WO2018130040A1 - 频谱管理装置、电子设备以及由其执行的方法 - Google Patents

频谱管理装置、电子设备以及由其执行的方法 Download PDF

Info

Publication number
WO2018130040A1
WO2018130040A1 PCT/CN2017/115853 CN2017115853W WO2018130040A1 WO 2018130040 A1 WO2018130040 A1 WO 2018130040A1 CN 2017115853 W CN2017115853 W CN 2017115853W WO 2018130040 A1 WO2018130040 A1 WO 2018130040A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum management
management device
reference point
spectrum
subsystems
Prior art date
Application number
PCT/CN2017/115853
Other languages
English (en)
French (fr)
Inventor
孙晨
郭欣
Original Assignee
索尼公司
孙晨
郭欣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 孙晨, 郭欣 filed Critical 索尼公司
Priority to US16/346,545 priority Critical patent/US10667139B2/en
Priority to EP17891938.7A priority patent/EP3570580B1/en
Priority to CN201780062329.2A priority patent/CN109804653B/zh
Publication of WO2018130040A1 publication Critical patent/WO2018130040A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular, to spectrum resource management in a wireless communication system utilizing cognitive radio technology, and more particularly to a spectrum management apparatus, an electronic device for a secondary system, and a spectrum.
  • the cognitive radio system includes a primary system and a secondary system, wherein a system that has been authorized to use the spectrum is referred to as a primary system, and an unauthorized communication system that dynamically accesses the licensed spectrum according to a certain rule is referred to as a secondary system.
  • the secondary system may also be a system with spectrum usage rights, but with a lower priority level in spectrum usage than the primary system.
  • functional modules called Spectrum Coordinators (SCs) and functional modules called Geolocation Databases (DBs) can be set up in one area to manage and allocate resources to the secondary system.
  • SCs Spectrum Coordinators
  • DBs Geolocation Databases
  • the communication mode in which the primary and secondary systems coexist requires that the secondary system does not adversely affect the primary system, or that the impact caused by the secondary system is controlled within the range allowed by the primary system.
  • the aggregate interference of the secondary system cannot exceed the interference tolerance range of the primary system. Therefore, it is necessary to propose a mechanism for spectrum allocation so that the spectrum allocation to the secondary system is more reasonable to improve the utilization of the spectrum.
  • a spectrum management apparatus including processing circuitry configured to: a first system managed for the spectrum management apparatus, according to the first system and other subsystems to a host system The distance determines a partition coefficient between the other subsystems and the first subsystem, the partition coefficient indicating a degree of interference of the other subsystems and the first subsystem to the aggregated interference generated by the primary system And allocating spectrum resources to the first system according to the allocation coefficient.
  • an electronic device for a secondary system including processing circuitry configured to: receive spectral resource information from a spectrum management device that manages the secondary system; and according to the spectral resource information Obtaining a spectrum resource, where the spectrum resource is determined by the spectrum management device according to a distance from another subsystem and a secondary system where the electronic device is located to a primary system, and the other secondary system and the electronic device are located A distribution coefficient between the systems is assigned to the electronic device, the distribution coefficient indicating a degree of interference of the other subsystems with the secondary system in which the electronic device is located to the aggregated interference generated by the primary system.
  • a method performed by a spectrum management apparatus comprising: a first time system managed by the spectrum management apparatus, according to the first time system and other subsystems to a host system The distance determines a partition coefficient between the other subsystems and the first subsystem, the partition coefficient representing a degree of interference of the other subsystems and the aggregated interference generated by the first subsystem on the host system; And allocating spectrum resources to the first system according to the allocation coefficient.
  • a method performed by an electronic device for a secondary system comprising: receiving spectrum resource information from a spectrum management device that manages the secondary system; Obtaining, according to the spectrum resource information, the spectrum resource, wherein the spectrum resource is determined by the spectrum management device according to a distance from another subsystem and a subsystem of the electronic device to the host system. a distribution coefficient between the secondary systems in which the electronic device is located is allocated by the electronic device, and the distribution coefficient indicates an aggregate interference of the other secondary systems and the secondary system in which the electronic device is located on the primary system. The degree of interference.
  • the spectrum management apparatus can allocate the spectrum to the secondary system according to the allocation coefficient
  • the resource where the partition coefficient is related to the distance between the two subsystems to the primary system, characterizes the degree of interference of the two subsystems with the aggregated interference generated by the primary system when the two subsystems use the spectrum resources of the same frequency band. In this way, different spectrum resources can be allocated to the secondary system that generates strong aggregate interference to the primary system, thereby making the spectrum allocation of the secondary system more reasonable and improving the utilization of the spectrum.
  • FIG. 1 is a schematic diagram showing an application scenario of the present disclosure
  • FIG. 2 is a block diagram showing an example of a configuration of a spectrum management device according to an embodiment of the present disclosure
  • FIG. 3 is a block diagram showing an example of a configuration of a spectrum management device according to another embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing a process of determining a distribution coefficient between two secondary systems, according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing a process of determining a distribution coefficient between two secondary systems, according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a process of determining other subsystems, in accordance with an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing a process of determining other secondary systems according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing an undirected weighting map according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram showing an undirected weighting map according to another embodiment of the present disclosure.
  • FIG. 10 is a block diagram showing an example of a configuration of an electronic device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram showing a process of determining a reference point according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram showing an example of a configuration of an electronic device for a secondary system according to an embodiment of the present disclosure
  • FIG. 13 is a signaling flow diagram illustrating a process of allocating spectrum resources, in accordance with an embodiment of the present disclosure
  • FIG. 14 is a signaling flowchart illustrating a process of allocating spectrum resources according to another embodiment of the present disclosure.
  • FIG. 15 is a flowchart illustrating a method performed by a spectrum management apparatus, according to an embodiment of the present disclosure
  • 16 is a flowchart illustrating a method performed by an electronic device, in accordance with an embodiment of the present disclosure
  • 17 is a flowchart illustrating a method performed by an electronic device for a secondary system, in accordance with an embodiment of the present disclosure
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a server
  • FIG. 19 is a block diagram showing a first example of a schematic configuration of an evolved Node B (eNB);
  • eNB evolved Node B
  • 20 is a block diagram showing a second example of a schematic configuration of an eNB
  • 21 is a block diagram showing an example of a schematic configuration of a smartphone
  • Fig. 22 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some example embodiments, well-known processes, well-known structures, and well-known techniques are not described in detail.
  • FIG. 1 is a schematic diagram showing an application scenario of the present disclosure.
  • the circular arc curve shows the coverage of the main system P1.
  • a spectrum coordinator SC1 and a geolocation database DB1 exist in the area where the main system P1 is located.
  • DB1 can calculate the available spectrum resources of the secondary system according to the potential interference of the secondary systems S1 and S2 with the primary system P1, and the SC1 can manage the spectrum usage of the secondary systems S1 and S2 according to the available spectrum resources of the secondary systems S1 and S2 so that Improve spectrum efficiency.
  • the main system P1 can tolerate 10dB of interference, if the secondary system S1 and S2 cause aggregate interference to the main system P1 reaches 9dB, then when the main When a new subsystem occurs at the edge of system P1, the aggregate interference caused by the new subsystem and subsystems S1 and S2 to the primary system P1 is likely to exceed 10 dB, resulting in the new subsystem not being able to use the spectrum resources of the primary system P1; If the secondary system S1 and S2 cause less interference to the primary system P1, for example 5 dB, then when a new secondary system appears at the edge of the primary system P1, the new secondary system and the secondary systems S1 and S2 can be made by rational allocation.
  • the aggregate interference caused by the primary system P1 is less than 10 dB, so the new secondary system can use the spectrum resources of the primary system P1. It can be seen that the ideal spectrum allocation method should make the secondary system's aggregate interference to the main system as low as possible.
  • the secondary systems S1 and S2 belong to different areas, S1 is managed by SC1, and S2 is managed by SCs other than SC1.
  • regions are divided based on geographic location. For example, different countries, regions, provinces and cities can be used as the basis for division.
  • S1 and S2 use the same spectrum resources, for example, all use the spectrum resources of channel 1 (CH1) in the broadcast television system, when a new secondary system appears in the coverage of SC1 and the spectrum resources of CH1 are also needed,
  • CH1 channel 1
  • SC1 since the secondary system S2 is not managed by SC1, SC1 is required to coordinate with the SC managing S2, which adds additional signaling and time overhead. It can be seen that the ideal spectrum allocation method should also enable the secondary systems in different regions to use different spectrum resources as much as possible to reduce the signaling interaction between SCs in different regions.
  • the present disclosure proposes a spectrum management apparatus, an electronic device for a geolocation database, an electronic device for a secondary system, and a method performed by the devices and devices.
  • the primary system of the present disclosure may include a broadcast television system
  • the secondary system may include a mobile communication system, such as a wifi communication system.
  • the broadcast television system may include a primary user base station (such as a television tower) and a plurality of primary users (such as a television).
  • the mobile communication system can include a secondary user base station (e.g., a wifi access point) and a secondary user (e.g., a portable computer).
  • a secondary user base station e.g., a wifi access point
  • a secondary user e.g., a portable computer
  • there may be no base station in the secondary system only the secondary users as terminal devices exist, and some secondary users may have the functions of the base station.
  • main system is a broadcast television system
  • present application is not limited thereto, and the main system may also be other communication systems having legal spectrum usage rights, and the secondary system may also be Other systems that need to use spectrum resources for communication.
  • the spectrum management device 200 may be, for example, a spectrum coordinator SC.
  • FIG. 2 is a block diagram showing an example of a configuration of a spectrum management device 200 according to an embodiment of the present disclosure.
  • the spectrum management device 200 can include a processing circuit 210. It should be noted that the spectrum management apparatus 200 may include one processing circuit 210 or multiple processing circuits 210.
  • processing circuitry 210 may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 210 may include a determining unit 211 and an allocating unit 212.
  • the determining unit 211 may determine the allocation between the other subsystems and the first subsystem according to the distance between the first subsystem and the other subsystems to the primary system for the first time system managed by the spectrum management device 200. coefficient.
  • the distribution coefficient indicates the degree of interference of other secondary systems and the first system's aggregate interference to the primary system.
  • the first system may be any secondary system within the coverage of the spectrum management device 200, and the other secondary systems are other secondary systems than the first system. That is to say, the determining unit 211 can determine the partition coefficient between it and other subsystems for any of the secondary systems managed by the spectrum management apparatus 200.
  • the distribution coefficient is a parameter for two secondary systems, which is related to the distance between two secondary systems to the primary system, which represents the aggregate interference of the two secondary systems to the primary system when the two secondary systems use the same spectral resource.
  • the degree of interference may be determined.
  • the determining unit 211 may determine a partition coefficient between the other subsystems and the first subsystem, and may transmit the determined partition coefficient to the allocating unit 212.
  • the allocating unit 212 may be the first time system according to the distribution coefficient. Allocate spectrum resources.
  • the allocating unit 212 may acquire the allocation coefficients of the first-time system and other subsystems from the determining unit 211, and allocate the spectrum resources according to the allocation coefficients.
  • the first system may be any secondary system within the coverage of the spectrum management device 200, and the other secondary systems are other secondary systems than the first system. That is, the allocating unit 212 may allocate spectrum resources to any of the secondary systems managed by the spectrum management apparatus 200 according to the allocation coefficient between any one of the secondary systems and the other secondary systems.
  • the spectrum management apparatus 200 considers the partition coefficient between the secondary systems when allocating the spectrum resources, and the partition coefficient indicates the degree of interference of the two secondary systems to the aggregated interference generated by the primary system. That is, the spectrum management apparatus 200 can perform spectrum resource allocation on the secondary system such that the aggregate interference generated by the secondary system to the primary system is as small as possible.
  • the determining unit 211 in the processing circuit 210 may determine the distance between the first subsystem and other subsystems to the host system according to the distance between the first subsystem and the other subsystems to the reference points within the coverage of the primary system. . That is to say, the reference point within the coverage of the primary system can be used as the representative of the primary system, and the distance from the secondary system to the reference point can be used to characterize the distance of the secondary system to the primary system where the reference point is located.
  • the reference point within the coverage of the primary system includes a first reference point corresponding to the first time system and a second reference point corresponding to the other secondary system.
  • FIG. 3 is a block diagram showing an example of a configuration of a spectrum management device according to another embodiment of the present disclosure.
  • the processing circuit 210 of the spectrum management apparatus 200 may further include a transceiver unit 220.
  • the spectrum management device 200 can communicate with other devices through the transceiver unit 220, including transmitting information, receiving information, and the like.
  • the transceiving unit 220 may receive first reference point information and second reference point information.
  • the reference point is a parameter corresponding to the secondary system.
  • Each secondary system can have a corresponding reference point.
  • the reference point corresponding to the secondary system may be the most severely disturbed point in one or more primary systems that are interfered by the secondary system.
  • various parameters can be used to measure the interference experienced by the primary system. For example, the distance of the secondary system from the primary system, the amount of interference that the primary system can tolerate, and so on. That is to say, the reference point corresponding to the secondary system may be the point closest to the secondary system in one or more primary systems interfered by the secondary system, or may be in one or more primary systems interfered by the secondary system.
  • the edge position that can tolerate the least amount of interference.
  • the reference point of the secondary system is within the coverage of the primary system within the area in which the secondary system is located, and more specifically, at the edge of the primary system.
  • the reference point of the secondary system is likely to be within the coverage of other primary systems in different regions of the secondary system.
  • the reference points corresponding to different subsystems are different, and of course, there are cases where different subsystems correspond to the same reference point.
  • the transceiving unit 220 may receive reference point information of the first time system and other secondary systems, and may transmit the received reference point information to the processing circuit 210, such as the determining unit 211.
  • the determining unit 211 in the processing circuit 210 may further determine a distance between the first-order system and other subsystems to the host system based on the first reference point information and the second reference point information, and further determine the partition coefficient.
  • the distance between the first system and other secondary systems to the primary system may include: a distance from the first system to the first reference point, a distance from the first system to the second reference point, and other secondary systems to the first reference. The distance of the point and the distance from other subsystems to the second reference point.
  • first reference point and the second reference point may be located within the coverage of the same primary system, or may be located within the coverage of different primary systems. The two cases will be described in detail below.
  • the first reference point and the second reference point may be located within the coverage of the same main system.
  • the main system includes a main system in which the first reference point and the second reference point are located, that is, one main system.
  • the distribution coefficient between the other subsystems and the first system indicates the degree of interference of the other subsystems with the aggregate interference generated by the first system to the primary system where the first reference point and the second reference point are located.
  • the reference point R1 corresponding to the secondary system S1 and the reference point R2 corresponding to the secondary system S2 are all located within the coverage of the primary system P1.
  • the distribution coefficient between the secondary systems S1 and S2 represents the degree of interference of the secondary systems S1 and S2 with the aggregated interference generated by the primary system P1.
  • the secondary system S1 can be regarded as the first secondary system
  • the secondary system S2 is regarded as the other secondary system
  • the reference point R1 is taken as the first reference point
  • the reference point R2 is taken as the second reference point.
  • the determining unit 211 in the processing circuit 210 may determine the first interference level and the second interference level based on the first reference point and the second reference point, respectively, and may be based on the first interference level and the second interference level Determine the partition coefficient. That is to say, the distribution coefficient between the secondary systems S1 and S2 can be determined according to the degree of interference determined based on the reference point R1 and the degree of interference determined based on the reference point R2.
  • the determining unit 211 in the processing circuit 210 may determine the first degree of interference based on a distance between the first-order system and the first reference point and a distance between the other subsystems and the first reference point, and The second degree of interference may be determined based on the distance between the first system and the second reference point and the distance between the other subsystems and the second reference point.
  • a location in the secondary system such as the center of the secondary system or the location of the secondary system base station, can be specified as a representative of the secondary system to calculate the distance between the secondary system and the reference point.
  • the distance between the secondary system S1 and the reference point R1 is d11
  • the distance between the secondary system S1 and the reference point R2 is d12
  • the distance between the secondary system S2 and the reference point R1 is d21, the secondary system.
  • the distance between S2 and the reference point R2 is d22. From this, it can be determined that the first interference level G1 is:
  • denotes the fading index of the transmission path and can be determined based on empirical values or according to tests. Similarly, it can be determined that the second degree of interference G2 is:
  • the determining unit 211 in the processing circuit 210 may determine the partition coefficient C12 between the secondary systems S1 and S2 based on the first interference level G1 and the second interference level G2. For example, the determining unit 211 may determine that the partition coefficient C12 is a weighted sum of the first interference level G1 and the second interference level G2. As a simple example, the distribution coefficient C12 may be the sum of the first interference level G1 and the second interference level G2, namely:
  • the determining unit 211 in the processing circuit 210 may be based on the distance between the first-order system and the first reference point (second reference point) and other subsystems and the first The distance between the reference points (second reference points) determines the partition coefficient. That is, in the above example, only one of G1 and G2 is calculated and used as the distribution coefficient C12.
  • the first reference point and the second reference point may also be located within the coverage of different main systems.
  • the main system includes the main system where the first reference point is located and the main system where the second reference point is located, that is, two main systems.
  • the distribution coefficient between the other subsystems and the first system indicates the degree of interference of the other subsystems with the aggregate interference generated by the first system to the primary system where the first reference point is located and the primary system where the second reference point is located. The degree of interference from aggregate interference.
  • FIG. 5 is a schematic diagram illustrating a process of determining a distribution coefficient between two secondary systems, according to another embodiment of the present disclosure.
  • the reference point R1 corresponding to the secondary system S1 is located within the coverage of the primary system P1
  • the reference point R2 corresponding to the secondary system S2 is located within the coverage of the primary system P2.
  • the distribution coefficient between the secondary systems S1 and S2 represents the degree of interference of the secondary systems S1 and S2 with respect to the aggregated interference generated by the primary system P1 and the primary system P2.
  • the secondary system S1 can be regarded as the first secondary system
  • the secondary system S2 is regarded as the other secondary system
  • the reference point R1 is taken as the first reference point
  • the reference point R2 is taken as the second reference point.
  • the determining unit 211 in the processing circuit 210 may determine other subsystems and the first based on the distance between the first subsystem and the first reference point and the distance between the other subsystems and the first reference point.
  • the degree of interference of the secondary system with the aggregated interference generated by the primary system in which the first reference point is located and may determine other based on the distance between the first system and the second reference point and the distance between the other secondary systems and the second reference point. The degree of interference between the secondary system and the aggregated interference generated by the first system to the primary system in which the second reference point is located.
  • the distribution coefficient between the secondary systems S1 and S2 may be based on the degree of interference of the aggregated interference generated by the primary system P1 determined based on the reference point R1 and the aggregated interference generated by the primary system P2 determined based on the reference point R2. The degree is determined.
  • the distance between the secondary system S1 and the reference point R1 is d11
  • the distance between the secondary system S1 and the reference point R2 is d12
  • the distance between the secondary system S2 and the reference point R1 is d21, the secondary system.
  • the distance between S2 and the reference point R2 is d22.
  • G1 may be calculated according to the above formula (1)
  • G2 may be calculated according to the above formula (2).
  • G1 represents the degree of interference of the secondary systems S1 and S2 with respect to the aggregate interference generated by the primary system P1
  • G2 represents the degree of interference of the secondary systems S1 and S2 with the aggregated interference generated by the primary system P2.
  • the determination unit 211 can calculate the distribution coefficient C12 between the secondary systems S1 and S2 according to the above formula (3). That is, the partition coefficient between the other subsystems and the first subsystem may be the first reference
  • the distribution coefficient can be composed of two parts, one part is based on the first system and other secondary systems to the first reference point.
  • the distance is determined by the degree of interference
  • the other part is the degree of interference determined by the distance between the first system and other subsystems to the second reference point.
  • both parts represent the other secondary system and the first system generated by the primary system where the first reference point and the second reference point are located.
  • the degree of interference of the aggregated interference when the first reference point and the second reference point are located in the coverage of different primary systems, the two parts respectively represent the primary system in which the primary reference system and the second reference point are located The degree of interference from the aggregate interference.
  • the determining unit 211 can determine the partition coefficient between the other subsystems and the first subsystem.
  • the distribution coefficient indicates the degree of interference of the other secondary systems and the aggregated interference generated by the primary system to the primary system in which the reference point is located.
  • the distribution coefficient represents the degree of interference with the aggregated interference generated by the multiple primary systems. In this way, the interference relationship of the secondary system to the primary system is considered in the allocation of the spectrum, whereby the aggregate interference generated at the primary system can be reduced.
  • the above calculation method is merely exemplary, and the distribution coefficient can also be calculated by using the distance of the subsystem to the reference point according to other methods.
  • the partition coefficients may also be determined based on other parameters such as characteristics of the transmitter such as antenna beam parameters, antenna height, and transmission model.
  • the reference point corresponding to the secondary system may be determined by a geographic location database within the area in which the secondary system is located. That is to say, the geographical location database in each area can determine the reference point corresponding to the secondary system within its coverage.
  • the transceiving unit 220 may receive the first reference point information from a geolocation database within the area where the spectrum management device 200 is located.
  • the first reference point can be determined by the geographic location database within this region.
  • other secondary systems may be outside the coverage of the spectrum management device 200 or may be within the coverage of the spectrum management device 200. Will be explained in detail below Determination of other subsystems.
  • the processing circuit 210 may determine other secondary systems based on geographic location information.
  • other secondary systems may include one or more other secondary systems, and the determining unit 211 in the processing circuit 210 may determine a partition coefficient between each of the one or more other secondary systems and the first secondary system. That is, the allocating unit 212 may allocate spectrum resources for the first time system according to the allocation coefficient between each secondary system and the first time system.
  • each secondary system has a reference point. When the other secondary systems include multiple secondary systems, there are also multiple second reference points.
  • the other secondary systems include one or more secondary systems that interfere with the primary system within the area in which the spectrum management device 200 is located and are managed by other spectrum management devices than the spectrum management device 200. That is to say, the other subsystems are located in different areas from the first system, or are managed by different spectrum management devices.
  • FIG. 6 is a schematic diagram illustrating a process of determining other secondary systems, in accordance with an embodiment of the present disclosure.
  • the secondary system S1 is located in the area 1, in which the primary system P1, the spectrum management device SC1 and the geographical location database DB1 are present, and the secondary system S1 is managed by the spectrum management device SC1.
  • the secondary systems S2 and S3 are located in the area 2, in which the primary system P2, the spectrum management device SC2 and the geographical location database DB2 are present, and the secondary systems S2 and S3 are managed by the spectrum management device SC2.
  • the secondary system S1 can be regarded as the first system, and the secondary systems S2 and S3 are closer to the primary system P1, thereby causing interference to the primary system P1.
  • processing circuit 210 can determine secondary systems S2 and S3 as other secondary systems.
  • Figure 6 only shows the case where the other subsystems include two subsystems.
  • other subsystems may also include a secondary system or more than two secondary systems.
  • the reference point corresponding to the secondary system S2 and the reference point corresponding to the secondary system S3 may be determined by the geographic location database DB2, and the SC2 may access the database DB2 to obtain the second reference point. information.
  • the transceiving unit 220 may receive second reference point information from other spectrum management devices than the spectrum management device 200. That is to say, information exchange between different regions of the spectrum management device can be performed, including the location of the secondary system managed by each, the spectrum resources, and the reference point information.
  • the transceiver unit 220 may receive the second reference point information from the spectrum management device managing the other subsystems, and then, The determining unit 211 may be based on the first reference point information received from the DB1 and the second reference point information received from the SC2, according to the manner as described above.
  • the allocation coefficients between each of the other subsystems and the first system are determined such that the allocation unit 212 can allocate spectrum resources to the first system based on the allocation coefficients between each of the other subsystems and the first subsystem.
  • other subsystems may include only those subsystems that are in different regions than the first subsystem.
  • the allocating unit 212 only considers the allocation coefficient between the first system and the other subsystems when allocating the spectrum resources for the first time system, so that the same allocation system can be avoided as much as possible.
  • Spectrum resources Therefore, at the junction location of the regions, the spectrum resources of the secondary systems belonging to different regions are as different as possible, thereby reducing the signaling interaction between the spectrum resource management devices between the different regions.
  • Other secondary systems may also include one or more secondary systems managed by the spectrum management device 200, in accordance with embodiments of the present disclosure. That is to say, the other secondary systems are in the same area as the first system, or are managed by the same spectrum resource management device.
  • FIG. 7 is a schematic diagram showing a process of determining other secondary systems, according to another embodiment of the present disclosure.
  • the secondary systems S1 and S4 are both located in the area 1, in which the primary system P1, the spectrum management device SC1 and the geographical location database DB1 are present, and the secondary systems S1 and S4 are managed by the spectrum management device SC1.
  • the processing circuit 210 may only determine the secondary system S4 as the other secondary system, and may also determine that the secondary systems S2, S3, and S4 are all other secondary systems.
  • Figure 7 only shows the case where the other subsystems located in the same area as the first system include a secondary system.
  • other secondary systems may also include multiple secondary systems.
  • the reference point (second reference point) corresponding to the secondary system S4 may be determined by DB1. Therefore, the transceiver unit 220 can receive the second reference point information from the geographic location database in the area where the spectrum management device 200 is located.
  • the transceiver unit 220 may receive the second reference point information from the spectrum management device managing the other subsystems; When the system is in the same area as the first system, the transceiver unit 220 can receive the second reference point information from the geographic location database in the area.
  • the determining unit 211 may determine a partition coefficient between each of the other subsystems and the first subsystem based on the first reference point information received from the DB1 and the second reference point information received from the DB1 and/or the SC2,
  • the allocating unit 212 can allocate spectrum resources to the first system according to the allocation coefficient between each other secondary system and the first secondary system.
  • the determination unit 211 can determine the distribution coefficient between the other subsystems and the first subsystem regardless of whether the other subsystems are located in the same region as the first subsystem.
  • the transceiver unit 220 may receive other subsystems and the first system from the spectrum management device where the other subsystems are located. Partition coefficient. That is, when the first system and other subsystems are located in different regions, the allocation coefficient between the other subsystems and the first system may be determined by the spectrum management device of the region where the first system is located, or may be other times. The spectrum management device in the area where the system is located determines the partition coefficient between the other subsystems and the first system.
  • the transceiver unit 220 may further transmit location information of the first system to the spectrum management apparatus of the area where the other subsystems are located, or send location information of the first system and first reference point information, so as to facilitate other The spectrum management device in the area where the secondary system is located determines the above allocation coefficient.
  • SC1 may send the location information of the secondary system S1 to SC2, or transmit the location information of the secondary system S1 and the first reference point information, and then receive the secondary system S3 and S1 from SC2.
  • the determining unit 211 may determine only the partition coefficients between the other subsystems managed by the spectrum management device 200 and the first subsystem, and the transceiver unit 220 may receive those other times managed by other spectrum management devices. The number of allocations between the system and the first time system, so that the allocating unit 212 can allocate spectrum resources to the first system according to the allocation coefficient determined by the determining unit 211 and the allocation coefficient received by the transceiver unit 220.
  • other subsystems may include only those subsystems that are in the same area as the first subsystem.
  • the allocating unit 212 only considers the allocation coefficient between the first system and the other subsystems when allocating the spectrum resources for the first time system, so that the same allocation system can be avoided as much as possible.
  • the spectrum resources thereby reducing the aggregate interference experienced at the primary system.
  • other subsystems may include both secondary systems in the same area as the first system, and secondary systems in different regions from the first system.
  • the allocating unit 212 considers the partition coefficient between the first system and all other subsystems when allocating spectrum resources for the first system, thereby reducing the aggregate interference received at the primary system and reducing the different regions. Signaling interaction between the spectrum resource management devices.
  • the determining unit 211 can determine the partition coefficient between the other subsystems and the first subsystem. Next, how the allocation unit 212 allocates resources for the first time system according to the allocation coefficient determined by the determination unit 211 will be described in detail.
  • the allocating unit 212 in the processing circuit 210 may be configured to allocate frequencies for the first system and other subsystems when the distribution coefficient between the other subsystems and the first subsystem is greater than a certain threshold Orthogonal spectral resources. Further, the allocating unit 212 may be further configured to allocate the same frequency spectrum resources for the first time system and the other secondary systems when the allocation coefficient between the other secondary systems and the first time system is less than a certain threshold.
  • the principle that the allocating unit 212 allocates spectrum resources to the secondary system is to avoid allocating the same spectrum resources to the two secondary systems with large allocation coefficients.
  • the large distribution coefficient indicates that the two subsystems have a large degree of interference to the aggregate interference generated by the primary system, and thus allocating different spectrum resources to them can effectively reduce the aggregate interference generated at the primary system.
  • the allocating unit 212 may employ various embodiments to achieve the above object.
  • allocation unit 212 may establish an undirected weighted graph consisting of the first system and all other secondary systems, the weights of the edges of the undirected weighted graph being based on the distribution between the two secondary systems represented by the two vertices of the edge coefficient.
  • FIG. 8 is a schematic diagram showing an undirected weighting map according to an embodiment of the present disclosure.
  • the undirected weighting map shown in Fig. 8 is determined based on the example shown in Fig. 6, that is, other subsystems include only those subsystems that are in different regions from the first subsystem.
  • the vertices of the undirected weighted graph represent the secondary system, and the edges between the vertices indicate that there is a distribution coefficient between the secondary systems represented by the two vertices to which the edges are connected, and the weights of the edges are connected based on the edges.
  • the two vertices represent the partition coefficients between the two subsystems.
  • w12 represents the weight of the edge between the secondary systems S1 and S2, which is based on the partition coefficient C12 between the secondary systems S1 and S2.
  • w13 is based on the partition coefficient C13 between the secondary systems S1 and S3
  • w34 is based on the partition coefficient C34 between the secondary systems S4 and S3
  • w24 is based on the partition coefficient C24 between the secondary systems S2 and S4.
  • the allocating unit 212 may determine the weights w12, w13, w34, and w24, and determine the undirected weighting map as shown in FIG. .
  • the allocating unit 212 can allocate spectrum resources for the first time system according to the established undirected weighting map.
  • the first system can be any secondary system managed by the spectrum management device 200
  • the allocating unit 212 can also allocate spectrum for other subsystems managed by the spectrum management device 200, such as the secondary system S4, according to the undirected weighting map. Resources.
  • FIG. 9 is a schematic diagram showing an undirected weighting map according to another embodiment of the present disclosure.
  • the undirected weighting map shown in FIG. 9 is determined based on the example shown in FIG. 7, that is, other subsystems include not only those subsystems that are in different regions from the first subsystem but also those in the same region as the first subsystem. Those secondary systems.
  • the vertices of the undirected weighted graph represent the secondary system,
  • the edge between the vertices indicates that there is a distribution coefficient between the secondary systems represented by the two vertices to which the edge is connected, and the weight of the edge is based on the partition coefficient between the two secondary systems represented by the two vertices to which the edge is connected.
  • the weight is proportional to the corresponding partition coefficient. That is to say, the greater the degree of interference between the other subsystems and the aggregate interference generated by the first system to the primary system, the greater the weight of the edges connecting the other subsystems and the first system in the undirected weighted graph.
  • the weight of the edge of the undirected weighted graph is equal to the partition coefficient between the two secondary systems represented by the two vertices of the edge.
  • the allocation unit in the processing circuit 210 may be configured to be first when the weight of the edge between the vertices of the first system and the other subsystems is greater than a certain threshold in the undirected weight map
  • the secondary system and the other secondary systems allocate frequency resources orthogonal to the frequency; and when the weight of the edge between the vertices representing the first system and the other secondary systems in the undirected weighted graph is less than a certain threshold, the first system and Other subsystems allocate the same spectrum resources on the frequency.
  • allocation unit 212 may allocate frequency resources orthogonal to the secondary systems S1 and S4.
  • the weight of the edge of the undirected weighted graph may also be based on whether the two secondary systems represented by the two vertices of the edge are managed by the same spectrum. Device management.
  • other subsystems may include those subsystems that are in different regions from the first system, so that the spectrum resources of the subsystems belonging to different regions are as different as possible, thereby reducing the spectrum resource management device between different regions. Signaling interaction between.
  • other sub-systems The system may also include those subsystems that are in the same area as the first system, thereby reducing the amount of interference that is experienced at the primary system.
  • the values of A1 and A2 can be set according to the demand for system performance. For example, when the need to reduce the aggregated interference experienced at the primary system is greater than the need to reduce the signaling interaction between the spectrum resource management devices between different regions, A1 ⁇ A2 can be set; when the reduction is received at the primary system A1>A2 can be set when the need for aggregated interference is less than the need to reduce signaling interactions between spectrum resource management devices between different regions. In the latter case, when A1 is much larger than A2, the effect achieved is similar to the undirected weighting graph shown in Fig. 8, that is, although other subsystems in the same region as the first system are calculated The distribution coefficient with the first system, but such a distribution coefficient does not play a decisive role in the allocation of spectrum resources.
  • the allocating unit 212 can allocate spectrum resources to the first system according to the allocation coefficient between the other secondary systems and the first secondary system.
  • the transceiving unit 220 may also transmit the allocated spectrum resources to the first time system, so that the first time system utilizes the allocated spectrum resources for communication.
  • the spectrum management apparatus 200 considers the partition coefficient between the secondary systems when allocating the spectrum resources, and the partition coefficient indicates the degree of interference of the two secondary systems to the aggregated interference generated by the primary system. That is, the spectrum management apparatus 200 can perform spectrum resource allocation on the secondary system such that the aggregated interference generated by the secondary system to the primary system is as small as possible, and the signaling interaction with other spectrum management apparatuses is as small as possible, thereby Save signaling overhead and increase spectrum utilization.
  • FIG. 10 is a block diagram showing an example of a configuration of an electronic device 1000 according to an embodiment of the present disclosure.
  • electronic device 1000 can include processing circuitry 1010. It should be noted that the electronic device 1000 may include one processing circuit 1010 or multiple processing circuits 1010.
  • processing circuit 1010 may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units May be implemented by the same physical entity.
  • the processing circuit 1010 may receive location information from a secondary system within the area in which the electronic device 1000 is located.
  • the electronic device 1000 can receive location information from any of the secondary systems within its area.
  • the reception of location information may be triggered periodically or by event.
  • the secondary system in the area where the electronic device 1000 is located periodically reports the location information to the electronic device 1000, or when the secondary system accesses the primary system (when the secondary system is the wifi system, for example, the power-on operation), the location information is reported to the electronic device 1000.
  • the processing circuit 1010 may determine reference point information corresponding to the secondary system according to the location information of the secondary system.
  • each secondary system has a corresponding reference point.
  • the reference point corresponding to the secondary system may be the most severely disturbed point in one or more primary systems that are interfered by the secondary system.
  • the processing circuit 1010 can acquire location information of the secondary system through the transceiver unit, and determine a reference point corresponding thereto according to the location information of each secondary system.
  • the processing circuit 1010 may also transmit reference point information corresponding to the secondary system to the spectrum management device within the area where the electronic device 1000 is located.
  • the spectrum management device herein may be the spectrum management device 200 described in the first embodiment. That is to say, the spectrum management device can use the reference point information to determine the distance between the subsystem and the other subsystems to the main system, and determine the distribution coefficient between the subsystem and the other subsystems, and the distribution coefficient indicates the other subsystems and the time.
  • the degree of interference of the system to the aggregate interference generated by the primary system, and the allocation of spectrum resources for the secondary system according to the allocation coefficient. This part has been described in detail in the first embodiment and will not be described again.
  • the reference point corresponding to the secondary system may be the point closest to the secondary system among the one or more primary systems that are interfered by the secondary system. That is to say, when a secondary system causes interference to a primary system, it is determined that the closest location in the primary system to the secondary system is the reference point corresponding to the secondary system. When a secondary system causes interference to multiple primary systems, it is determined that the closest location of the primary systems to the secondary system is the reference point corresponding to the secondary system. Therefore, the reference point must be at the edge position of the main system.
  • the reference point corresponding to the secondary system may be an edge position that is least tolerable in the one or more primary systems that are interfered by the secondary system. That is to say, when a secondary system causes interference to a primary system, the edge position with the least amount of interference that can be tolerated in the primary system is determined as a reference point corresponding to the secondary system. When a secondary system causes interference to a plurality of primary systems, an edge position that is tolerable in the plurality of primary systems with the least amount of interference is determined as a reference point corresponding to the secondary system.
  • the amount of interference that can be tolerated by one edge position refers to the difference between the total amount of interference that the edge position can tolerate and the amount of interference that has been received.
  • the total amount of interference that can be tolerated by the edge position of a main system is 10 dB, and the edge position has been subjected to 6 dB of interference, and the edge position can also tolerate 4 dB of interference. That is to say, the smaller the amount of interference that can be tolerated by one edge position, the more severe the interference received by this edge position.
  • FIG. 11 is a schematic diagram showing a process of determining a reference point, according to an embodiment of the present disclosure.
  • the secondary system is located outside the coverage of the primary system P1.
  • the secondary system causes interference only for one primary system, that is, the primary system P1.
  • it may be determined that the position closest to the secondary system in the primary system P1 is a reference point corresponding to the secondary system.
  • point A is a reference point corresponding to the secondary system.
  • an edge position that is also tolerable in the main system P1 with the smallest amount of interference can also be determined as a reference point.
  • edge position A can tolerate is 5 dB
  • the amount of interference that edge position B can tolerate is 3 dB.
  • the edge position B can also be determined as the reference point corresponding to the secondary system.
  • the electronic device 1000 can determine the reference point corresponding to the secondary system according to the location information of the secondary system, and can transmit the reference point information to the spectrum management device 200.
  • the spectrum management device 200 can calculate the allocation coefficients between the secondary systems, thereby reducing the aggregated interference at the primary system and reducing signaling interactions between different spectrum management devices.
  • the electronic device 1000 may include a geolocation database DB and may interact with the spectrum management device 200, and thus all embodiments of the spectrum management device 200 in the first embodiment are applicable thereto.
  • the electronic device 1200 may be a base station device in a secondary system.
  • the electronic device 1200 may also be the terminal device in the secondary system.
  • FIG. 12 is a block diagram illustrating an example of a configuration of an electronic device 1200 according to an embodiment of the present disclosure.
  • electronic device 1200 can include processing circuitry 1210. It should be noted that the electronic device 1200 may include one processing circuit 1210 or multiple processing units. Circuit 1210.
  • processing circuit 1210 may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 1210 may receive spectrum resource information from a spectrum management device that manages the secondary system.
  • the spectrum management apparatus herein may be, for example, the spectrum management apparatus 200 in the first embodiment. Therefore, the spectrum resource may be the electronic device 1200 by the distribution coefficient between the other subsystems in which the spectrum management device 200 determines the distance from the secondary system to the primary system where the electronic device 1200 is located, and the secondary system in which the electronic device 1200 is located.
  • the assigned, distribution coefficient indicates the degree of interference of other subsystems with the secondary system in which the electronic device 1200 is located to the aggregated interference generated by the primary system.
  • the processing circuit 1210 may acquire a spectrum resource according to the acquired spectrum resource information.
  • the spectrum resource information herein may include a spectrum resource that can be used by the secondary system, such as frequency information corresponding to the spectrum resource.
  • the electronic device 1200 can communicate using the acquired spectrum resources.
  • the processing circuit 1210 may also transmit location information of the electronic device 1200 to a geographic location database within the area in which the electronic device 1200 is located.
  • the geographical location database may be included in, for example, the electronic device 1000 in the second embodiment.
  • the geographic location database in the area where the electronic device 1200 is located may determine reference point information corresponding to the secondary system in which the electronic device 1200 is located according to the location information of the electronic device 1200.
  • the reception of the location information may be triggered periodically or may be triggered by an event.
  • the electronic device 1200 periodically reports the location information to the geographic location database, or reports the location information to the geographic location database when the electronic device 1200 accesses the primary system (when the secondary system is a wifi system, such as a boot operation).
  • the electronic device 1200 of the secondary system may receive spectrum resource information allocated from the spectrum management device according to the allocation coefficient with other secondary systems. In this way, when the electronic device 1200 communicates using such information, the aggregate interference caused at the primary system can be reduced, and the signaling interaction between the spectrum management devices can be reduced.
  • the electronic device 1200 may transmit location information to a geolocation database DB (including in the electronic device 1000), and may receive spectrum resource information from the spectrum management device 200, and thus the spectrum management device in the first embodiment 200 and the second embodiment All embodiments relating to electronic device 1000 are applicable here.
  • a geolocation database DB including in the electronic device 1000
  • FIG. 13 is a signaling flow diagram illustrating a process of allocating spectrum resources, in accordance with an embodiment of the present disclosure.
  • S1 denotes a secondary system in which the geographical location database DB1 and the spectrum management device SC1 exist, and SC2 is another spectrum management device different from SC1.
  • S1 reports the location information to DB1.
  • DB1 determines a reference point corresponding to the secondary system S1 based on the position information reported by S1.
  • DB1 can also determine the spectrum resources available to SC1 in the event that primary system protection is met.
  • step S1330 DB1 transmits the reference point information of the secondary system S1 to SC1.
  • DB1 may also send available spectrum resources, and SC1 may select a used spectrum resource of the secondary system from among the available spectrum resources.
  • SC1 may select a used spectrum resource of the secondary system from among the available spectrum resources.
  • the secondary system S1 is used as the first system, and the other secondary systems include the secondary system in the same area as the secondary system S1, then DB1 also transmits reference point information of other secondary systems to SC1.
  • the other subsystems further include a secondary system in a different region from the secondary system S1
  • SC2 transmits the reference point information of the other secondary systems, the location information of the secondary system, and the spectrum usage to SC1.
  • SC1 determines the distribution coefficient between the other secondary system and the secondary system S1 based on the reference point information transmitted from DB1 and SC2.
  • SC1 allocates spectrum resources for the secondary system S1.
  • SC1 transmits the allocated spectrum resource information to the secondary system S1.
  • SC1 can communicate using the allocated spectrum resources.
  • FIG. 14 is a signaling flow diagram illustrating a process of allocating spectrum resources, in accordance with another embodiment of the present disclosure.
  • S1 denotes a secondary system in which the geographical location database DB1 and the spectrum management device SC1 exist, and SC2 is another spectrum management device different from SC1.
  • S1 reports the location information to DB1.
  • DB1 determines a reference point corresponding to the secondary system S1 based on the position information reported by S1.
  • DB1 can also determine the spectrum resources available to SC1 in the event that primary system protection is met.
  • DB1 transmits the reference point information of the secondary system S1 and the available spectrum resources to SC1.
  • SC1 can select the use spectrum resources of the secondary system from among these available spectrum resources.
  • DB1 also transmits reference point information of other secondary systems to SC1.
  • the SC1 may send the geographical location information of the first system or the geographic location information of the secondary system and the reference point information to SC2.
  • SC1 determines the partition coefficient between the other subsystems and the secondary system S1 that are within the coverage of the same spectrum management device as the secondary system S1.
  • SC2 may determine the first system S1 and each SC2 managed according to the secondary system it manages and the owned primary system information. The partition coefficient between other subsystems.
  • SC2 sends the allocation coefficient between the first system and the other subsystems and the spectrum usage (including channel and power, etc.) of the corresponding secondary system to SC1.
  • SC1 allocates spectrum resources to the secondary system S1 based on the allocation coefficient determined in step S1450 and the number of allocations received in step S1470. For example, if the frequency band selected by the first system is band 1 to 10, and the existing channel usage information and allocation coefficient of other subsystems are known, then SC1 can be from channel 1 to 10 according to the allocation coefficient and other sub-system channel occupancy. The first time the system selects the appropriate frequency band to use.
  • SC1 transmits the allocated spectrum resource information to the secondary system S1.
  • SC1 can communicate using the allocated spectrum resources.
  • the spectrum management device 200, the electronic device 1000, and the electronic device 1200 according to an embodiment of the present disclosure have been described in detail above. A method performed by the above-described apparatus or device according to an embodiment of the present disclosure will hereinafter be described in detail.
  • the spectrum management apparatus herein may be the spectrum management apparatus 200 in the first embodiment, and thus all embodiments of the spectrum management apparatus 200 in the first embodiment are applicable thereto.
  • FIG. 15 is a flowchart illustrating a method performed by a spectrum management apparatus, according to an embodiment of the present disclosure.
  • step S1410 for the first system managed by the spectrum management apparatus, the partition coefficient between the other subsystems and the first system is determined according to the distance between the first subsystem and the other subsystems to the primary system.
  • the distribution coefficient indicates the degree of interference of the other subsystems and the aggregate interference of the first system to the primary system.
  • step S1420 the spectrum resource is allocated to the first system according to the allocation coefficient.
  • allocating the spectrum resource for the first time system may include: allocating frequency-orthogonal spectrum resources for the first system and other subsystems when the allocation coefficient between the other subsystems and the first system is greater than a specific threshold. .
  • the method further comprises determining the distance between the first system and the other subsystems to the primary system based on the distances of the first system and the other subsystems to the reference points within the coverage of the primary system.
  • the reference point within the coverage of the primary system includes the first corresponding to the first system a reference point and a second reference point corresponding to the other secondary systems, and the method further includes receiving the first reference point information and the second reference point information.
  • the method further comprises: determining a first degree of interference according to a distance from the first subsystem and other subsystems to the first reference point; according to the first subsystem and other subsystems to the second reference The distance of the point determines a second degree of interference; and determining a distribution coefficient between the other subsystem and the first system based on the first degree of interference and the second degree of interference.
  • the first reference point and the second reference point are located within the coverage of the same primary system.
  • the first reference point and the second reference point are located within the coverage of different primary systems.
  • the method further comprises receiving the first reference point information from a geographic location database within the area in which the spectrum management device is located.
  • the method further comprises determining other secondary systems based on the geographic location information.
  • the other subsystems include one or more other subsystems
  • determining the distribution coefficients between the other subsystems and the first subsystem includes determining each of the one or more other subsystems and the first The partition coefficient between the systems.
  • the other secondary systems include one or more secondary systems that interfere with the primary system within the area in which the spectrum management device is located and are managed by other spectrum management devices than the spectrum management device.
  • the method further comprises receiving second reference point information from other spectrum management devices than the spectrum management device.
  • the method further comprises receiving, from said other spectrum management device, a partition coefficient between said other subsystem and said first subsystem.
  • the method further comprises transmitting location information of said first system to said other spectrum management device.
  • the other subsystems also include one or more secondary systems managed by the spectrum management device.
  • the method further comprises receiving second reference point information from a geographic location database within the area in which the spectrum management device is located.
  • the method further comprises transmitting the allocated spectrum resource to the first time system.
  • a method performed by a spectrum management apparatus describes a first implementation
  • the example has been introduced in detail and will not be described here.
  • the electronic device herein may be the electronic device 1000 in the second embodiment, and thus all embodiments of the electronic device 1000 in the second embodiment are applicable thereto.
  • 16 is a flowchart showing a method performed by an electronic device including a geolocation database, in accordance with an embodiment of the present disclosure.
  • step S1510 location information is received from a secondary system within the area in which the electronic device 1000 is located.
  • step S1520 reference point information corresponding to the secondary system is determined based on the location information of the secondary system.
  • the method further comprises: transmitting the reference point information corresponding to the secondary system to the spectrum management device in the area where the electronic device 1000 is located.
  • the reference point corresponding to the secondary system may be the most disturbed point in one or more primary systems interfered by the secondary system.
  • the reference point corresponding to the secondary system may be the closest point in the one or more primary systems interfered by the secondary system to the secondary system.
  • the reference point corresponding to the secondary system may be an edge position with the least amount of interference that can be tolerated in one or more primary systems interfered by the secondary system.
  • the electronic device herein may be the electronic device 1200 in the third embodiment, and thus all embodiments of the electronic device 1200 in the third embodiment are applicable thereto.
  • FIG. 17 is a flowchart illustrating a method performed by an electronic device for a secondary system, in accordance with an embodiment of the present disclosure.
  • step S1610 from the spectrum management device that manages the secondary system Receive spectrum resource information.
  • the spectrum resource is allocated by the spectrum management device to the electronic device according to a distribution coefficient between the other subsystems and the secondary system in which the electronic device is determined by the distance between the other subsystem and the secondary system where the electronic device is located, and the secondary system.
  • the distribution coefficient indicates the degree of interference of other subsystems with the secondary system in which the electronic device is located to the aggregated interference generated by the primary system.
  • step S1620 the spectrum resource is acquired based on the spectrum resource information.
  • the method further comprises transmitting location information of the electronic device to a geographic location database within the area in which the electronic device is located.
  • the spectrum management device 200 and the electronic device 1000 can be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the spectrum management device 200 and the electronic device 1000 may be a control module mounted on a server (such as an integrated circuit module including a single wafer, and a card or blade inserted into a slot of the blade server).
  • the base station can be implemented as any type of eNB, such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of terminals which will be described below, can operate as the base station 200 by performing base station functions temporarily or semi-persistently.
  • the terminal device can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile Routers and digital camera devices) or vehicle terminals (such as car navigation devices).
  • the terminal device 300 can also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 18 is a block diagram showing an example of a server 1700 that can implement the spectrum management device 200 and the electronic device 1000 according to the present disclosure.
  • the server 1700 includes a processor 1701, a memory 1702, a storage device 1703, a network interface 1704, and a bus 1706.
  • the processor 1701 may be, for example, a central processing unit (CPU) or a digital signal processor (DSP), and controls the functions of the server 1700.
  • the memory 1702 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 1701.
  • the storage device 1703 may include a storage medium such as a semiconductor memory and a hard disk.
  • Network interface 1704 is a wired communication interface for connecting server 1700 to wired communication network 1705.
  • the wired communication network 1705 can be a core network such as an Evolved Packet Core Network (EPC) or a packet data network (PDN) such as the Internet.
  • EPC Evolved Packet Core Network
  • PDN packet data network
  • the bus 1706 connects the processor 1701, the memory 1702, the storage device 1703, and the network interface 1704 to each other.
  • Bus 1706 can include two or more buses (such as a high speed bus and a low speed bus) each having a different speed.
  • processing circuit 210 described by using FIG. 2 and the determining unit 211 and the allocating unit 212 therein, the processing circuit 210 described by using FIG. 3, and the determining unit 211 and the allocating unit therein are used.
  • 212 and processing circuit 1010 as described using FIG. 10 may be implemented by processor 1701 and may be implemented by network interface 1704 by using transceiver unit 220 as described with respect to FIG.
  • the processor 1701 may perform a function of determining a distribution coefficient, allocating a spectral resource, and determining a reference point by executing an instruction stored in the memory 1702 or the storage device 1703.
  • the eNB 1800 includes one or more antennas 1810 and base station devices 1820.
  • the base station device 1820 and each antenna 1810 may be connected to each other via an RF cable.
  • Each of the antennas 1810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1820 to transmit and receive wireless signals.
  • eNB 1800 can include multiple antennas 1810.
  • multiple antennas 1810 can be compatible with multiple frequency bands used by eNB 1800.
  • Figure 19 shows An example in which the eNB 1800 includes multiple antennas 1810 is shown, but the eNB 1800 may also include a single antenna 1810.
  • Base station device 1820 includes a controller 1821, a memory 1822, a network interface 1823, and a wireless communication interface 1825.
  • the controller 1821 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1820. For example, controller 1821 generates data packets based on data in signals processed by wireless communication interface 1825 and communicates the generated packets via network interface 1823. The controller 1821 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1821 may have a logical function of performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1822 includes a RAM and a ROM, and stores programs executed by the controller 1821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1823 is a communication interface for connecting base station device 1820 to core network 1824. Controller 1821 can communicate with a core network node or another eNB via network interface 1823. In this case, the eNB 1800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1823 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1823 is a wireless communication interface, network interface 1823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1825.
  • the wireless communication interface 1825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 1800 via the antenna 1810.
  • Wireless communication interface 1825 may typically include, for example, a baseband (BB) processor 1826 and RF circuitry 1827.
  • the BB processor 1826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1826 may have some or all of the above described logic functions.
  • the BB processor 1826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 1826 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 1820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1810.
  • the wireless communication interface 1825 can include a plurality of BB processors 1826.
  • multiple BB processors 1826 can be compatible with multiple frequency bands used by eNB 1800.
  • the wireless communication interface 1825 can include a plurality of RF circuits 1827.
  • multiple RF circuits 1827 can be compatible with multiple antenna elements.
  • FIG. 18 illustrates an example in which the wireless communication interface 1825 includes a plurality of BB processors 1826 and a plurality of RF circuits 1827, the wireless communication interface 1825 may also include a single BB processor 1826 or a single RF circuit 1827.
  • the eNB 1930 includes one or more antennas 1940, a base station device 1950, and an RRH 1960.
  • the RRH 1960 and each antenna 1940 may be connected to each other via an RF cable.
  • the base station device 1950 and the RRH 1960 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1940 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 1960 to transmit and receive wireless signals.
  • the eNB 1930 can include multiple antennas 1940.
  • multiple antennas 1940 can be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 20 illustrates an example in which eNB 1930 includes multiple antennas 1940, eNB 1930 may also include a single antenna 1940.
  • the base station device 1950 includes a controller 1951, a memory 1952, a network interface 1953, a wireless communication interface 1955, and a connection interface 1957.
  • the controller 1951, the memory 1952, and the network interface 1953 are the same as the controller 1821, the memory 1822, and the network interface 1823 described with reference to FIG.
  • the wireless communication interface 1955 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 1960 via the RRH 1960 and the antenna 1940.
  • Wireless communication interface 1955 can generally include, for example, BB processor 1956.
  • the BB processor 1956 is identical to the BB processor 1826 described with reference to FIG. 19 except that the BB processor 1956 is connected to the RF circuit 1964 of the RRH 1960 via the connection interface 1957.
  • the wireless communication interface 1955 can include a plurality of BB processors 1956.
  • multiple BB processors 1956 can be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 20 illustrates an example in which the wireless communication interface 1955 includes a plurality of BB processors 1956, the wireless communication interface 1955 may also include a single BB processor 1956.
  • connection interface 1957 is an interface for connecting the base station device 1950 (wireless communication interface 1955) to the RRH 1960.
  • the connection interface 1957 can also be used to base the base station device 1950 (none The line communication interface 1955) is connected to the communication module of the communication in the above-described high speed line of the RRH 1960.
  • the RRH 1960 includes a connection interface 1961 and a wireless communication interface 1963.
  • connection interface 1961 is an interface for connecting the RRH 1960 (wireless communication interface 1963) to the base station device 1950.
  • the connection interface 1961 can also be a communication module for communication in the above high speed line.
  • Wireless communication interface 1963 transmits and receives wireless signals via antenna 1940.
  • Wireless communication interface 1963 may generally include, for example, RF circuitry 1964.
  • the RF circuit 1964 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1940.
  • the wireless communication interface 1963 can include a plurality of RF circuits 1964.
  • multiple RF circuits 1964 can support multiple antenna elements.
  • FIG. 20 illustrates an example in which the wireless communication interface 1963 includes a plurality of RF circuits 1964, the wireless communication interface 1963 may also include a single RF circuit 1964.
  • the processing circuit 1210 described by using FIG. 12 can be implemented by the controller 1821 and/or the controller 1951. At least a portion of the functionality can also be implemented by controller 1821 and controller 1951.
  • the controller 1821 and/or the controller 1951 can perform a function of acquiring a spectrum resource by executing an instruction stored in a corresponding memory.
  • the smart phone 2000 includes a processor 2001, a memory 2002, a storage device 2003, an external connection interface 2004, an imaging device 2006, a sensor 2007, a microphone 2008, an input device 2009, a display device 2010, a speaker 2011, a wireless communication interface 2012, one or more Antenna switch 2015, one or more antennas 2016, bus 2017, battery 2018, and auxiliary controller 2019.
  • the processor 2001 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 2000.
  • the memory 2002 includes a RAM and a ROM, and stores data and programs executed by the processor 2001.
  • the storage device 2003 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2004 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2000.
  • the image pickup device 2006 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 2007 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2008 converts the sound input to the smartphone 2000 into an audio signal.
  • the input device 2009 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2010, and receives an operation or information input from a user.
  • the display device 2010 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2000.
  • the speaker 2011 converts the audio signal output from the smartphone 2000 into sound.
  • the wireless communication interface 2012 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • the wireless communication interface 2012 may generally include, for example, a BB processor 2013 and an RF circuit 2014.
  • the BB processor 2013 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2014 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2016.
  • the wireless communication interface 2012 can be a chip module on which the BB processor 2013 and the RF circuit 2014 are integrated. As shown in FIG.
  • the wireless communication interface 2012 may include a plurality of BB processors 2013 and a plurality of RF circuits 2014. Although FIG. 21 illustrates an example in which the wireless communication interface 2012 includes a plurality of BB processors 2013 and a plurality of RF circuits 2014, the wireless communication interface 2012 may also include a single BB processor 2013 or a single RF circuit 2014.
  • wireless communication interface 2012 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2012 can include the BB processor 2013 and the RF circuit 2014 for each wireless communication scheme.
  • Each of the antenna switches 2015 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 2012, such as circuits for different wireless communication schemes.
  • Each of the antennas 2016 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2012 to transmit and receive wireless signals.
  • the smartphone 2000 may include a plurality of antennas 2016.
  • FIG. 21 shows an example in which the smartphone 2000 includes a plurality of antennas 2016, the smartphone 2000 may also include a single antenna 2016.
  • smart phone 2000 can include an antenna 2016 for each wireless communication scheme.
  • the antenna switch 2015 can be omitted from the configuration of the smartphone 2000.
  • Bus 2017 will processor 2001, memory 2002, storage device 2003, external connection interface 2004, camera device 2006, sensor 2007, microphone 2008, input device 2009, display device 2010, speaker 2011, wireless communication interface 2012 and auxiliary controller 2019 connection.
  • Battery 2018 provides power to various blocks of smart phone 2000 shown in FIG. 21 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 2019 operates the minimum required function of the smartphone 2000, for example, in a sleep mode.
  • the processing circuit 1210 described by using FIG. 12 can be implemented by the processor 2001 or the auxiliary controller 2019. At least a portion of the functionality may also be implemented by processor 2001 or secondary controller 2019.
  • the processor 2001 or the auxiliary controller 2019 may perform a function of acquiring a spectrum resource by executing an instruction stored in the memory 2002 or the storage device 2003.
  • FIG. 22 is a block diagram showing an example of a schematic configuration of a car navigation device 2120 to which the technology of the present disclosure can be applied.
  • the car navigation device 2120 includes a processor 2121, a memory 2122, a global positioning system (GPS) module 2124, a sensor 2125, a data interface 2126, a content player 2127, a storage medium interface 2128, an input device 2129, a display device 2130, a speaker 2131, and a wireless device.
  • the processor 2121 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 2120.
  • the memory 2122 includes a RAM and a ROM, and stores data and programs executed by the processor 2121.
  • the GPS module 2124 uses the GPS signals received from the GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 2120.
  • Sensor 2125 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2126 is connected to, for example, the in-vehicle network 2141 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2127 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 2128.
  • the input device 2129 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 2130, and receives an operation or information input from a user.
  • the display device 2130 includes a screen such as an LCD or an OLED display, and displays an image of the navigation function or reproduced content. Speaker The 2131 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2133 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2133 may typically include, for example, BB processor 2134 and RF circuitry 2135.
  • the BB processor 2134 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2135 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2137.
  • the wireless communication interface 2133 can also be a chip module on which the BB processor 2134 and the RF circuit 2135 are integrated. As shown in FIG.
  • the wireless communication interface 2133 may include a plurality of BB processors 2134 and a plurality of RF circuits 2135.
  • FIG. 22 shows an example in which the wireless communication interface 2133 includes a plurality of BB processors 2134 and a plurality of RF circuits 2135, the wireless communication interface 2133 may also include a single BB processor 2134 or a single RF circuit 2135.
  • the wireless communication interface 2133 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 2133 may include a BB processor 2134 and an RF circuit 2135 for each wireless communication scheme.
  • Each of the antenna switches 2136 switches the connection destination of the antenna 2137 between a plurality of circuits included in the wireless communication interface 2133, such as circuits for different wireless communication schemes.
  • Each of the antennas 2137 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2133 to transmit and receive wireless signals.
  • the car navigation device 2120 can include a plurality of antennas 2137.
  • FIG. 22 shows an example in which the car navigation device 2120 includes a plurality of antennas 2137, the car navigation device 2120 may also include a single antenna 2137.
  • car navigation device 2120 can include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 2136 can be omitted from the configuration of the car navigation device 2120.
  • Battery 2138 provides power to various blocks of car navigation device 2120 shown in FIG. 22 via feeders, which are shown partially as dashed lines in the figures. Battery 2138 accumulates power supplied from the vehicle.
  • the processing circuit 1210 described by using FIG. 12 can be implemented by the processor 2121. At least a portion of the functionality can also be implemented by processor 2121.
  • the processor 2121 can execute instructions stored in the memory 2122. And the function of acquiring spectrum resources is performed.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 2140 that includes one or more of the car navigation device 2120, the in-vehicle network 2141, and the vehicle module 2142.
  • vehicle module 2142 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 2141.

Abstract

本公开涉及频谱管理装置、电子设备以及由其执行的方法。根据本公开的频谱管理装置包括处理电路,被配置为:针对所述频谱管理装置管理的第一次系统,根据所述第一次系统和其它次系统到主系统的距离确定所述其它次系统与所述第一次系统之间的分配系数,所述分配系数表示所述其它次系统和所述第一次系统对所述主系统产生的聚合干扰的干扰程度;以及根据所述分配系数为所述第一次系统分配频谱资源。使用根据本公开的频谱管理装置、电子设备以及由其执行的方法,可以使得对次系统的频谱资源分配更加合理。

Description

频谱管理装置、电子设备以及由其执行的方法
本申请要求于2017年1月13日提交中国专利局、申请号为201710026388.6、发明名称为“频谱管理装置、电子设备以及由其执行的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及利用认知无线电技术的无线通信系统中的频谱资源管理,更具体地涉及一种频谱管理装置、用于次系统的电子设备、由频谱管理装置执行的方法以及由用于次系统的电子设备执行的方法。
背景技术
随着无线通信技术的发展,用户对高品质、高速度、新服务的服务需求越来越高。无线通讯运营商和设备商要不断改进系统以满足用户的需求。这需要大量的频谱资源来支持不断出现的新服务和满足高速通信需求,频谱资源例如可以用时间、频率、带宽、可容许最大发射功率等参数来量化。目前,有限的频谱资源已经分配给固定的运营商和服务,新的可用频谱是非常稀少的或者是价格昂贵的。在这种情况下,提出了动态频谱利用的概念,即动态地利用那些已经分配给某些服务但是却没有被充分利用的频谱资源。
认知无线电(Cognitive Radio,CR)技术作为软件无线电技术的一个智能化演进,能够使非授权用户通过一定的规则动态接入授权频谱,极大地提高了实际的频谱利用率。可以认为,认知无线电系统包括主系统和次系统,其中,已被授权使用频谱的系统被称为主系统,根据一定的规则动态接入该授权频谱的非授权通信系统被称为次系统。可替选地,次系统也可以是具有频谱使用权的系统,但是在频谱使用上具有比主系统低的优先级别。此外,在一个区域中还可以设置称为频谱协调器(Spectrum Coordinator,SC)的功能模块以及称为地理位置数据库(Database,DB)的功能模块来管理次系统并为其分配资源。
这种主次系统共存的通讯方式要求次系统不会对主系统造成不良影响,或者说次系统所造成的影响被控制在主系统容许的范围之内。当有多个次系统的时候,次系统的聚合干扰不能超过主系统的干扰容许范围。因此,有必要提出一种频谱分配的机制,以使得对次系统的频谱分配更加合理,以提高频谱的利用率。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种频谱分配的机制,以使得对次系统的频谱分配更加合理,以提高频谱的利用率。
根据本公开的一方面,提供了一种频谱管理装置,包括处理电路,被配置为:针对所述频谱管理装置管理的第一次系统,根据所述第一次系统和其它次系统到主系统的距离确定所述其它次系统与所述第一次系统之间的分配系数,所述分配系数表示所述其它次系统和所述第一次系统对所述主系统产生的聚合干扰的干扰程度;以及根据所述分配系数为所述第一次系统分配频谱资源。
根据本公开的另一方面,提供了一种用于次系统的电子设备,包括处理电路,被配置为:从管理所述次系统的频谱管理装置接收频谱资源信息;以及根据所述频谱资源信息获取频谱资源,其中,所述频谱资源是所述频谱管理装置根据通过其它次系统与所述电子设备所在的次系统到主系统的距离确定的所述其它次系统与所述电子设备所在的次系统之间的分配系数为所述电子设备分配的,所述分配系数表示所述其它次系统与所述电子设备所在的次系统对所述主系统产生的聚合干扰的干扰程度。
根据本公开的另一方面,提供了一种由频谱管理装置执行的方法,包括:针对所述频谱管理装置管理的第一次系统,根据所述第一次系统和其它次系统到主系统的距离确定所述其它次系统与所述第一次系统之间的分配系数,所述分配系数表示所述其它次系统和所述第一次系统对所述主系统产生的聚合干扰的干扰程度;以及根据所述分配系数为所述第一次系统分配频谱资源。
根据本公开的另一方面,提供了一种由用于次系统的电子设备执行的方法,包括:从管理所述次系统的频谱管理装置接收频谱资源信息;以 及根据所述频谱资源信息获取频谱资源,其中,所述频谱资源是所述频谱管理装置根据通过其它次系统与所述电子设备所在的次系统到主系统的距离确定的所述其它次系统与所述电子设备所在的次系统之间的分配系数为所述电子设备分配的,所述分配系数表示所述其它次系统与所述电子设备所在的次系统对所述主系统产生的聚合干扰的干扰程度。
使用根据本公开的频谱管理装置、用于次系统的电子设备、由频谱管理装置执行的方法以及由用于次系统的电子设备执行的方法,使得频谱管理装置可以根据分配系数为次系统分配频谱资源,这里的分配系数与两个次系统到主系统的距离有关,表征了当两个次系统使用相同频段的频谱资源时这两个次系统对主系统产生的聚合干扰的干扰程度。这样一来,可以为对主系统产生强聚合干扰的次系统分配不同的频谱资源,从而使得次系统的频谱分配更加合理,提高频谱的利用率。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出本公开的应用场景的示意图;
图2是示出根据本公开的实施例的频谱管理装置的配置的示例的框图;
图3是示出根据本公开的另一个实施例的频谱管理装置的配置的示例的框图;
图4是示出根据本公开的实施例的确定两个次系统之间的分配系数的过程的示意图;
图5是示出根据本公开的另一个实施例的确定两个次系统之间的分配系数的过程的示意图;
图6是示出根据本公开的实施例的确定其它次系统的过程的示意图;
图7是示出根据本公开的另一个实施例的确定其它次系统的过程的示意图;
图8是示出根据本公开的实施例的无向加权图的示意图;
图9是示出根据本公开的另一个实施例的无向加权图的示意图;
图10是示出根据本公开的实施例的电子设备的配置的示例的框图;
图11是示出根据本公开的实施例的确定参考点的过程示意图;
图12是示出根据本公开的实施例的用于次系统的电子设备的配置的示例的框图;
图13是示出根据本公开的实施例的分配频谱资源的过程的信令流程图;
图14是示出根据本公开的另一个实施例的分配频谱资源的过程的信令流程图;
图15是示出根据本公开的实施例的由频谱管理装置执行的方法的流程图;
图16是示出根据本公开的实施例的由电子设备执行的方法的流程图;
图17是示出根据本公开的实施例的由用于次系统的电子设备执行的方法的流程图;
图18是示出服务器的示意性配置的示例的框图;
图19是示出演进型节点B(eNB)的示意性配置的第一示例的框图;
图20是示出eNB的示意性配置的第二示例的框图;
图21是示出智能电话的示意性配置的示例的框图;以及
图22是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只 是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.问题的描述
2.第一实施例
3.第二实施例
4.第三实施例
5.第四实施例
6.第五实施例
7.第六实施例
8.应用示例。
<1.问题的描述>
图1是示出本公开的应用场景的示意图。如图1所示,圆弧形曲线示出了主系统P1的覆盖范围。在主系统P1的边界外存在两个次系统S1和S2。此外,在主系统P1所在的区域存在频谱协调器SC1和地理位置数据库DB1。这里,DB1可以根据次系统S1和S2对主系统P1的潜在干扰来计算次系统的可用频谱资源,SC1可以根据次系统S1和S2的可用频谱资源对次系统S1和S2的频谱使用进行管理以便提高频谱使用效率。
在图1所示的系统中,由于次系统S1和S2距离主系统P1的边缘较近,因而可能会对主系统P1造成干扰,这就需要SC1能够对次系统S1和S2的频谱资源进行合理地分配以使得次系统S1和S2对主系统P1的干扰控制在能够忍受的范围内。例如,主系统P1能够忍受的干扰为10dB,如果次系统S1和S2对主系统P1造成的聚合干扰达到了9dB,那么当主 系统P1的边缘出现新的次系统时,新的次系统与次系统S1和S2对主系统P1造成的聚合干扰很可能超出了10dB,导致新的次系统无法使用主系统P1的频谱资源;而如果次系统S1和S2对主系统P1造成的聚合干扰比较小,例如5dB,那么当主系统P1的边缘出现新的次系统时,通过合理地分配可以使得新的次系统与次系统S1和S2对主系统P1造成的聚合干扰小于10dB,因而新的次系统可以使用主系统P1的频谱资源。由此可见,理想的频谱分配方法应当使得次系统对主系统造成的聚合干扰尽可能地低。
此外,在图1所示的系统中,假定次系统S1和S2属于不同的区域,S1由SC1来管理,而S2由除了SC1以外的其它SC来管理。在本公开中,区域是基于地理位置进行划分的。例如,不同的国家、地区、省市等都可以作为划分的依据。一般来说,在一个区域中有一个SC和DB来管理和分配次系统的频谱资源。如果S1和S2使用了相同的频谱资源,例如都使用广播电视系统中的频道1(CH1)的频谱资源,当SC1的覆盖范围内出现了新的次系统也需要使用CH1的频谱资源时,为了使得新的次系统和次系统S1对主系统P1造成的聚合干扰在一定范围内,很可能需要对次系统S1和次系统S2的频谱使用进行调节。在这种情况下,由于次系统S2不是由SC1管理,因而需要SC1与管理S2的SC进行协调,这将增加额外的信令和时间开销。由此可见,理想的频谱分配方法还应当使得不同区域的次系统尽可能使用不同的频谱资源以减少不同区域的SC之间的信令交互。
为了解决上述技术问题中的至少一个,本公开提出了一种频谱管理装置、用于地理位置数据库的电子设备、用于次系统的电子设备以及由这些装置和设备执行的方法。
值得注意的是,作为一个应用实例,本公开的主系统可以包括广播电视系统,次系统可以包括移动通信系统,例如wifi通信系统。其中,广播电视系统可以包括主用户基站(例如电视塔)和多个主用户(例如电视机)。移动通信系统可以包括次用户基站(例如wifi接入点)和次用户(例如便携式计算机)。当然,在次系统中也可以没有基站,仅存在作为终端设备的次用户,某些次用户可以具有基站的功能。在这样的系统中,可以动态地利用数字广播电视频谱上某些没有播放节目的频道的频谱或者相邻频道的频谱,在不干扰电视信号接收的情况下,进行移动通信,例如wifi通信。
本领域的技术人员应该理解,虽然上述列举了主系统为广播电视系统的情形,但是本申请并不限于此,主系统也可以为其他具有合法频谱使用权的通信系统,而次系统也可以为其他需要利用频谱资源进行通信的系统。
<2.第一实施例>
在这个实施例中,将详细描述根据本公开的实施例的频谱管理装置200。这里,频谱管理装置200例如可以是频谱协调器SC。图2是示出根据本公开的实施例的频谱管理装置200的配置的示例的框图。
如图2所示,频谱管理装置200可以包括处理电路210。需要说明的是,频谱管理装置200既可以包括一个处理电路210,也可以包括多个处理电路210。
进一步,处理电路210可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,处理电路210可以包括确定单元211和分配单元212。
根据本公开的实施例,确定单元211可以针对频谱管理装置200管理的第一次系统,根据第一次系统和其它次系统到主系统的距离确定其它次系统与第一次系统之间的分配系数。分配系数表示其它次系统和第一次系统对主系统产生的聚合干扰的干扰程度。
这里,第一次系统可以是频谱管理装置200覆盖范围内的任意一个次系统,其它次系统是除了第一次系统以外的其它次系统。也就是说,确定单元211可以针对频谱管理装置200管理的任意一个次系统,确定其与其它次系统之间的分配系数。
这里,分配系数是针对两个次系统的参数,与两个次系统到主系统的距离有关,其表示当两个次系统使用相同的频谱资源时这两个次系统对主系统产生的聚合干扰的干扰程度。根据本公开的实施例,确定单元211可以确定其它次系统与第一次系统之间的分配系数,并可以将确定的分配系数发送到分配单元212。
根据本公开的实施例,分配单元212可以根据分配系数为第一次系 统分配频谱资源。这里,分配单元212可以从确定单元211获取第一次系统与其它次系统的分配系数,并根据分配系数来分配频谱资源。
这里,第一次系统可以是频谱管理装置200覆盖范围内的任意一个次系统,其它次系统是除了第一次系统以外的其它次系统。也就是说,分配单元212可以针对频谱管理装置200管理的任意一个次系统,根据这任意一个次系统与其它次系统之间的分配系数为其分配频谱资源。
由此可见,根据本公开的实施例,频谱管理装置200在分配频谱资源时考虑了次系统之间的分配系数,而分配系数表示两个次系统对主系统产生的聚合干扰的干扰程度。也就是说,频谱管理装置200可以对次系统进行频谱资源分配以使得次系统对主系统产生的聚合干扰尽可能小。
根据本公开的实施例,处理电路210中的确定单元211可以根据第一次系统和其它次系统到主系统覆盖范围内的参考点的距离确定第一次系统和其它次系统到主系统的距离。也就是说,可以将主系统覆盖范围内的参考点作为主系统的代表,并用次系统到参考点的距离表征该次系统到参考点所在的主系统的距离。
根据本公开的实施例,主系统覆盖范围内的参考点包括与第一次系统对应的第一参考点以及与其它次系统对应的第二参考点。
图3是示出根据本公开的另一个实施例的频谱管理装置的配置的示例的框图。如图3所示,频谱管理装置200的处理电路210还可以包括收发单元220。频谱管理装置200可以通过收发单元220与其它设备进行通信,包括发送信息和接收信息等。
根据本公开的实施例,收发单元220可以接收第一参考点信息以及第二参考点信息。
在本公开中,参考点是对应于次系统的参数。每一个次系统都可以有对应的参考点。次系统对应的参考点可以是受到该次系统干扰的一个或者多个主系统中受到干扰最严重的点。这里,可以用各种参数来衡量主系统受到的干扰情况。例如,次系统距离主系统的距离,主系统还能够容忍的干扰量等等。也就是说,次系统对应的参考点可以是受到该次系统干扰的一个或者多个主系统中距离该次系统最近的点,也可以是受到该次系统干扰的一个或者多个主系统中还能够容忍的干扰量最小的边缘位置。一般来说,次系统的参考点位于该次系统所在区域内的主系统的覆盖范围内,更具体地,在主系统的边缘位置。然而,当次系统位于多个区域交界处从 而对多个主系统造成干扰时,该次系统的参考点很可能位于与该次系统处于不同区域的其它主系统的覆盖范围内。此外,在一般情况下,不同的次系统所对应的参考点不同,当然也存在不同的次系统对应相同的参考点的情况。根据本公开的实施例,收发单元220可以接收第一次系统和其它次系统的参考点信息,并可以将接收到的参考点信息发送到处理电路210,例如确定单元211。
根据本公开的实施例,处理电路210中的确定单元211还可以基于第一参考点信息和第二参考点信息确定第一次系统和其它次系统到主系统的距离,并进而确定分配系数。具体地,第一次系统和其它次系统到主系统的距离可以包括:第一次系统到第一参考点的距离、第一次系统到第二参考点的距离、其它次系统到第一参考点的距离和其它次系统到第二参考点的距离。
这里,第一参考点和第二参考点可以位于相同的主系统的覆盖范围内,也可以位于不同的主系统的覆盖范围内。下面将针对这两种情况进行详细说明。
根据本公开的实施例,第一参考点和第二参考点可以位于相同的主系统的覆盖范围内。在这种情况下,主系统包括第一参考点和第二参考点所在的主系统,即一个主系统。其它次系统和第一次系统之间的分配系数表示其它次系统与第一次系统对第一参考点和第二参考点所在的主系统产生的聚合干扰的干扰程度。
图4是示出根据本公开的实施例的确定两个次系统之间的分配系数的过程的示意图。如图4所示,次系统S1对应的参考点R1和次系统S2对应的参考点R2均位于主系统P1的覆盖范围内。在这种情况下,次系统S1和S2之间的分配系数表示次系统S1和S2对主系统P1产生的聚合干扰的干扰程度。这里,可以将次系统S1看作第一次系统,次系统S2看作其它次系统,参考点R1作为第一参考点,参考点R2作为第二参考点。下面将详细描述在这种情况下分配系数的确定。
根据本公开的实施例,处理电路210中的确定单元211可以分别基于第一参考点和第二参考点确定第一干扰程度和第二干扰程度,并且可以基于第一干扰程度和第二干扰程度确定分配系数。也就是说,次系统S1和S2之间的分配系数可以根据基于参考点R1确定的干扰程度和基于参考点R2确定的干扰程度来确定。
根据本公开的实施例,处理电路210中的确定单元211可以基于第一次系统和第一参考点之间的距离以及其它次系统和第一参考点之间的距离确定第一干扰程度,并且可以基于第一次系统和第二参考点之间的距离以及其它次系统和第二参考点之间的距离确定第二干扰程度。这里,可以规定次系统中的一个位置,例如次系统的中心或者次系统基站的位置作为次系统的代表来计算该次系统与参考点之间的距离。
在本公开的示例中,为了计算简便,仅考虑了次系统与参考点之间的距离来确定分配系数。本领域技术人员应当理解,其它一些参数,例如发射机的特性诸如天线波束参数、天线高度和传输模型等也会影响分配系数的确定。
如图4所示,次系统S1与参考点R1之间的距离为d11,次系统S1与参考点R2之间的距离为d12,次系统S2与参考点R1之间的距离为d21,次系统S2与参考点R2之间的距离为d22。由此可以确定第一干扰程度G1为:
Figure PCTCN2017115853-appb-000001
其中,α表示传输路径的衰落指数,可以根据经验值或者根据测试来确定。同样地,可以确定第二干扰程度G2为:
Figure PCTCN2017115853-appb-000002
接下来,处理电路210中的确定单元211可以基于第一干扰程度G1和第二干扰程度G2确定次系统S1和S2之间的分配系数C12。例如,确定单元211可以确定分配系数C12为第一干扰程度G1和第二干扰程度G2的加权和。作为一个简单的示例,分配系数C12可以为第一干扰程度G1和第二干扰程度G2的和,即:
Figure PCTCN2017115853-appb-000003
以上详细描述了在第一参考点和第二参考点不同的情况下如何确定两个次系统之间的分配系数。然而,也可能出现第一参考点和第二参考点相同的情况。在这种情况下,处理电路210中的确定单元211可以基于第一次系统和第一参考点(第二参考点)之间的距离以及其它次系统和第一 参考点(第二参考点)之间的距离确定分配系数。也就是说,在上面的示例中,仅仅计算G1和G2中的一者并作为分配系数C12。
根据本公开的实施例,第一参考点和第二参考点也可以位于不同的主系统的覆盖范围内。在这种情况下,主系统包括第一参考点所在的主系统和第二参考点所在的主系统,即两个主系统。其它次系统与第一次系统之间的分配系数表示其它次系统与第一次系统对第一参考点所在的主系统产生的聚合干扰的干扰程度以及对第二参考点所在的主系统产生的聚合干扰的干扰程度。
图5是示出根据本公开的另一个实施例的确定两个次系统之间的分配系数的过程的示意图。如图5所示,次系统S1对应的参考点R1位于主系统P1的覆盖范围内,而次系统S2对应的参考点R2位于主系统P2的覆盖范围内。在这种情况下,次系统S1和S2之间的分配系数表示次系统S1和S2对主系统P1以及主系统P2产生的聚合干扰的干扰程度。这里,可以将次系统S1看作第一次系统,次系统S2看作其它次系统,参考点R1作为第一参考点,参考点R2作为第二参考点。下面将详细描述在这种情况下分配系数的确定。
根据本公开的实施例,处理电路210中的确定单元211可以基于第一次系统和第一参考点之间的距离以及其它次系统和第一参考点之间的距离确定其它次系统与第一次系统对第一参考点所在的主系统产生的聚合干扰的干扰程度,并可以基于第一次系统和第二参考点之间的距离以及其它次系统和第二参考点之间的距离确定其它次系统与第一次系统对第二参考点所在的主系统产生的聚合干扰的干扰程度。也就是说,次系统S1和S2之间的分配系数可以根据基于参考点R1确定的对主系统P1产生的聚合干扰的干扰程度和基于参考点R2确定的对主系统P2产生的聚合干扰的干扰程度来确定。
如图5所示,次系统S1与参考点R1之间的距离为d11,次系统S1与参考点R2之间的距离为d12,次系统S2与参考点R1之间的距离为d21,次系统S2与参考点R2之间的距离为d22。根据本公开的实施例,可以根据上述公式(1)来计算G1,并可以根据上述公式(2)来计算G2。此时,G1表示次系统S1和S2对主系统P1产生的聚合干扰的干扰程度,G2表示次系统S1和S2对主系统P2产生的聚合干扰的干扰程度。接下来,确定单元211可以根据上述公式(3)来计算次系统S1和S2之间的分配系数C12。即,其它次系统和第一次系统之间的分配系数可以为对第一参考 点所在的主系统产生的聚合干扰的干扰程度和对第二参考点所在的主系统产生的聚合干扰的干扰程度的加权和,更简单地,可以为对第一参考点所在的主系统产生的聚合干扰的干扰程度和对第二参考点所在的主系统产生的聚合干扰的干扰程度的和。
由此可见,无论第一参考点和第二参考点是否位于相同的主系统的覆盖范围内,分配系数都可以由两部分组成,一部分是根据第一次系统和其它次系统到第一参考点的距离确定的干扰程度,另一部分是根据第一次系统和其它次系统到第二参考点的距离确定的干扰程度。当第一参考点和第二参考点位于相同的主系统的覆盖范围内时,这两部分都表示其它次系统和第一次系统对第一参考点和第二参考点所在的主系统产生的聚合干扰的干扰程度;当第一参考点和第二参考点位于不同的主系统的覆盖范围时,这两部分分别表示对第一参考点所在的主系统和第二参考点所在的主系统产生的聚合干扰的干扰程度。
如上所述,确定单元211可以确定其它次系统与第一次系统之间的分配系数。这里,分配系数表示其它次系统和第一次系统对参考点所在的主系统产生的聚合干扰的干扰程度。当参考点所在的主系统存在多个时,分配系数表示的就是对这多个主系统产生的聚合干扰的干扰程度。这样一来,在分配频谱时考虑了次系统对主系统的干扰关系,由此可以减小在主系统处产生的聚合干扰。
此外,上述的计算方法仅仅是示例性的,还可以根据其它的方法利用次系统到参考点的距离来计算分配系数。另外,还可以根据其它一些参数,例如发射机的特性诸如天线波束参数、天线高度和传输模型等来确定分配系数。
根据本公开的实施例,次系统对应的参考点可以由该次系统所在的区域内的地理位置数据库来确定。也就是说,每个区域内的地理位置数据库都可以确定其覆盖范围内的次系统对应的参考点。
根据本公开的实施例,收发单元220可以从频谱管理装置200所在区域内的地理位置数据库接收第一参考点信息。这里,由于第一次系统处于频谱管理装置200的覆盖范围内,因而第一参考点可以由这个区域内的地理位置数据库来确定。
根据本公开的实施例,其它次系统可以处于频谱管理装置200的覆盖范围外,也可以处于频谱管理装置200的覆盖范围内。下面将详细说明 其它次系统的确定。
根据本公开的实施例,处理电路210可以根据地理位置信息来确定其它次系统。这里,其它次系统可以包括一个或者多个其它次系统,处理电路210中的确定单元211可以确定一个或者多个其它次系统中的每个次系统与第一次系统之间的分配系数。也就是说,分配单元212可以根据每个次系统与第一次系统之间的分配系数来为第一次系统分配频谱资源。此外,每个次系统都对应有一个参考点,当其它次系统包括多个次系统时,第二参考点也有多个。
根据本公开的实施例,其它次系统包括对频谱管理装置200所在区域内的主系统造成干扰并且由除频谱管理装置200之外的其它频谱管理装置管理的一个或者多个次系统。也就是说,其它次系统与第一次系统位于不同的区域,或者说由不同的频谱管理装置管理。
图6是示出根据本公开的实施例的确定其它次系统的过程的示意图。如图6所示,次系统S1位于区域1中,在区域1中存在主系统P1、频谱管理装置SC1和地理位置数据库DB1,次系统S1由频谱管理装置SC1来管理。次系统S2和S3位于区域2中,在区域2中存在主系统P2、频谱管理装置SC2和地理位置数据库DB2,次系统S2和S3由频谱管理装置SC2来管理。这里,次系统S1可以看做第一次系统,而次系统S2和S3由于距离主系统P1较近,因而对主系统P1造成干扰。在这种情况下,处理电路210可以确定次系统S2和S3作为其它次系统。
值得注意的是,图6仅仅示出了其它次系统包括两个次系统的情形。当然,其它次系统也可以包括一个次系统或者多于两个的次系统。
根据本公开的实施例,次系统S2对应的参考点和次系统S3对应的参考点(即第二参考点)可以由地理位置数据库DB2来确定,而SC2可以访问数据库DB2而获取第二参考点信息。接下来,根据本公开的实施例,收发单元220可以从除频谱管理装置200之外的其它频谱管理装置接收第二参考点信息。也就是说,不同区域的频谱管理装置之间可以进行信息交互,包括各自管理的次系统的位置、频谱资源以及参考点信息等。
也就是说,根据本公开的实施例,当其它次系统与第一次系统位于不同的区域时,收发单元220可以从管理其它次系统的频谱管理装置来接收第二参考点信息,接下来,确定单元211可以基于从DB1接收的第一参考点信息,以及从SC2接收的第二参考点信息,根据如上所述的方式 来确定每一个其它次系统与第一次系统之间的分配系数,从而分配单元212可以根据每一个其它次系统与第一次系统之间的分配系数为第一次系统分配频谱资源。
根据本公开的实施例,其它次系统可以仅仅包括那些与第一次系统处于不同区域的次系统。这样一来,分配单元212在为第一次系统分配频谱资源时也只考虑与第一次系统与这样的其它次系统之间的分配系数,从而可以尽量避免为分配系数大的次系统分配相同的频谱资源。因此,在区域的交界位置,属于不同区域的次系统的频谱资源尽可能不同,由此减少不同区域间的频谱资源管理装置之间的信令交互。
根据本公开的实施例,其它次系统还可以包括由频谱管理装置200管理的一个或者多个次系统。也就是说,其它次系统与第一次系统处于相同的区域,或者说由相同的频谱资源管理装置管理。
图7是示出根据本公开的另一个实施例的确定其它次系统的过程的示意图。如图7所示,次系统S1和S4都位于区域1中,在区域1中存在主系统P1、频谱管理装置SC1和地理位置数据库DB1,次系统S1和S4由频谱管理装置SC1来管理。在这种情况下,处理电路210可以仅确定次系统S4作为其它次系统,也可以确定次系统S2、S3和S4都作为其它次系统。
值得注意的是,图7仅仅示出了与第一次系统位于相同区域的其它次系统包括一个次系统的情形。当然,这样的其它次系统也可以包括多个次系统。
根据本公开的实施例,次系统S4对应的参考点(第二参考点)可以由DB1来确定。因此,收发单元220可以从频谱管理装置200所在区域内的地理位置数据库接收第二参考点信息。
也就是说,根据本公开的实施例,当其它次系统与第一次系统位于不同的区域时,收发单元220可以从管理其它次系统的频谱管理装置来接收第二参考点信息;当其它次系统与第一次系统位于相同的区域时,收发单元220可以从这个区域内的地理位置数据库来接收第二参考点信息。接下来,确定单元211可以基于从DB1接收的第一参考点信息,以及从DB1和/或SC2接收的第二参考点信息来确定每一个其它次系统与第一次系统之间的分配系数,从而分配单元212可以根据每一个其它次系统与第一次系统之间的分配系数为第一次系统分配频谱资源。
如上所述,无论其它次系统是否与第一次系统位于相同的区域,确定单元211都可以确定其它次系统与第一次系统之间的分配系数。然而,根据本公开的另一个实施例,当其它次系统与第一次系统位于不同的区域时,收发单元220可以从其它次系统所在的频谱管理装置来接收其它次系统与第一次系统的分配系数。即,当第一次系统和其它次系统位于不同的区域时,可以由第一次系统所在区域的频谱管理装置来确定其它次系统与第一次系统之间的分配系数,也可以由其它次系统所在区域的频谱管理装置来确定其它次系统与第一次系统之间的分配系数。
根据本公开的实施例,收发单元220还可以向其它次系统所在区域的频谱管理装置发送第一次系统的位置信息,或者发送第一次系统的位置信息和第一参考点信息,以便于其它次系统所在区域的频谱管理装置确定上述分配系数。例如,在图7所示的实施例中,SC1可以向SC2发送次系统S1的位置信息,或者发送次系统S1的位置信息和第一参考点信息,然后从SC2接收次系统S3与S1之间的分配系数,以及次系统S2与S1之间的分配系数。
根据本公开的实施例,确定单元211可以仅确定那些由频谱管理装置200管理的其它次系统与第一次系统之间的分配系数,收发单元220可以接收那些由其它频谱管理装置管理的其它次系统与第一次系统之间的分配次数,从而分配单元212可以根据确定单元211确定的分配系数以及收发单元220接收的分配系数为第一次系统分配频谱资源。
根据本公开的实施例,其它次系统可以仅仅包括那些与第一次系统处于相同区域的次系统。这样一来,分配单元212在为第一次系统分配频谱资源时也只考虑与第一次系统与这样的其它次系统之间的分配系数,从而可以尽量避免为分配系数大的次系统分配相同的频谱资源,由此减少在主系统处受到的聚合干扰。
根据本公开的实施例,其它次系统可以既包括那些与第一次系统处于相同区域的次系统,也包括那些与第一次系统处于不同区域的次系统。这样一来,分配单元212在为第一次系统分配频谱资源时考虑第一次系统与所有其它次系统之间的分配系数,由此可以减少在主系统处受到的聚合干扰,并且减少不同区域间的频谱资源管理装置之间的信令交互。
如上所述,确定单元211可以确定其它次系统与第一次系统之间的分配系数。接下来,将详细描述分配单元212如何根据确定单元211确定的分配系数为第一次系统分配资源。
根据本公开的实施例,处理电路210中的分配单元212可以被配置为:在其它次系统与第一次系统之间的分配系数大于特定阈值时,为第一次系统和其它次系统分配频率上正交的频谱资源。进一步,分配单元212还可以被配置为:在其它次系统与第一次系统之间的分配系数小于特定阈值时,为第一次系统和其它次系统分配频率上相同的频谱资源。
也就是说,分配单元212为次系统分配频谱资源的原则是尽量避免为分配系数大的两个次系统分配相同的频谱资源。这样做的原因是,分配系数大则说明这两个次系统对主系统产生的聚合干扰的干扰程度大,因而为其分配不同的频谱资源可以有效地减小在主系统处产生的聚合干扰。
根据本公开的实施例,分配单元212可以采用各种实施方式来实现上述目的。例如,分配单元212可以建立由第一次系统和所有的其它次系统构成的无向加权图,无向加权图的边的权重基于由边的两个顶点代表的两个次系统之间的分配系数。
图8是示出根据本公开的实施例的无向加权图的示意图。图8所示的无向加权图是基于图6所示的示例确定的,即其它次系统仅仅包括与第一次系统处于不同区域的那些次系统。如图8所示,无向加权图的顶点表示次系统,顶点之间的边表示所述边所连接的两个顶点代表的次系统之间存在分配系数,边的权重基于所述边所连接的两个顶点代表的两个次系统之间的分配系数。在图8中,w12表示次系统S1和S2之间的边的权重,其基于次系统S1和S2之间的分配系数C12。类似地,w13基于次系统S1和S3之间的分配系数C13,w34基于次系统S4和S3之间的分配系数C34,w24基于次系统S2和S4之间的分配系数C24。
根据本公开的实施例,在确定单元211确定了分配系数C12、C13、C34和C24以后,分配单元212可以确定权重w12、w13、w34和w24,并确定如图8所示的无向加权图。接下来,分配单元212可以根据建立的无向加权图来为第一次系统分配频谱资源。这里,由于第一次系统可以是频谱管理装置200管理的任意一个次系统,因此分配单元212也可以根据无向加权图来为频谱管理装置200管理的其它次系统,例如次系统S4来分配频谱资源。
图9是示出根据本公开的另一个实施例的无向加权图的示意图。图9所示的无向加权图是基于图7所示的示例确定的,即其它次系统不仅包括与第一次系统处于不同区域的那些次系统,还包括与第一次系统处于相同区域的那些次系统。同样地,在图9中,无向加权图的顶点表示次系统, 顶点之间的边表示所述边所连接的两个顶点代表的次系统之间存在分配系数,边的权重基于所述边所连接的两个顶点代表的两个次系统之间的分配系数。
根据本公开的实施例,可以有各种方式来根据分配系数确定权重。一般来说,权重与相应的分配系数成正比。也就是说,其它次系统与第一次系统对主系统产生的聚合干扰的干扰程度越大,在无向加权图中连接其它次系统与第一次系统的边的权重越大。在一个特定的实施例中,无向加权图的边的权重等于由边的两个顶点代表的两个次系统之间的分配系数。
根据本公开的实施例,处理电路210中的分配单元可以被配置为:在无向加权图中代表第一次系统与其它次系统的顶点之间的边的权重大于特定阈值时,为第一次系统和其它次系统分配频率上正交的频谱资源;以及在无向加权图中代表第一次系统与其它次系统的顶点之间的边的权重小于特定阈值时,为第一次系统和其它次系统分配频率上相同的频谱资源。
例如,在图7所示的示例中,次系统S1和S4虽然相距较远,但是距离主系统P1都很近,因而次系统S1和S4之间的分配系数C14可能很大,导致在图9的无向加权图中的权重w14很大。假定w14>w12>w13,或者w14>w13>w12,则分配单元212可以为次系统S1和S4分配频率上正交的频谱资源。
根据本公开的实施例,在图9所示的无向加权图中,无向加权图的边的权重还可以基于由所述边的两个顶点代表的两个次系统是否由相同的频谱管理装置管理。
这里,可以定义次系统之间的参数Aij来表示次系统Si和Sj是否由相同的频谱管理装置管理。例如,可以设定:当次系统Si和Sj由不同的频谱管理装置管理时,参数Aij=A1;当次系统Si和Sj由相同的频谱管理装置管理时,参数Aij=A2。
进一步,分配单元212可以根据次系统Si和Sj之间的参数Aij和分配系数Cij来确定无向加权图中连接次系统Si和Sj的边上的权重wij。作为一个非限制性的示例,wij=Aij×Cij。
前文中提到,其它次系统可以包括那些与第一次系统处于不同区域的次系统,从而使得属于不同区域的次系统的频谱资源尽可能不同,由此减少不同区域间的频谱资源管理装置之间的信令交互。进一步,其它次系 统也可以包括那些与第一次系统处于相同区域的次系统,由此可以减少在主系统处受到的聚合干扰。
根据本公开的实施例,可以根据对系统性能的需求来设定A1和A2的值。例如,当对减少在主系统处受到的聚合干扰的需求大于对减少不同区域间的频谱资源管理装置间的信令交互的需求时,可以设定A1<A2;当对减少在主系统处受到的聚合干扰的需求小于对减少不同区域间的频谱资源管理装置间的信令交互的需求时,可以设定A1>A2。在后者的情况下,当A1远远大于A2时,所达到的效果与图8所示的无向加权图是类似的,即虽然计算了与第一次系统处于相同的区域的其它次系统与第一次系统之间的分配系数,但是这样的分配系数在分配频谱资源时并没有起到决定性的作用。
如上所述,分配单元212可以根据其它次系统与第一次系统之间的分配系数为第一次系统分配频谱资源。根据本公开的实施例,收发单元220还可以向第一次系统发送分配的频谱资源,以便于第一次系统利用分配的频谱资源进行通信。
如上所述介绍了频谱管理装置200。根据本公开的实施例,频谱管理装置200在分配频谱资源时考虑了次系统之间的分配系数,而分配系数表示两个次系统对主系统产生的聚合干扰的干扰程度。也就是说,频谱管理装置200可以对次系统进行频谱资源分配以使得次系统对主系统产生的聚合干扰尽可能小,并且使得与其它的频谱管理装置之间的信令交互尽可能少,从而节约信令开销并提高频谱利用率。
<3.第二实施例>
在这个实施例中,将详细描述根据本公开的实施例的电子设备1000。这里,电子设备1000可以包括地理位置数据库DB。图10是示出根据本公开的实施例的电子设备1000的配置的示例的框图。
如图10所示,电子设备1000可以包括处理电路1010。需要说明的是,电子设备1000既可以包括一个处理电路1010,也可以包括多个处理电路1010。
这里虽然没有示出处理电路1010的功能单元,但是处理电路1010可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元 可能由同一个物理实体实现。
根据本公开的实施例,处理电路1010可以从电子设备1000所在区域内的次系统接收位置信息。这里,电子设备1000可以从其所在区域内的任意一个次系统接收位置信息。位置信息的接收可以是周期性触发的,也可以是事件性触发的。例如,电子设备1000所在区域内的次系统周期性向电子设备1000上报位置信息,或者当次系统接入主系统时(当次系统为wifi系统时,例如开机操作)向电子设备1000上报位置信息。
根据本公开的实施例,处理电路1010可以根据次系统的位置信息确定与次系统对应的参考点信息。这里,每个次系统都有对应的参考点。次系统对应的参考点可以是受到该次系统干扰的一个或者多个主系统中受到干扰最严重的点。例如,处理电路1010可以通过收发单元获取次系统的位置信息,并根据每个次系统的位置信息确定与其对应的参考点。
根据本公开的实施例,处理电路1010还可以将与次系统对应的参考点信息发送到电子设备1000所在区域内的频谱管理装置。这里的频谱管理装置可以是第一实施例中所述的频谱管理装置200。也就是说,频谱管理装置可以利用参考点信息确定该次系统与其它次系统到主系统的距离,并确定该次系统与其它次系统之间的分配系数,分配系数表示其它次系统与该次系统对主系统产生的聚合干扰的干扰程度,并根据分配系数为该次系统分配频谱资源。这部分内容在第一实施例中已经详细叙述过,在此不再赘述。
根据本公开的实施例,次系统对应的参考点可以是受到该次系统干扰的一个或者多个主系统中距离该次系统最近的点。也就是说,当一个次系统对一个主系统造成干扰时,确定这个主系统中距离该次系统最近的位置为该次系统对应的参考点。当一个次系统对多个主系统造成干扰时,确定多个主系统中距离该次系统最近的位置为该次系统对应的参考点。因此,参考点必然在主系统的边缘位置上。
根据本公开的实施例,次系统对应的参考点可以是受到该次系统干扰的一个或者多个主系统中还能够容忍的干扰量最小的边缘位置。也就是说,当一个次系统对一个主系统造成干扰时,确定这个主系统中还能够容忍的干扰量最小的边缘位置作为与该次系统对应的参考点。当一个次系统对多个主系统造成干扰时,确定多个主系统中还能够容忍的干扰量最小的边缘位置作为与该次系统对应的参考点。
这里,一个边缘位置还能够容忍的干扰量指的是该边缘位置能够容忍的总干扰量与已经受到的干扰量的差值。例如,一个主系统的边缘位置能够容忍的总干扰量为10dB,该边缘位置已经受到了6dB的干扰量,那么该边缘位置还能够容忍的干扰量为4dB。也就是说,一个边缘位置还能够容忍的干扰量越小,表示这个边缘位置所受到的干扰越严重。
下面将结合图11来详细说明参考点的确定。图11是示出根据本公开的实施例的确定参考点的过程示意图。
如图11所示,次系统位于主系统P1的覆盖范围的外侧。在图11中,假定次系统只对一个主系统,即主系统P1造成干扰。那么根据本公开的实施例,可以确定主系统P1中距离该次系统最近的位置为该次系统对应的参考点。如图11所示,可以确定点A为次系统对应的参考点。根据本公开的实施例,还可以确定主系统P1中还能够容忍的干扰量最小的边缘位置作为参考点。例如,假定边缘位置A还能够容忍的干扰量为5dB,边缘位置B还能够容忍的干扰量为3dB。那么,虽然次系统距离边缘位置A比较近,那么也可以确定边缘位置B作为该次系统对应的参考点。
如上所述,电子设备1000可以根据次系统的位置信息确定次系统对应的参考点,并可以将参考点信息发送到频谱管理装置200。由此,频谱管理装置200可以计算次系统之间的分配系数,从而减小主系统处的聚合干扰,并减少不同频谱管理装置之间的信令交互。
根据本公开的实施例,电子设备1000可以包括地理位置数据库DB,并且可以与频谱管理装置200进行交互,因而第一实施例中关于频谱管理装置200的所有实施方式都适用于此。
<4.第三实施例>
在这个实施例中,将详细描述根据本公开的实施例的用于次系统的电子设备1200。这里,电子设备1200可以是次系统中的基站设备。当次系统中没有基站设备,次系统中的某些终端设备可以具有基站设备的功能时,电子设备1200也可以是次系统中的终端设备。
图12是示出根据本公开的实施例的电子设备1200的配置的示例的框图。
如图12所示,电子设备1200可以包括处理电路1210。需要说明的是,电子设备1200既可以包括一个处理电路1210,也可以包括多个处理 电路1210。
这里虽然没有示出处理电路1210的功能单元,但是处理电路1210可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,处理电路1210可以从管理次系统的频谱管理装置接收频谱资源信息。这里的频谱管理装置例如可以是第一实施例中的频谱管理装置200。因此,频谱资源可以是频谱管理装置200根据通过其它次系统与电子设备1200所在的次系统到主系统的距离确定的其它次系统与电子设备1200所在的次系统之间的分配系数为电子设备1200分配的,分配系数表示其它次系统与电子设备1200所在的次系统对主系统产生的聚合干扰的干扰程度。
根据本公开的实施例,处理电路1210可以根据获取的频谱资源信息获取频谱资源。这里的频谱资源信息可以包括可以由该次系统使用的频谱资源,例如该频谱资源所对应的频率信息等。接下来,电子设备1200可以利用获取的频谱资源进行通信。
根据本公开的实施例,处理电路1210还可以向电子设备1200所在区域内的地理位置数据库发送电子设备1200的位置信息。这里,地理位置数据库可以包括在例如第二实施例中的电子设备1000中。接下来,电子设备1200所在区域内的地理位置数据库可以根据电子设备1200的位置信息确定与电子设备1200所在的次系统对应的参考点信息。
这里,位置信息的接收可以是周期性触发的,也可以是事件性触发的。例如,电子设备1200周期性向地理位置数据库上报位置信息,或者当电子设备1200接入主系统时(当次系统为wifi系统时,例如开机操作)向地理位置数据库上报位置信息。
如上所述,根据本公开的实施例,次系统的电子设备1200可以从频谱管理装置接收根据与其它次系统之间的分配系数分配的频谱资源信息。这样一来,当电子设备1200使用这样的信息进行通信时,可以减少在主系统处造成的聚合干扰,并可以减少频谱管理装置之间的信令交互。
根据本公开的实施例,电子设备1200可以向地理位置数据库DB(包括在电子设备1000中)发送位置信息,并且可以从频谱管理装置200接收频谱资源信息,因而第一实施例中关于频谱管理装置200和第二实施例 中关于电子设备1000的所有实施方式都适用于此。
图13是示出根据本公开的实施例的分配频谱资源的过程的信令流程图。在图13中,S1表示次系统,该次系统所在区域内存在地理位置数据库DB1和频谱管理装置SC1,SC2是与SC1不同的其它频谱管理装置。如图13所示,在步骤S1310中,S1向DB1上报位置信息。接下来,在步骤S1320中,DB1根据S1上报的位置信息确定与次系统S1对应的参考点。此外,DB1还可以确定SC1在满足对主系统保护的情况下可用的频谱资源。接下来,在步骤S1330中,DB1向SC1发送次系统S1的参考点信息。可选地,DB1还可以发送可用频谱资源,SC1可以从这些可用频谱资源中选择次系统的使用频谱资源。这里如果将次系统S1作为第一次系统,其它次系统包括与次系统S1处于相同区域的次系统,那么DB1还向SC1发送其它次系统的参考点信息。此外,如果其它次系统还包括与次系统S1处于不同区域的次系统,那么,在步骤S1340中,SC2向SC1发送其它次系统的参考点信息,次系统的位置信息以及频谱使用情况。接下来,在步骤S1350中,SC1根据从DB1和SC2发送的参考点信息确定其它次系统与次系统S1之间的分配系数。接下来,在步骤S1360中,SC1为次系统S1分配频谱资源。接下来,在步骤S1370中,SC1向次系统S1发送分配的频谱资源信息。由此,SC1可以使用分配的频谱资源进行通信。
图14是示出根据本公开的另一个实施例的分配频谱资源的过程的信令流程图。同样地,在图14中,S1表示次系统,该次系统所在区域内存在地理位置数据库DB1和频谱管理装置SC1,SC2是与SC1不同的其它频谱管理装置。在步骤S1410中,S1向DB1上报位置信息。接下来,在步骤S1420中,DB1根据S1上报的位置信息确定与次系统S1对应的参考点。此外,DB1还可以确定SC1在满足对主系统保护的情况下可用的频谱资源。在步骤S1430中,DB1向SC1发送次系统S1的参考点信息以及可用频谱资源。SC1可以从这些可用频谱资源中选择次系统的使用频谱资源。这里如果将次系统S1作为第一次系统,其它次系统包括与次系统S1处于相同区域的次系统,那么DB1还向SC1发送其它次系统的参考点信息。此外,在步骤S1440中,如果其它次系统还包括与次系统S1处于不同区域的次系统,那么,SC1可以将第一次系统的地理位置信息或者次系统的地理位置信息以及参考点信息发送至SC2。在步骤S1450中,SC1确定与次系统S1位于相同频谱管理装置覆盖范围内的其它次系统与次系统S1之间的分配系数。在步骤S1460中,SC2可以根据其所管理的次系统以及所拥有的主系统信息确定第一次系统S1与各个SC2所管理的 其它次系统之间的分配系数。在步骤S1470中,SC2向SC1发送第一次系统与其它次系统之间的分配系数以及所对应的次系统的频谱使用情况(包括频道和功率等)。接下来,在步骤S1480中,SC1根据在步骤S1450中确定的分配系数和在步骤S1470中接收到的分配次数为次系统S1分配频谱资源。例如,第一次系统可选用的频段为频段1至10,并且已知其它次系统现有频道使用信息以及分配系数,那么SC1可以从信道1至10根据分配系数以及其它次系统频道占用情况为第一次系统选择合适的使用频段。接下来,在步骤S1490中,SC1向次系统S1发送分配的频谱资源信息。由此,SC1可以使用分配的频谱资源进行通信。
以上详细描述了根据本公开的实施例的频谱管理装置200、电子设备1000和电子设备1200。下文将详细描述根据本公开的实施例的由上述装置或设备执行的方法。
<5.第四实施例>
接下来将详细描述根据本公开的由频谱管理装置执行的方法。这里的频谱管理装置可以是第一实施例中的频谱管理装置200,因而在第一实施例中的频谱管理装置200的全部实施方式都适用于此。
图15是示出根据本公开的实施例的由频谱管理装置执行的方法的流程图。
如图15所示,在步骤S1410中,针对频谱管理装置管理的第一次系统,根据第一次系统和其它次系统到主系统的距离确定其它次系统与第一次系统之间的分配系数,分配系数表示其它次系统和第一次系统对主系统产生的聚合干扰的干扰程度。
接下来,在步骤S1420中,根据分配系数为第一次系统分配频谱资源。
优选地,为第一次系统分配频谱资源可以包括:在其它次系统与第一次系统之间的分配系数大于特定阈值时,为第一次系统和其它次系统分配频率上正交的频谱资源。
优选地,方法还包括:根据第一次系统和其它次系统到主系统覆盖范围内的参考点的距离确定第一次系统和其它次系统到主系统的距离。
优选地,主系统覆盖范围内的参考点包括与第一次系统对应的第一 参考点以及与其它次系统对应的第二参考点,并且方法还包括接收第一参考点信息以及第二参考点信息。
优选地,方法还包括:根据所述第一次系统和其它次系统到所述第一参考点的距离确定第一干扰程度;根据所述第一次系统和其它次系统到所述第二参考点的距离确定第二干扰程度;以及根据所述第一干扰程度和所述第二干扰程度确定所述其它次系统与所述第一次系统之间的分配系数。
优选地,第一参考点和第二参考点位于相同的主系统的覆盖范围内。
优选地,第一参考点和第二参考点位于不同的主系统的覆盖范围内。
优选地,方法还包括从频谱管理装置所在区域内的地理位置数据库接收第一参考点信息。
优选地,方法还包括根据地理位置信息来确定其它次系统。
优选地,其它次系统包括一个或者多个其它次系统,并且确定其它次系统与第一次系统之间的分配系数包括:确定一个或者多个其它次系统中的每个次系统与第一次系统之间的分配系数。
优选地,其它次系统包括对频谱管理装置所在区域内的主系统造成干扰并且由除频谱管理装置之外的其它频谱管理装置管理的一个或者多个次系统。
优选地,方法还包括从除所述频谱管理装置之外的其它频谱管理装置接收第二参考点信息。
优选地,方法还包括从所述其它频谱管理装置接收所述其它次系统与所述第一次系统之间的分配系数。
优选地,方法还包括向所述其它频谱管理装置发送所述第一次系统的位置信息。
优选地,其它次系统还包括由所述频谱管理装置管理的一个或者多个次系统。
优选地,方法还包括从所述频谱管理装置所在区域内的地理位置数据库接收第二参考点信息。
优选地,方法还包括向第一次系统发送分配的频谱资源。
根据本公开的实施例的由频谱管理装置执行的方法在描述第一实施 例时已经详细介绍过,在此不再赘述。
<6.第五实施例>
接下来将详细描述根据本公开的由包括地理位置数据库的电子设备执行的方法。这里的电子设备可以是第二实施例中的电子设备1000,因而在第二实施例中的电子设备1000的全部实施方式都适用于此。
图16是示出根据本公开的实施例的由包括地理位置数据库的电子设备执行的方法的流程图。
如图16所示,在步骤S1510中,从电子设备1000所在区域内的次系统接收位置信息。
接下来,在步骤S1520中,根据次系统的位置信息确定与次系统对应的参考点信息。
优选地,方法还包括:将与次系统对应的参考点信息发送到电子设备1000所在区域内的频谱管理装置。
优选地,次系统对应的参考点可以是受到该次系统干扰的一个或者多个主系统中受到干扰最严重的点。
优选地,次系统对应的参考点可以是受到该次系统干扰的一个或者多个主系统中距离该次系统最近的点。
优选地,次系统对应的参考点可以是受到该次系统干扰的一个或者多个主系统中还能够容忍的干扰量最小的边缘位置。
根据本公开的实施例的由包括地理位置数据库的电子设备执行的方法在描述第二实施例时已经详细介绍过,在此不再赘述。
<7.第六实施例>
接下来将详细描述根据本公开的由用于次系统的电子设备执行的方法。这里的电子设备可以是第三实施例中的电子设备1200,因而在第三实施例中的电子设备1200的全部实施方式都适用于此。
图17是示出根据本公开的实施例的由用于次系统的电子设备执行的方法的流程图。
如图17所示,在步骤S1610中,从管理所述次系统的频谱管理装置 接收频谱资源信息。这里,所述频谱资源是频谱管理装置根据通过其它次系统与电子设备所在的次系统到主系统的距离确定的其它次系统与电子设备所在的次系统之间的分配系数为电子设备分配的,分配系数表示其它次系统与电子设备所在的次系统对主系统产生的聚合干扰的干扰程度。
接下来,在步骤S1620中,根据频谱资源信息获取频谱资源。
优选地,方法还包括向电子设备所在区域内的地理位置数据库发送电子设备的位置信息。
根据本公开的实施例的由用于次系统的电子设备执行的方法在描述第三实施例时已经详细介绍过,在此不再赘述。
<8.应用示例>
本公开内容的技术能够应用于各种产品。例如,频谱管理装置200和电子设备1000可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。频谱管理装置200和电子设备1000可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
当用于次系统的电子设备1200被实现为基站设备时,基站可以被实现为任何类型的eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站200工作。
当用于次系统的电子设备1200被实现为终端设备时,终端设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备300还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[8-1.关于服务器的应用示例]
图18是示出可以实现根据本公开的频谱管理装置200和电子设备1000的服务器1700的示例的框图。服务器1700包括处理器1701、存储器1702、存储装置1703、网络接口1704以及总线1706。
处理器1701可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器1700的功能。存储器1702包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器1701执行的程序。存储装置1703可以包括存储介质,诸如半导体存储器和硬盘。
网络接口1704为用于将服务器1700连接到有线通信网络1705的有线通信接口。有线通信网络1705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线1706将处理器1701、存储器1702、存储装置1703和网络接口1704彼此连接。总线1706可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
在图18所示的服务器1700中,通过使用图2所描述的处理电路210和其中的确定单元211和分配单元212、通过使用图3所描述的处理电路210和其中的确定单元211和分配单元212以及通过使用图10所描述的处理电路1010可以由处理器1701实现,并且通过使用图3所描述的收发单元220可以由网络接口1704实现。例如,处理器1701可以通过执行存储器1702或存储装置1703中存储的指令而执行确定分配系数、分配频谱资源以及确定参考点的功能。
[8-2.关于基站的应用示例]
(第一应用示例)
图19是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1800包括一个或多个天线1810以及基站设备1820。基站设备1820和每个天线1810可以经由RF线缆彼此连接。
天线1810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1820发送和接收无线信号。如图19所示,eNB 1800可以包括多个天线1810。例如,多个天线1810可以与eNB 1800使用的多个频带兼容。虽然图19示 出其中eNB 1800包括多个天线1810的示例,但是eNB 1800也可以包括单个天线1810。
基站设备1820包括控制器1821、存储器1822、网络接口1823以及无线通信接口1825。
控制器1821可以为例如CPU或DSP,并且操作基站设备1820的较高层的各种功能。例如,控制器1821根据由无线通信接口1825处理的信号中的数据来生成数据分组,并经由网络接口1823来传递所生成的分组。控制器1821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1822包括RAM和ROM,并且存储由控制器1821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1823为用于将基站设备1820连接至核心网1824的通信接口。控制器1821可以经由网络接口1823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1823为无线通信接口,则与由无线通信接口1825使用的频带相比,网络接口1823可以使用较高频带用于无线通信。
无线通信接口1825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1810来提供到位于eNB 1800的小区中的终端的无线连接。无线通信接口1825通常可以包括例如基带(BB)处理器1826和RF电路1827。BB处理器1826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1821,BB处理器1826可以具有上述逻辑功能的一部分或全部。BB处理器1826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1826的功能改变。该模块可以为插入到基站设备1820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1827可以包括例如混频器、滤波器和放大器,并且经由天线1810来传送和接收无线信号。
如图19所示,无线通信接口1825可以包括多个BB处理器1826。例如,多个BB处理器1826可以与eNB 1800使用的多个频带兼容。如图19所示,无线通信接口1825可以包括多个RF电路1827。例如,多个RF电路1827可以与多个天线元件兼容。虽然图18示出其中无线通信接口1825包括多个BB处理器1826和多个RF电路1827的示例,但是无线通信接口1825也可以包括单个BB处理器1826或单个RF电路1827。
(第二应用示例)
图20是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1930包括一个或多个天线1940、基站设备1950和RRH 1960。RRH 1960和每个天线1940可以经由RF线缆而彼此连接。基站设备1950和RRH 1960可以经由诸如光纤线缆的高速线路而彼此连接。
天线1940中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1960发送和接收无线信号。如图20所示,eNB 1930可以包括多个天线1940。例如,多个天线1940可以与eNB 1930使用的多个频带兼容。虽然图20示出其中eNB 1930包括多个天线1940的示例,但是eNB 1930也可以包括单个天线1940。
基站设备1950包括控制器1951、存储器1952、网络接口1953、无线通信接口1955以及连接接口1957。控制器1951、存储器1952和网络接口1953与参照图19描述的控制器1821、存储器1822和网络接口1823相同。
无线通信接口1955支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1960和天线1940来提供到位于与RRH 1960对应的扇区中的终端的无线通信。无线通信接口1955通常可以包括例如BB处理器1956。除了BB处理器1956经由连接接口1957连接到RRH 1960的RF电路1964之外,BB处理器1956与参照图19描述的BB处理器1826相同。如图20所示,无线通信接口1955可以包括多个BB处理器1956。例如,多个BB处理器1956可以与eNB 1930使用的多个频带兼容。虽然图20示出其中无线通信接口1955包括多个BB处理器1956的示例,但是无线通信接口1955也可以包括单个BB处理器1956。
连接接口1957为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的接口。连接接口1957还可以为用于将基站设备1950(无 线通信接口1955)连接至RRH 1960的上述高速线路中的通信的通信模块。
RRH 1960包括连接接口1961和无线通信接口1963。
连接接口1961为用于将RRH 1960(无线通信接口1963)连接至基站设备1950的接口。连接接口1961还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1963经由天线1940来传送和接收无线信号。无线通信接口1963通常可以包括例如RF电路1964。RF电路1964可以包括例如混频器、滤波器和放大器,并且经由天线1940来传送和接收无线信号。如图20所示,无线通信接口1963可以包括多个RF电路1964。例如,多个RF电路1964可以支持多个天线元件。虽然图20示出其中无线通信接口1963包括多个RF电路1964的示例,但是无线通信接口1963也可以包括单个RF电路1964。
在图19和图20所示的eNB 1800和eNB 1930中,通过使用图12所描述的处理电路1210可以由控制器1821和/或控制器1951实现。功能的至少一部分也可以由控制器1821和控制器1951实现。例如,控制器1821和/或控制器1951可以通过执行相应的存储器中存储的指令而执行获取频谱资源的功能。
[8-3.关于终端设备的应用示例]
(第一应用示例)
图21是示出可以应用本公开内容的技术的智能电话2000的示意性配置的示例的框图。智能电话2000包括处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012、一个或多个天线开关2015、一个或多个天线2016、总线2017、电池2018以及辅助控制器2019。
处理器2001可以为例如CPU或片上系统(SoC),并且控制智能电话2000的应用层和另外层的功能。存储器2002包括RAM和ROM,并且存储数据和由处理器2001执行的程序。存储装置2003可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2004为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2000的接口。
摄像装置2006包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2007可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2008将输入到智能电话2000的声音转换为音频信号。输入装置2009包括例如被配置为检测显示装置2010的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2010包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2000的输出图像。扬声器2011将从智能电话2000输出的音频信号转换为声音。
无线通信接口2012支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2012通常可以包括例如BB处理器2013和RF电路2014。BB处理器2013可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2014可以包括例如混频器、滤波器和放大器,并且经由天线2016来传送和接收无线信号。无线通信接口2012可以为其上集成有BB处理器2013和RF电路2014的一个芯片模块。如图21所示,无线通信接口2012可以包括多个BB处理器2013和多个RF电路2014。虽然图21示出其中无线通信接口2012包括多个BB处理器2013和多个RF电路2014的示例,但是无线通信接口2012也可以包括单个BB处理器2013或单个RF电路2014。
此外,除了蜂窝通信方案之外,无线通信接口2012可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2012可以包括针对每种无线通信方案的BB处理器2013和RF电路2014。
天线开关2015中的每一个在包括在无线通信接口2012中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线2016中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2012传送和接收无线信号。如图21所示,智能电话2000可以包括多个天线2016。虽然图21示出其中智能电话2000包括多个天线2016的示例,但是智能电话2000也可以包括单个天线2016。
此外,智能电话2000可以包括针对每种无线通信方案的天线2016。 在此情况下,天线开关2015可以从智能电话2000的配置中省略。
总线2017将处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012以及辅助控制器2019彼此连接。电池2018经由馈线向图21所示的智能电话2000的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2019例如在睡眠模式下操作智能电话2000的最小必需功能。
在图21所示的智能电话2000中,通过使用图12所描述的处理电路1210可以由由处理器2001或辅助控制器2019实现。功能的至少一部分也可以由处理器2001或辅助控制器2019实现。例如,处理器2001或辅助控制器2019可以通过执行存储器2002或存储装置2003中存储的指令而执行获取频谱资源的功能。
(第二应用示例)
图22是示出可以应用本公开内容的技术的汽车导航设备2120的示意性配置的示例的框图。汽车导航设备2120包括处理器2121、存储器2122、全球定位系统(GPS)模块2124、传感器2125、数据接口2126、内容播放器2127、存储介质接口2128、输入装置2129、显示装置2130、扬声器2131、无线通信接口2133、一个或多个天线开关2136、一个或多个天线2137以及电池2138。
处理器2121可以为例如CPU或SoC,并且控制汽车导航设备2120的导航功能和另外的功能。存储器2122包括RAM和ROM,并且存储数据和由处理器2121执行的程序。
GPS模块2124使用从GPS卫星接收的GPS信号来测量汽车导航设备2120的位置(诸如纬度、经度和高度)。传感器2125可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2126经由未示出的终端而连接到例如车载网络2141,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2127再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2128中。输入装置2129包括例如被配置为检测显示装置2130的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2130包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器 2131输出导航功能的声音或再现的内容。
无线通信接口2133支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2133通常可以包括例如BB处理器2134和RF电路2135。BB处理器2134可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2135可以包括例如混频器、滤波器和放大器,并且经由天线2137来传送和接收无线信号。无线通信接口2133还可以为其上集成有BB处理器2134和RF电路2135的一个芯片模块。如图22所示,无线通信接口2133可以包括多个BB处理器2134和多个RF电路2135。虽然图22示出其中无线通信接口2133包括多个BB处理器2134和多个RF电路2135的示例,但是无线通信接口2133也可以包括单个BB处理器2134或单个RF电路2135。
此外,除了蜂窝通信方案之外,无线通信接口2133可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2133可以包括BB处理器2134和RF电路2135。
天线开关2136中的每一个在包括在无线通信接口2133中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2137的连接目的地。
天线2137中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2133传送和接收无线信号。如图22所示,汽车导航设备2120可以包括多个天线2137。虽然图22示出其中汽车导航设备2120包括多个天线2137的示例,但是汽车导航设备2120也可以包括单个天线2137。
此外,汽车导航设备2120可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关2136可以从汽车导航设备2120的配置中省略。
电池2138经由馈线向图22所示的汽车导航设备2120的各个块提供电力,馈线在图中被部分地示为虚线。电池2138累积从车辆提供的电力。
在图22示出的汽车导航设备2120中,通过使用图12所描述的处理电路1210可以由处理器2121实现。功能的至少一部分也可以由处理器2121实现。例如,处理器2121可以通过执行存储器2122中存储的指令 而执行获取频谱资源的功能。
本公开内容的技术也可以被实现为包括汽车导航设备2120、车载网络2141以及车辆模块2142中的一个或多个块的车载系统(或车辆)2140。车辆模块2142生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2141。
在本公开的系统和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (17)

  1. 一种频谱管理装置,包括处理电路,被配置为:
    针对所述频谱管理装置管理的第一次系统,根据所述第一次系统和其它次系统到主系统的距离确定所述其它次系统与所述第一次系统之间的分配系数,所述分配系数表示所述其它次系统和所述第一次系统对所述主系统产生的聚合干扰的干扰程度;以及
    根据所述分配系数为所述第一次系统分配频谱资源。
  2. 根据权利要求1所述的频谱管理装置,其中,所述处理电路被配置为:在所述其它次系统与所述第一次系统之间的分配系数大于特定阈值时,为所述第一次系统和所述其它次系统分配不重叠的频谱资源。
  3. 根据权利要求1所述的频谱管理装置,其中,所述处理电路被配置为:根据所述第一次系统和所述其它次系统到参考点的距离确定所述第一次系统和其它次系统到所述主系统的距离。
  4. 根据权利要求3所述的频谱管理装置,其中,所述处理电路还包括收发单元,
    所述参考点包括与所述第一次系统对应的第一参考点以及与所述其它次系统对应的第二参考点,
    所述收发单元被配置为接收第一参考点信息以及第二参考点信息。
  5. 根据权利要求4所述的频谱管理装置,其中,所述处理电路被配置为:
    根据所述第一次系统和其它次系统到所述第一参考点的距离确定第一干扰程度;
    根据所述第一次系统和其它次系统到所述第二参考点的距离确定第二干扰程度;以及
    根据所述第一干扰程度和所述第二干扰程度确定所述其它次系统与所述第一次系统之间的分配系数。
  6. 根据权利要求4所述的频谱管理装置,其中,所述第一参考点和所述第二参考点位于不同的主系统的覆盖范围内。
  7. 根据权利要求4所述的频谱管理装置,其中,所述收发单元被配 置为从所述频谱管理装置所在区域内的地理位置数据库接收第一参考点信息。
  8. 根据权利要求4所述的频谱管理装置,其中,所述处理电路被配置为根据地理位置信息来确定所述其它次系统。
  9. 根据权利要求4所述的频谱管理装置,其中,所述处理电路被配置为确定一个或者多个其它次系统中的每个次系统与所述第一次系统之间的分配系数。
  10. 根据权利要求1所述的频谱管理装置,其中,所述其它次系统包括对所述频谱管理装置所在区域内的主系统造成干扰并且由除所述频谱管理装置之外的其它频谱管理装置管理的一个或者多个次系统,
    所述处理电路还包括收发单元,被配置为从除所述频谱管理装置之外的其它频谱管理装置接收所述第二参考点信息。
  11. 根据权利要求1所述的频谱管理装置,其中,所述其它次系统包括对所述频谱管理装置所在区域内的主系统造成干扰并且由除所述频谱管理装置之外的其它频谱管理装置管理的一个或者多个次系统,
    所述处理电路还包括收发单元,被配置为从所述其它频谱管理装置接收所述其它次系统与所述第一次系统之间的分配系数。
  12. 根据权利要求11所述的频谱管理装置,其中,所述收发单元被配置为向所述其它频谱管理装置发送所述第一次系统的位置信息。
  13. 根据权利要求4所述的频谱管理装置,其中,所述收发单元被配置为从所述频谱管理装置所在区域内的地理位置数据库接收所述第二参考点信息。
  14. 一种用于次系统的电子设备,包括处理电路,被配置为:
    从管理所述次系统的频谱管理装置接收频谱资源信息;以及
    根据所述频谱资源信息获取频谱资源,
    其中,所述频谱资源是所述频谱管理装置根据通过其它次系统与所述电子设备所在的次系统到主系统的距离确定的所述其它次系统与所述电子设备所在的次系统之间的分配系数为所述电子设备分配的,所述分配系数表示所述其它次系统与所述电子设备所在的次系统对所述主系统产生的聚合干扰的干扰程度。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路被配置为向所述电子设备所在区域内的地理位置数据库发送所述电子设备的位置信息。
  16. 一种由频谱管理装置执行的方法,包括:
    针对所述频谱管理装置管理的第一次系统,根据所述第一次系统和其它次系统到主系统的距离确定所述其它次系统与所述第一次系统之间的分配系数,所述分配系数表示所述其它次系统和所述第一次系统对所述主系统产生的聚合干扰的干扰程度;以及
    根据所述分配系数为所述第一次系统分配频谱资源。
  17. 一种由用于次系统的电子设备执行的方法,包括:
    从管理所述次系统的频谱管理装置接收频谱资源信息;以及
    根据所述频谱资源信息获取频谱资源,
    其中,所述频谱资源是所述频谱管理装置根据通过其它次系统与所述电子设备所在的次系统到主系统的距离确定的所述其它次系统与所述电子设备所在的次系统之间的分配系数为所述电子设备分配的,所述分配系数表示所述其它次系统与所述电子设备所在的次系统对所述主系统产生的聚合干扰的干扰程度。
PCT/CN2017/115853 2017-01-13 2017-12-13 频谱管理装置、电子设备以及由其执行的方法 WO2018130040A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/346,545 US10667139B2 (en) 2017-01-13 2017-12-13 Frequency spectrum management device, electronic device, and method executed thereby
EP17891938.7A EP3570580B1 (en) 2017-01-13 2017-12-13 Frequency spectrum management device and system therefor
CN201780062329.2A CN109804653B (zh) 2017-01-13 2017-12-13 频谱管理装置、电子设备以及由其执行的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710026388.6 2017-01-13
CN201710026388.6A CN108307395A (zh) 2017-01-13 2017-01-13 频谱管理装置、电子设备以及由其执行的方法

Publications (1)

Publication Number Publication Date
WO2018130040A1 true WO2018130040A1 (zh) 2018-07-19

Family

ID=62840123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115853 WO2018130040A1 (zh) 2017-01-13 2017-12-13 频谱管理装置、电子设备以及由其执行的方法

Country Status (4)

Country Link
US (1) US10667139B2 (zh)
EP (1) EP3570580B1 (zh)
CN (2) CN108307395A (zh)
WO (1) WO2018130040A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491301A (zh) * 2019-01-29 2020-08-04 索尼公司 频谱管理设备、电子设备、无线通信方法和存储介质
CN111683374A (zh) * 2019-03-11 2020-09-18 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1883258A1 (en) * 2006-07-25 2008-01-30 Alcatel Lucent Method of sharing radio resources, radio resource management module, and radio communication network
CN104113888A (zh) * 2013-04-19 2014-10-22 索尼公司 无线通信系统中的装置和方法
CN106131858A (zh) * 2010-04-30 2016-11-16 索尼公司 在异构网络中管理资源的系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012113937A1 (en) * 2011-02-24 2012-08-30 Aalto-Korkeakoulusäätiö A method and a system for controlling the aggregate interference in cognitive radio networks
SG11201404200UA (en) * 2012-01-24 2014-10-30 Sony Corp Communication control device, transmission power allocation method and program
CN112055361A (zh) * 2013-04-18 2020-12-08 索尼公司 频谱管理装置和方法以及通信设备
CN112019998B (zh) * 2014-06-20 2023-03-10 索尼公司 无线电资源管理系统和无线电资源管理方法
CN105657718B (zh) * 2014-11-14 2021-02-02 索尼公司 无线电资源管理系统和无线电资源管理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1883258A1 (en) * 2006-07-25 2008-01-30 Alcatel Lucent Method of sharing radio resources, radio resource management module, and radio communication network
CN106131858A (zh) * 2010-04-30 2016-11-16 索尼公司 在异构网络中管理资源的系统和方法
CN104113888A (zh) * 2013-04-19 2014-10-22 索尼公司 无线通信系统中的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3570580A4 *

Also Published As

Publication number Publication date
US20200059790A1 (en) 2020-02-20
CN108307395A (zh) 2018-07-20
US10667139B2 (en) 2020-05-26
EP3570580A4 (en) 2020-01-01
CN109804653B (zh) 2021-07-23
EP3570580B1 (en) 2021-12-01
EP3570580A1 (en) 2019-11-20
CN109804653A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
JP6406242B2 (ja) 通信制御装置、通信制御方法及び無線通信装置
KR102308551B1 (ko) 스펙트럼 관리 디바이스 및 방법, 지리적 위치 데이터베이스, 및 서브시스템
TWI710255B (zh) 無線通訊系統中的電子設備、用戶設備和無線通訊方法
JP6361661B2 (ja) 通信制御装置及び無線通信装置
US11394477B2 (en) Electronic device, method and computer-readable storage medium used for wireless communication
US10735975B2 (en) Electronic apparatus and method for spectrum management device
US20210136845A1 (en) Electronic device and method for wireless communications
JP7074134B2 (ja) 制御装置、基地局、端末装置、方法及び記録媒体
WO2018130040A1 (zh) 频谱管理装置、电子设备以及由其执行的方法
US20200008077A1 (en) Apparatus for frequency band allocation
US11095405B2 (en) Electronic device and method for wireless communication
EP3113531B1 (en) Apparatus for use in a shared frequency band system
WO2021185126A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2019072125A1 (zh) 电子装置、无线通信方法以及计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017891938

Country of ref document: EP

Effective date: 20190813