility value can be calculated using the utility function.
  • the utility function is a nonlinear transformation of SINR k /SINR k th , and an example of the utility function is shown by the following equation (7).
  • FIG. 8 shows a graph of the utility function, where the horizontal axis is SINR k /SINR k th , the unit of SINR is dB, and the vertical axis is the utility function U k .
  • the utility function is characterized in that the utility function is extremely sensitive to the change of the SINR value when the user does not reach the signal to interference and noise ratio threshold, so that the user through the AP can quickly reach the signal to interference and noise ratio threshold.
  • the change in the utility function curve becomes relatively slow, thereby avoiding allocating too many resources to the user.
  • the transceiving unit 103 can use the result of the allocation, such as an AP-UE pair to be coordinated and the AP-UE pair to use.
  • the corresponding spectrum is notified to the access point for collaborative communication.
  • the electronic device 200 can further optimize the allocation of the access points of the respective users by using the SIR table and the utility function, thereby more effectively reducing the interference between the cooperation sets of different users, and ensuring the communication quality requirements of the users. Improve the efficiency of access points.
  • FIG. 9 shows the flow of information between a user (UE), an access point (AP), and a spectrum management device (SC) when the electronic device 200 is placed on a spectrum management device (eg, a spectrum coordinator).
  • UE user
  • AP access point
  • SC spectrum management device
  • each UE reports its location information and communication quality requirements, such as an SINR threshold, to the SC. Additionally, the UE may also report the received useful signal threshold and the received interference signal threshold.
  • Each AP reports its location information and maximum transmit power to the SC.
  • the SC obtains, for example, a statistical geometric model of the AP distribution around each UE based on the location information of the AP and the location information of the UE.
  • the SC calculates the cooperation range and interference range of each UE, such as the cooperation radius and the interference radius, according to the statistical geometric model and the communication quality requirements of the UE.
  • the SC may also determine the access point cooperation set of the user based on the collaboration scope of the user and the interference range of other users, for example, selecting an access point that is within the collaboration scope of the user but is not within the interference range of any other user.
  • the SC can also create an SIR table and assign an access point to each user based on the SIR table and the sum utility values of all users as previously described. The process of assigning the above access points is performed for the same spectrum. When the spectrum cannot meet the requirements of all users, the allocation of access points will be continued for other spectrums.
  • the SC notifies the AP of the access point allocation result, such as the AP-UE pair and the spectrum allocation result, such as the AP-UE, to the AP, so that the AP and the UE perform cooperative communication based on the results.
  • FIG. 10 illustrates a functional block diagram of an electronic device 200 for wireless communication, the electronic device 200 including: an acquisition unit 201 configured to acquire a connection within a predetermined range around the user, in accordance with another embodiment of the present application. a statistical model of the in-point distribution; and a determining unit 202 configured to determine a collaboration scope of the user based on the statistical model and the communication quality requirement of the user, the collaboration scope of the user being provided to the management device for the user The allocation of access points.
  • the obtaining unit 201 and the determining unit 202 can be implemented by one or more processing circuits, which can be implemented, for example, as a chip.
  • the electronic device 200 can be, for example, located on the user equipment UE shown in FIG. 1, or communicably connected to the UE.
  • the acquisition unit 201 can acquire the above-described statistical model from the management device.
  • the electronic device 200 may further include a transceiving unit (not shown in FIG. 10) configured to receive information of the statistical model from the management device.
  • the transceiving unit may also transmit the location information of the user to the management device such that the management device accurately determines the statistical model (or its parameters) to be provided to the user.
  • the obtaining unit 201 may also acquire related information from a memory in which a distribution of the AP or a statistical geometric model of the AP is stored in advance and acquire a predetermined range around the user based on the related information.
  • the memory can be located on the user side or on the management device side.
  • the determining unit 202 can determine the collaboration range of the user, such as the collaboration radius, based on the statistical model and the communication quality requirements of the user, such as the SINR threshold.
  • the access point within the collaboration scope of the user may be a candidate for an access point assigned to the user. In other words, the access point within the user's collaborative range can provide the user with a sufficiently strong useful signal.
  • the determining unit 202 may further determine the interference range of the user according to the collaboration scope of the user, and the access point within the interference range of the user may cause interference to the user when serving other users, and the interference range of the user It is also provided to the management device for the assignment of the user's access point.
  • the determining unit 202 can determine the cooperation range and the interference range in the same manner as in the first embodiment, and is not repeated here.
  • the management device may perform the determination of the access point cooperation set according to the information, and further, based on the location information of each UE and the AP, and the maximum transmission of the AP. Power, etc. to create an SIR table and use the SIR table for fine-grained allocation of access points.
  • the determination of the access point cooperation set and the fine allocation of the access point can be referred to the first and second embodiments, and will not be repeated here.
  • the electronic device 200 can quickly determine an access point that can be allocated to the user according to the statistical model of the access point and the communication quality requirement of the user, and improves the connection if the communication quality requirement of the user is met.
  • FIG. 11 shows a functional block diagram of an electronic device 300 for wireless communication according to another embodiment of the present application, the electronic device 300 including: an obtaining unit 301 configured to acquire location information and communication quality requirements of a user and a statistical model representing an access point distribution within a predetermined range around the user; and a determining unit 302 configured to determine a collaboration scope of the user based on the statistical model and a communication quality requirement of the user, the collaboration scope of the user being Provided to the management device for allocation of the user's access point.
  • an obtaining unit 301 configured to acquire location information and communication quality requirements of a user and a statistical model representing an access point distribution within a predetermined range around the user
  • a determining unit 302 configured to determine a collaboration scope of the user based on the statistical model and a communication quality requirement of the user, the collaboration scope of the user being Provided to the management device for allocation of the user's access point.
  • the obtaining unit 301 and the determining unit 302 can be implemented by one or more processing circuits, which can be implemented, for example, as a chip.
  • the electronic device 300 may be, for example, located on the access point AP shown in FIG. 1, or communicably connected to the AP.
  • a user may provide their location information and communication quality requirements to the nearest access point such that the electronic device 300 corresponding to the access point performs the above operations for the user.
  • the electronic device 300 may also include a transceiving unit (not shown in FIG. 11) configured to receive information of its location information and communication quality requirements from the user.
  • the acquisition unit 301 can acquire a statistical model from the management device.
  • the transceiver unit is further configured to receive information of the statistical model from the management device.
  • the transceiving unit may also transmit the location information of the user to the management device such that the management device accurately determines the statistical model (or its parameters) to be provided to the user.
  • the obtaining unit 301 may also acquire related information from a memory in which the distribution of the AP or the statistical geometric model of the AP is stored in advance and acquire the surrounding of the user based on the related information.
  • This memory can be located, for example, on the AP side or on the management device side.
  • the determining unit 302 can determine the collaboration range of the user, such as the collaboration radius, based on the statistical model and the communication quality requirements of the user, such as the SINR threshold.
  • the access point within the collaboration scope of the user may be a candidate for an access point assigned to the user. In other words, the access point within the user's collaborative range can provide the user with a sufficiently strong useful signal.
  • the determining unit 302 may further determine the interference range of the user according to the cooperation scope of the user, and the access point within the interference range of the user may cause interference to the user when serving other users, and the interference range of the user It is also provided to the management device for the assignment of the user's access point.
  • the determining unit 302 may perform the determination of the cooperation range and the interference range in the same manner as in the first embodiment, and is not repeated here.
  • the management device may perform the determination of the access point cooperation set according to the information, and further, based on the location information of each UE and the AP, the maximum transmit power of the AP. Wait to create an SIR table and use the SIR table for fine-grained allocation of access points.
  • the determination of the access point cooperation set and the fine allocation of the access point can be referred to the first and second embodiments, and will not be repeated here.
  • the electronic device 300 can quickly determine an access point that can be allocated to the user according to the statistical model of the access point and the communication quality requirement of the user, and improve the connection if the communication quality requirement of the user is met.
  • joint access point selection and spectrum allocation can be performed as follows, as shown in FIG. 12: after system initialization (S11), the user's coordinated access point selection is performed for the same spectrum (S12). If the communication quality requirements of all users are satisfied (S13: YES), the access point selection process is stopped, otherwise (S13: NO), a new spectrum is allocated to those users who have not yet reached the communication quality requirement (S14), and the above is repeated. The cooperative access point selection process (S12) until the communication quality requirements of all users are met.
  • the method includes the steps of: for each user, based on a predetermined range around the user Determining the collaboration scope of the user by the statistical model of the access point distribution and the communication quality requirement of the user (S22); and determining the access point cooperation set of the user based on the collaboration scope (S24), wherein the access point cooperation set is connected Incoming points are assigned to the user for collaborative transmission.
  • a statistical model may be constructed based on the actual distribution of access points or parameters of a predetermined statistical model may be determined in step S22.
  • Communication quality requirements can be expressed, for example, by a signal to interference and noise ratio threshold.
  • the above method may further include the step S21 of receiving the location information and the communication quality requirement of each user.
  • at least one of the following may be received in step S21: information of the received user signal threshold and the received interference signal threshold, the location information of each access point, and the maximum transmission power information of each user. This information is used for subsequent collaboration scope determination and access point collaboration set determination and other processing.
  • the above method may further include step S23: determining, for each user, an interference range of the user based on the collaboration scope of the user, and an access point in the interference range of the user. This user will be disturbed when serving other users.
  • the access point cooperation set of the user is determined based on the cooperation scope of the user and the interference range of other users. For example, an access point that is within the user's collaboration range and outside the interference range of any other user may be selected to form the user's access point collaboration set.
  • the ratio of the interference radius of the interference range to the cooperation radius of the cooperation range is determined by the ratio of the user's received useful signal threshold to the received interference signal threshold.
  • the user's cooperation radius can be calculated by making the user's signal to interference and noise ratio calculated based on the statistical model greater than or equal to the signal to interference and noise ratio threshold, thereby calculating the user's interference radius.
  • the method may further include the step S25: creating an SIR table, each value in the SIR table being a ratio of a useful signal provided by the corresponding access point to the corresponding user to a total interference to other users.
  • the above method further includes step S26: selecting an access point for cooperative transmission from the access point cooperation set based on the SIR table.
  • step S26 an operation may be performed to select a user and a pair of users and access points composed of an access point corresponding to a maximum SIR of each user to generate a user and a maximum boost of all user values and The pair of access points, where, and the utility value reflect the overall communication quality of all users. Also, the user and access point pair are no longer considered at the next allocation.
  • the operation of step S26 will be repeatedly performed, for example, for a specific user, when the communication quality requirement of the user is reached, the allocation of the access point to the user is stopped; in addition, the connection stops when the utility value converges or begins to fall.
  • the allocation of the in points, that is, the step S26 is not repeated. If there is a user who does not meet its communication quality requirements when the access point assignment for all users is completed, the access point will be assigned to the user who has not met its communication quality requirements on the new frequency band.
  • the utility value is a function of the communication quality of the user, and the communication quality of the user is calculated based on the location information of the user and each access point and the transmission power of each access point, such as the SINR of the user.
  • the utility value can be calculated, for example, using a utility function, and the utility function is, for example, a nonlinear function of the SINR.
  • FIG. 14 shows a flowchart of a method for wireless communication according to another embodiment of the present application, the method comprising: acquiring a statistical model representing an access point distribution within a predetermined range around a user (S31); The statistical model and the communication quality requirements of the user determine the collaboration scope of the user, the collaboration scope being provided to the management device for allocation of the access point of the user (S32).
  • the interference range of the user may also be determined according to the cooperation scope of the user, and the access point in the interference range of the user may cause interference to the user when serving other users, and the interference range of the user is also It is provided to the management device for the assignment of the user's access point. It can be seen that in the method, the determination of the cooperation range and the interference range is performed by the user side, and the allocation of the access point is performed by the management device according to the cooperation range and the interference range of each user.
  • FIG. 15 shows a flowchart of a method for wireless communication according to another embodiment of the present application, the method comprising: acquiring location information and communication quality requirements of a user and indicating an access point within a predetermined range around the user a statistical model of the distribution (S41); and determining a collaboration scope of the user based on the statistical model and the communication quality requirement of the user, the collaboration scope of the user being provided to the management device for allocation of the access point of the user ( S42).
  • the interference range of the user may also be determined according to the cooperation scope of the user, and the access point in the interference range of the user may cause interference to the user when serving other users, and the interference range of the user is also Provided to the management device for the assignment of the user's access point. It can be seen that in the method, the determination of the cooperation range and the interference range is performed by the access point side, and the allocation of the access point is performed by the management apparatus according to the cooperation range and the interference range of each user.
  • Figure 16 shows a simulation scenario 1 of UCN in which users have the same communication quality requirements, i.e., SINR thresholds, but the density of APs is different, and the AP density in the upper half is twice the AP density in the lower half.
  • Figure a) shows the cooperation radius and interference radius obtained by algorithm 1) (the same for each user), b) of Figure 16 shows the same as obtained by algorithms 2) and 3) Collaboration radius and interference radius.
  • the collaboration radius of each user is represented by a dotted circle centered on the user, and the interference radius is represented by a solid circle centered on the user. Since the SINR thresholds of the users are the same due to the different densities of the APs, in the (b) of FIG. 16, the cooperation radius estimated by the users of the upper half is small.
  • the operating frequency is 28 GHz
  • the channel width is 20 MHz
  • the number of UEs is 16
  • the transmission power is 0 dBm
  • the SINR threshold of the UE is 7 dB
  • the simulation area is 1000 m ⁇ 1000 m in the simulation area.
  • the total number of cooperative APs is 400
  • the noise figure of the UE receiver is 5 dB
  • the receiver sensitivity is -93 dBm
  • the interference threshold is -99 dBm.
  • Figure 19 shows a simulation scenario 2 of UCN in which the density of APs is the same, but users have different communication quality requirements, i.e., SINR thresholds, and users in the left half have higher SINR thresholds.
  • Figure a) shows the cooperation radius and interference radius obtained by algorithm 1) (the same for each user), b) of Figure 19 shows the same as obtained by algorithms 2) and 3) Collaboration radius and interference radius.
  • the collaboration radius of each user is represented by a dotted circle centered on the user, and the interference radius is represented by a solid circle centered on the user. Since the density of the APs is the same and the SINR thresholds of the users are different, in the (b) of FIG. 19, the cooperation radius estimated by the user of the left half is larger.
  • the simulation parameters in scenario 2 are as follows: the operating frequency is 28 GHz, the channel width is 20 MHz, the number of UEs is 16, the transmission power is 6 dBm, the SINR threshold of the left half UE is 7.5 dB, and the SINR threshold of the right half UE is 7dB, the simulation area is 1000m ⁇ 1000m, the total number of cooperative APs in the simulation area is 400, the noise figure of the UE receiver is 5dB, the receiver sensitivity is -87dBm, and the interference threshold is -93dBm.
  • the antennas of the access points are not randomly beamformed.
  • scenario 3 it is assumed that the antenna of the access point adopts random beamforming, and the user has the same SINR threshold, but the density of the AP is different, as shown in FIG. It is assumed that random beamforming includes N d possible beam directions (beam width is 2 ⁇ /N d ), and the array gain is G. To achieve the same performance as without random beamforming, the access point density is required to be ⁇ a ⁇ N d . Accordingly, in equation (4), q should be corrected to Where g is the linear value of the array gain.
  • Fig. 22(a) shows the cooperation radius and the interference radius obtained by algorithm 1) (the same for each user), and b) of Fig. 22 shows the same obtained by using algorithms 2) and 3) Cooperative radius and interference radius.
  • the collaboration radius of each user is represented by a dotted circle centered on the user, and the interference radius is represented by a solid circle centered on the user.
  • the simulation parameters in scenario 3 are as follows: the operating frequency is 28 GHz, the channel width is 20 MHz, the number of UEs is 16, the transmission power is 0 dBm, the SINR threshold of the UE is 7 dB, the antenna gain is 6 dB, and the number of beam directions (N d 4, the simulation area is 1000 m ⁇ 1000 m, the total number of cooperative APs in the simulation area is 1600, the noise figure of the UE receiver is 5 dB, the receiver sensitivity is -90 dBm, and the interference threshold is -96 dBm.
  • the simulation results are shown in FIG. 23 and FIG. 24, and it can be seen that, compared with FIG. 17 and FIG. 18 corresponding to the scenario 1, in the scenario 3 using random beamforming, a higher user success probability and a higher AP can be obtained. Use efficiency.
  • electronic device 100 can be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the electronic device 100 may be a control module mounted on a server (such as an integrated circuit module including a single wafer, and a card or blade inserted into a slot of the blade server).
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a server 700 to which the technology of the present disclosure can be applied.
  • Server 700 includes a processor 701, a memory 702, a storage device 703, a network interface 704, and a bus 706.
  • the processor 701 can be, for example, a central processing unit (CPU) or a digital signal processor (DSP) and controls the functionality of the server 700.
  • the memory 702 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 701.
  • the storage device 703 may include a storage medium such as a semiconductor memory and a hard disk.
  • Network interface 704 is a communication interface for connecting server 700 to communication network 705.
  • Communication network 705 can be a core network such as an Evolved Packet Core Network (EPC) or a packet data network (PDN) such as the Internet.
  • EPC Evolved Packet Core Network
  • PDN packet data network
  • the bus 706 connects the processor 701, the memory 702, the storage device 703, and the network interface 704 to each other.
  • Bus 706 can include two or more buses (such as a high speed bus and a low speed bus) each having a different speed.
  • the first determining unit 101, the second determining unit 102, and the like described with reference to FIGS. 2 and 5 can be implemented by the processor 701.
  • the processor 701 can perform the allocation of the access point by performing the functions of the first determining unit 101 and the second determining unit 102.
  • FIG. 26 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • MIMO multiple input multiple output
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 26 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to the terminal located in the cell of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 26 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • FIG. 27 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 27 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 26 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 27 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 27 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiver unit described in the fourth embodiment can be implemented by the wireless communication interface 825 and the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 821 and controller 851.
  • the obtaining unit 301 and the determining unit 302 described with reference to FIG. 11 can be implemented by the controller 821 and the controller 851.
  • the controller 821 and the controller 851 can perform the determination of the cooperation range by performing the functions of the acquisition unit 301 and the determination unit 302.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 28 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 28 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 28 via a feeder, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the transceiving unit described in the third embodiment can be implemented by the wireless communication interface 912. At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • the acquisition unit 201 and the determination unit 202 described with reference to FIG. 10 may be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can perform the determination of the cooperation range by performing the functions of the acquisition unit 201 and the determination unit 202.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 29 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 29 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in FIG. 29 via feeders, which are partially shown as dashed lines in the figure. Battery 938 accumulates power supplied from the vehicle.
  • the transceiving unit described in the third embodiment can be implemented by the wireless communication interface 933. At least a portion of the functionality can also be implemented by processor 921.
  • the acquisition unit 201 and the determination unit 202 described with reference to FIG. 10 may be implemented by the processor 921.
  • the processor 921 can perform the determination of the cooperation range by performing the functions of the acquisition unit 201 and the determination unit 202.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 3000 shown in FIG. 30), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 3001 executes various processes in accordance with a program stored in a read only memory (ROM) 3002 or a program loaded from a storage portion 3008 to a random access memory (RAM) 3003.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 3001 executes various processes and the like is also stored as needed.
  • the CPU 3001, the ROM 3002, and the RAM 3003 are connected to each other via a bus 3004.
  • Input/output interface 3005 is also coupled to bus 3004.
  • the following components are connected to the input/output interface 3005: an input portion 3006 (including a keyboard, a mouse, etc.), an output portion 3007 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage section 3008 (including a hard disk or the like), the communication section 3009 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 3009 performs communication processing via a network such as the Internet.
  • the driver 3010 can also be connected to the input/output interface 3005 as needed.
  • a removable medium 3011 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 3010 as needed, so that a computer program read therefrom is installed into the storage portion 3008 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 3011.
  • such a storage medium is not limited to the removable medium 3011 shown in FIG. 30 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 3011 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 3002, a hard disk included in the storage portion 3008, or the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了用于无线通信的电子设备和方法,该电子设备包括:处理电路,被配置为:针对每一个用户,基于表示该用户周围的预定范围内的接入点分布的统计模型和该用户的通信质量要求来确定该用户的协作范围;以及基于该协作范围确定用户的接入点协作集,其中,接入点协作集中的接入点被分配给用户以进行协作传输。

Description

用于无线通信的电子设备和方法
本申请要求于2017年5月11日提交中国专利局、申请号为201710330397.4、发明名称为“用于无线通信的电子设备和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及以用户为中心网络(User Centric Network,UCN)中的联合协作接入点选择和频谱分配,更具体地涉及用于无线通信的电子设备和方法。
背景技术
随着5G通信技术的发展,超密集的小小区网络被视为能满足日益增长的移动数据速率需求的方式,而小小区的密集以及灵活配置使得实现以用户为中心的网络(UCN),以支持海量移动用户及设备的有效通信成为可能。UCN意味着无论用户在哪,都能以较高的概率满足其服务质量需求,因此允许每个用户联合选择多个接入点比如进行协作传输,倾向于满足每个用户的需求。而传统的以网络为中心的资源管理方案,则倾向于最大化整个网络的效用,容易将无线资源更多地分配给信道条件较好的用户,比如典型的注水算法。例如,在传统蜂窝网络架构下具备小区的概念的场景中,以基站为中心,向周围辐射功率,其能有效覆盖的区域称为小区,位于某个基站有效覆盖范围内的用户则连接该基站,离开则切换到其他的基站上,基站对其覆盖范围内的用户进行资源分配大都是侧重于优化网络的整体性能。
在传统的以网络为中心的蜂窝网络架构下,用户的数目远远超过基站的数目。位于小区边缘的用户会受到较强的小区间干扰,如果不通过与其他基站协作,则很难满足其需求,但由于网络的规则配置使得选择协作基站变得很容易。而在超密集小小区网络下,低传输功率的接入点(Access Point,AP)的数目与用户的数目相当,并且AP配置灵活无规律,因此如何进行协作基站的选择以满足每个用户的服务质量需求成为一个难点。
发明内容
在下文中给出了关于本申请的简要概述,以便提供关于本申请的某些方面的基本理解。应当理解,这个概述并不是关于本申请的穷举性概述。它并不是意图确定本申请的关键或重要部分,也不是意图限定本申请的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:针对每一个用户,基于表示该用户周围的预定范围内的接入点分布的统计模型和该用户的通信质量要求来确定该用户的协作范围;以及基于该协作范围确定用户的接入点协作集,其中,接入点协作集中的接入点被分配给用户以进行协作传输。
根据本申请的另一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:获取表示用户周围的预定范围内的接入点分布的统计模型;以及基于该统计模型和该用户的通信质量要求来确定该用户的协作范围,该协作范围被提供给管理装置以用于该用户的接入点的分配。
根据本申请的另一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:获取用户的位置信息和通信质量要求以及表示该用户周围的预定范围内的接入点分布的统计模型;以及基于该统计模型和用户的通信质量要求来确定用户的协作范围,该协作范围被提供给管理装置以用于用户的接入点的分配。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:针对每一个用户,基于表示该用户周围的预定范围内的接入点分布的统计模型和该用户的通信质量要求来确定该用户的协作范围;以及基于该用户的协作范围确定该用户的接入点协作集,其中,该接入点协作集中的接入点被分配给该用户以进行协作传输。
根据本申请的另一个方面,还提供了一种用于无线通信的方法,包括:获取表示用户周围的预定范围内的接入点分布的统计模型;以及基于该统计模型和该用户的通信质量要求来确定该用户的协作范围,该用户的协作范围被提供给管理装置以用于该用户的接入点的分配。
根据本申请的另一个方面,还提供了一种用于无线通信的电子设备,包括:获取用户的位置信息和通信质量要求以及表示该用户周围的预定范围内的接入点分布的统计模型;以及基于该统计模型和用户的通信质量要求来确定该用户的协作范围,该用户的协作范围被提供给管理装置以用于该用户的接入点的分配。
依据本申请的其它方面,还提供了用于实现上述方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述方法的计算机程序代码的计算机可读存储介质。
根据本申请的电子设备和方法能够快速有效地为具有不同服务质量要求的用户选择接入点,在保障用户的服务质量需求的情况下提高接入点的使用效率。
通过以下结合附图对本申请的优选实施例的详细说明,本申请的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了UCN的一个场景示意图;
图2示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图3示出了AP分布的一个示意性示例;
图4示出了协作半径与AP密度和用户的通信质量要求之间的关系的示意性示例;
图5示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图6示出了接入点协作集的一个示例;
图7示出了SIR表的一个示例;
图8示出了效用函数的一个示例的曲线图;
图9示出了用户、接入点和频谱管理装置之间的信息流程的示意图;
图10示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图11示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图12示出了UCN网络中联合接入点选择以及频谱分配的示意性流程图;
图13示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图14示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图15示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图16示出了UCN的仿真场景1;
图17示出了在仿真场景1下,采用不同算法的情况下的用户成功率的累积密度函数(CDF)的对比的曲线图;
图18示出了在仿真场景1下,采用不同算法的情况下使用的总AP数目的CDF的对比的曲线图;
图19示出了UCN的仿真场景2;
图20示出了在仿真场景2下,采用不同算法的情况下的用户成功率的累积密度函数(CDF)的对比的曲线图;
图21示出了在仿真场景2下,采用不同算法的情况下使用的总AP数目的CDF的对比的曲线图;
图22示出了UCN的仿真场景3;
图23示出了在仿真场景3下,采用不同算法的情况下的用户成功率的累积密度函数(CDF)的对比的曲线图;
图24示出了在仿真场景3下,采用不同算法的情况下使用的总AP数目的CDF的对比的曲线图;
图25是示出可以应用本公开内容的技术的服务器700的示意性配置的示例的框图;
图26是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图27是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图28是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图29是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图30是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
如前所述,在UCN中如何为用户选择联合协作接入点对于系统的通信质量和接入点的使用效率有显著的影响。图1示出了UCN的一个场景示意图。其中,在用户设备(UE)周围存在多个AP,UE通过选择AP进行协作传输。并且,各个AP与频谱管理装置比如频谱协调器(Spectrum Coordinator,SC)可通信地连接,SC为AP-UE对分配频谱。可以看出,与传统的蜂窝网络架构相比,图1的网络架构的特点在于AP的数目众多,甚至多于UE的数目。
本文中所述的AP可以是任何提供网络通信服务的节点,比如基站、小基站、移动基站等。基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
UE或者用户可以是任何终端设备或者提供服务的无线通信设备。例如,终端设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
针对上述的接入点选择问题,本实施例提供了一种用于无线通信的电子设备100,图2示出了该电子100的功能模块框图。如图2所示,该电子设备100包括:第一确定单元101,被配置为针对每一个用户,基于表示该用户周围的预定范围内的接入点分布的统计模型和该用户的通信质量要求来确定该用户的协作范围;以及第二确定单元102,被配置为基于协作范围确定用户的接入点协作集,其中,接入点协作集中的接入点被分配给用户以进行协作传输。
其中,第一确定单元101和第二确定单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。电子设备100例如可以 位于图1中所示的管理装置(即SC)上,或者可通信地连接到SC。
其中,第一确定单元101可以基于接入点的实际分布来构造统计模型或者确定预先设定的统计模型的参数。具体地,第一确定单元101能够获知各个接入点的地理位置信息以及各个用户的地理位置信息,根据这些信息,第一确定单元101能够拟合接入点分布的统计几何模型。或者,根据通常的情形,例如可以采用统计几何泊松点过程(Poisson Point Process,PPP)模型作为统计几何模型,第一确定单元101可以根据上述地理位置信息来确定该PPP模型的强度参数λ a,从而确定了接入点分布的统计模型。
此外,在接入点分布基本均匀的情形下或者为了提高计算效率的情况下,第一确定单元101也可以针对每一个用户采用相同的具有相同参数的统计模型,即用户的协作范围仅取决于用户的通信质量要求。另一方面,在接入点分布固定的情况下,也可以对接入点的分布进行预先建模。在这样的示例中,例如,所建立的统计模型可以预先存储在存储器中,以供第一确定单元101使用。
用户的通信质量要求例如可以用信干噪比(Signal to interference and noise ratio,SINR)阈值表示。当用户的SINR在该阈值以上时,认为满足了用户的通信质量要求。在下文的描述中将以SINR作为用户的通信质量的评价参数,但是应该理解,本申请并不限于此,而是还可以采用其他能够代表用户的通信质量的参数。
针对每一个用户,第一确定单元101根据上述统计模型以及该用户的通信质量要求来确定该用户的协作范围,其中,在该用户的协作范围内的接入点可以作为该用户可以接入的接入点候选,换言之,这些接入点可以为该用户提供足够强的有用信号。第二确定单元102可以进一步在该协作范围内,例如根据特定规则或标准来确定用户的接入点协作集,其中,根据该特定规则或标准,与协作范围内的其他接入点相比,所确定的接入点协作集中的接入点在被分配给用户以进行协作传输时将提供更好的性能。在一个示例中,接入点协作集中的接入点能够为该用户提供足够强的有用信号,并且不对其他用户带来干扰。
第一确定单元101在确定用户的协作范围时例如可以根据统计模型来计算该用户的SINR,例如,可以假定协作范围内的AP能够为用户提 供有用信号,而协作范围外的AP将提供干扰信号。这样,可以获得使得用户的SINR恰好在其SINR阈值以上时的AP的范围作为协作范围,在该协作范围内的AP可以用于构成接入点协作集。
在一个示例中,第一确定单元101还被配置为针对每一个用户,基于该用户的协作范围来确定该用户的干扰范围,在该用户的干扰范围中的接入点在服务于其他用户时将对本用户造成干扰。
例如,协作范围和干扰范围分别可以用协作半径和干扰半径来表示。图3示出了AP分布的一个示意性示例,其中,AP的分布符合PPP模型且强度参数为λ a。图中以用户k作为示例,虚线所覆盖的圆形范围为协作范围,实线与虚线之间的环形范围为干扰范围,可以分别用图中所示的半径
Figure PCTCN2018085430-appb-000001
Figure PCTCN2018085430-appb-000002
来表示。
例如,可以根据用户接收机的接收有用信号门限和接收干扰信号门限的比值来设定干扰半径
Figure PCTCN2018085430-appb-000003
与协作半径
Figure PCTCN2018085430-appb-000004
的比值m,并使用该比值m来具体地确定协作半径和干扰半径。应该理解,该参数还可以进一步进行优化。以用户k为例,其干扰半径与协作半径的比值如下式(1)所示。
Figure PCTCN2018085430-appb-000005
其中,
Figure PCTCN2018085430-appb-000006
为接收有用功率门限,例如可以设定为高于噪声电平3dB及以上的信号;
Figure PCTCN2018085430-appb-000007
为接收干扰功率门限,例如可以设定为低于噪声电平3dB或者更低的信号。
参照图3所示,为估计用户k的协作半径的下限值,考虑SINR最差的场景,即假设位于环形的干扰范围内的AP均作为用户k的干扰AP(η=1),η为干扰范围内AP的使用效率。为满足用户k的通信质量要求,应满足下式(2),即使得基于统计模型计算的用户的信干噪比大于等于信干噪比阈值。
Figure PCTCN2018085430-appb-000008
其中,SINR k为估计的第k个用户的信干噪比,SINR k th第k个用户的 信干噪比阈值,Φ C(k)为第k个用户的协作AP集合,Φ I(k)为第k个用户的干扰AP集合,P i为第i个接入点的信号发射功率,β为在d 0(d 0=1m)处的自由空间的路径损耗,α为路径损耗指数,d ik为第i个接入点与用户k之间的距离,
Figure PCTCN2018085430-appb-000009
为用户接收机处的噪声功率,其取决于信号带宽以及用户接收机处的噪声指数。如式(2)所示,第一确定单元101可以基于上述PPP模型来计算用户的SINR,并且通过使得所计算的SINR大于等于SINR阈值来计算用户的协作半径。如下式(3)所示:
Figure PCTCN2018085430-appb-000010
其中,假设协作范围和干扰范围内AP的发送功率均为P t。令q=2πλ aP tβ,可以得出用户k的协作半径的估计值为:
Figure PCTCN2018085430-appb-000011
由上式(4)可以看出,用户周围AP密度越大(即,λ a越大),协作半径越小;在相同的AP密度的情况下,用户的通信质量要求越高(SINR k th越大),协作半径越大。图4示出了协作半径与AP密度和用户的通信质量要求之间的关系的示意性示例。其中,假设AP采用相同的 发射功率,且自由空间的路径损耗相同,路径损耗指数相同,用户接收机具备相同的噪声系数。在图4的(a)和(b)中,用户具备相同的通信质量需求,但图4的(a)中用户的AP密度高于4的(b)中用户的AP密度,因此(a)中用户的协作半径相对较小。在图4的(c)和(d)中,用户具备相同的AP密度,但图4的(d)中用户的通信质量需求高于4的(c)中用户的服务质量需求,因此图4的(d)中用户的协作半径相对较大。
此外,如果采用波束赋形技术,假定随机波束成形包括N d个可能的波束方向(波束宽度为2π/N d),阵列增益为G,为达到跟不采用随机波束成形相同的性能,需要接入点密度为λ a·N d。相应地,在公式(4)中,q应修正为
Figure PCTCN2018085430-appb-000012
其中g为阵列增益的线性值。
如上所述,在确定协作范围和干扰范围时,需要用户的位置信息和通信质量要求的信息。因此,如图5所示,电子设备100还可以相应地包括:收发单元103,被配置为接收各个用户的位置信息和通信质量要求。收发单元103例如可以实现为收发器、天线等。
此外,收发单元103还可以被配置为接收如下中的至少一个:各个用户的接收有用信号门限与接收干扰信号门限的信息,各个接入点的位置信息和最大发射功率的信息。或者,各个接入点的位置信息和最大发射功率的信息也可以在系统初始化时预先存储在存储器中。
其中,收发单元103与用户之间的通信例如可以以无线方式进行,或者经由AP转发;收发单元103与AP之间的通信可以以有线或无线的方式进行。
在确定了每一个用户的协作范围和干扰范围之后,针对每一个用户,第二确定单元102例如可以基于该用户的协作范围和其他用户的干扰范围来确定该用户的接入点协作集。例如,第二确定单元102选择处于用户的协作范围内并且处于任何其他用户的干扰范围外的接入点来构成用户的接入点协作集。换言之,接入点协作集中的接入点能够为该用户提供足够强的用户信号,但是不对其他用户带来干扰。假设总的AP数目为N,AP的全集表示为Ω,总的用户数目为K,第k个用户的接入点协 作集可以表示为:
Figure PCTCN2018085430-appb-000013
其中,Ω C(k)为位于用户k协作半径内的全部AP,Ω I(k)为位于用户k干扰半径内的全部AP,
Figure PCTCN2018085430-appb-000014
为会对除用户k外其他所有用户造成干扰的AP的并集,其上方的“—”代表取补集运算。
图6示出了接入点协作集的一个示例。其中,AP 1位于UE 1的协作半径范围内,同时也位于UE 2的干扰半径范围内,因此AP 1不包括在UE 1的接入点协作集内;AP 2位于UE 2的协作半径范围内,同时也位于UE 1的干扰半径范围内,因此AP 2不包括在UE 1的接入点协作集中。用户例如可以随机地或任意地选择接入点协作集中的接入点进行协作传输。这样,执行了对每个用户的协作AP的分配。
假设所有AP工作在相同的信道上,每个用户可以选择一组协作AP,但在同一时隙中,每个AP只能服务一个用户。在一个示例中,用户随机地选择接入点协作集中的接入点进行协作传输,不断增加协作AP的个数,直到达到其通信质量要求比如SINR阈值为止。如果满足了所有用户的通信质量要求,则操作结束。如果存在无法满足其通信质量需求的用户,则为这些用户分配新的信道(或频谱),并重复如上所述的协作AP的分配过程。换言之,第一确定单元101和第二确定单元102在对所有用户的接入点分配完成时存在未达到其通信质量要求的用户的情况下,在新的频段上为该未达到其通信质量要求的用户分配接入点。
在针对所有的用户的接入点分配和频谱分配完成后,收发单元103可以将分配的结果比如要进行协作的AP-UE对和该AP-UE对要使用的相应的频谱通知给接入点,以进行协作通信。
综上所述,根据本实施例的电子设备100通过基于AP的统计模型和用户的通信质量要求来进行协作AP的分配,可以快速有效地为各个用户选择适当的AP,在保证各个用户的通信质量的情况下降提高接入点 的使用效率。
<第二实施例>
在本实施例中,第二确定单元102还可以基于接入点为用户提供的有用信号与给其他用户带来的总的干扰的比值(在下文中称为SIR),来从接入点协作集中选择用于协作传输的接入点。这样,第二确定单元102例如可以优先选择该比值最大的接入点;以及/或者第二确定单元102可以选择对整体通信质量的提升最有利的UE和AP的对。
在一个示例中,第二确定单元102可以基于各个用户和接入点的位置信息以及接入点的发射功率来计算上述比值SIR。换言之,上述比值并不是测量获得的,而是通过已有参数估计得到的。具体的计算例如如下式(6)所示。
Figure PCTCN2018085430-appb-000015
其中,假设第k个用户的接入点协作集中包含的AP数目为N k,SIR ji,j表示假设用户j的接入点协作集中的第i个协作接入点AP ji作为用户j(UE j)的协作AP的条件下,给UE j提供的有用信号与给其他用户带来的总的干扰功率之比,P ji表示协作AP ji的发射功率,d ji,k表示协作AP ji到第k个用户的距离。
例如,针对每一个用户和每个用户的接入点协作集中的每一个接入点计算SIR并利用这些SIR构建SIR表,第二确定单元102利用该表进行所有用户的协作AP分配。图7示出了SIR表的一个示例,其中共有K个用户,第k个用户的接入点协作集中包含的AP数目为N k
在一个示例中,第二确定单元102被配置为在为各个用户分配接入点时重复如下操作:从每一个用户的对应于最大比值的接入点与该用户组成的用户和接入点对中选择产生所有用户的和效用值的最大提升的用户和接入点对,并在下一次分配时不再考虑该用户和接入点对,其中,和效用值反映所有用户的整体通信质量。
具体地,第二确定单元102针对每一个用户根据SIR表选择出SIR 最大的AP,该AP与用户构成该用户的AP-UE对。然后,从所有用户的AP-UE对中选择出能够给所有用户的和效用值带来最大提升的AP-UE对,将该AP分配给相应的UE。
重复上述操作,并且在用户的通信质量达到其通信质量要求时,停止对该用户的接入点的分配。例如,当用户的SINR满足
Figure PCTCN2018085430-appb-000016
时,停止为该用户分配AP,其中,Δ为预先设置的裕量。
并且,如果所有用户的和效用值收敛或开始下降,则停止整个AP分配过程,否则继续重复根据SIR表的AP-UE对的选择以及AP的分配。
如前所述,和效用值反映了所有用户的整体通信质量,因此,上述配置相当于当继续分配AP不能提升整体通信质量或者设置降低整体通信质量时,停止分配过程。类似地,如果存在未达到其通信质量要求的用户,则第一确定单元101和第二确定单元102可以在新的频段上为该未达到其通信质量要求的用户分配接入点。
例如,和效用值为用户的通信质量的函数,用户的通信质量基于该用户和各个接入点的位置信息以及各个接入点的发射功率计算得到。例如,用户的通信质量可以用式(2)中所示的SINR表示。
在一个示例中,和效用值为各个用户的效用值的和效果。用户的效用值可以用效用函数计算。例如,效用函数是SINR k/SINR k th的非线性变换,下式(7)示出了效用函数的一个示例。
Figure PCTCN2018085430-appb-000017
其中,U k代表用户k的效用函数,tanh()为双曲正切函数,ξ为扩展因子(例如可以为3.5834),ε为对称中心(例如可以为0.8064)。图8示出了该效用函数的曲线图,其中横轴为SINR k/SINR k th,SINR的单位为dB,纵轴为效用函数U k
可以看出,效用函数的特点在于用户未到达其信干噪比阈值时,效用函数对SINR值的改变极为敏感,从而使得通过AP的分配用户能够快速达到其信干噪比阈值。而当用户的信干噪比超过其阈值时,效用函数曲线的变化就会变得相对缓慢,从而避免为该用户分配过多的资源。应 该理解,以上仅给出了效用函数的一个示例,但是可以采用的效用函数并不限于此。
与第一实施例中类似地,在针对所有的用户的接入点分配和频谱分配完成后,收发单元103可以将分配的结果比如要进行协作的AP-UE对和该AP-UE对要使用的相应的频谱通知给接入点,以进行协作通信。
根据本实施例的电子设备200通过利用SIR表和效用函数进一步优化各个用户的接入点的分配,能够更有效地降低不同用户协作集之间的干扰,在保障用户的通信质量需求的情况下提高接入点的使用效率。
为了便于理解,图9示出了当电子设备200设置在频谱管理装置(例如频谱协调器)上时,用户(UE)、接入点(AP)和频谱管理装置(SC)之间的信息流程的示意图。
首先,各个UE将其位置信息和通信质量要求比如SINR阈值上报给SC,附加地,UE还可以上报其接收有用信号门限和接收干扰信号门限。各个AP将其位置信息和最大发射功率上报给SC。SC例如根据AP的位置信息和UE的位置信息获得各个UE周围的AP分布的统计几何模型。接下来,SC根据该统计几何模型以及UE的通信质量要求计算得到各个UE的协作范围和干扰范围比如协作半径和干扰半径。SC例如还可以基于用户的协作范围和其他用户的干扰范围来确定该用户的接入点协作集,例如选择处于该用户的协作范围内但是不处于任何其他用户的干扰范围内的接入点来构成该用户的接入点协作集。此外,SC还可以创建SIR表,并且如前所述根据该SIR表和所有用户的和效用值来为各个用户分配接入点。以上接入点分配的过程针对同一频谱进行,当该频谱不能满足所有用户的需求时,将针对其他频谱继续接入点的分配。最后,SC将接入点分配结果比如AP-UE对和频谱分配结果比如AP-UE对对应的频谱通知给AP,以使得AP和UE基于这些结果进行协作通信。
应该理解,图9所示的信息流程仅是示意性的,而非限制性的。
<第三实施例>
图10示出了根据本申请的另一个实施例的用于无线通信的电子设备200的功能模块框图,该电子设备200包括:获取单元201,被配置为 获取表示用户周围的预定范围内的接入点分布的统计模型;以及确定单元202,被配置为基于该统计模型和该用户的通信质量要求来确定该用户的协作范围,该用户的协作范围被提供给管理装置以用于该用户的接入点的分配。
其中,获取单元201和确定单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。电子设备200例如可以位于图1中所示的用户设备UE上,或者可通信地连接到UE。
例如,获取单元201可以从管理装置获取上述统计模型。此时,电子设备200还可以相应地包括收发单元(图10中未示出),被配置为从管理装置接收该统计模型的信息。在一个示例中,收发单元还可以将用户的位置信息发送给管理装置,以使得管理装置准确地确定要提供给用户的统计模型(或其参数)。此外,在AP的分布较为固定的情况下,获取单元201还可以从预先存储了AP的分布或AP的统计几何模型的存储器中获取相关的信息并且基于这些相关信息来获取该用户周围的预定范围内的接入点分布的统计模型。该存储器可以位于用户侧或管理装置侧。
在获取了上述统计模型之后,确定单元202可以基于该统计模型和用户的通信质量要求比如SINR阈值来确定该用户的协作范围比如协作半径。其中,在该用户的协作范围内的接入点可以作为分配给该用户的接入点的候选。换言之,该用户的协作范围内的接入点可以为用户提供足够强的有用信号。
此外,确定单元202还可以根据该用户的协作范围来确定该用户的干扰范围,在该用户的干扰范围内的接入点在服务于其他用户时将对该用户造成干扰,该用户的干扰范围也被提供给管理装置以用于该用户的接入点的分配。其中,确定单元202可以采用与第一实施例中相同的方式进行协作范围和干扰范围的确定,在此不再重复。
在各个用户将各自的协作范围和干扰范围提供给管理装置之后,管理装置可以根据这些信息进行接入点协作集的确定,以及进一步地,还基于各个UE和AP的位置信息、AP的最大发射功率等来创建SIR表并使用该SIR表来进行接入点的精细分配。接入点协作集的确定和接入点的精细分配可参照第一和第二实施例所述,在此不再重复。
根据本实施例的电子设备200能够根据接入点的统计模型和用户的 通信质量要求来快速地确定可以分配给该用户的接入点,在满足该用户的通信质量要求的情况下提高了接入点的分配效率和使用效率。
<第四实施例>
图11示出了根据本申请的另一个实施例的用于无线通信的电子设备300的功能模块框图,该电子设备300包括:获取单元301,被配置为获取用户的位置信息和通信质量要求以及表示该用户周围的预定范围内的接入点分布的统计模型;以及确定单元302,被配置为基于该统计模型和该用户的通信质量要求来确定该用户的协作范围,该用户的协作范围被提供给管理装置以用于该用户的接入点的分配。
其中,获取单元301和确定单元302可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。电子设备300例如可以位于图1中所示的接入点AP上,或者可通信地连接到AP。
例如,用户可以将其位置信息和通信质量要求提供给最近的接入点,以使得该接入点对应的电子设备300针对该用户进行上述操作。电子设备300还可以相应地包括收发单元(图11中未示出):被配置为从用户接收其位置信息和通信质量要求的信息。此外,获取单元301可以从管理装置获取统计模型。此时,收发单元还被配置为从管理装置接收该统计模型的信息。在一个示例中,收发单元还可以将用户的位置信息发送给管理装置,以使得管理装置准确地确定要提供给用户的统计模型(或其参数)。另一方面,在AP的分布较为固定的情况下,获取单元301还可以从预先存储了AP的分布或AP的统计几何模型的存储器中获取相关的信息并且基于这些相关信息来获取该用户周围的预定范围内的接入点分布的统计模型。该存储器例如可以位于AP侧或管理装置侧。
在获取了上述统计模型之后,确定单元302可以基于该统计模型和用户的通信质量要求比如SINR阈值来确定该用户的协作范围比如协作半径。其中,在该用户的协作范围内的接入点可以作为分配给该用户的接入点的候选。换言之,该用户的协作范围内的接入点可以为用户提供足够强的有用信号。
此外,确定单元302还可以根据该用户的协作范围来确定该用户的干扰范围,在该用户的干扰范围内的接入点在服务于其他用户时将对该 用户造成干扰,该用户的干扰范围也被提供给管理装置以用于该用户的接入点的分配。其中,确定单元302可以采用与第一实施例中相同的方式进行协作范围和干扰范围的确定,在此不再重复。
在将各个用户的协作范围和干扰范围提供给管理装置之后,管理装置可以根据这些信息进行接入点协作集的确定,以及进一步地,还基于各个UE和AP的位置信息、AP的最大发射功率等来创建SIR表并使用该SIR表来进行接入点的精细分配。接入点协作集的确定和接入点的精细分配可参照第一和第二实施例所述,在此不再重复。
根据本实施例的电子设备300能够根据接入点的统计模型和用户的通信质量要求来快速地确定可以分配给该用户的接入点,在满足该用户的通信质量要求的情况下提高了接入点的分配效率和使用效率。
<第五实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
如前所述,在UCN网络中,可以如下进行联合接入点选择以及频谱分配,如图12所示:在系统初始化(S11)之后,针对同一频谱执行用户的协作接入点选择(S12),如果满足了所有用户的通信质量要求(S13:是),则停止接入点选择处理,否则(S13:否)为那些尚未达到通信质量要求的用户分配新的频谱(S14),并重复以上协作接入点选择处理(S12),直到满足所有用户的通信质量要求为止。
图13示出了根据本申请的一个实施例的用于无线通信的方法的流程图,如图13所示,该方法包括如下步骤:针对每一个用户,基于表示该用户周围的预定范围内的接入点分布的统计模型和该用户的通信质量要求来确定该用户的协作范围(S22);以及基于协作范围确定用户的接 入点协作集(S24),其中,接入点协作集中的接入点被分配给该用户以进行协作传输。
例如,在步骤S22中可以基于接入点的实际分布来构造统计模型或者确定预先设定的统计模型的参数。通信质量要求例如可以用信干噪比阈值表示。
如图13中的虚线框所示,上述方法还可以包括步骤S21:接收各个用户的位置信息和通信质量要求。此外,在步骤S21中还可以接收如下中的至少一个:各个用户的接收有用信号门限与接收干扰信号门限的信息,各个接入点的位置信息和最大发射功率的信息。这些信息用于后续的协作范围确定以及接入点协作集确定等处理。
如图13中的另一个虚线框所示,上述方法还可以包括步骤S23:针对每一个用户,基于该用户的协作范围来确定该用户的干扰范围,在该用户的干扰范围中的接入点在服务于其他用户时将对该用户造成干扰。相应地,在步骤S24中,基于该用户的协作范围和其他用户的干扰范围来确定该用户的接入点协作集。例如,可以选择处于该用户的协作范围内并且处于任何其他用户的干扰范围外的接入点来构成该用户的接入点协作集。
在一个示例中,干扰范围的干扰半径与协作范围的协作半径的比值由用户的接收有用信号门限与接收干扰信号门限的比值确定。可以通过使得基于统计模型计算的用户的信干噪比大于等于信干噪比阈值来计算用户的协作半径,进而计算用户的干扰半径。
在一个示例中,上述方法还可以包括步骤S25:创建SIR表,SIR表中的每个值为相应接入点为相应用户提供的有用信号与给其他用户带来的总的干扰的比值。在该示例中,上述方法还包括步骤S26:基于SIR表从接入点协作集中选择用于协作传输的接入点。
例如,在步骤S26中可以执行如下操作:从每一个用户的对应于最大SIR的接入点与该用户组成的用户和接入点对中选择产生所有用户的和效用值的最大提升的用户和接入点对,其中,和效用值反映所有用户的整体通信质量。并且,在下一次分配时不再考虑该用户和接入点对。将重复执行步骤S26的操作,例如,对于特定用户而言,当达到该用户的通信质量要求时,停止对该用户的接入点的分配;此外,在和效用值 收敛或开始下降时停止接入点的分配,即不再重复执行步骤S26。如果在对所有用户的接入点分配完成时存在未达到其通信质量要求的用户,则将在新的频段上为该未达到其通信质量要求的用户分配接入点。
例如,和效用值为用户的通信质量的函数,用户的通信质量基于该用户和各个接入点的位置信息以及各个接入点的发射功率计算得到,比如用户的SINR。和效用值例如可以用和效用函数计算得到,和效用函数例如为SINR的非线性函数。
图14示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:获取表示用户周围的预定范围内的接入点分布的统计模型(S31);以及基于该统计模型和该用户的通信质量要求来确定该用户的协作范围,该协作范围被提供给管理装置以用于该用户的接入点的分配(S32)。
在步骤S32中还可以根据该用户的协作范围来确定该用户的干扰范围,在该用户的干扰范围中的接入点在服务于其他用户时将对该用户造成干扰,该用户的干扰范围也被提供给管理装置以用于该用户的接入点的分配。可以看出,在该方法中,由用户侧来进行协作范围和干扰范围的确定,并且由管理装置根据各个用户的协作范围和干扰范围来进行接入点的分配。
图15示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:获取用户的位置信息和通信质量要求以及表示该用户周围的预定范围内的接入点分布的统计模型(S41);以及基于该统计模型和该用户的通信质量要求来确定该用户的协作范围,该用户的协作范围被提供给管理装置以用于该用户的接入点的分配(S42)。
在步骤S42中还可以根据用户的协作范围来确定该用户的干扰范围,在该用户的干扰范围中的接入点在服务于其他用户时将对该用户造成干扰,该用户的干扰范围也被提供给管理装置以用于用户的接入点的分配。可以看出,在该方法中,由接入点侧来进行协作范围和干扰范围的确定,并且由管理装置根据各个用户的协作范围和干扰范围来进行接入点的分配。
注意,上述各个方法可以结合或单独使用,其细节在第一至第四实施例中已经进行了详细描述,在此不再重复。
为了便于理解,以下将给出如下三种算法在三种不同的场景中应用时的系统的性能的比较:1)固定的协作半径估计算法,即各个用户具有相同的协作半径,该协作半径根据接收有用信号功率门限计算得到;2)根据本申请的基于统计几何模型的协作半径估计算法,其中将基于协作半径和干扰半径确定的接入点协作集中的所有接入点作为用户的协作接入点;3)根据本申请的基于SIR表和效用函数选择接入点的算法。
图16示出了UCN的仿真场景1,其中用户具有相同的通信质量要求、即SINR阈值,但是AP的密度不同,位于上半部分的AP密度是下半部分的AP密度的2倍。图16的a)示出了采用算法1)所得到的协作半径和干扰半径(对于每个用户而言均相同),图16的b)示出了采用算法2)和3)所得到相同的协作半径和干扰半径。其中,每个用户的协作半径用以该用户为中心的虚线圆表示,干扰半径用以该用户为中心的实线圆表示。由于AP的密度不同而用户的SINR阈值相同,因此,在图16的(b)中,上半部分的用户的基于统计模型估计得到的协作半径较小。
在仿真中采用了如下参数:操作频率为28GHz,信道宽度为20MHz,UE的个数为16,发射功率为0dBm,UE的SINR阈值均为7dB,仿真区域为1000米×1000米,仿真区域中的协作AP的总的数量为400个,UE接收机的噪声系数为5dB,接收机灵敏度为-93dBm,干扰门限为-99dBm。
仿真结果如图17和18所示,由图17可以看出,本申请所提出的两种算法2)和3)几乎具有相同比例的用户成功率,并且由于考虑了AP密度和不同的服务质量需求而使得性能远远优于采用固定的协作半径估计算法1)。由图18可以看出,算法3)所使用的总AP数目远远少于将接入点协作集中的所有AP作为用户的协作AP的算法2),显著提高了AP的使用效率。
图19示出了UCN的仿真场景2,其中AP的密度相同,但是用户具有不同的通信质量要求、即SINR阈值,位于左半部分的用户具有较高的SINR阈值。图19的a)示出了采用算法1)所得到的协作半径和干扰半径(对于每个用户而言均相同),图19的b)示出了采用算法2)和3)所得到相同的协作半径和干扰半径。其中,每个用户的协作半径用以该用户为中心的虚线圆表示,干扰半径用以该用户为中心的实线圆表 示。由于AP的密度相同而用户的SINR阈值不同,因此,在图19的(b)中,左半部分的用户的基于统计模型估计得到的协作半径较大。
该场景2下的仿真参数如下:操作频率为28GHz,信道宽度为20MHz,UE的个数为16,发射功率为6dBm,左半部分UE的SINR阈值为7.5dB,右半部分UE的SINR阈值为7dB,仿真区域为1000米×1000米,仿真区域中的协作AP的总的数量为400个,UE接收机的噪声系数为5dB,接收机灵敏度为-87dBm,干扰门限为-93dBm。
仿真结果如图20和21所示,可以看出,结论与场景1下的结论类似。本申请所提出的两种算法2)和3)的性能远远优于采用固定的协作半径估计算法1),并且显著提高了AP的使用效率。
在场景1和场景2中,接入点的天线均未采用随机波束赋形。在场景3中,假设接入点的天线采用随机波束赋形,用户具备相同的SINR阈值,但AP的密度不同,如图22所示。假定随机波束成形包括N d个可能的波束方向(波束宽度为2π/N d),阵列增益为G,为达到跟不采用随机波束成形相同的性能,需要接入点密度为λ a·N d。相应地,在公式(4)中,q应修正为
Figure PCTCN2018085430-appb-000018
其中g为阵列增益的线性值。图22的(a)示出了采用算法1)所得到的协作半径和干扰半径(对于每个用户而言均相同),图22的b)示出了采用算法2)和3)所得到相同的协作半径和干扰半径。其中,每个用户的协作半径用以该用户为中心的虚线圆表示,干扰半径用以该用户为中心的实线圆表示。
该场景3下的仿真参数如下:操作频率为28GHz,信道宽度为20MHz,UE的个数为16,发射功率为0dBm,UE的SINR阈值为7dB,天线增益为6dB,波束方向的数量(N d)为4,仿真区域为1000米×1000米,仿真区域中的协作AP的总的数量为1600个,UE接收机的噪声系 数为5dB,接收机灵敏度为-90dBm,干扰门限为-96dBm。
仿真结果如图23和图24所示,可以看出,与场景1对应的图17和18相比,在采用随机波束成形的场景3中,能够获得更高的用户成功概率以及更高的AP使用效率。
应该理解,上述仿真仅是示例性的,并不对本申请构成限制。
本公开内容的技术能够应用于各种产品。例如,电子设备100可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。电子设备100可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
[关于服务器的应用示例]
图25是示出可以应用本公开内容的技术的服务器700的示意性配置的示例的框图。服务器700包括处理器701、存储器702、存储装置703、网络接口704以及总线706。
处理器701可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器700的功能。存储器702包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器701执行的程序。存储装置703可以包括存储介质,诸如半导体存储器和硬盘。
网络接口704为用于将服务器700连接到通信网络705的通信接口。通信网络705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线706将处理器701、存储器702、存储装置703和网络接口704彼此连接。总线706可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
在图25所示的服务器700中,参照图2和图5所描述的第一确定单元101、第二确定单元102等可以由处理器701实现。例如,处理器701可以通过执行第一确定单元101和第二确定单元102的功能来执行接入点的分配。
[关于基站的应用示例]
(第一应用示例)
图26是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图26所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图26示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终 端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图26所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图26所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图26示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图27是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图27所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图27示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图26描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进), 并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图26描述的BB处理器826相同。如图27所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图27示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图27所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图27示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图26和图27所示的eNB 800和eNB 830中,第四实施例中所述的收发单元可以由无线通信接口825以及无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器821和控制器851实现。参照图11所描述的获取单元301、确定单元302可以由控制器821和控制器851实现。例如,控制器821和控制器851可以通过执行获取单元301和确定单元302的功能来进行协作范围的确定。
[关于终端设备的应用示例]
(第一应用示例)
图28是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图28所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图28示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图28所示,智能电话900可以包括多个天线916。虽然图28示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图28所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图28所示的智能电话900中,在第三实施例中所描述的收发单元可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。参照图10所描述的获取单元201和确定单元202可以由处理器901或辅助控制器919来实现。例如,处理器901或辅助控制器919可以通过执行获取单元201和确定单元202的功能来进行协作范围的确定。
(第二应用示例)
图29是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、 无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图29所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图29示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图29所示,汽车导航设备920可以包括多个天线937。虽然图29示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图29所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图29示出的汽车导航设备920中,在第三实施例中所描述的收发单元可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。参照图10所描述的获取单元201和确定单元202可以由处理器921来实现。例如,处理器921可以通过执行获取单元201和确定单元202的功能来进行协作范围的确定。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例 的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图30所示的通用计算机3000)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图30中,中央处理单元(CPU)3001根据只读存储器(ROM)3002中存储的程序或从存储部分3008加载到随机存取存储器(RAM)3003的程序执行各种处理。在RAM 3003中,也根据需要存储当CPU 3001执行各种处理等等时所需的数据。CPU 3001、ROM 3002和RAM 3003经由总线3004彼此连接。输入/输出接口3005也连接到总线3004。
下述部件连接到输入/输出接口3005:输入部分3006(包括键盘、鼠标等等)、输出部分3007(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分3008(包括硬盘等)、通信部分3009(包括网络接口卡比如LAN卡、调制解调器等)。通信部分3009经由网络比如因特网执行通信处理。根据需要,驱动器3010也可连接到输入/输出接口3005。可移除介质3011比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器3010上,使得从中读出的计算机程序根据需要被安装到存储部分3008中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质3011安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图30所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质3011。可移除介质3011的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 3002、存储部分3008中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明 的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (23)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    针对每一个用户,基于表示该用户周围的预定范围内的接入点分布的统计模型和该用户的通信质量要求来确定该用户的协作范围;以及
    基于所述协作范围确定所述用户的接入点协作集,其中,所述接入点协作集中的接入点被分配给所述用户以进行协作传输。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为针对每一个用户,基于该用户的所述协作范围来确定该用户的干扰范围,在该用户的所述干扰范围中的接入点在服务于其他用户时将对该用户造成干扰。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为针对每一个用户,基于该用户的所述协作范围和所述其他用户的干扰范围来确定该用户的接入点协作集。
  4. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为选择处于所述用户的协作范围内并且在所述其他用户的干扰范围外的接入点来构成所述用户的接入点协作集。
  5. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为基于所述接入点的实际分布来构造所述统计模型或者确定预先设定的统计模型的参数。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为基于接入点为所述用户提供的有用信号与给其他用户带来的总的干扰的比值,来从所述接入点协作集中选择用于协作传输的接入点。
  7. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为基于各个用户和接入点的位置信息以及接入点的发射功率来计算所述比值。
  8. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为在为各个用户分配接入点时重复如下操作:从每一个用户的对应于最大 比值的接入点与该用户组成的用户和接入点对中选择产生所有用户的和效用值的最大提升的用户和接入点对,并在下一次分配时不再考虑该用户和接入点对,其中,所述和效用值反映所有用户的整体通信质量。
  9. 根据权利要求8所述的电子设备,其中,所述处理电路被配置为在所述和效用值收敛或开始下降时停止接入点的分配。
  10. 根据权利要求8所述的电子设备,其中,所述处理电路被配置为在达到用户的通信质量要求时,停止对该用户的接入点的分配。
  11. 根据权利要求8所述的电子设备,其中,所述和效用值为用户的通信质量的函数,所述用户的通信质量基于该用户和各个接入点的位置信息以及各个接入点的发射功率计算得到。
  12. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为在对所有用户的接入点分配完成时存在未达到其通信质量要求的用户的情况下,在新的频段上为所述未达到其通信质量要求的用户分配接入点。
  13. 根据权利要求1所述的电子设备,其中,所述接入点包括该用户周围的预定范围内的基站以及/或者移动基站。
  14. 根据权利要求2所述的电子设备,其中,所述干扰范围的干扰半径与所述协作范围的协作半径的比值由所述用户的接收有用信号门限与接收干扰信号门限的比值确定。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路被配置为通过使得基于所述统计模型计算的用户的信干噪比大于等于信干噪比阈值来计算所述用户的协作半径。
  16. 根据权利要求1所述的电子设备,还包括:
    收发电路,被配置为接收各个用户的位置信息和通信质量要求,其中,所述收发电路还被配置为接收如下中的至少一个:各个用户的接收有用信号门限与接收干扰信号门限的信息,各个接入点的位置信息和最大发射功率的信息。
  17. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    获取表示用户周围的预定范围内的接入点分布的统计模型;以及
    基于该统计模型和该用户的通信质量要求来确定该用户的协作范围,该协作范围被提供给管理装置以用于该用户的接入点的分配。
  18. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为根据所述协作范围来确定干扰范围,在所述干扰范围中的接入点在服务于其他用户时将对所述用户造成干扰,所述干扰范围被提供给所述管理装置以用于该用户的接入点的分配。
  19. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    获取用户的位置信息和通信质量要求以及表示该用户周围的预定范围内的接入点分布的统计模型;以及
    基于该统计模型和所述用户的通信质量要求来确定所述用户的协作范围,该用户的协作范围被提供给管理装置以用于所述用户的接入点的分配。
  20. 根据权利要求19所述的电子设备,其中,所述处理电路还被配置为根据所述用户的所述协作范围来确定所述用户的干扰范围,在所述用户的干扰范围中的接入点在服务于其他用户时将对所述用户造成干扰,所述用户的干扰范围被提供给所述管理装置以用于所述用户的接入点的分配。
  21. 一种用于无线通信的方法,包括:
    针对每一个用户,基于表示该用户周围的预定范围内的接入点分布的统计模型和该用户的通信质量要求来确定该用户的协作范围;以及
    基于所述用户的协作范围确定所述用户的接入点协作集,其中,所述接入点协作集中的接入点被分配给所述用户以进行协作传输。
  22. 一种用于无线通信的方法,包括:
    获取表示用户周围的预定范围内的接入点分布的统计模型;以及
    基于该统计模型和该用户的通信质量要求来确定该用户的协作范围,该用户的协作范围被提供给管理装置以用于该用户的接入点的分配。
  23. 一种用于无线通信的方法,包括:
    获取用户的位置信息和通信质量要求以及表示该用户周围的预定范围内的接入点分布的统计模型;以及
    基于该统计模型和所述用户的通信质量要求来确定所述用户的协作范围,该用户的协作范围被提供给管理装置以用于所述用户的接入点的分配。
PCT/CN2018/085430 2017-05-11 2018-05-03 用于无线通信的电子设备和方法 WO2018205877A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880010016.7A CN110249649B (zh) 2017-05-11 2018-05-03 用于无线通信的电子设备和方法
US16/492,159 US11095405B2 (en) 2017-05-11 2018-05-03 Electronic device and method for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710330397.4 2017-05-11
CN201710330397.4A CN108882244A (zh) 2017-05-11 2017-05-11 用于无线通信的电子设备和方法

Publications (1)

Publication Number Publication Date
WO2018205877A1 true WO2018205877A1 (zh) 2018-11-15

Family

ID=64104341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085430 WO2018205877A1 (zh) 2017-05-11 2018-05-03 用于无线通信的电子设备和方法

Country Status (3)

Country Link
US (1) US11095405B2 (zh)
CN (2) CN108882244A (zh)
WO (1) WO2018205877A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114938529B (zh) * 2022-07-25 2022-11-11 成都伍零三科技集团有限公司 一种数据传输方法、系统、电子设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394613A (zh) * 2007-09-21 2009-03-25 中兴通讯股份有限公司 正交频分复用多址系统的中继站选择和子信道分配方法
WO2011008060A2 (en) * 2009-07-17 2011-01-20 Samsung Electronics Co., Ltd. Method for user pairing test
CN101986574A (zh) * 2010-10-02 2011-03-16 上海交通大学 用于多基站协作系统的波束成型矩阵的优化方法
CN105744560A (zh) * 2014-12-12 2016-07-06 电信科学技术研究院 一种确定服务基站、测量上报的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838714B (zh) * 2013-12-10 2019-05-07 华为技术有限公司 基站及用户调度方法
CN105306178B (zh) * 2014-07-31 2021-02-09 索尼公司 无线通信设备和无线通信方法
CN106034309B (zh) * 2015-03-20 2021-03-02 索尼公司 无线通信设备和无线通信方法
CN106376082B (zh) * 2015-07-20 2021-12-28 索尼公司 用于无线通信的电子设备以及无线通信方法
US10778387B2 (en) * 2016-11-23 2020-09-15 Huawei Technologies Co., Ltd. System and method for group-assisted downlink transmission
US10736119B2 (en) * 2017-02-21 2020-08-04 Northwestern University Radio resource management in large wireless networks
WO2018204273A1 (en) * 2017-05-05 2018-11-08 Intel Corporation Management of mimo communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394613A (zh) * 2007-09-21 2009-03-25 中兴通讯股份有限公司 正交频分复用多址系统的中继站选择和子信道分配方法
WO2011008060A2 (en) * 2009-07-17 2011-01-20 Samsung Electronics Co., Ltd. Method for user pairing test
CN101986574A (zh) * 2010-10-02 2011-03-16 上海交通大学 用于多基站协作系统的波束成型矩阵的优化方法
CN105744560A (zh) * 2014-12-12 2016-07-06 电信科学技术研究院 一种确定服务基站、测量上报的方法及装置

Also Published As

Publication number Publication date
CN110249649B (zh) 2023-09-05
CN108882244A (zh) 2018-11-23
CN110249649A (zh) 2019-09-17
US20210143949A1 (en) 2021-05-13
US11095405B2 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
US10536197B2 (en) Device and method for managing spectrum resources, and wireless communication device and method
CN103703835B (zh) 用于公式化信号与干扰加噪声比的过程
US20210258957A1 (en) Electronic device, user equipment and wireless communication method in wireless communication system
CN104604307B (zh) 用于具有同步传输接收的全双工无线系统中的功率控制的方法和装置
WO2017028664A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
WO2017166538A1 (zh) 无线通信系统中的电子设备和通信方法
WO2019170070A1 (zh) 用于无线通信的电子设备、方法和计算机可读存储介质
US10425943B2 (en) Apparatus and method in wireless communications system
US11979896B2 (en) Electronic device and method for wireless communication, and computer-readable storage medium for guard band based on interference caused by overlapping of different radio access technologies
WO2021043050A1 (zh) 电子装置、无线通信方法和计算机可读介质
JP7131549B2 (ja) 無線通信システムにおける電子機器、及び方法
WO2015192766A1 (zh) 无线通信系统中的装置和方法
US20210136845A1 (en) Electronic device and method for wireless communications
WO2016066098A1 (zh) 用于无线通信的装置和方法
WO2018223983A1 (zh) 频谱管理装置和方法、频谱协调装置和方法以及电子设备
US10674515B2 (en) User equipment and base station in wireless communications system, and wireless communications method
WO2017167082A1 (zh) 电子设备和用于电子设备的方法、信息处理设备
WO2018205877A1 (zh) 用于无线通信的电子设备和方法
CN108882243A (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2020156472A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11589240B2 (en) Spectrum management apparatus and method, wireless network management apparatus and method, and medium
WO2018130040A1 (zh) 频谱管理装置、电子设备以及由其执行的方法
WO2023185562A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021185129A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021185111A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799040

Country of ref document: EP

Kind code of ref document: A1