WO2019214510A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019214510A1
WO2019214510A1 PCT/CN2019/085185 CN2019085185W WO2019214510A1 WO 2019214510 A1 WO2019214510 A1 WO 2019214510A1 CN 2019085185 W CN2019085185 W CN 2019085185W WO 2019214510 A1 WO2019214510 A1 WO 2019214510A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
following conditions
sides
Prior art date
Application number
PCT/CN2019/085185
Other languages
English (en)
French (fr)
Inventor
魏文哲
鲍宇旻
陈伟建
刘绪明
王克民
曾吉勇
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Publication of WO2019214510A1 publication Critical patent/WO2019214510A1/zh
Priority to US16/807,122 priority Critical patent/US11604331B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/644Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for large deviations, e.g. maintaining a fixed line of sight while a vehicle on which the system is mounted changes course

Definitions

  • the invention relates to a lens imaging system, in particular to an optical imaging lens with high pixel, large aperture and thermal compensation effect.
  • the vehicle lens has also ushered in a rapid development as a key component of the automatic driving assistance system, and the requirements for the lens are also increasing.
  • the vehicle-mounted lens in the automatic driving assistance system has special requirements compared with the ordinary optical lens.
  • the vehicle-mounted camera lens requires the front port diameter to be as small as possible, the light-passing ability is strong, and can adapt to the light and dark changes of the external environment, and at the same time requires a higher Image sharpness, can effectively distinguish the details of the external environment (such as road identification information, pedestrians and vehicles in the distance), and good thermal stability, so that the lens has good resolution at high and low temperatures to meet the automatic driving Special requirements.
  • an object of the present invention is to provide an optical imaging lens with high pixel, large aperture, and thermal compensation effect, which can be applied to a vehicle lens.
  • An optical imaging lens comprising, in order from the object side to the image side, a meniscus type first lens having a negative refractive power and a convex surface facing the object side; and a meniscus type second lens having a negative refractive power and a convex surface facing the image side a third lens having a positive power and a convex surface on both sides; a fourth lens having a positive power and a convex surface on both sides; a fifth lens having a negative power and a concave surface on both sides, And the fourth lens and the fifth lens comprise a cemented lens; a sixth lens having a positive power and a convex surface on both sides; a filter; wherein the first lens, the second lens, and the The third lens, the fourth lens, the fifth lens, and the sixth lens are all glass lenses.
  • the first lens in the optical imaging lens of the present invention is mainly used for collecting light
  • the second lens is mainly used for correcting optical distortion
  • the third lens, the fourth lens, the fifth lens and the sixth lens are mainly For the convergence of light
  • the fourth lens and the fifth lens function as positive and negative lenses to eliminate chromatic aberration
  • the sixth lens functions to eliminate aberrations and control the exit angle of the chief ray.
  • Each of the lenses is a glass lens to enable the optical imaging lens to have better thermal stability.
  • the optical imaging lens of the present invention It consists of 3 positive powers and 3 negative power lenses, while the fourth lens and the sixth lens use a special glass material with a negative refractive index coefficient, which can minimize the lens focus caused by environmental temperature changes. The movement.
  • optical imaging lens provided according to the present invention may further have the following additional technical features:
  • the fourth lens and the sixth lens satisfy the following conditions:
  • Representing the power of the fourth lens Indicates the power of the sixth lens
  • (dn/dt) 4 represents the refractive index temperature coefficient of the fourth lens
  • (dn/dt) 6 represents the refractive index temperature coefficient of the sixth lens. Since the refractive index temperature coefficients of the fourth positive lens and the sixth positive lens are both negative values, the optical focal length can be increased at a high temperature and reduced at a low temperature, thereby effectively compensating for structural members (such as a lens barrel and a lens holder). The thermal expansion ensures that the resolution of the optical imaging lens at high and low temperatures is good.
  • the fourth lens and the sixth lens satisfy the following conditions:
  • Vd4 and Vd6 respectively represent Abbe numbers of the fourth lens and the sixth lens
  • ⁇ Pg, F4, ⁇ Pg, and F6 respectively indicate that the relative dispersion of the fourth lens and the sixth lens deviate from Abbe The deviation of the empirical formula.
  • the above conditions can effectively correct the spherical aberration of the monochromatic light on the axis, which is beneficial to the lens to distinguish distant traffic lights (such as red, yellow and green signal lights).
  • distant traffic lights such as red, yellow and green signal lights.
  • the value of the above formula exceeds the lower limit, the difference in spherical aberration of different wavelengths of monochromatic light is better. Large, at the same time difficult to correct, resulting in inconsistent MTF of different wavelengths of monochromatic light, can not see several colors on the signal at the same time.
  • optical imaging lens satisfies the following conditions:
  • represents the half angle of view of the optical imaging lens
  • IH represents the image height of the optical imaging lens at the half angle of view ⁇ .
  • optical imaging lens satisfies the following conditions:
  • Fno is the F number of the optical imaging lens.
  • the reciprocal of the F number is the relative aperture of the lens.
  • the smaller the F number the larger the relative aperture of the lens, and the larger the amount of light entering, the better the imaging quality in a dim environment, and thus the brightness and darkness of the external environment.
  • the second lens satisfies the following conditions:
  • r3 represents a radius of curvature of the second lens object side surface
  • r4 represents a radius of curvature of the second lens image side surface.
  • the second lens further satisfies the following conditions:
  • f2 represents the focal length of the second lens
  • r4 represents the radius of curvature of the second lens image side surface.
  • the sixth lens satisfies the following conditions:
  • f6 represents the focal length of the sixth lens
  • r11 represents the radius of curvature of the side surface of the sixth lens image.
  • the fourth lens and the fifth lens satisfy the following conditions:
  • Vd4 represents the Abbe number of the fourth lens
  • Vd5 represents the Abbe number of the fifth lens.
  • the above condition is an achromatic condition.
  • the value of Vd4-Vd5 exceeds the lower limit, the chromatic aberration is large, and the correction is difficult; when the value of Vd4-Vd5 exceeds the upper limit, it is not suitable for material selection.
  • first lens, the third lens, the fourth lens, and the fifth lens are all glass spherical lenses
  • second lens and the sixth lens are glass aspherical lenses.
  • the optical imaging lens has high pixels, good thermal stability, and further improving the magnification of the edge field of view by controlling the distortion of the optical imaging lens, thereby improving the resolution of the edge of the optical imaging lens.
  • the ability to make it meet the edge field of view of the picture is flattened and expanded, with sufficient resolution to reach more than 8 million pixels.
  • FIG. 1 is a schematic cross-sectional structural view of an optical imaging lens according to a first embodiment of the present invention
  • Figure 1a is a field curvature diagram of an optical imaging lens in a first embodiment of the present invention
  • Figure 1b is a distortion diagram of the optical imaging lens in the first embodiment of the present invention.
  • 1c is a vertical chromatic aberration diagram of the optical imaging lens in the first embodiment of the present invention.
  • 2a is a field curve diagram of a optical imaging lens in a second embodiment of the present invention.
  • 2b is a distortion diagram of a optical imaging lens in a second embodiment of the present invention.
  • 2c is a vertical chromatic aberration diagram of the optical imaging lens in the second embodiment of the present invention.
  • 3a is a field curve diagram of an optical imaging lens in a third embodiment of the present invention.
  • Figure 3b is a distortion diagram of the optical imaging lens in the third embodiment of the present invention.
  • Figure 3c is a vertical chromatic aberration diagram of the optical imaging lens in the third embodiment of the present invention.
  • 4a is a field curve diagram of an optical imaging lens in a fourth embodiment of the present invention.
  • 4b is a distortion diagram of a optical imaging lens in a fourth embodiment of the present invention.
  • 4c is a vertical chromatic aberration diagram of the optical imaging lens in the fourth embodiment of the present invention.
  • this embodiment provides an optical imaging lens, which includes, from the object side to the image side, in order:
  • a meniscus type first lens having a negative power and a convex surface facing the object side;
  • a meniscus type second lens having a negative power and having a convex surface facing the image side;
  • a third lens having a positive power and a convex surface on both sides;
  • a fourth lens having a positive power and a convex surface on both sides;
  • a fifth lens having a negative power and a concave surface on both sides, and the fourth lens and the fifth lens constitute a cemented lens
  • a sixth lens having a positive power and a convex surface on both sides;
  • the first lens, the third lens, the fourth lens, and the fifth lens are all glass spherical lenses, and the second lens and the sixth lens are glass aspherical lenses.
  • the surface shapes of the second lens and the sixth lens satisfy the following conditions:
  • the field curvature and the distortion curve and the vertical axis color difference are respectively shown in FIGS. 1a, 1b, and 1c, and it can be seen that the field curvature range is between (-0.05, +0.05), and the distortion is less than 3.0%.
  • the vertical axis chromatic aberration is between (-2.0, +3.5), indicating that the field curvature, distortion, and chromatic aberration can be well corrected in this embodiment.
  • the lens structure of the present embodiment is substantially the same as that of the lens of the embodiment 1.
  • the difference is that the parameters of the lenses in the optical imaging lens of the embodiment are as shown in Table 2-1, and the parameters of the aspheric surfaces of the lenses in this embodiment are shown in Table 2. -2 is shown.
  • the curvature of field and the distortion curve and the vertical axis are respectively shown in Figures 2a, 2b, and 2c. It can be seen that the field curvature range is between (-0.05, +0.05) and the distortion is less than 3.0%.
  • the vertical axis chromatic aberration is between (-2.0, +3.5), indicating that the field curvature, distortion, and chromatic aberration can be well corrected in this embodiment.
  • the lens structure of the present embodiment is substantially the same as that of the lens of the embodiment 1.
  • the difference is that the parameters of the lenses in the optical imaging lens of the embodiment are as shown in Table 3-1, and the parameters of the aspheric surfaces of the lenses in this embodiment are shown in Table 3. -2 is shown.
  • the field curvature and the distortion curve and the vertical axis color difference are respectively shown in FIGS. 3a, 3b, and 3c, and it can be seen that the field curvature range is between (-0.05, +0.05), and the distortion is less than 3.0%.
  • the vertical axis chromatic aberration is between (-2.0, +3.5), indicating that the field curvature, distortion, and chromatic aberration can be well corrected in this embodiment.
  • the lens structure of the present embodiment is substantially the same as that of the lens of the embodiment 1.
  • the difference is that the parameters of the lenses in the optical imaging lens of the embodiment are as shown in Table 4-1, and the parameters of the aspheric surfaces of the lenses in this embodiment are shown in Table 4. -2 is shown.
  • the field curvature and the distortion curve and the vertical axis color difference are respectively shown in FIGS. 4a, 4b, and 4c, and it can be seen that the field curvature range is between (-0.05, +0.05), and the distortion is less than 3.0%.
  • the vertical axis chromatic aberration is between (-2.0, +5.0), indicating that the field curvature, distortion, and chromatic aberration can be well corrected in this embodiment.
  • Table 5 is the above four embodiments and their corresponding optical characteristics, including the system focal length f, the F number Fno, and the total system length TTL, and the values corresponding to each of the preceding conditional expressions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,从物侧到像侧依次包括:具有负光焦度且凸面朝向物侧(S1)的弯月型第一透镜(L1);具有负光焦度且凸面朝向像侧(S4)的弯月型第二透镜(L2);光阑(S5);具有正光焦度且双面均为凸面的第三透镜(L3);具有正光焦度且双面均为凸面的第四透镜(L4);具有负光焦度且双面均为凹面的第五透镜(L5),且第四透镜(L4)与第五透镜(L5)组成胶合镜片;具有正光焦度且双面均为凸面的第六透镜(L6);滤光片(G1);其中,第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)和第六透镜(L6)均为玻璃透镜。通过合理搭配各透镜间的光焦度,从而使镜头具有高像素、良好的热稳定性,同时通过选用特殊材质的玻璃来有效解决热漂移问题。

Description

光学成像镜头 技术领域
本发明涉及一种透镜成像系统,特别涉及一种高像素、大孔径、具有热补偿效果的光学成像镜头。
背景技术
随着自动驾驶功能的发展,车载镜头作为自动驾驶辅助系统的关键部件也迎来了较快发展,对该镜头的要求也越来越高。
自动驾驶辅助系统中的车载镜头与普通的光学镜头相比有着特殊的要求,如车载摄像镜头要求前端口径要尽量小,通光能力强,能适应外界环境的明暗变化,同时要求有较高的成像清晰度,能有效分辨外界环境的细节(如公路标识信息,远处的行人与车辆等),以及很好的热稳定性,使镜头在高低温时都拥有良好的解像力,以满足自动驾驶的特殊要求。
然而,现有的车载摄像镜头大都对温度比较敏感,难以适用于高温或低温的场合,且镜头分辨率低,难以消除色差,不利于实际应用。
发明内容
基于此,本发明的目的是提供一种高像素、大孔径、具有热补偿效果的光学成像镜头,能够适用于车载镜头上。
一种光学成像镜头,从物侧到像侧依次包括:具有负光焦度且凸面朝向物侧的弯月型第一透镜;具有负光焦度且凸面朝向像侧的弯月型第二透镜;光阑;具有正光焦度且双面均为凸面的第三透镜;具有正光焦度且双面均为凸面的第四透镜;具有负光焦度且双面均为凹面的第五透镜,且所述第四透镜与所述第五透镜组成胶合镜片;具有正光焦度且双面均为凸面的第六透镜;滤光片;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为玻璃透镜。
相较现有技术,本发明光学成像镜头中的第一透镜主要用于光线的收集, 第二透镜主要用于光学畸变的矫正,第三透镜、第四透镜、第五透镜及第六透镜主要用于光线的会聚,其中,第四透镜和第五透镜起到正负透镜消除色差的作用,第六透镜起到消除像差和控制主光线的出射角度的作用。各个透镜均为玻璃镜片可以使得所述光学成像镜头具有较好的热稳定性能。此外,由于透镜因环境温度变化会带来焦点的移动,具有负光焦度的透镜和具有正光焦度的透镜随着环境温度的变化,焦点移动的方向相反,因此,本发明的光学成像镜头由3片正光焦度和3片负光焦度透镜组成,同时第四透镜、第六透镜使用温度折射率系数为负值的特殊玻璃材料,这样可以尽量减小因环境温度变化引起的镜头焦点的移动。
另外,根据本发明提供的光学成像镜头,还可以具有如下附加的技术特征:
进一步地,所述第四透镜和所述第六透镜满足以下条件:
Figure PCTCN2019085185-appb-000001
-10×10 -6/℃<(dn/dt)4<0,
-10×10 -6/℃<(dn/dt)6<-2×10 -6/℃,
其中,
Figure PCTCN2019085185-appb-000002
表示所述第四透镜的光焦度,
Figure PCTCN2019085185-appb-000003
表示所述第六透镜的光焦度,(dn/dt)4表示所述第四透镜的折射率温度系数,(dn/dt)6表示所述第六透镜的折射率温度系数。由于第四正透镜、第六正透镜的折射率温度系数均为负值,能够使光学焦距在高温时增大、在低温时减小,有效的补偿了结构件(如镜筒、镜座)的热膨胀,保证了所述光学成像镜头在高低温时的解像力都有良好的表现。
进一步地,所述第四透镜和所述第六透镜满足以下条件:
Vd4+Vd6>120,
ΔPg,F4+ΔPg,F6>0.03,
其中,Vd4、Vd6分别表示所述第四透镜和所述第六透镜的阿贝数,ΔPg,F4、ΔPg,F6分别表示所述第四透镜和所述第六透镜的相对部分色散偏离阿贝经验公式的偏离值。上述条件可以有效矫正轴上单色光的球差,有利于镜头分辨远处的交通信号灯(如红黄绿信号灯),当上述公式的值超过下限时,不同波长单色光的球差差异较大,同时校正困难,导致不同波长单色光MTF不一致,不能同 时看清信号灯上的几种颜色。
进一步地,所述光学成像镜头满足以下条件:
1.2<IH/θ<1.6,
其中,θ表示所述光学成像镜头的半视场角,IH表示在半视场角θ时所述光学成像镜头的像高。上述条件式体现所述光学成像镜头可以很好的控制畸变,能够有效减小由镜头畸变带来的成像变形。
进一步地,所述光学成像镜头满足以下条件:
Fno≤1.8,
其中,Fno为所述光学成像镜头的F数。F数的倒数是镜头的相对孔径,一般F数越小,镜头的相对孔径越大,进光量越大,能够实现在昏暗环境下良好的成像质量,从而能适应外界环境的明暗变化。
进一步地,所述第二透镜满足以下条件:
0<r3/r4<1,
其中,r3表示所述第二透镜物侧表面的曲率半径,r4表示所述第二透镜像侧表面的曲率半径。当r3/r4的值超过上限时,不利于控制镜头鬼影,当强光(如车灯)照射时,会产生较明亮的鬼影,影像镜头的成像质量。
进一步地,所述第二透镜还满足以下条件:
1<f2/r4<5,
其中,f2表示所述第二透镜的焦距,r4表示所述第二透镜像侧表面的曲率半径。满足上述条件,可以保证所述光学成像镜头具有小畸变,且能够有效减小由畸变带来的成像变形。
进一步地,所述第六透镜满足以下条件:
-1.5<f6/r11<0,
其中,f6表示所述第六透镜的焦距,r11表示所述第六透镜像侧表面的曲率半径。满足上述条件,可以保证所述光学成像镜头很好地矫正像差,如球差、像散,超过上述条件式的范围,则会增加镜片加工难度,并且对像差的矫正比较困难。
进一步地,所述第四透镜和所述第五透镜满足以下条件:
20<Vd4-Vd5<40,
其中,Vd4表示所述第四透镜的阿贝数,Vd5表示所述第五透镜的阿贝数。上述条件为消色差条件,当Vd4-Vd5的值超过下限时,色差较大,校正困难;当Vd4-Vd5的值超过上限时,不利于材料选取。
进一步地,所述第一透镜、所述第三透镜、所述第四透镜、所述第五透镜均为玻璃球面透镜,所述第二透镜和所述第六透镜为玻璃非球面透镜。
满足上述配置有利于保证所述光学成像镜头具有高像素、良好的热稳定性,此外通过控制光学成像镜头的畸变来提高边缘视场的放大倍率,从而提高了所述光学成像镜头边缘的解像能力,使其满足边缘视场画面拉平展开后,有足够的分辨率,可达到800万以上像素。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明第一实施例的光学成像镜头的截面结构示意图;
图1a是本发明第一实施例中光学成像镜头的场曲曲线图;
图1b是本发明第一实施例中光学成像镜头的畸变曲线图;
图1c为本发明第一实施例中光学成像镜头的垂轴色差图;
图2a为本发明第二实施例中光学成像镜头的场曲曲线图;
图2b为本发明第二实施例中光学成像镜头的畸变曲线图;
图2c为本发明第二实施例中光学成像镜头的垂轴色差图;
图3a为本发明第三实施例中光学成像镜头的场曲曲线图;
图3b为本发明第三实施例中光学成像镜头的畸变曲线图;
图3c为本发明第三实施例中光学成像镜头的垂轴色差图;
图4a为本发明第四实施例中光学成像镜头的场曲曲线图;
图4b为本发明第四实施例中光学成像镜头的畸变曲线图;
图4c为本发明第四实施例中光学成像镜头的垂轴色差图;
主要元件符号说明:
第一透镜 L1 第二透镜 L2
第三透镜 L3 第四透镜 L4
第五透镜 L5 第六透镜 L6
滤光片 G1 光阑 S5
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
实施例1
请参阅图1,本实施例提出一种光学成像镜头,从物侧到像侧依次包括:
具有负光焦度且凸面朝向物侧的弯月型第一透镜;
具有负光焦度且凸面朝向像侧的弯月型第二透镜;
光阑;
具有正光焦度且双面均为凸面的第三透镜;
具有正光焦度且双面均为凸面的第四透镜;
具有负光焦度且双面均为凹面的第五透镜,且所述第四透镜与所述第五透镜组成胶合镜片;
具有正光焦度且双面均为凸面的第六透镜;
滤光片;
其中,所述第一透镜、所述第三透镜、所述第四透镜、所述第五透镜均为玻璃球面透镜,所述第二透镜和所述第六透镜为玻璃非球面透镜。
所述第二透镜和所述第六透镜的表面形状均满足以下条件:
Figure PCTCN2019085185-appb-000004
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,K表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E和F分别表示四阶、六阶、八阶、十阶和十二阶曲面系数,各参数如表1-2所示。
所述光学成像镜头中各个镜片的相关参数如表1-1所示。
表1-1
Figure PCTCN2019085185-appb-000005
表1-2
Figure PCTCN2019085185-appb-000006
在本实施例中,其场曲和畸变曲线、垂轴色差分别如图1a、1b、1c所示, 可以看出,场曲范围在(-0.05,+0.05)之间,畸变小于3.0%,垂轴色差在(-2.0,+3.5)之间,说明本实施例中场曲、畸变、色差都能被很好的校正。
实施例2
本实施例与实施例1的镜头结构基本相同,不同之处在于本实施例光学成像镜头中各个镜片的相关参数如表2-1所示,本实施例的各透镜非球面的参数如表2-2所示。
表2-1
Figure PCTCN2019085185-appb-000007
表2-2
Figure PCTCN2019085185-appb-000008
Figure PCTCN2019085185-appb-000009
在本实施例中,其场曲和畸变曲线、垂轴色差分别如图2a、2b、2c所示,可以看出,场曲范围在(-0.05,+0.05)之间,畸变小于3.0%,垂轴色差在(-2.0,+3.5)之间,说明本实施例中场曲、畸变、色差都能被很好的校正。
实施例3
本实施例与实施例1的镜头结构基本相同,不同之处在于本实施例光学成像镜头中各个镜片的相关参数如表3-1所示,本实施例的各透镜非球面的参数如表3-2所示。
表3-1
Figure PCTCN2019085185-appb-000010
表3-2
Figure PCTCN2019085185-appb-000011
Figure PCTCN2019085185-appb-000012
在本实施例中,其场曲和畸变曲线、垂轴色差分别如图3a、3b、3c所示,可以看出,场曲范围在(-0.05,+0.05)之间,畸变小于3.0%,垂轴色差在(-2.0,+3.5)之间,说明本实施例中场曲、畸变、色差都能被很好的校正。
实施例4
本实施例与实施例1的镜头结构基本相同,不同之处在于本实施例光学成像镜头中各个镜片的相关参数如表4-1所示,本实施例的各透镜非球面的参数如表4-2所示。
表4-1
Figure PCTCN2019085185-appb-000013
表4-2
Figure PCTCN2019085185-appb-000014
在本实施例中,其场曲和畸变曲线、垂轴色差分别如图4a、4b、4c所示,可以看出,场曲范围在(-0.05,+0.05)之间,畸变小于3.0%,垂轴色差在(-2.0,+5.0)之间,说明本实施例中场曲、畸变、色差都能被很好的校正。
表5是上述4个实施例及其对应的光学特性,包括系统焦距f、F数Fno和系统总长TTL,以及与前面每个条件式对应的数值。
表5
Figure PCTCN2019085185-appb-000015
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中 以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光学成像镜头,其特征在于,从物侧到像侧依次包括:
    具有负光焦度且凸面朝向物侧的弯月型第一透镜;
    具有负光焦度且凸面朝向像侧的弯月型第二透镜;
    光阑;
    具有正光焦度且双面均为凸面的第三透镜;
    具有正光焦度且双面均为凸面的第四透镜;
    具有负光焦度且双面均为凹面的第五透镜,且所述第四透镜与所述第五透镜组成胶合镜片;
    具有正光焦度且双面均为凸面的第六透镜;
    滤光片;
    其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为玻璃透镜。
  2. 根据权利要求1所述光学成像镜头,其特征在于,所述第四透镜和所述第六透镜满足以下条件:
    Figure PCTCN2019085185-appb-100001
    -10×10 -6/℃<(dn/dt)4<0,
    -10×10 -6/℃<(dn/dt)6<-2×10 -6/℃,
    其中,
    Figure PCTCN2019085185-appb-100002
    表示所述第四透镜的光焦度,
    Figure PCTCN2019085185-appb-100003
    表示所述第六透镜的光焦度,(dn/dt)4表示所述第四透镜的折射率温度系数,(dn/dt)6表示所述第六透镜的折射率温度系数。
  3. 根据权利要求1或2所述光学成像镜头,其特征在于,所述第四透镜和所述第六透镜满足以下条件:
    Vd4+Vd6>120,
    ΔPg,F4+ΔPg,F6>0.03,
    其中,Vd4、Vd6分别表示所述第四透镜和所述第六透镜的阿贝数,ΔPg,F4、ΔPg,F6分别表示所述第四透镜和所述第六透镜的相对部分色散偏离阿贝经验公式的偏离值。
  4. 根据权利要求1所述光学成像镜头,其特征在于,所述光学成像镜头满 足以下条件:
    1.2<IH/θ<1.6,
    其中,θ表示所述光学成像镜头的半视场角,IH表示在半视场角θ时所述光学成像镜头的像高。
  5. 根据权利要求1所述光学成像镜头,其特征在于,所述光学成像镜头满足以下条件:
    Fno≤1.8,
    其中,Fno为所述光学成像镜头的F数,其倒数是镜头的相对孔径。
  6. 根据权利要求1所述光学成像镜头,其特征在于,所述第二透镜满足以下条件:
    0<r3/r4<1,
    其中,r3表示所述第二透镜物侧表面的曲率半径,r4表示所述第二透镜像侧表面的曲率半径。
  7. 根据权利要求1或6所述光学成像镜头,其特征在于,所述第二透镜还满足以下条件:
    1<f2/r4<5,
    其中,f2表示所述第二透镜的焦距,r4表示所述第二透镜像侧表面的曲率半径。
  8. 根据权利要求1所述光学成像镜头,其特征在于,所述第六透镜满足以下条件:
    -1.5<f6/r11<0,
    其中,f6表示所述第六透镜的焦距,r11表示所述第六透镜像侧表面的曲率半径。
  9. 根据权利要求1所述光学成像镜头,其特征在于,所述第四透镜和所述第五透镜满足以下条件:
    20<Vd4-Vd5<40,
    其中,Vd4表示所述第四透镜的阿贝数,Vd5表示所述第五透镜的阿贝数。
  10. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜、所述第三透镜、所述第四透镜、所述第五透镜均为玻璃球面透镜,所述第二透 镜和所述第六透镜为玻璃非球面透镜。
PCT/CN2019/085185 2018-05-09 2019-04-30 光学成像镜头 WO2019214510A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/807,122 US11604331B2 (en) 2018-05-09 2020-03-02 Optical imaging lens group, vehicle camera and driving assistance system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810438208.X 2018-05-09
CN201810438208.XA CN108490584B (zh) 2018-05-09 2018-05-09 光学成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/807,122 Continuation US11604331B2 (en) 2018-05-09 2020-03-02 Optical imaging lens group, vehicle camera and driving assistance system

Publications (1)

Publication Number Publication Date
WO2019214510A1 true WO2019214510A1 (zh) 2019-11-14

Family

ID=63354282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085185 WO2019214510A1 (zh) 2018-05-09 2019-04-30 光学成像镜头

Country Status (3)

Country Link
US (1) US11604331B2 (zh)
CN (1) CN108490584B (zh)
WO (1) WO2019214510A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116299999A (zh) * 2023-01-28 2023-06-23 湖北华鑫光电有限公司 一种2g4p超广角高清车载光学镜头及成像装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490584B (zh) * 2018-05-09 2019-10-29 江西联创电子有限公司 光学成像镜头
CN110888225B (zh) * 2018-09-10 2022-04-15 信泰光学(深圳)有限公司 成像镜头
US11314043B2 (en) 2018-09-10 2022-04-26 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly including six lenses of −−++−+ refractive powers
CN109521549B (zh) * 2018-11-12 2020-04-28 江西联创电子有限公司 超广角镜头
CN109541780B (zh) * 2018-11-16 2020-09-22 江西联创电子有限公司 光学镜头及成像设备
CN109445068B (zh) * 2018-12-05 2020-02-18 江西联创电子有限公司 车载摄像镜头及成像设备
CN111812797B (zh) * 2019-04-12 2022-07-12 信泰光学(深圳)有限公司 广角镜头
CN110072045B (zh) * 2019-05-30 2021-11-09 Oppo广东移动通信有限公司 镜头、摄像头及电子设备
CN112147757B (zh) * 2019-06-27 2023-04-07 华为技术有限公司 光学镜头组、摄像头及终端设备
CN110346917A (zh) * 2019-07-29 2019-10-18 舜宇光学(中山)有限公司 玻塑混合定焦镜头
KR102668469B1 (ko) * 2021-06-25 2024-05-23 주식회사 세코닉스 라이다용 렌즈 시스템
CN113253433B (zh) * 2021-07-05 2021-09-17 江西联创电子有限公司 光学成像镜头及成像设备
CN113900235B (zh) * 2021-10-20 2023-09-05 江西晶超光学有限公司 光学系统、取像模组、电子设备及载具
CN113960773B (zh) * 2021-12-22 2022-05-24 江西联创电子有限公司 光学成像镜头及成像设备
CN114326061B (zh) * 2022-03-14 2022-08-16 江西联创电子有限公司 光学成像镜头
TWI798036B (zh) * 2022-03-29 2023-04-01 佳凌科技股份有限公司 光學成像鏡頭
CN115128779B (zh) * 2022-08-29 2023-01-20 江西联益光学有限公司 光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150131167A1 (en) * 2013-11-08 2015-05-14 Samsung Electro-Mechanics Co., Ltd. Lens module
CN105676417A (zh) * 2014-12-08 2016-06-15 三星电机株式会社 镜头模块
CN106125258A (zh) * 2016-09-07 2016-11-16 江西联益光学有限公司 广角镜头
CN107422461A (zh) * 2017-09-22 2017-12-01 江西联创电子有限公司 监控镜头
CN107436476A (zh) * 2017-06-22 2017-12-05 玉晶光电(厦门)有限公司 光学成像镜头
CN108490584A (zh) * 2018-05-09 2018-09-04 江西联创电子有限公司 光学成像镜头

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308999A (ja) * 2005-04-28 2006-11-09 Ricoh Co Ltd 撮像レンズ、カメラ装置及び携帯情報端末装置
CN101359087B (zh) * 2007-08-02 2010-06-02 鸿富锦精密工业(深圳)有限公司 广角镜头及使用该广角镜头的车辆装置
CN101614864B (zh) * 2009-06-09 2010-12-08 宁波舜宇车载光学技术有限公司 超广角百万像素车载镜头
TWI449944B (zh) * 2012-07-24 2014-08-21 Largan Precision Co Ltd 廣視角光學鏡頭組
CN203376514U (zh) * 2013-05-10 2014-01-01 中山联合光电科技有限公司 一种大像面高像素透雾日夜两用fa光学系统
JP2015190999A (ja) * 2014-03-27 2015-11-02 株式会社タムロン 結像光学系
CN204883028U (zh) * 2015-06-23 2015-12-16 信华精机有限公司 一种用于车载监控的光学成像系统
JP6720773B2 (ja) * 2016-08-24 2020-07-08 株式会社リコー 撮像レンズおよびカメラ装置および車載カメラ装置およびセンシング装置および車載用センシング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150131167A1 (en) * 2013-11-08 2015-05-14 Samsung Electro-Mechanics Co., Ltd. Lens module
CN105676417A (zh) * 2014-12-08 2016-06-15 三星电机株式会社 镜头模块
CN106125258A (zh) * 2016-09-07 2016-11-16 江西联益光学有限公司 广角镜头
CN107436476A (zh) * 2017-06-22 2017-12-05 玉晶光电(厦门)有限公司 光学成像镜头
CN107422461A (zh) * 2017-09-22 2017-12-01 江西联创电子有限公司 监控镜头
CN108490584A (zh) * 2018-05-09 2018-09-04 江西联创电子有限公司 光学成像镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116299999A (zh) * 2023-01-28 2023-06-23 湖北华鑫光电有限公司 一种2g4p超广角高清车载光学镜头及成像装置
CN116299999B (zh) * 2023-01-28 2024-05-07 湖北华鑫光电有限公司 一种2g4p超广角高清车载光学镜头及成像装置

Also Published As

Publication number Publication date
US11604331B2 (en) 2023-03-14
US20200200998A1 (en) 2020-06-25
CN108490584A (zh) 2018-09-04
CN108490584B (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
WO2019214510A1 (zh) 光学成像镜头
WO2019228127A1 (zh) 广角镜头
US11125974B2 (en) Optical lens, imaging module and vehicle camera
US11340427B2 (en) Optical lens system and vehicle camera
CN110133828B (zh) 定焦镜头
CN109521549B (zh) 超广角镜头
WO2022205690A1 (zh) 光学成像镜头
WO2020024599A1 (zh) 光学镜头
WO2021008319A1 (zh) 广角镜头及成像设备
WO2020119278A1 (zh) 广角镜头及成像设备
CN113253433B (zh) 光学成像镜头及成像设备
US10416420B2 (en) Optical lens
US11307390B2 (en) Optical lens
WO2022028625A1 (zh) 光学镜头及电子设备
TWI407184B (zh) 六片式成像鏡片組
CN115128769A (zh) 光学镜头
CN116841019B (zh) 光学镜头
JP4125179B2 (ja) 可視光近赤外光用単焦点レンズ
CN211955960U (zh) 一种定焦低色差的光学成像镜头
TWI664441B (zh) 廣角鏡頭
CN106094183A (zh) 一种高像质内对焦式光学成像系统
CN106959499A (zh) 光学镜头
CN213482549U (zh) 一种大光圈光学系统
CN210142226U (zh) 玻塑混合镜头
WO2022063129A1 (zh) 光学镜头及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800588

Country of ref document: EP

Kind code of ref document: A1