WO2017124997A1 - 频谱管理装置及方法、基站侧和用户设备侧的装置及方法 - Google Patents

频谱管理装置及方法、基站侧和用户设备侧的装置及方法 Download PDF

Info

Publication number
WO2017124997A1
WO2017124997A1 PCT/CN2017/071358 CN2017071358W WO2017124997A1 WO 2017124997 A1 WO2017124997 A1 WO 2017124997A1 CN 2017071358 W CN2017071358 W CN 2017071358W WO 2017124997 A1 WO2017124997 A1 WO 2017124997A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
wireless communication
communication system
sensing
spectrum sensing
Prior art date
Application number
PCT/CN2017/071358
Other languages
English (en)
French (fr)
Inventor
孙晨
胡秉珊
Original Assignee
索尼公司
孙晨
胡秉珊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610031275.0A external-priority patent/CN106535198B/zh
Application filed by 索尼公司, 孙晨, 胡秉珊 filed Critical 索尼公司
Priority to CN201780006578.XA priority Critical patent/CN109076349A/zh
Priority to US16/070,749 priority patent/US11166165B2/en
Priority to EP17741028.9A priority patent/EP3407636A4/en
Publication of WO2017124997A1 publication Critical patent/WO2017124997A1/zh
Priority to US17/492,698 priority patent/US20220038913A1/en
Priority to US18/219,093 priority patent/US20230354044A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular, to multi-system coexistence management in wireless communications, and more particularly to a spectrum management apparatus and method, a base station side apparatus and method for wireless communication, and Apparatus and method on the user equipment side of wireless communication.
  • the spectrum resources can be represented by parameters such as time, frequency, bandwidth, and allowable maximum transmit power. .
  • Limited spectrum resources have been allocated to fixed operators and services, and new available spectrum is very scarce or expensive.
  • the concept of dynamic spectrum utilization is proposed, that is, to dynamically utilize those spectral resources that have been allocated to certain systems or services but are not fully utilized, which are for systems that are dynamically utilized. It is an unlicensed band.
  • it is first necessary to determine whether the band is available. Since the communication systems of different operators and the communication systems under different communication protocols have the right to use unlicensed bands equally, how to use the same unlicensed frequency band fairly and effectively has become an urgent problem for the industry.
  • a spectrum management apparatus comprising: an acquisition unit configured to acquire spectrum utilization information of a predetermined frequency band of at least one wireless communication system in a predetermined area; and a determining unit configured to utilize according to the spectrum The information determines a spectrum utilization efficiency of the corresponding wireless communication system within the predetermined area; and an adjustment unit configured to adjust a spectrum sensing parameter of the corresponding wireless communication system within the predetermined area on the predetermined frequency band according to the spectrum utilization efficiency.
  • an apparatus for a base station side of a wireless communication system comprising: a transmitting unit configured to transmit, to a spectrum management apparatus, spectrum utilization information of a cell served by the base station on a predetermined frequency band And a receiving unit configured to receive a change in a spectrum sensing parameter from the spectrum management device.
  • an apparatus for a user equipment side of a wireless communication system comprising: a receiving unit configured to receive a spectrum sensing instruction and a corresponding spectrum sensing parameter from a base station; Configuring to perform spectrum sensing based on the spectrum sensing parameter in response to the instruction; and a transmitting unit configured to transmit the result of the spectrum sensing to the base station.
  • a spectrum management method including: acquiring spectrum utilization information of a predetermined frequency band of at least one wireless communication system in a predetermined area; and determining, by the spectrum utilization information, that the corresponding wireless communication system is within a predetermined area. Spectrum utilization efficiency; and adjusting spectrum sensing parameters of the corresponding wireless communication system in a predetermined area on a predetermined frequency band according to spectrum utilization efficiency.
  • a method for a base station side of a wireless communication system comprising: transmitting, to a spectrum management apparatus, spectrum utilization information of a cell served by the base station on a predetermined frequency band; and receiving from spectrum management A change in the spectrum-aware parameter of the device.
  • a method for a user equipment side of a wireless communication system comprising: receiving, from a base station, a spectrum sensing instruction and a corresponding spectrum sensing parameter; and responding to the instruction according to the spectrum sensing parameter Spectrum sensing; and transmitting the results of spectrum sensing to the base station.
  • a wireless communication system comprising a base station and a user equipment, wherein the base station comprises a base station side device in the wireless communication system,
  • the user equipment includes devices on the user equipment side in the above wireless communication system.
  • the use of the spectrum resources of the predetermined frequency band by the wireless communication system can be effectively ensured and/or the different communication systems can be utilized reasonably and effectively. Spectrum resources.
  • FIG. 1 is a schematic structural block diagram of a spectrum management apparatus according to an embodiment of the present application
  • FIG. 2 shows an example of system distribution in an LTE communication system scenario
  • FIG. 3 shows simulation results of an activation probability of a communication system in the case of adjusting a spectrum sensing parameter of a communication system in the scenario of FIG. 2;
  • FIG. 4 is a schematic structural block diagram of a spectrum management apparatus according to another embodiment of the present application.
  • FIG. 5 is a schematic structural block diagram of an apparatus for a base station side of a wireless communication system according to an embodiment of the present application.
  • FIG. 6 is a schematic structural block diagram of an apparatus for a user equipment side of a wireless communication system according to an embodiment of the present application
  • FIG. 7 shows a flow chart of a spectrum management method according to an embodiment of the present application.
  • FIG. 8 shows a flow chart of a method for a base station side of a wireless communication system in accordance with one embodiment of the present application
  • FIG. 9 shows a flow chart of a method for a user equipment side of a wireless communication system in accordance with one embodiment of the present application.
  • FIG. 10 shows an example of information flow between a spectrum management device and a wireless communication system
  • Figure 11 shows another example of the flow of information between the spectrum management device and the wireless communication system
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 15 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • 16 is a block diagram of an exemplary structure of a general purpose personal computer in which methods and/or apparatus and/or systems in accordance with embodiments of the present invention may be implemented.
  • the spectrum management apparatus 100 includes an acquisition unit 101 configured to acquire at least one wireless communication in a predetermined area.
  • the determining unit 102 is configured to determine the spectrum utilization efficiency of the corresponding wireless communication system in the predetermined area according to the spectrum utilization information;
  • the adjusting unit 103 is configured to adjust according to the spectrum utilization efficiency A spectrum sensing parameter of a corresponding wireless communication system within a predetermined area on a predetermined frequency band.
  • the predetermined frequency band is a frequency band that the wireless communication system (hereinafter also referred to as a communication system or system) is to be or is being used in common.
  • the predetermined frequency band is an unlicensed frequency band, such as an industrial scientific medical frequency band of 2.4G, 5G, or a frequency band that can be used in an unauthorized manner according to national regulations, such as a television frequency band, 3.5 GHz in the United States, and the like.
  • the predetermined frequency band may be any frequency band that can be used in common by multiple wireless communication systems.
  • each wireless communication system or subsystem therein it should first determine whether the frequency band is available through spectrum sensing, such as whether it is occupied by other systems or subsystems, to ensure the validity of use of the frequency band and Fairness.
  • the predetermined area may be all or a part of the area managed by the spectrum management apparatus 100, for which the spectrum management apparatus 100 performs, for example, optimization of the spectrum use efficiency of the predetermined frequency band.
  • the predetermined area may be an area determined according to optimization of an application or service.
  • the predetermined area may be an administrative area, an area of a building or a mall, or a geographical area temporarily selected for some purpose.
  • the predetermined area may be a rectangular area, a circular area, an elliptical area, or any other shaped area.
  • the predetermined area may be predetermined by the spectrum management device 100 or may be set by a higher layer device or application. As an example, when the predetermined area is a rectangular area, it may be determined by the vertices of the rectangle, when the predetermined area is an area of a building, it may be determined by the boundary of the building, and the like.
  • a wireless communication system can be understood as having a transmission and A combination of multiple devices that receive functionality.
  • the wireless communication system can be a collection of all base stations and user equipment of the same mobile operator, or a collection of all base stations and user equipment of the same communication system using the same mobile operator.
  • the wireless communication system may also be a subset of the above set, for example, may be limited to base stations and user equipment in the management area of the spectrum management device.
  • the wireless communication system can also be a collection of base stations and user equipment of different mobile operators using the same communication system or a subset thereof similar to that previously described.
  • the wireless communication system can also be a collection of base stations and user equipment belonging to the same service provider or a subset thereof similar to that previously described.
  • the wireless communication system may be a subset of an LTE communication system, such as a collection of subsystems at the cell level, where the subsystem at the cell level includes, for example, one base station (macro base station or small base station) And one or more user devices.
  • the wireless communication system is not limited to the LTE communication system or a subset thereof, but may be other types of communication systems or a subset thereof, such as a WiFi communication system or a subset thereof.
  • a wireless communication system can be understood as a cluster of devices formed by a plurality of user devices.
  • a plurality of wireless communication systems may be included in the predetermined area, and the wireless communication systems may be the same type, such as an LTE communication system, or may be different types, including, for example, an LTE communication system and a WiFi communication system, where the LTE communication system It can be operated by different operators, and different communication systems can be adopted.
  • the WiFi communication system can include multiple access points (the area covered by each access point is equivalent to a small cell in LTE).
  • the predetermined area may be a range of one macro cell covered by one or more LTE communication systems, and there are several WiFi access points distributed in the range.
  • FIG. 2 shows an LTE communication system scenario.
  • the triangle represents a macro base station
  • the five-pointed star in the left ellipse represents a small cell base station belonging to the first operator
  • the circle in the right ellipse represents a small cell base station belonging to the second operator.
  • the device in the left ellipse can be used as a wireless communication system
  • the device in the right ellipse can be used as another wireless communication system. Note that although the small cell base stations of the two operators are respectively included in different ellipses in FIG.
  • the small cell base stations are distributed in the same geographical area, that is, In the above predetermined area.
  • the predetermined area is part of the macro cell coverage and is simultaneously covered by two wireless communication systems.
  • the two communication systems can be managed by the same spectrum management device or separately by different spectrum management devices, which will be described in detail later.
  • the acquisition unit 101 acquires the utilization of each of the wireless communication systems in the predetermined area for the predetermined frequency band, so that the determination unit 102 determines the respective spectrum utilization efficiency, and then the adjustment unit 103 according to the spectrum utilization efficiency.
  • the spectrum sensing parameter is information of a configuration adopted by the wireless communication system in the predetermined area when performing spectrum sensing on the predetermined frequency band.
  • the wireless communication system or each subsystem therein, such as an LTE cell
  • the probability of protection changes the spectrum utilization efficiency of the wireless communication system. It can be understood that when the predetermined areas are different, the spectrum utilization information acquired by the acquisition unit 101 is different, so that the determined spectrum utilization efficiency is different. Accordingly, the adjustment unit 103 may adjust the spectrum sensing parameters differently.
  • the spectrum sensing parameters include one or more of the following: an energy detection threshold for spectrum sensing, a length of spectrum sensing time, a number of nodes participating in sensing in the case of distributed spectrum sensing, and a spectrum sensing criteria .
  • the spectrum sensing parameter may be any parameter in which any spectrum sensing result is affected. For example, for a system that performs spectrum sensing by energy detection, if the set energy detection threshold is -70 dBm, then when the system performs energy detection and finds that the signal energy in the spectrum is less than -70 dBm, it is considered that there is no system that is using the frequency band. Thereby determining that spectrum resources are available.
  • the energy of the signal after reaching the spectrum sensing system has been attenuated to below -70 dBm, such as -80 dBm, and thus will not be detected. If the energy detection threshold is lowered to -85 dBm, the spectrum sensing system will detect the existing system and determine that the frequency band is not available. At the same time, it can be understood that setting different energy detection thresholds is different for the protection of existing systems. Higher energy detection thresholds increase the chances of spectrum usage but also increase the probability of interference with existing systems. Conversely, lowering the energy detection threshold reduces the chances of spectrum usage but increases the protection of existing systems.
  • the length of the spectrum sensing time that is, the size of the time window for spectrum sensing can be adjusted. It can be understood that the longer the length of time, the greater the probability of detecting the existing communication system, thereby reducing the chance of spectrum usage and enhancing the protection of the existing system, and vice versa, increasing the chance of spectrum usage and reducing the current presence. Systematic protection.
  • distributed spectrum sensing ie, cooperative sensing
  • the spectrum is perceived at different locations by a plurality of independent communication devices, such as a plurality of base stations, such as the energy detection described above, and then the results are aggregated to a central determination device to determine whether the spectrum is available.
  • the central judging device can be located, for example, on a certain base station or on a spectrum management device.
  • the spectrum aware communication device may also include a user equipment. User equipment and base stations can be collectively referred to as nodes.
  • the spectrum sensing determination criteria may include, for example, an AND principle, an OR principle, a proportional principle, and the like.
  • the AND principle is that all nodes confirm that the predetermined frequency band is available to finally determine that the frequency band is available.
  • the OR principle is that if one node determines that the predetermined frequency band is available, the frequency band is finally determined to be available, and the proportional principle is that if the spectrum sensing node reaches the predetermined time. The proportional node determines that the predetermined frequency band is available and finally determines that the frequency band is available.
  • the adjusting unit 103 can adjust one of the above-mentioned spectrum sensing parameters, and can also adjust two or more of them at the same time.
  • the spectrum sensing parameters are not limited to the above examples, and other parameters may be included depending on the spectrum sensing technology.
  • the adjustment unit 103 may adjust the spectrum sensing parameter of the corresponding wireless communication system such that the spectrum utilization efficiency reaches the expected value if the spectrum utilization efficiency deviates from the expected value.
  • the expected value is a target value of the spectrum utilization efficiency of the corresponding communication system, and may be preset by the spectrum management apparatus 100, or may be automatically or manually adjusted in the work process.
  • the actual spectrum utilization efficiency of the communication system is determined by the determination unit 102 based on the spectrum utilization information acquired by the acquisition unit 101.
  • the spectrum utilization information includes at least one of: actual activation state information after performing spectrum sensing of each cell in the wireless communication system in the predetermined area, throughput of the wireless communication system in the predetermined area, and no in the predetermined area Signal to noise ratio of line communication systems.
  • the spectrum utilization efficiency may be expressed as the number or proportion of activated cells.
  • the adjustment unit 103 is configured to reduce the energy detection threshold of the corresponding wireless communication system if the spectrum utilization efficiency is higher than the expected value, and/or the spectrum utilization efficiency is lower than the expected value
  • the energy detection threshold of the corresponding wireless communication system is increased. This is because when the energy detection threshold is lowered, the probability that the wireless communication system acquires the spectrum resource is lowered, and accordingly the spectrum resource utilization rate is lowered.
  • the adjustment unit 103 can perform the above adjustment based on a preset system model.
  • the preset system model the relationship between the spectrum sensing parameters and the spectrum utilization efficiency is reflected.
  • the preset system model may include at least one of the following: a channel model, a business model, a system spectrum activation probability model within a predetermined area, and a geographic location model.
  • the system spectrum activation probability model as an example, according to the actual service model, it can be calculated that the number of activated cells obeys the Poisson distribution, or that each cell sets an activation probability according to its service requirement, and the activated cell performs spectrum sensing, and It is judged whether the predetermined frequency band is available, and finally the spectrum utilization efficiency of the system can be counted, and the desired spectrum utilization efficiency can be obtained by changing the spectrum sensing parameter such as the energy detection threshold.
  • the expected value of spectrum utilization efficiency of the corresponding communication system can also be set according to the type of service, the payment situation, and the like.
  • the acquisition unit 101 may be further configured to acquire information indicating an identity of each cell of the wireless communication system within the predetermined area, and the determining unit 102 is configured to determine that the activation state is based on information indicating an identity of each cell of the wireless communication system. Whether the cell and the failed cell belong to the same type of system, wherein the adjusting unit 103 can be configured to perform the adjustment if the determining unit 102 determines that the cell in the active state and the cell in which the activation fails belong to the same type of system.
  • a homogeneous system refers to a situation in which a system using the same spectrum access policy, such as an LTE cell or a WiFi cell, or a same mobile operator or service provider.
  • the information of the identity of the cell may refer to the ID of the cell or the reference signal of the cell.
  • the spectrum management device 100 knows in advance the ID assignment of the cells of the different wireless communication systems and the information of the reference signal allocation, so the determining unit 102 can determine whether the two cells are the same type system based on the acquired information of the identification.
  • the adjustment unit 103 can perform adjustment only in the case of a homogeneous system.
  • the spectrum management apparatus 100 may be located at the base station side, for example, by a macro base station or a small base station, or may be located in a core network, for example, by an Evolved Packet Core (EPC) under the LTE protocol. Further, in the existing IEEE 802.19.1-compliant system, the spectrum management apparatus 100 can be implemented in a coexistence manager (CM).
  • CM coexistence manager
  • the acquiring unit 101 may acquire the foregoing spectrum utilization information (and the information of the identifier of the cell, etc.) by using a wired manner, for example, the information may be transmitted through a backhaul connection of the base station to the spectrum management apparatus 100 located in the core network. .
  • the predetermined frequency band is an unlicensed frequency band
  • the acquiring unit 101 acquires spectrum utilization information by wireless communication of the licensed frequency band. For example, when the spectrum management apparatus 100 is located in a base station, information can be transmitted by this method.
  • the number of wireless communication systems managed by the spectrum management apparatus 100 may be two or more, in which case, as an example, the adjustment unit 103 may be configured to fail to reach a desired value for spectrum utilization efficiency.
  • the wireless communication system adjusts the spectrum sensing parameters of the wireless communication system without affecting the spectrum utilization efficiency of other wireless communication systems.
  • the spectrum utilization efficiency of other communication systems may be determined by the determination unit 102 based on the system simulation model.
  • the system simulation model described herein is, for example, the aforementioned channel model, business model, system spectrum probability activation model, geographic location model, and the like. For example, if the determining unit 102 determines that the spectrum utilization efficiency of other communication systems is affected, the above adjustment is not made.
  • different wireless communication systems may belong to different mobile operators or service providers.
  • FIG. 3 shows that the adjustment unit 103 adjusts the spectrum sensing parameters of the communication system on the left side (referred to as the first communication system, belonging to the first carrier).
  • each communication system includes a total of 10 cells, assuming that each cell has an activation probability of 50%, and the histogram in FIG. 3 shows that the first change is made.
  • the spectrum management apparatus 100 operates as a centralized management apparatus that manages a plurality of wireless communication systems, thereby enabling a plurality of systems to utilize spectrum resources reasonably.
  • the spectrum management device can be a geolocation database.
  • the use of the spectrum resources of the predetermined frequency band by the wireless communication system can be effectively ensured and/or the different communication systems can be reasonably and effectively Use spectrum resources.
  • FIG. 4 is a block diagram showing the structure of a spectrum management apparatus 200 according to another embodiment of the present application.
  • the spectrum management apparatus 200 further includes: an interaction unit 201 configured to The other spectrum management devices interact to cause the adjustment unit 103 to make adjustments in consideration of the effects on other wireless communication systems.
  • the number of wireless communication systems managed by the spectrum management apparatus is one.
  • this embodiment implements a distributed management.
  • the interaction unit 201 is configured to transmit a parameter change request to other spectrum management devices with adjustments made by the adjustment unit 103, and receive feedback from other spectrum management devices, and the adjustment unit 103 further adjusts the spectrum according to the feedback. Perceived parameters. This operation of the interaction unit 201 can avoid the impact on other wireless communication systems.
  • the feedback may indicate whether the spectrum utilization efficiency of the wireless communication system managed by the other spectrum management device is affected, and the adjusting unit 103 is configured to be in the case where the feedback indicates that the spectrum utilization efficiency of the wireless communication system managed by the other spectrum management device is affected.
  • Re-adjust the spectrum sensing parameters for example, adjust to the value between the original value and the adjusted value, or adjust back to the original value, and so on.
  • the adjusted spectrum sensing parameter is maintained.
  • the feedback is made by other spectrum management devices, for example, according to the spectrum utilization efficiency of the wireless communication system it manages.
  • the interaction unit 201 receives the parameter change request of the other spectrum management apparatus, the acquisition unit 101 acquires the spectrum utilization information of the wireless communication system, and the determining unit 102 determines the spectrum utilization efficiency of the wireless communication system and determines whether the spectrum utilization efficiency is affected. And the interaction unit 201 provides feedback to other spectrum management devices whether feedback indicating whether the spectrum utilization efficiency is affected. Therefore, the spectrum management device 200 measures and makes feedback on the spectrum utilization efficiency of the wireless communication system managed by itself when receiving the parameter change request.
  • the spectrum management devices in this embodiment only need to interact with simple commands to implement cooperation between different communication systems, so as to reasonably jointly utilize the spectrum resources of the predetermined frequency band.
  • FIG. 5 shows a structural block diagram of an apparatus 300 for a wireless communication system, which may be located, for example, on a base station side, the apparatus 300 includes a transmitting unit 301 configured to transmit to a spectrum management apparatus, in accordance with an embodiment of the present application.
  • the spectrum utilization information of the cell served by the base station on a predetermined frequency band; and the receiving unit 302 configured to receive the change of the spectrum sensing parameter from the spectrum management apparatus.
  • the spectrum management apparatus may be located at the base station side, for example, by a macro base station or a small base station, or may be located in a core network, for example, by an EPC under the LTE protocol.
  • the spectrum management device can be implemented in a coexistence manager (CM).
  • CM coexistence manager
  • the spectrum management device may be the aforementioned spectrum management device 100 or 200, but is not limited thereto. Further, the description about the predetermined frequency band and the wireless communication system is similar to that in the first embodiment, and will not be repeated here.
  • the spectrum sensing is first performed.
  • the spectrum sensing may be performed by the base station separately, or may be performed by the user equipment, or may be performed by other base stations and/or user equipments of other base stations.
  • the cooperation is completed, and when the result of the spectrum sensing indicates that the predetermined frequency band is available, the cell uses the predetermined frequency band.
  • the base station reports the utilization information of the cell served by the cell to the predetermined frequency band to the spectrum management device, so that the spectrum management device obtains the spectrum utilization efficiency of the corresponding wireless communication system.
  • the spectrum utilization information includes at least one of: actual activation state information of the cell after spectrum sensing, throughput of the base station, signal to noise ratio of the base station.
  • the spectrum management apparatus can acquire the spectrum utilization efficiency of the entire communication system, thereby determining whether to adjust the spectrum sensing parameters.
  • the base station When the spectrum management device determines that the spectrum sensing parameter needs to be changed, the base station is notified of the change that needs to be made, so that the base station performs spectrum sensing using the changed spectrum sensing parameter.
  • the spectrum sensing parameters include at least one of: an energy detection threshold for spectrum sensing, a spectrum sensing time length, a number of nodes participating in sensing in the case of distributed spectrum sensing, and a spectrum sensing determination criterion.
  • the base station uses the changed spectrum sensing parameter when performing spectrum sensing.
  • the base station also notifies the user equipment of the change of the spectrum sensing parameter.
  • a detailed description of the spectrum sensing parameters is given in the first embodiment and will not be repeated here.
  • the change in spectrum sensing parameters affects the probability of acquiring spectrum resources, thereby changing the spectrum utilization efficiency of the system.
  • the apparatus 300 may further include: a determining unit 303 configured to determine whether a predetermined frequency band is available based on a spectrum sensing result of the base station.
  • the receiving unit 302 is further configured to receive spectrum sensing results of other nodes, and the determining unit 303 is further configured to perform the judgment based on the spectrum sensing results of the other nodes.
  • Other nodes described herein include user equipment and/or other base stations.
  • the judging unit 303 judges whether or not the predetermined frequency band is available based on the spectrum sensing result from the plurality of nodes (including the own base station). It will be appreciated that in this example, device 300 operates as a centrally determined means of distributed spectrum sensing.
  • the determining unit 303 performs the final determination based on the spectrum sensing result set by the number of nodes set in the spectrum sensing parameter based on the spectrum sensing determination criterion set in the spectrum sensing parameter.
  • the description of the specific decision criteria is given in the first embodiment and will not be repeated here. Among them, these nodes use the energy detection threshold and the spectrum sensing time length set in the spectrum sensing parameter when performing spectrum sensing.
  • the determining unit 303 may further determine whether the cell in the predetermined frequency band belongs to the same type of system, and the sending unit 301 provides the result of the determination to the spectrum management device.
  • the same system refers to a scenario in which the same spectrum access policy is used, for example, the same LTE cell or the same WiFi cell; or belongs to the same mobile operator or service provider.
  • the cells in the ellipse on the same side in the example of FIG. 2 are homogeneous systems.
  • the spectrum management apparatus can perform, for example, adjustment of the spectrum sensing parameter when it is determined that the system is the same type, otherwise the adjustment is not performed.
  • the determining unit 303 can perform determination of whether it belongs to the same type system according to at least one of the following: the identification information of the cell, and the reference signal detection.
  • the reference signal detects, for example, preamble detection of WiFi, or synchronization signal detection of LTE, and the like. This information can be extracted from the signals obtained during the spectrum sensing process. Since cells of different wireless communication systems have different identification information and format and/or content of reference signals, it is possible to determine whether they are homogeneous systems by using such information.
  • the apparatus 300 can report the spectrum utilization status to the spectrum management apparatus, and change the spectrum sensing parameter according to the instruction of the spectrum management apparatus, so that the rational utilization of the spectrum resource can be realized.
  • the apparatus 300 may also be located, for example, on an access point of a WiFi, wherein the transmitting unit 301 transmits spectrum utilization information of the access point on a predetermined frequency band to the spectrum management apparatus, and the receiving unit 302 receives the spectrum management apparatus from the spectrum management apparatus. Changes in spectrum sensing parameters.
  • FIG. 6 is a structural block diagram of a device 400 for a user equipment side of a wireless communication system according to an embodiment of the present application.
  • the apparatus 400 includes: a device for user equipment side of a wireless communication system, including: The receiving unit 401 is configured to receive, from the base station, an instruction for performing spectrum sensing and a corresponding spectrum sensing parameter; the sensing unit 402 is configured to perform spectrum sensing according to the spectrum sensing parameter in response to the instruction; and the sending unit 403 is configured to The result of spectrum sensing is sent to the base station.
  • the spectrum sensing parameters include at least one of: an energy detection threshold for spectrum sensing, a length of spectrum sensing time, a number of nodes participating in sensing in the case of distributed spectrum sensing, and a spectrum sensing criteria.
  • the user equipment assists the base station in performing spectrum sensing. Specifically, when the base station needs to perform spectrum sensing, the user equipment is notified, and the user equipment notifies the base station of the result after completing the sensing, so that the base station determines whether the predetermined frequency band is available.
  • the base station receives the change of the spectrum sensing parameter notified by the spectrum management apparatus, the user equipment is also notified correspondingly to perform spectrum sensing according to the changed spectrum sensing parameter.
  • the change in spectrum sensing parameters affects the probability of acquiring spectrum resources, thereby changing the spectrum utilization efficiency of the system.
  • the user equipment can receive the settings of the spectrum sensing parameters and perform spectrum sensing according to the settings to utilize the spectrum resources reasonably.
  • the user equipment can also be a WiFi user equipment.
  • embodiments of the spectrum management apparatus and the base station side and user equipment side devices in the wireless communication system may be implemented partially or completely using hardware and/or firmware, and the methods discussed below may be entirely by the computer Executable programs are implemented, although these methods may also employ hardware and/or firmware of the spectrum management device as well as the devices on the base station side and the user equipment side in the wireless communication system.
  • FIG. 7 is a flowchart of a spectrum management method according to an embodiment of the present application, including: acquiring spectrum utilization information of a predetermined frequency band of at least one wireless communication system in a predetermined area (S11); determining according to spectrum utilization information The spectrum utilization efficiency of the corresponding wireless communication system in the predetermined area (S12); and the spectrum sensing parameter of the corresponding wireless communication system in the predetermined area on the predetermined frequency band is adjusted according to the spectrum utilization efficiency (S14).
  • the spectrum utilization information may include at least one of: actual activation state information after performing spectrum sensing of each cell in the wireless communication system in the predetermined area, throughput of the wireless communication system in the predetermined area, and wireless communication system in the predetermined area. Signal to noise ratio.
  • the spectrum sensing parameters may include at least one of: an energy detection threshold for spectrum sensing, a length of spectrum sensing time, a number of nodes participating in sensing in the case of distributed spectrum sensing, and a spectrum sensing determination criterion.
  • the spectrum sensing parameters of the respective wireless communication system are adjusted in step S14 with the spectrum utilization efficiency deviating from the expected value such that its spectrum utilization efficiency reaches the expected value.
  • the adjustment may be made based on a preset system model in step S14.
  • the preset system model includes, for example, at least one of the following: a channel model, a business model, a system spectrum activation probability model in a predetermined area, and a geographic location model.
  • the energy detection threshold of the corresponding wireless communication system is lowered in the case where the spectrum utilization efficiency is higher than the expected value in step S14, and/or the spectrum utilization efficiency is lower than the expected value.
  • the energy detection threshold of the corresponding wireless communication system is increased.
  • the spectrum utilization information can be obtained by wire in step S11.
  • the predetermined frequency band is an unlicensed frequency band
  • the spectrum utilization information is acquired by wireless communication of the licensed frequency band in step S11.
  • the information indicating the identifiers of the cells of the wireless communication system in the predetermined area may be acquired in step S11, as shown by the dotted line in FIG. 7, the method may further include step S13 before step S14, wherein Instructing each cell of the wireless communication system
  • the identifier information is used to determine whether the cell in the active state and the cell in which the activation fails belong to the same type system, for example, by detecting the signal in the spectrum sensing process, extracting the cell ID information from the signal and determining whether the WiFi signal can also be detected by the front end.
  • the information preamble is determined, and the adjustment of step S14 is performed in the case where it is determined that the cell in the active state and the cell in which the activation fails belong to the same type of system.
  • the number of managed wireless communication systems is two or more, and in step S14, the wireless communication system that does not reach the desired value for the spectrum utilization efficiency does not affect the spectrum utilization efficiency of other wireless communication systems.
  • the spectrum sensing parameters of the wireless communication system are adjusted.
  • the spectrum utilization efficiency of other wireless communication systems may be determined according to the system simulation model in step S12. Examples of system simulation models are described above and will not be repeated here.
  • different wireless communication systems belong to different mobile operators or service providers.
  • the above method can be implemented, for example, in a geolocation database.
  • the number of managed wireless communication systems is one, and in step S14, interaction with spectrum management devices of other wireless communication systems is made such that, in consideration of influence on other wireless communication systems, Make adjustments.
  • the above method further includes the step of transmitting a parameter change request to the spectrum management apparatus of the other wireless communication system in the case where the adjustment is made in step S14 (S15), receiving feedback from the spectrum management apparatus (S16), and The spectrum sensing parameter is further adjusted based on the feedback (S17).
  • the feedback indicates whether the spectrum utilization efficiency of the other wireless communication system is affected, and in step S17, the spectrum sensing parameter may be re-adjusted if the feedback indicates that the spectrum utilization efficiency of the other wireless communication system is affected, for example, the original value is adjusted back. Or the value between the original value and the adjusted value, and so on.
  • the above method may further comprise the steps of: receiving a parameter change request from a spectrum management device of another wireless communication system; acquiring spectrum utilization information of the wireless communication system; determining a spectrum utilization efficiency of the wireless communication system And determining whether the spectrum utilization efficiency is affected; providing feedback to the spectrum management device indicating whether the spectrum utilization efficiency is affected.
  • FIG. 8 illustrates a base station for a wireless communication system according to another embodiment of the present application.
  • a flowchart of a side method the method comprising: transmitting, to a spectrum management apparatus, spectrum utilization information of a cell served by the base station on a predetermined frequency band (S22); and receiving a change of a spectrum sensing parameter from the spectrum management apparatus (S23).
  • the spectrum utilization information may include at least one of the following: actual activation state information after spectrum sensing by the cell, throughput of the base station, and signal to noise ratio of the base station.
  • the spectrum sensing parameters may include at least one of: an energy detection threshold for spectrum sensing, a length of spectrum sensing time, a number of nodes participating in sensing in the case of distributed spectrum sensing, and a spectrum sensing determination criterion.
  • the above method may further include step S21: determining whether the predetermined frequency band is available based on the spectrum sensing result.
  • the spectrum sensing result described herein may refer to the spectrum sensing result of the base station itself, and may also include spectrum sensing results received from other nodes (including the base station and the user equipment), that is, adopting a distributed sensing manner.
  • step S21 when it is judged in step S21 that the predetermined frequency band is not available, it is further determined whether the own cell and the cell occupying the predetermined frequency band belong to the same type system, and the result of the determination is supplied to the spectrum management apparatus in step S22.
  • the determination as to whether or not the system belongs to the same type may be performed according to at least one of the following: identification information of the cell, reference signal detection.
  • FIG. 9 illustrates a method for a user equipment side of a wireless communication system according to another embodiment of the present application, including: receiving, from a base station, a spectrum sensing instruction and a corresponding spectrum sensing parameter; in response to the instruction, according to spectrum sensing The parameters are spectrally aware; and the results of the spectrum sensing are sent to the base station.
  • the spectrum sensing parameter may include at least one of the following: an energy detection threshold for spectrum sensing, a spectrum sensing time length, a number of nodes participating in sensing in the case of distributed spectrum sensing, and a spectrum sensing determination criterion.
  • a communication system including a base station and a user equipment, wherein the base station includes the device 300, and the user equipment includes the device 400 is also disclosed.
  • FIGS. 10 and 11 illustrate examples of information flow between the spectrum management device and the wireless communication system, it being understood that this is not limitative.
  • the first A wireless communication system and a second wireless communication system are located in a predetermined area managed by the spectrum management apparatus, the two wireless communication systems reporting their spectrum utilization information such as activation status information of each cell to the spectrum management apparatus, and the spectrum management apparatus determines based on the information
  • the spectrum utilization efficiency of two wireless communication systems for example, assuming that the spectrum utilization efficiency of the first wireless communication system is lower than the expected value, and the spectrum utilization efficiency of the second wireless communication system is substantially equal to the expected value, according to the calculation of the system simulation model,
  • the updated spectrum sensing parameter of the first communication system is calculated in the event of affecting the spectrum utilization efficiency of the second communication system and the spectrum sensing parameter update command is transmitted to the first communication system.
  • a spectrum management apparatus manages one wireless communication system and interacts between spectrum management apparatuses.
  • the first spectrum management device determines the spectrum utilization efficiency based on the acquired spectrum utilization information, and adjusts the spectrum sensing parameter when the spectrum utilization efficiency is found to deviate from the expected value, that is, sends the spectrum sensing parameter change instruction to the first communication system, and
  • the second spectrum management device issues a parameter change request. After receiving the request, the second spectrum management device acquires spectrum utilization information from the managed second communication system, and determines whether the spectrum utilization efficiency is affected by the change of the spectrum sensing parameter of the first communication system, based on the determination
  • the first spectrum management device gives feedback.
  • the first spectrum management device instructs the first communication system to work with the adjusted spectrum sensing parameters or no longer gives an additional indication to the first communication system. Otherwise, the first spectrum management device instructs the first communication system to operate using the original spectrum sensing parameters.
  • the spectrum management device described above can be used for coexistence management of a wireless communication system within a building that is covered by services of multiple LTE communication systems and WiFi systems.
  • the spectrum management devices 100 and 200 can be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the spectrum management devices 100 and 200 may be control modules mounted on a server (such as an integrated circuit module including a single wafer, and a card or blade inserted into a slot of the blade server).
  • the above mentioned base station 300 can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of user equipments to be described below can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the user device 400 can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal (such as a car navigation device). device).
  • User device 400 may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user device 400 may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 12 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 may have a logic function that performs control such as radio resource control, radio bearer control, mobility management, admission control System and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 12 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transmitting unit 301 and the receiving unit 302 described in FIG. 5 can be implemented by the wireless communication interface 825. At least part of the function can also be controlled by the controller 821 implementation. For example, the controller 821 can perform a determination as to whether or not a predetermined frequency band is available by performing the function of the determination unit 303.
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 13 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 12 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 13 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be used for communication in the above high speed line. Communication module.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 13 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transmitting unit 301 and the receiving unit 302 described in FIG. 5 can be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 851.
  • the controller 851 can perform a determination as to whether or not a predetermined frequency band is available by performing the function of the determination unit 303.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • Input device 909 includes, for example, a touch configured to detect a touch on the screen of display device 910 A sensor, keypad, keyboard, button or switch, and receives operations or information input from the user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 14 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 14 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 will be the processor 901, the memory 902, the storage device 903, and the external connection interface. 904.
  • the imaging device 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 are connected to each other.
  • Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 14 via a feeder, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the receiving unit 401 and the transmitting unit 403 described by using FIG. 6 can be realized by the wireless communication interface 912.
  • At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can perform spectrum sensing by performing the function of the sensing unit 402.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 15 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 15 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in Figure 15 via feeders, which are partially shown as dashed lines in the figure. Battery 938 accumulates power supplied from the vehicle.
  • the receiving unit 401 and the transmitting unit 403 described by using FIG. 6 can be realized by the wireless communication interface 933. At least a portion of the functionality can also be implemented by processor 921.
  • the processor 921 can execute the sensing unit The function of 402 is to perform spectrum sensing.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • the determining unit, the adjusting unit, the dividing unit, the sensing unit, the judging unit and the like in the apparatus described above may be implemented by one or more processors, for example, an acquiring unit,
  • the interaction unit, the transmission unit, the reception unit, and the like can be implemented by circuit components such as an antenna, a filter, a modem, and a codec.
  • the present invention also provides an electronic device (1), comprising: a circuit configured to: acquire spectrum utilization information of at least one wireless communication system on a predetermined frequency band; and determine, according to spectrum utilization information, a corresponding wireless communication system Spectrum utilization efficiency; and adjusting the spectrum sensing parameters of the corresponding wireless communication system over a predetermined frequency band according to the spectrum utilization efficiency.
  • the present invention also provides an electronic device (2) comprising: a circuit configured to: transmit, to a spectrum management device, spectrum utilization information of a cell served by a base station on a predetermined frequency band; and receive a spectrum from the spectrum management device Perceived changes in parameters.
  • the present invention also provides an electronic device (3), comprising: a circuit configured to: receive a spectrum sensing instruction from a base station and a corresponding spectrum sensing parameter; and perform spectrum sensing according to the spectrum sensing parameter in response to the instruction; And transmitting the result of spectrum sensing to the base station.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 1600 shown in FIG. 16), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 1601 executes various processes in accordance with a program stored in a read only memory (ROM) 1602 or a program loaded from a storage portion 1608 to a random access memory (RAM) 1603.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1601 executes various processes and the like is also stored as needed.
  • the CPU 1601, the ROM 1602, and the RAM 1603 are connected to each other via a bus 1604.
  • Input/output interface 1605 is also coupled to bus 1604.
  • the following components are connected to the input/output interface 1605: an input portion 1606 (including a keyboard, a mouse, etc.), an output portion 1607 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage portion 1608 (including a hard disk or the like), the communication portion 1609 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 1609 performs communication processing via a network such as the Internet.
  • Driver 1610 can also be coupled to input/output interface 1605 as desired.
  • a removable medium 1611 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1610 as needed, so that the computer program read therefrom is installed into the storage portion 1608 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1611.
  • such a storage medium is not limited to the removable medium 1611 shown in FIG. 16 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 1611 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1602, a hard disk included in the storage portion 1608, or the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了频谱管理装置和方法,用于无线通信的基站侧和用户设备侧的装置和方法。频谱管理装置包括:获取单元,被配置为获取预定区域内至少一个无线通信系统在预定频段上的频谱利用信息;确定单元,被配置为根据频谱利用信息确定相应无线通信系统在预定区域内的频谱利用效率;以及调整单元,被配置为根据频谱利用效率来调整在预定频段上相应无线通信系统在预定区域内的频谱感知参数。

Description

频谱管理装置及方法、基站侧和用户设备侧的装置及方法
本申请要求于2016年1月18日提交中国专利局、申请号为201610031275.0、发明名称为“频谱管理装置及方法、基站侧和用户设备侧的装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及无线通信中的多系统共存管理,更具体地涉及一种频谱管理装置和方法、用于无线通信的基站侧的装置和方法、以及用于无线通信的用户设备侧的装置和方法。
背景技术
随着无线网络的发展演进,其承载的服务越来越多,因此需要额外的频谱资源来支持大量的数据传输,频谱资源例如可以用时间、频率、带宽、可容许最大发射功率等参数来表示。有限的频谱资源已经分配给了固定的运营商和服务,新的可用频谱非常稀少或者价格昂贵。在这种情况下,提出了动态频谱利用的概念,即动态地利用那些已经被分配给某些系统或服务但是却没有被充分利用的频谱资源,这些频谱资源对于对其进行动态利用的系统而言属于非授权频段。无线通信系统使用非授权频段的时候首先要判断该频段是否可用。由于不同运营商的通信系统以及不同通信协议下的通信系统具有平等使用非授权频段的权利,因此如何公平有效地使用同一个非授权频段已经是工业界亟待解决的问题。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论 述的更详细描述的前序。
根据本申请的一个方面,提供了一种频谱管理装置,包括:获取单元,被配置为获取预定区域内至少一个无线通信系统在预定频段上的频谱利用信息;确定单元,被配置为根据频谱利用信息确定相应无线通信系统在预定区域内的频谱利用效率;以及调整单元,被配置为根据频谱利用效率来调整在预定频段上相应无线通信系统在预定区域内的频谱感知参数。
根据本申请的另一个方面,提供了一种用于无线通信系统的基站侧的装置,包括:发送单元,被配置为向频谱管理装置发送该基站所服务的小区在预定频段上的频谱利用信息;以及接收单元,被配置为接收来自频谱管理装置的频谱感知参数的改变。
根据本申请的一个方面,提供了一种用于无线通信系统的用户设备侧的装置,包括:接收单元,被配置为从基站接收进行频谱感知的指令以及相应的频谱感知参数;感知单元,被配置为响应于该指令根据频谱感知参数进行频谱感知;以及发送单元,被配置为将频谱感知的结果发送给基站。
根据本申请的另一个方面,提供了一种频谱管理方法,包括:获取预定区域内至少一个无线通信系统在预定频段上的频谱利用信息;根据频谱利用信息确定相应无线通信系统在预定区域内的频谱利用效率;以及根据频谱利用效率来调整在预定频段上相应无线通信系统在预定区域内的频谱感知参数。
根据本申请的另一个方面,提供了一种用于无线通信系统的基站侧的方法,包括:向频谱管理装置发送该基站所服务的小区在预定频段上的频谱利用信息;以及接收来自频谱管理装置的频谱感知参数的改变。
根据本申请的另一个方面,提供了一种用于无线通信系统的用户设备侧的方法,包括:从基站接收进行频谱感知的指令以及相应的频谱感知参数;响应于该指令根据频谱感知参数进行频谱感知;以及将频谱感知的结果发送给基站。
根据本申请的另一个方面,还提供了一种无线通信系统,包括基站和用户设备,其中,基站包括上述无线通信系统中的基站侧的装置,用 户设备包括上述无线通信系统中的用户设备侧的装置。
依据本发明的其它方面,还提供了用于实现上述频谱管理方法和用于无线通信系统的基站侧和用户设备侧的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述频谱管理方法和用于无线通信系统的基站侧和用户设备侧的方法的计算机程序代码的计算机可读存储介质。
在本申请的实施例中,通过根据频谱利用效率来调整无线通信系统的频谱感知参数,可以有效地保证无线通信系统对于预定频段的频谱资源的使用以及/或者使得不同通信系统能够合理有效地利用频谱资源。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的上述以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了根据本申请的一个实施例的频谱管理装置的示意性结构框图;
图2示出了LTE通信系统场景下的系统分布的一个示例;
图3示出了在图2的场景中调整一个通信系统的频谱感知参数的情况下通信系统的激活概率的仿真结果;
图4示出了根据本申请的另一个实施例的频谱管理装置的示意性结构框图;
图5示出了根据本申请的一个实施例的用于无线通信系统的基站侧的装置的示意性结构框图;
图6示出了根据本申请的一个实施例的用于无线通信系统的用户设备侧的装置的示意性结构框图;
图7示出了根据本申请的一个实施例的频谱管理方法的流程图;
图8示出了根据本申请的一个实施例的用于无线通信系统的基站侧的方法的流程图;
图9示出了根据本申请的一个实施例的用于无线通信系统的用户设备侧的方法的流程图;
图10示出了频谱管理装置和无线通信系统之间的信息流程的一个示例;
图11示出了频谱管理装置和无线通信系统之间的信息流程的另一个示例;
图12是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图13是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图14是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图15是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图16是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的频谱管理装置100的示意性结构框图,如图1所示,频谱管理装置100包括:获取单元101,被配置为获取预定区域内至少一个无线通信系统在预定频段上的频谱利用信息;确定单元102,被配置为根据频谱利用信息确定相应无线通信系统在预定区域内的频谱利用效率;以及调整单元103,被配置为根据频谱利用效率来调整在预定频段上相应无线通信系统在预定区域内的频谱感知参数。
其中,预定频段是上述无线通信系统(下文中也简称为通信系统或系统)将要或正在共同动态使用的频段。在一个示例中,预定频段是非授权频段,比如2.4G、5G的工业科研医疗频段、或者根据各国法规确定的可以以未授权的方式来使用的频段例如电视频段、美国的3.5GHz等。应该理解,预定频段可以是能够由多个无线通信系统共同使用的任何频段。每一个无线通信系统或其中的子系统在要使用该预定频段时,应该首先通过频谱感知来判断该频段是否可用,比如是否被其他系统或子系统占用,以保证对该频段使用的有效性和公平性。
预定区域可以为频谱管理装置100所管理的全部或部分区域,针对该预定区域,频谱管理装置100例如进行预定频段的频谱使用效率的优化。换言之,预定区域可以是根据应用或服务的优化而确定的区域。作为非限制性示例,预定区域可以为行政区划、大楼或商场的区域,也可以为因为某种目的而临时选定的地理范围。例如,预定区域可以为矩形区域、圆形区域、椭圆形区域或其他任何形状的区域。该预定区域可以由频谱管理装置100预先确定,也可以由更高层的设备或应用来设置。作为示例,当预定区域为矩形区域时,其可以通过矩形的顶点来确定,当预定区域为一栋大楼的区域时,其可以通过大楼的边界来确定,等等。
此外,在本申请的实施例中,无线通信系统可以理解为具有发送和 接收功能的多个设备的组合。例如,无线通信系统可以为同一移动运营商的所有基站和用户设备的集合,或者同一移动运营商使用相同通信制式的所有基站和用户设备的集合。无线通信系统也可以是上述集合的子集,例如可以限定于频谱管理装置的管理区域中的基站和用户设备。此外,无线通信系统还可以为使用相同通信制式的不同移动运营商的基站和用户设备的集合或者其类似于前文所述的子集。另一方面,无线通信系统还可以为属于同一服务提供商的基站和用户设备的集合或者其类似于前文所述的子集。作为示例,在LTE通信系统的情况下,无线通信系统可以是LTE通信系统的子集,例如小区级别的子系统的集合,其中,小区级别的子系统例如包括一个基站(宏基站或小基站)和一个或多个用户设备。当然,无线通信系统并不限于LTE通信系统或者其子集,还可以是其他类型的通信系统或者其子集,比如WiFi通信系统或者其子集等。此外,在一些示例中,例如在设备到设备通信场景中,无线通信系统可以理解为多个用户设备形成的设备簇。
相应地,预定区域中可以包括多个无线通信系统,这些无线通信系统可以是相同类型的比如均为LTE通信系统,也可以是不同类型的比如包括LTE通信系统和WiFi通信系统,其中LTE通信系统可以由不同的运营商运营,可以采用不同的通信制式,WiFi通信系统可以包括多个接入点(每个接入点所覆盖的区域相当于LTE中的小小区)。作为一个具体示例,预定区域可以为一个或多个LTE通信系统覆盖的一个宏小区的范围,并且在该范围中分布有若干个WiFi接入点。
为了便于描述,下文中的实施例中以LTE通信系统的子集作为应用示例,但是应该理解这并不是限制性的。
如前所述,在预定区域内可以布置有一个或更多个无线通信系统,频谱管理装置100对其使用预定频段的行为进行管理,为了便于理解,图2示出了LTE通信系统场景下的系统分布的一个示例。其中,三角形代表宏基站,左侧椭圆中的五角星代表属于第一运营商的小小区基站,右侧椭圆中的圆形代表属于第二运营商的小小区基站。其中,可以将左侧椭圆中的设备作为一个无线通信系统,将右侧椭圆中的设备作为另一个无线通信系统。注意,图2中虽然将两个运营商的小小区基站分别包括在不同的椭圆中,但是这些小小区基站是分布在相同的地理区域、即 上述预定区域中的。换言之,在该示例中,预定区域为宏小区覆盖范围的一部分,并且同时由两个无线通信系统覆盖。当然,这两个通信系统可以由同一个频谱管理装置管理,也可以分别由不同的频谱管理装置管理,这将在后文中进行详细描述。
如上所述,在频谱管理装置100中,获取单元101获取预定区域内每一个无线通信系统对于预定频段的利用情况,从而确定单元102确定各自的频谱利用效率,随后调整单元103根据该频谱利用效率来调整相应通信系统的频谱感知参数。其中,频谱感知参数是预定区域内的无线通信系统在对预定频段进行频谱感知时所采用的配置的信息。通过改变频谱感知参数,可以使得无线通信系统(或者其中的各个子系统,比如LTE小区)对于当前频谱是否可用作出不同的判断,从而改变无线通信系统获取频谱资源的概率以及对现有通信系统的保护概率,即改变了无线通信系统的频谱利用效率。可以理解,当预定区域不同时,获取单元101获取的频谱利用信息不同,从而确定的频谱利用效率不同。相应地,调整单元103可能不同地调整频谱感知参数。
作为一个示例,频谱感知参数包括以下中的一个或更多个:用于频谱感知的能量检测阈值,频谱感知时间长度,在分布式频谱感知的情况下参与感知的节点的数量以及频谱感知判定标准。
在本申请的实施例中,可以采用任何适当的频谱感知技术来进行频谱感知,相应地,频谱感知参数可以为其中任何影响频谱感知结果的参数。例如,对于通过能量检测进行频谱感知的系统,如果设定的能量检测阈值为-70dBm,那么当该系统进行能量检测发现频谱中的信号能量小于-70dBm时则认为没有正在使用该频段的系统,从而判定频谱资源可用。此时,有可能存在其他通信系统,但是由于传输距离远,信号到达进行频谱感知的系统后能量已经衰减到-70dBm以下、比如-80dBm,因此不会被检测到。而如果将能量检测阈值降低至-85dBm,则进行频谱感知的系统就会检测到该已存在系统,从而判定该频段不可用。同时,也可以理解,设定不同的能量检测阈值对现有系统的保护也是不同的。较高的能量检测阈值增加了频谱使用的机会但是也增加了对现有系统的干扰概率。反之降低能量检测阈值则降低了频谱使用的机会但是却增加了对现有系统的保护。
此外,还可以调整频谱感知时间长度、即进行频谱感知的时间窗口的大小。可以理解,该时间长度越长,则检测到现有通信系统的概率越大,从而降低了频谱使用的机会,增强了对现有系统的保护,反之则会提高频谱使用的机会,降低对现有系统的保护。
作为另一种方式,还可以采用分布式频谱感知(即协作感知)。在这种情况下,通过多个独立的通信设备比如多个基站在不同位置对频谱进行感知比如上述能量检测,然后将结果汇聚到一个中央判断装置来进行频谱是否可用的判断。该中央判断装置例如可以位于某一个基站上或位于频谱管理装置上。在另一个示例中,进行频谱感知的通信设备还可以包括用户设备。用户设备和基站可以被统称为节点。
由于在中央判断装置中根据多个节点的频谱感知结果进行最终判断,因此参与感知的节点的数量和频谱感知判定标准等因素将会影响频谱获取成功概率。频谱感知判定标准例如可以包括AND原则、OR原则、比例原则等。其中,AND原则为所有的节点都确认预定频段可用才最终确定该频段可用,OR原则为如果有一个节点确定预定频段可用则最终确定该频段可用,比例原则为如果进行频谱感知的节点中达到预定比例的节点确定预定频段可用则最终确定该频段可用。可以理解,节点数目相同的情况下,在OR原则下通信系统获得频谱资源的机会较大,而AND原则将使得通信系统非常保守地获取频谱资源,从而实现对现有系统的较好的保护。
调整单元103可以调整上述几个频谱感知参数之一,也可以同时调整其中的两个或更多个。并且,频谱感知参数并不限于上述示例,根据频谱感知技术的不同还可以包括其他参数。
例如,调整单元103可以在频谱利用效率偏离期望值的情况下调整相应无线通信系统的频谱感知参数,以使其频谱利用效率达到该期望值。其中,期望值是相应通信系统的频谱利用效率的目标值,可以由频谱管理装置100预先设定,也可以在工作工程中进行自动或手动调整。
而通信系统的实际的频谱利用效率由确定单元102根据获取单元101获取的频谱利用信息来确定。作为示例,频谱利用信息包括以下中的至少一个:预定区域内无线通信系统内各个小区的进行频谱感知之后的实际激活状态信息,预定区域内无线通信系统的吞吐量,预定区域内无 线通信系统的信噪比。例如,在频谱利用信息为各个小区的实际激活状态信息时,频谱利用效率可以表示为激活的小区的数量或比例。
例如,在频谱感知参数为能量检测阈值的情况下,调整单元103被配置为在频谱利用效率高于期望值的情况下降低相应无线通信系统的能量检测阈值,并且/或者在频谱利用效率低于期望值的情况下提高相应无线通信系统的能量检测阈值。这是因为当能量检测阈值降低时,无线通信系统获取频谱资源的概率降低,相应地频谱资源利用率会降低。
应该注意,以上虽然描述了针对无线通信系统来调整频谱感知参数,即对无线通信系统整体进行调整,但是也可以仅针对其子系统进行调整或者针对不同的子系统进行不同的调整。例如,可以为不同的LTE小区设置不同的频谱感知参数或者进行不同的参数调整。
调整单元103可以基于预设的系统模型来进行上述调整。在该预设的系统模型中,反映了频谱感知参数与频谱利用效率的关系。例如,预设的系统模型可以包括以下中的至少一个:信道模型,业务模型,预定区域内的系统频谱激活概率模型,地理位置模型。
以系统频谱激活概率模型为例,根据实际业务模型可以计算出激活小区的个数服从泊松分布,或者假定每一个小区根据其业务需求设定一个激活概率,由激活的小区进行频谱感知,并且判断预定频段是否可用,最终可以统计出系统的频谱利用效率,通过改变频谱感知参数比如能量检测阈值,可以获得期望的频谱利用效率。
在一个示例中,还可以为具有不同的频谱使用优先级的无线通信系统设定不同的频谱利用效率的期望值。例如,为优先级高的系统设置较高的期望值。当然,还可以根据业务类型、付费情况等设置相应通信系统的频谱利用效率的期望值。
此外,获取单元101还可以被配置为获取指示预定区域内无线通信系统的各个小区的标识的信息,并且确定单元102被配置为根据指示无线通信系统的各个小区的标识的信息来确定处于激活状态的小区与激活失败的小区是否属于同类系统,其中,调整单元103可以被配置为在确定单元102确定处于激活状态的小区与激活失败的小区属于同类系统的情况下进行调整。
这里,同类系统指的是如下中的一种情形:使用相同的频谱接入策略的系统,比如同为LTE小区或者同为WiFi小区;或者属于同一移动运营商或服务提供商。并且,小区的标识的信息可以指小区的ID或者小区的参考信号。频谱管理装置100预先知道不同无线通信系统的小区的ID分配以及参考信号分配的信息,因此确定单元102可以根据所获取的标识的信息来确定两个小区是否是同类系统。调整单元103可以仅在同类系统的情况下进行调整。
对于LTE通信系统,频谱管理装置100可以位于基站侧,例如由宏基站或小基站实现,也可以位于核心网中,例如由LTE协议下的演进的数据包核心(Evolved Packet Core,EPC)实现。此外,在现有的遵循IEEE802.19.1标准的系统中,频谱管理装置100可以在共存管理器(CM)中实现。
在一个示例中,获取单元101可以通过有线方式获取上述频谱利用信息(以及小区的标识的信息等),例如,可以通过基站到位于核心网中的频谱管理装置100的回程连接来进行信息的传输。
在另一个示例中,预定频段为非授权频段,获取单元101通过授权频段的无线通信获取频谱利用信息。例如,在频谱管理装置100位于基站中时,可以通过该方式来进行信息的传输。
在该实施例中,频谱管理装置100管理的无线通信系统的个数可以为两个或更多个,在这种情况下,作为示例,调整单元103可以被配置为针对频谱利用效率没有达到期望值的无线通信系统,在不影响其他无线通信系统的频谱利用效率的情况下,调整该无线通信系统的频谱感知参数。例如,可以由确定单元102根据系统仿真模型来确定其他通信系统的频谱利用效率。这里所述的系统仿真模型例如前述的信道模型、业务模型、系统频谱概率激活模型、地理位置模型等。例如,如果确定单元102确定其他通信系统的频谱利用效率受到影响,则不进行上述调整。
在该示例中,不同的无线通信系统可以属于不同的移动运营商或服务提供商。
以图2所示的场景为例,图3示出了调整单元103对左侧的通信系统(称为第一通信系统,属于第一运营商)的频谱感知参数进行调整的 情况下,右侧的通信系统(第二通信系统,属于第二运营商)和第一通信系统的激活概率的仿真结果。在仿真中,采用前述的系统频谱激活概率模型,每一个通信系统中分别共包括10个小区,假定每一个小区的激活概率均为50%,图3中的直方图示出了在改变第一通信系统的能量检测阈值的情况下进行10000次仿真后,激活小区数量的统计分布图,横轴代表激活小区个数,纵轴代表激活相应个数的小区事件在10000次试验中所占的次数。其中,图3的左侧的(a)、(c)和(e)代表第一通信系统的仿真结果,右侧的(b)、(d)和(f)代表第二通信系统的仿真结果。相对于(a)而言,图3的(c)是在能量检测阈值降低的情况下获得的,可以看出多数小区被激活的概率降低,即小区获得频谱资源的概率降低,系统的频谱利用效率较低;图3的(e)是在能量检测阈值进一步降低的情况下获得的,而此时系统的频谱利用效率进一步降低。在改变第一通信系统的能量检测阈值的情况下,第二通信系统的能量检测阈值保持不变,并且从图3的(b)、(d)和(f)可以看出,第二通信系统的小区获得频谱资源的概率基本保持不变,这是因为主要干扰来自于其自身的小区间的共存干扰,所以第一通信系统的能量检测阈值调整对其影响不大。
可以看出,在该示例中,频谱管理装置100工作为集中式的管理装置,对多个无线通信系统进行管理,从而能够使多个系统合理地利用频谱资源。例如,频谱管理装置可以为地理位置数据库。
在本实施例中,通过根据频谱利用效率来调整所管理的无线通信系统的频谱感知参数,可以有效地保证无线通信系统对于预定频段的频谱资源的使用以及/或者使得不同通信系统能够合理有效地利用频谱资源。
<第二实施例>
图4示出了根据本申请的另一个实施例的频谱管理装置200的结构框图,除了包括图1中所示的各个单元之外,频谱管理装置200还包括:交互单元201,被配置为与其他频谱管理装置进行交互以使得调整单元103在考虑对其他无线通信系统的影响的情况下进行调整。在该实施例中,频谱管理装置所管理的无线通信系统的个数为一个。
仍然以图2作为示例,此时将分别为第一通信系统和第二通信系统设置各自的频谱管理装置。因此,该实施例实现了一种分布式的管理。
在一个示例中,交互单元201被配置为在调整单元103进行了调整的情况下向其他频谱管理装置发送参数改变请求,并接收来自其他频谱管理装置的反馈,调整单元103根据该反馈进一步调整频谱感知参数。交互单元201的该操作可以避免对其他无线通信系统的影响。
其中,反馈可以指示其他频谱管理装置管理的无线通信系统的频谱利用效率是否受到影响,并且调整单元103被配置为在该反馈指示其他频谱管理装置管理的无线通信系统的频谱利用效率受到影响的情况下重新调整频谱感知参数,例如,调整为在原来的值与调整后的值之间的值,或者调整回原来的值,等等。换言之,如果该反馈指示其他频谱管理装置管理的无线通信系统的频谱利用效率没有受到影响,则保持调整后的频谱感知参数。反馈是其他频谱管理装置例如根据其管理的无线通信系统的频谱利用效率作出的。
另外,在交互单元201接收到其他频谱管理装置的参数改变请求时,获取单元101获取无线通信系统的频谱利用信息,确定单元102确定无线通信系统的频谱利用效率并且确定频谱利用效率是否受到影响,并且交互单元201将指示频谱利用效率是否受到影响的反馈提供给其他频谱管理装置。因此,频谱管理装置200在接收到参数改变请求时,对自己管理的无线通信系统的频谱利用效率进行测量并作出反馈。
可以看出,本实施例的频谱管理装置之间仅需要交互简单的命令,即可实现不同通信系统之间的协作,以合理地共同利用预定频段的频谱资源。
<第三实施例>
图5示出了根据本申请的一个实施例的用于无线通信系统的装置300的结构框图,装置300例如可以位于基站侧,该装置300包括:发送单元301,被配置为向频谱管理装置发送该基站所服务的小区在预定频段上的频谱利用信息;以及接收单元302,被配置为接收来自频谱管理装置的频谱感知参数的改变。
如前所述,频谱管理装置可以位于基站侧,例如由宏基站或小基站实现,也可以位于核心网中,例如由LTE协议下的EPC实现。此外,在现有的遵循IEEE 802.19.1标准的系统中,频谱管理装置可以在共存管理器(CM)中实现。作为示例,频谱管理装置可以为前述频谱管理装置100或200,但是并不限于此。此外,关于预定频段和无线通信系统的说明与第一实施例中类似,在此不再重复。
其中,基站所服务的小区要利用预定频段时,首先进行频谱感知,其中,频谱感知可以由基站单独执行,也可以由其用户设备辅助执行,还可以由其他基站和/或其他基站的用户设备协作完成,当频谱感知的结果表明预定频段可用时,该小区对预定频段进行使用。基站向频谱管理装置报告其服务的小区对预定频段的利用信息,以供频谱管理装置获得相应无线通信系统的频谱利用效率。
在一个示例中,频谱利用信息包括以下中的至少一个:小区的进行频谱感知之后的实际激活状态信息,基站的吞吐量,基站的信噪比。在每一个基站上报这些频谱利用信息之后,频谱管理装置可以获取整个通信系统的频谱利用效率,从而决定是否调整频谱感知参数。
当频谱管理装置判断需要改变频谱感知参数时,将需要作出的改变通知给基站,以使得基站使用改变的频谱感知参数进行频谱感知。
例如,频谱感知参数包括以下中的至少一个:用于频谱感知的能量检测阈值,频谱感知时间长度,在分布式频谱感知的情况下参与感知的节点的数量以及频谱感知判定标准。当接收单元302接收到频谱感知参数的改变之后,基站在进行频谱感知时使用改变了的频谱感知参数。在用户设备辅助基站进行频谱感知的情况下,基站还将该频谱感知参数的改变通知给用户设备。关于频谱感知参数的具体描述在第一实施例中给出,在此不再重复。如前所述,由于频谱感知参数的改变会影响获取频谱资源的概率,从而改变系统的频谱利用效率。
如图5中的虚线框所示,装置300还可以包括:判断单元303,被配置为基于基站的频谱感知结果来判断预定频段是否可用。
在一个示例中,接收单元302还被配置为接收其他节点的频谱感知结果,判断单元303还被配置为基于其他节点的频谱感知结果来进行判 断。这里所述的其他节点包括用户设备和/或其他基站。判断单元303基于来自多个节点(包括本基站)的频谱感知结果来判断预定频段是否可用。可以理解,在该示例中,装置300工作为分布式频谱感知的中央判断装置。
判断单元303将使用来自频谱感知参数中所设定的数量的节点的频谱感知结果,根据频谱感知参数中所设定的频谱感知判定标准来进行最终的判断。具体的判定标准的描述在第一实施例中给出,在此不再重复。其中,这些节点在进行频谱感知时,采用了频谱感知参数中所设定的能量检测阈值和频谱感知时间长度。
此外,当判断单元303判断预定频段不可用时,判断单元303还可以判断本小区与已占用预定频段的小区是否属于同类系统,并且发送单元301将判断的结果提供给频谱管理装置。其中,如前所述,同类系统指的是如下中的一种情形:使用相同的频谱接入策略的系统,比如同为LTE小区或者同为WiFi小区;或者属于同一移动运营商或服务提供商,比如在图2的示例中位于同一侧的椭圆中的小区为同类系统。
在这种情况下,频谱管理装置例如可以在接收到判断为同类系统时进行频谱感知参数的调整,否则不进行调整。
其中,判断单元303可以根据如下中的至少一个来进行是否属于同类系统的判断:小区的标识信息,参考信号检测。参考信号检测比如WiFi的前导检测、或者LTE的同步信号检测等。这些信息可以从对频谱感知过程中获得的信号提取获得。由于不同的无线通信系统的小区具有不同的标识信息和参考信号的格式和/或内容,因此,可以通过这些信息来判断是否是同类系统。
在该实施例中,装置300可以向频谱管理装置上报频谱利用状况,并且根据频谱管理装置的指令来改变频谱感知参数,从而可以实现频谱资源的合理利用。
此外,应该理解,装置300例如还可以位于WiFi的接入点上,其中,发送单元301向频谱管理装置发送该接入点在预定频段上的频谱利用信息,接收单元302接收来自频谱管理装置的频谱感知参数的改变。
<第四实施例>
图6示出了根据本申请的一个实施例的用于无线通信系统的用户设备侧的装置400的结构框图,该装置400包括:一种用于无线通信系统的用户设备侧的装置,包括:接收单元401,被配置为从基站接收进行频谱感知的指令以及相应的频谱感知参数;感知单元402,被配置为响应于该指令根据频谱感知参数进行频谱感知;以及发送单元403,被配置为将频谱感知的结果发送给基站。
如前所述,频谱感知参数包括以下中的至少一个:用于频谱感知的能量检测阈值,频谱感知时间长度,在分布式频谱感知的情况下参与感知的节点的数量以及频谱感知判定标准。
在该实施例中,用户设备辅助基站进行频谱感知。具体地,当基站需要进行频谱感知时,通知用户设备,而用户设备在完成感知后将结果通知基站,以使得基站进行预定频段是否可用的判断。而当基站接收到频谱管理装置通知的频谱感知参数的改变时,也会相应地通知用户设备,以使其按照改变的频谱感知参数进行频谱感知。如前所述,由于频谱感知参数的改变会影响获取频谱资源的概率,从而改变系统的频谱利用效率。
在该实施例中,用户设备可以接收频谱感知参数的设置,并根据该设置来进行频谱感知,以合理地利用频谱资源。类似地,应该理解,用户设备还可以为WiFi用户设备。
<第五实施例>
在上文的实施方式中描述频谱管理装置以及无线通信系统中的基站侧和用户设备侧的装置的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述频谱管理装置以及无线通信系统中的基站侧和用户设备侧的装置的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,频谱管理装置以及无线通信系统中的基站侧和用户设备侧的装置的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的方法可以完全由计算机 可执行的程序来实现,尽管这些方法也可以采用频谱管理装置以及无线通信系统中的基站侧和用户设备侧的装置的硬件和/或固件。
图7示出了根据本申请的一个实施例的频谱管理方法的流程图,该方法包括:获取预定区域内至少一个无线通信系统在预定频段上的频谱利用信息(S11);根据频谱利用信息确定相应无线通信系统在预定区域内的频谱利用效率(S12);以及根据频谱利用效率来调整在预定频段上相应无线通信系统在预定区域内的频谱感知参数(S14)。
其中,频谱利用信息可以包括以下中的至少一个:预定区域内无线通信系统内各个小区的进行频谱感知之后的实际激活状态信息,预定区域内无线通信系统的吞吐量,预定区域内无线通信系统的信噪比。
频谱感知参数可以包括以下中的至少一个:用于频谱感知的能量检测阈值,频谱感知时间长度,在分布式频谱感知的情况下参与感知的节点的数量以及频谱感知判定标准。
在一个示例中,在步骤S14中在频谱利用效率偏离期望值的情况下调整相应无线通信系统的频谱感知参数,以使其频谱利用效率达到所述期望值。例如,在步骤S14中可以基于预设的系统模型来进行所述调整。预设的系统模型例如包括以下中的至少一个:信道模型,业务模型,预定区域内系统频谱激活概率模型,地理位置模型。此外,还可以为具有不同的频谱使用优先级的无线通信系统设定不同的频谱利用效率的期望值。
例如,在频谱感知参数为能量检测阈值的情况下,在步骤S14中在频谱利用效率高于期望值的情况下降低相应无线通信系统的能量检测阈值,并且/或者在频谱利用效率低于所述期望值的情况下提高相应无线通信系统的能量检测阈值。
在步骤S11中可以通过有线方式获取频谱利用信息。在一个示例中,预定频段为非授权频段,在步骤S11中通过授权频段的无线通信获取频谱利用信息。
在步骤S11中还可以获取指示所述预定区域内无线通信系统的各个小区的标识的信息,如图7中的虚线框所示,上述方法还可以包括在步骤S14之前的步骤S13,其中,根据指示所述无线通信系统的各个小区 的标识的信息来确定处于激活状态的小区与激活失败的小区是否属于同类系统,例如通过检测频谱感知过程中的信号从中提取小区ID信息并进行判定,如果是WiFi信号还可以通过检测其前置信息preamble来判定,并且在确定处于激活状态的小区与激活失败的小区属于同类系统的情况下执行步骤S14的调整。
在一个示例中,所管理的无线通信系统的个数为两个或更多个,在步骤S14中,针对频谱利用效率没有达到期望值的无线通信系统,在不影响其他无线通信系统的频谱利用效率的情况下,调整该无线通信系统的频谱感知参数。其中,可以在步骤S12中根据系统仿真模型来确定其他无线通信系统的频谱利用效率。系统仿真模型的示例如前所述,在此不再重复。
在该示例中,不同的无线通信系统属于不同的移动运营商或者服务提供商。上述方法例如可以在地理位置数据库中实现。
此外,在另一个示例中,所管理的无线通信系统的个数为一个,在步骤S14中,与其他无线通信系统的频谱管理装置进行交互以使得在考虑对其他无线通信系统的影响的情况下进行调整。
例如,上述方法还包括如下步骤:在步骤S14中进行了调整的情况下向其他无线通信系统的频谱管理装置发送参数改变请求(S15),接收来自所述频谱管理装置的反馈(S16),以及根据该反馈进一步调整频谱感知参数(S17)。
其中,反馈指示其他无线通信系统的频谱利用效率是否受到影响,并且在步骤S17中可以在反馈指示其他无线通信系统的频谱利用效率受到影响的情况下重新调整频谱感知参数,例如调整回原来的值或者在原来的值与调整后的值之间的值,等等。
此外,虽然图中未示出,但是上述方法还可以包括如下步骤:接收来自其他无线通信系统的频谱管理装置的参数改变请求;获取无线通信系统的频谱利用信息;确定无线通信系统的频谱利用效率并且确定频谱利用效率是否受到影响;将指示频谱利用效率是否受到影响的反馈提供给上述频谱管理装置。
图8示出了根据本申请的另一个实施例的用于无线通信系统的基站 侧的方法的流程图,该方法包括:向频谱管理装置发送该基站所服务的小区在预定频段上的频谱利用信息(S22);以及接收来自频谱管理装置的频谱感知参数的改变(S23)。
其中,频谱利用信息可以包括以下中的至少一个:该小区的进行频谱感知之后的实际激活状态信息,基站的吞吐量,基站的信噪比。
频谱感知参数可以包括以下中的至少一个:用于频谱感知的能量检测阈值,频谱感知时间长度,在分布式频谱感知的情况下参与感知的节点的数量以及频谱感知判定标准。
此外,如图8中的虚线框所示,上述方法还可以包括步骤S21:基于频谱感知结果来判断预定频段是否可用。这里所述的频谱感知结果可以指基站本身的频谱感知结果,还可以包括从其他节点(包括基站和用户设备)接收的频谱感知结果,即采用分布式感知方式。
此外,在步骤S21中判断预定频段不可用时,还判断本小区与已占用预定频段的小区是否属于同类系统,并且在步骤S22中将判断的结果提供给频谱管理装置。例如可以根据如下中的至少一个来进行是否属于同类系统的判断:小区的标识信息,参考信号检测。
图9示出了根据本申请的另一个实施例的用于无线通信系统的用户设备侧的方法,包括:从基站接收进行频谱感知的指令以及相应的频谱感知参数;响应于该指令根据频谱感知参数进行频谱感知;以及将频谱感知的结果发送给基站。
其中,频谱感知参数可以包括以下中的至少一个:用于频谱感知的能量检测阈值,频谱感知时间长度,在分布式频谱感知的情况下参与感知的节点的数量以及频谱感知判定标准。
注意,上述各个方法可以结合或单独使用,其细节在第一至第四实施例中已经进行了详细描述,在此不再重复。
此外,在以上的描述中,还公开了一种通信系统,包括基站和用户设备,其中基站包括装置300,用户设备包括装置400。
为了便于理解,图10和图11示出了频谱管理装置和无线通信系统之间的信息流程的示例,应该理解,这并不是限制性的。在图10中,第 一无线通信系统和第二无线通信系统位于频谱管理装置管理的预定区域内,这两个无线通信系统向频谱管理装置报告其频谱利用信息比如各个小区的激活状态信息,频谱管理装置基于该信息确定两个无线通信系统的频谱利用效率,例如假定第一无线通信系统的频谱利用高效率低于期望值,而第二无线通信系统的频谱利用效率基本等于期望值,则根据系统仿真模型的计算,在不影响第二通信系统的频谱利用效率的情况下计算第一通信系统的更新的频谱感知参数并向第一通信系统发送频谱感知参数更新命令。
在图11中,示出了一个频谱管理装置管理一个无线通信系统并且频谱管理装置之间进行交互的示例。第一频谱管理装置基于获取的频谱利用信息确定频谱利用效率,在发现频谱利用效率偏离期望值的情况下,对频谱感知参数进行调整,即向第一通信系统发送频谱感知参数变化指令,并且向第二频谱管理装置发出参数改变请求。第二频谱管理装置在接收到该请求之后,从所管理的第二通信系统获取频谱利用信息,并且判断频谱利用效率是否受到了第一通信系统的频谱感知参数的变化的影响,基于该判断向第一频谱管理装置给出反馈。当该反馈指示第二通信系统没有受到影响时,第一频谱管理装置指示第一通信系统使用调整过的频谱感知参数工作或者不再对第一通信系统给出额外的指示。否则,第一频谱管理装置指示第一通信系统使用原来的频谱感知参数工作。
示例性地,上述频谱管理装置可以用于一栋大楼内的无线通信系统的共存管理,该大楼由多个LTE通信系统以及WiFi系统的服务覆盖。
<应用示例>
本公开内容的技术能够应用于各种产品。例如,频谱管理装置100和200可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。频谱管理装置100和200可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
此外,以上提到的基站300可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。 基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,用户设备400可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备400还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备400可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图12是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图12所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图12示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控 制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图12所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图12所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图12示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图12所示的eNB 800中,图5所描述的发送单元301和接收单元302可以由无线通信接口825实现。功能的至少一部分也可以由控制器 821实现。例如,控制器821可以通过执行判断单元303的功能来执行预定频段是否可用的判断。
(第二应用示例)
图13是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图13所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图13示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图12描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图12描述的BB处理器826相同。如图13所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图13示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的 通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图13所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图13示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图13所示的eNB 830中,图5所描述的发送单元301和接收单元302可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以控制器851实现。例如,控制器851可以通过执行判断单元303的功能来执行预定频段是否可用的判断。
[关于用户设备的应用示例]
(第一应用示例)
图14是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸 传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图14所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图14示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图14所示,智能电话900可以包括多个天线916。虽然图14示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口 904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图14所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图14所示的智能电话900中,通过使用图6所描述的接收单元401和发送单元403可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行感知单元402的功能来执行频谱感知。
(第二应用示例)
图15是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图15所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图15示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图15所示,汽车导航设备920可以包括多个天线937。虽然图15示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图15所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图15示出的汽车导航设备920中,通过使用图6所描述的接收单元401和发送单元403可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行感知单元 402的功能来执行频谱感知。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
本领域的技术人员可以理解,上文所述的装置中的例如确定单元、调整单元、划分单元、感知单元、判断单元等,可以由一个或更多个处理器来实现,而例如获取单元、交互单元、发送单元、接收单元等,可以由天线、滤波器、调制解调器及编解码器等电路元器件实现。
因此,本发明还提出了一种电子设备(1),包括:一种电路,被配置为:获取至少一个无线通信系统在预定频段上的频谱利用信息;根据频谱利用信息确定相应无线通信系统的频谱利用效率;以及根据频谱利用效率来调整在预定频段上相应无线通信系统的频谱感知参数。
本发明还提出了一种电子设备(2),包括:一种电路,被配置为:向频谱管理装置发送基站所服务的小区在预定频段上的频谱利用信息;以及接收来自频谱管理装置的频谱感知参数的改变。
本发明还提出了一种电子设备(3),包括:一种电路,被配置为:从基站接收进行频谱感知的指令以及相应的频谱感知参数;响应于该指令根据频谱感知参数进行频谱感知;以及将频谱感知的结果发送给基站。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图16所示的通用计算机1600)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图16中,中央处理单元(CPU)1601根据只读存储器(ROM)1602中存储的程序或从存储部分1608加载到随机存取存储器(RAM)1603的程序执行各种处理。在RAM 1603中,也根据需要存储当CPU1601执行各种处理等等时所需的数据。CPU 1601、ROM 1602和RAM1603经由总线1604彼此连接。输入/输出接口1605也连接到总线1604。
下述部件连接到输入/输出接口1605:输入部分1606(包括键盘、鼠标等等)、输出部分1607(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1608(包括硬盘等)、通信部分1609(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1609经由网络比如因特网执行通信处理。根据需要,驱动器1610也可连接到输入/输出接口1605。可移除介质1611比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1610上,使得从中读出的计算机程序根据需要被安装到存储部分1608中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1611安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图16所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1611。可移除介质1611的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1602、存储部分1608中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明 的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (31)

  1. 一种频谱管理装置,包括:
    获取单元,被配置为获取预定区域内至少一个无线通信系统在预定频段上的频谱利用信息;
    确定单元,被配置为根据所述频谱利用信息确定相应无线通信系统在所述预定区域内的频谱利用效率;以及
    调整单元,被配置为根据所述频谱利用效率来调整在所述预定频段上所述相应无线通信系统在所述预定区域内的频谱感知参数。
  2. 根据权利要求1所述的频谱管理装置,其中,所述频谱利用信息包括以下中的至少一个:所述预定区域内所述无线通信系统的各个小区的进行频谱感知之后的实际激活状态信息,所述预定区域内所述无线通信系统的吞吐量,所述预定区域内所述无线通信系统的信噪比。
  3. 根据权利要求1所述的频谱管理装置,其中,所述频谱感知参数包括以下中的至少一个:用于频谱感知的能量检测阈值,频谱感知时间长度,在分布式频谱感知的情况下参与感知的节点的数量以及频谱感知判定标准。
  4. 根据权利要求1所述的频谱管理装置,其中,所述获取单元还被配置为获取指示所述预定区域内所述无线通信系统的各个小区的标识的信息,并且所述确定单元还被配置为根据指示所述无线通信系统的各个小区的标识的信息来确定处于激活状态的小区与激活失败的小区是否属于同类系统,
    其中,所述调整单元还被配置为在所述确定单元确定处于激活状态的小区与激活失败的小区属于同类系统的情况下进行调整。
  5. 根据权利要求1所述的频谱管理装置,其中,所述调整单元被配置为在所述频谱利用效率偏离期望值的情况下调整相应无线通信系统在所述预定区域内的频谱感知参数,以使其在所述预定区域内的频谱利用效率达到所述期望值。
  6. 根据权利要求5所述的频谱管理装置,其中,所述调整单元被配 置为基于预设的系统模型来进行所述调整。
  7. 根据权利要求6所述的频谱管理装置,其中,所述预设的系统模型包括以下中的至少一个:信道模型,业务模型,在所述预定区域内的系统频谱激活概率模型,地理位置模型。
  8. 根据权利要求5所述的频谱管理装置,其中,为具有不同的频谱使用优先级的无线通信系统设定不同的频谱利用效率的期望值。
  9. 根据权利要求5所述的频谱管理装置,其中,所述频谱感知参数为能量检测阈值,所述调整单元被配置为在所述频谱利用效率高于所述期望值的情况下降低相应无线通信系统的能量检测阈值,并且/或者在所述频谱利用效率低于所述期望值的情况下提高相应无线通信系统的能量检测阈值。
  10. 根据权利要求1所述的频谱管理装置,其中,所述频谱管理装置所管理的无线通信系统的个数为两个或更多个,所述调整单元被配置为针对频谱利用效率没有达到期望值的无线通信系统,在不影响其他无线通信系统的频谱利用效率的情况下,调整该无线通信系统的频谱感知参数。
  11. 根据权利要求10所述的频谱管理装置,所述确定单元被配置为根据系统仿真模型来确定所述其他无线通信系统的频谱利用效率。
  12. 根据权利要求10所述的频谱管理装置,其中,不同的无线通信系统属于不同的移动运营商或者服务提供商。
  13. 根据权利要求1所述的频谱管理装置,其中,所述频谱管理装置所管理的无线通信系统的个数为一个,所述频谱管理装置还包括:
    交互单元,被配置为与其他频谱管理装置进行交互以使得所述调整单元在考虑对其他无线通信系统的影响的情况下进行所述调整。
  14. 根据权利要求13所述的频谱管理装置,其中,所述交互单元被配置为在所述调整单元进行了调整的情况下向其他频谱管理装置发送参数改变请求,并接收来自所述其他频谱管理装置的反馈,所述调整单元根据该反馈进一步调整所述频谱感知参数。
  15. 根据权利要求14所述的频谱管理装置,其中,所述反馈指示所 述其他频谱管理装置管理的无线通信系统的频谱利用效率是否受到影响,并且所述调整单元被配置为在所述反馈指示所述其他频谱管理装置管理的无线通信系统的频谱利用效率受到影响的情况下重新调整所述频谱感知参数。
  16. 根据权利要求14所述的频谱管理装置,在所述交互单元接收到其他频谱管理装置的参数改变请求时,所述获取单元获取所述无线通信系统的频谱利用信息,所述确定单元确定所述无线通信系统的频谱利用效率并且确定频谱利用效率是否受到影响,并且所述交互单元将指示频谱利用效率是否受到影响的反馈提供给所述其他频谱管理装置。
  17. 根据权利要求1所述的频谱管理装置,其中,所述获取单元被配置为通过有线方式获取所述频谱利用信息。
  18. 根据权利要求1所述的频谱管理装置,其中,所述预定频段为非授权频段,所述获取单元被配置为通过授权频段的无线通信获取所述频谱利用信息。
  19. 根据权利要求10所述的频谱管理装置为地理位置数据库。
  20. 一种用于无线通信系统的基站侧的装置,包括:
    发送单元,被配置为向频谱管理装置发送该基站所服务的小区在预定频段上的频谱利用信息;以及
    接收单元,被配置为接收来自频谱管理装置的频谱感知参数的改变。
  21. 根据权利要求20所述的装置,其中,所述频谱利用信息包括以下中的至少一个:所述小区的进行频谱感知之后的实际激活状态信息,所述基站的吞吐量,所述基站的信噪比。
  22. 根据权利要求20所述的装置,其中,所述频谱感知参数包括以下中的至少一个:用于频谱感知的能量检测阈值,频谱感知时间长度,在分布式频谱感知的情况下参与感知的节点的数量以及频谱感知判定标准。
  23. 根据权利要求20所述的装置,还包括:
    判断单元,被配置为基于所述基站的频谱感知结果来判断所述预定频段是否可用。
  24. 根据权利要求23所述的装置,其中,所述接收单元还被配置为接收其他节点的频谱感知结果,所述判断单元还被配置为基于所述其他节点的频谱感知结果来进行所述判断。
  25. 根据权利要求23所述的装置,其中,所述判断单元还被配置为在所述预定频段不可用的情况下判断本小区与已占用所述预定频段的小区是否属于同类系统,并且所述发送单元将判断的结果提供给所述频谱管理装置。
  26. 根据权利要求25所述的装置,其中,所述判断单元被配置为根据如下中的至少一个来进行是否属于同类系统的判断:小区的标识信息,参考信号检测。
  27. 一种用于无线通信系统的用户设备侧的装置,包括:
    接收单元,被配置为从基站接收进行频谱感知的指令以及相应的频谱感知参数;
    感知单元,被配置为响应于所述指令根据所述频谱感知参数进行频谱感知;以及
    发送单元,被配置为将频谱感知的结果发送给所述基站。
  28. 根据权利要求27所述的装置,其中,所述频谱感知参数包括以下中的至少一个:用于频谱感知的能量检测阈值,频谱感知时间长度,在分布式频谱感知的情况下参与感知的节点的数量以及频谱感知判定标准。
  29. 一种频谱管理方法,包括:
    获取预定区域内至少一个无线通信系统在预定频段上的频谱利用信息;
    根据所述频谱利用信息确定相应无线通信系统在所述预定区域内的的频谱利用效率;以及
    根据所述频谱利用效率来调整在所述预定频段上所述相应无线通信系统在所述预定区域内的的频谱感知参数。
  30. 一种用于无线通信系统的基站侧的方法,包括:
    向频谱管理装置发送该基站所服务的小区在预定频段上的频谱利用信息;以及
    接收来自频谱管理装置的频谱感知参数的改变。
  31. 一种用于无线通信系统的用户设备侧的方法,包括:
    从基站接收进行频谱感知的指令以及相应的频谱感知参数;
    响应于所述指令根据所述频谱感知参数进行频谱感知;以及
    将频谱感知的结果发送给所述基站。
PCT/CN2017/071358 2015-09-15 2017-01-17 频谱管理装置及方法、基站侧和用户设备侧的装置及方法 WO2017124997A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780006578.XA CN109076349A (zh) 2015-09-15 2017-01-17 频谱管理装置及方法、基站侧和用户设备侧的装置及方法
US16/070,749 US11166165B2 (en) 2016-01-18 2017-01-17 Apparatus and method for spectrum management, apparatus and method for base station side and user equipment side
EP17741028.9A EP3407636A4 (en) 2016-01-18 2017-01-17 APPARATUS AND METHOD FOR SPECTRUM MANAGEMENT, APPARATUS AND METHOD FOR BASE STATION SIDE AND USER EQUIPMENT SIDE
US17/492,698 US20220038913A1 (en) 2016-01-18 2021-10-04 Apparatus and method for spectrum management, apparatus and method for base station side and user equipment side
US18/219,093 US20230354044A1 (en) 2016-01-18 2023-07-07 Apparatus and method for spectrum management, apparatus and method for base station side and user equipment side

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610031275.0 2016-01-18
CN201610031275.0A CN106535198B (zh) 2015-09-15 2016-01-18 频谱管理装置及方法、基站侧和用户设备侧的装置及方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/070,749 A-371-Of-International US11166165B2 (en) 2016-01-18 2017-01-17 Apparatus and method for spectrum management, apparatus and method for base station side and user equipment side
US17/492,698 Continuation US20220038913A1 (en) 2016-01-18 2021-10-04 Apparatus and method for spectrum management, apparatus and method for base station side and user equipment side

Publications (1)

Publication Number Publication Date
WO2017124997A1 true WO2017124997A1 (zh) 2017-07-27

Family

ID=60190511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071358 WO2017124997A1 (zh) 2015-09-15 2017-01-17 频谱管理装置及方法、基站侧和用户设备侧的装置及方法

Country Status (4)

Country Link
US (3) US11166165B2 (zh)
EP (1) EP3407636A4 (zh)
TW (1) TW201728200A (zh)
WO (1) WO2017124997A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527717A (zh) * 2018-03-09 2020-08-11 索尼公司 用于无线通信的电子设备、方法和计算机可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385802A (zh) * 2018-12-29 2020-07-07 索尼公司 频谱装置、无线通信系统、无线通信方法和存储介质
WO2023219238A1 (en) * 2022-05-09 2023-11-16 Samsung Electronics Co., Ltd. Network node and method performed by network node

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330461A (zh) * 2008-06-18 2008-12-24 中国科学技术大学 基于已有蜂窝通信信令传输实现频谱空洞有效利用的方法
CN103458423A (zh) * 2013-09-17 2013-12-18 北京邮电大学 异构认知无线网络间传输认知流的方法、装置和系统
CN103517277A (zh) * 2012-06-29 2014-01-15 电信科学技术研究院 认知无线电系统中的频点选择方法和设备
CN103581922A (zh) * 2013-10-09 2014-02-12 北京科技大学 基于多进程d-s证据理论的合作频谱感知方法
CN103686827A (zh) * 2012-09-18 2014-03-26 电信科学技术研究院 频谱感知及其控制方法、装置以及一种基站

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717914A (en) * 1985-12-18 1988-01-05 Advanced Micro Devices, Inc. Methods for receiving and converting high speed serial data pattern input signals to parallel data pattern outputs
US8300715B2 (en) * 2007-07-10 2012-10-30 Qualcomm Incorporated Method and apparatus for reuse of WAN infrastructure resources in a wireless peer-to-peer (P2P) network
US7965641B2 (en) * 2008-02-14 2011-06-21 Lingna Holdings Pte., Llc Robust cooperative spectrum sensing for cognitive radios
US8315645B2 (en) * 2008-07-01 2012-11-20 Futurewei Technologies, Inc. System and method for scheduling of spectrum sensing in cognitive radio systems
WO2010056181A1 (en) * 2008-11-14 2010-05-20 Telefonaktiebolaget L M Ericsson (Publ) A method of sensing
US8909270B2 (en) * 2010-06-23 2014-12-09 Nokia Corporation Avoiding interference in cognitive radio communications
WO2012037637A1 (en) * 2010-09-23 2012-03-29 Research In Motion Limited System and method for dynamic coordination of radio resources usage in a wireless network environment
KR20140113976A (ko) 2011-12-22 2014-09-25 인터디지탈 패튼 홀딩스, 인크 동적 스펙트럼 할당을 위한 방법, 장치 및 시스템
US8948776B2 (en) 2012-09-05 2015-02-03 Dynamic Invention Llc Secondary user selection in cooperative sensing scheduling
US9622189B2 (en) * 2014-03-28 2017-04-11 Zte Corporation Techniques for fast delivery of radio information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330461A (zh) * 2008-06-18 2008-12-24 中国科学技术大学 基于已有蜂窝通信信令传输实现频谱空洞有效利用的方法
CN103517277A (zh) * 2012-06-29 2014-01-15 电信科学技术研究院 认知无线电系统中的频点选择方法和设备
CN103686827A (zh) * 2012-09-18 2014-03-26 电信科学技术研究院 频谱感知及其控制方法、装置以及一种基站
CN103458423A (zh) * 2013-09-17 2013-12-18 北京邮电大学 异构认知无线网络间传输认知流的方法、装置和系统
CN103581922A (zh) * 2013-10-09 2014-02-12 北京科技大学 基于多进程d-s证据理论的合作频谱感知方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527717A (zh) * 2018-03-09 2020-08-11 索尼公司 用于无线通信的电子设备、方法和计算机可读存储介质
CN111527717B (zh) * 2018-03-09 2023-08-29 索尼公司 用于无线通信的电子设备、方法和计算机可读存储介质

Also Published As

Publication number Publication date
EP3407636A1 (en) 2018-11-28
US20210176644A1 (en) 2021-06-10
TW201728200A (zh) 2017-08-01
US20230354044A1 (en) 2023-11-02
US11166165B2 (en) 2021-11-02
EP3407636A4 (en) 2019-01-09
US20220038913A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US10687217B2 (en) Spectrum management apparatus and method, apparatus and method for base station side and user device side
WO2017193770A1 (zh) 频谱管理装置和方法、电子装置和方法以及无线通信系统
WO2017024659A1 (zh) 无线通信系统中的电子设备和无线通信方法
US10917742B2 (en) Electronic apparatus, device and method for adjusting a parameter for a proximity-based service communication
WO2017076178A1 (zh) 基站侧和用户设备侧的装置及方法、无线通信系统
WO2017133617A1 (zh) 用于无线通信系统的装置和方法、频谱管理装置
WO2017133612A1 (zh) 信道检测装置和方法、用户设备和基站
US20230354044A1 (en) Apparatus and method for spectrum management, apparatus and method for base station side and user equipment side
CN110506428B (zh) 频谱管理装置和方法、频谱协调装置和方法以及电子设备
WO2017121378A1 (zh) 网络管理侧和用户设备侧的装置及方法、中央管理装置
CN114640963A (zh) 旁链路通信方法及设备
US20200228963A1 (en) Control device, base station, terminal device, method, and recording medium
WO2023185562A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN113891328A (zh) 电子设备及用于电子设备的方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017741028

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741028

Country of ref document: EP

Effective date: 20180820