WO2019214501A1 - 无线通信方法、装置及网络设备 - Google Patents

无线通信方法、装置及网络设备 Download PDF

Info

Publication number
WO2019214501A1
WO2019214501A1 PCT/CN2019/085107 CN2019085107W WO2019214501A1 WO 2019214501 A1 WO2019214501 A1 WO 2019214501A1 CN 2019085107 W CN2019085107 W CN 2019085107W WO 2019214501 A1 WO2019214501 A1 WO 2019214501A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
relay node
base station
received power
signal
Prior art date
Application number
PCT/CN2019/085107
Other languages
English (en)
French (fr)
Inventor
潘学明
沈晓冬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020207035430A priority Critical patent/KR102357945B1/ko
Priority to JP2020563562A priority patent/JP7456941B2/ja
Priority to EP19800341.0A priority patent/EP3793269A4/en
Priority to BR112020023023-5A priority patent/BR112020023023A2/pt
Priority to AU2019266680A priority patent/AU2019266680B2/en
Publication of WO2019214501A1 publication Critical patent/WO2019214501A1/zh
Priority to US17/094,684 priority patent/US11523348B2/en
Priority to JP2022039233A priority patent/JP7305832B2/ja
Priority to AU2022203008A priority patent/AU2022203008B2/en
Priority to US17/980,743 priority patent/US11800457B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a wireless communication method, apparatus, and network device.
  • the relay technology is to add one or more relay nodes between a base station and a terminal device, for example, a user equipment (UE), and the wireless signal is performed one or more times by the relay node.
  • a typical relay system application scenario as shown in FIG. 1 , the application scenario includes: a donor base station (Donor gNB) 101, a relay node 102, and a terminal device 103, where the host base station 101
  • the serving cell is called a primary cell, and the cell served by the relay node 102 is called a relay cell.
  • the communication link between the donor base station 101 and the relay node 102 is called a backhaul link. (backhaul link), which may also be referred to as a backhaul link, or a backhaul line; the communication link between the relay node 102 and the terminal device 103 accessing the relay cell is referred to as an access link.
  • backhaul link which may also be referred to as a backhaul link, or a backhaul line
  • TDM Time Division Multiplexing
  • the purpose of the embodiments of the present disclosure is to provide a wireless communication method, device, and network device to solve the technical problem that the transmission delay and the system communication efficiency are low in the related art.
  • a wireless communication method which is applied to a relay node, and the method includes:
  • the first transmit power is a transmit power of a downlink backhaul DL signal of a backhaul link sent by the base station of the relay node to the relay node;
  • the second transmit power is a transmit power of an uplink access UL signal of the access link sent by the terminal device to the relay node;
  • the first received power is a received power when the backhaul DL signal of the donor base station arrives at the relay node;
  • the second received power is a received power when the access UL signal of the terminal device reaches the relay node.
  • a wireless communication method which is applied to a host base station, and the method includes:
  • the first transmit power is a transmit power of a backhaul DL signal sent by the host base station to the relay node;
  • the target received power value is used by the host base station to determine the first transmit power, and the first transmit power is determined by the target received power value and a backhaul link between the relay node and a donor base station
  • the path loss determines that the backhaul DL signal is transmitted on the backhaul link
  • the first power adjustment instruction is used to instruct the host base station to increase or decrease the first transmit power, so that a difference between the first received power and the target received power value is less than a preset power threshold;
  • the first received power is a received power when the backhaul DL signal of the donor base station arrives at the relay node.
  • a wireless communication method which is applied to a relay node, and the method includes:
  • the first transmission time is a transmission time of a backhaul DL signal sent by the host base station of the relay node to the relay node;
  • the second transmission time is a transmission time of an access UL signal sent by the terminal device to the relay node;
  • the first receiving time is a time when the backhaul DL signal of the donor base station arrives at the relay node
  • the second receiving time is a time when the access UL signal of the terminal device reaches the relay node.
  • a wireless communication method which is applied to a host base station, and the method includes:
  • the first transmission time is a transmission time of a backhaul DL signal sent by the host base station to the relay node;
  • the first time adjustment instruction is used to instruct the host base station to advance or delay the first transmission time of the signal, so that the difference between the first receiving time and the reference time determined by the relay node is less than a preset time difference. value;
  • the first receiving time is a time when the backhaul DL signal of the donor base station arrives at the relay node.
  • a wireless communication device which is applied to a relay node, and the device includes:
  • a first determining unit configured to determine a target received power value
  • a first control unit configured to control the first transmit power and/or the second transmit power according to the target received power value, so that a difference between the first received power and the second received power is less than a preset power threshold
  • the first transmit power is a transmit power of a backhaul DL signal sent by the host base station of the relay node to the relay node;
  • the second transmit power is a transmit power of an access UL signal sent by the terminal device to the relay node;
  • the first received power is a received power when the backhaul DL signal of the donor base station arrives at the relay node;
  • the second received power is a received power when the access UL signal of the terminal device reaches the relay node.
  • a wireless communication apparatus for use in a host base station, the apparatus comprising:
  • a second receiving unit configured to receive a target received power value and/or a first power adjustment command sent by the relay node of the host base station;
  • a first adjusting unit configured to adjust the first transmit power according to the target received power value and/or the first power adjustment command
  • the first transmit power is a transmit power of a backhaul DL signal sent by the host base station to the relay node;
  • the target received power value is used by the host base station to determine the first transmit power, and the first transmit power is determined by the target received power value and a backhaul link between the relay node and a donor base station
  • the path loss determines that the backhaul DL signal is transmitted on the backhaul link
  • the first power adjustment instruction is used to instruct the host base station to increase or decrease the first transmit power, so that a difference between the first received power and the target received power value is less than a preset power threshold;
  • the first received power is a received power when the backhaul DL signal of the donor base station arrives at the relay node.
  • a wireless communication apparatus which is applied to a relay node, and the apparatus includes:
  • a second determining unit configured to determine a reference time
  • a second control unit configured to control, according to the reference time, a first transmission time and/or a second transmission time, so that a difference between the first reception time and the second reception time is less than a preset time difference
  • the first transmission time is a transmission time of a backhaul DL signal sent by the host base station of the relay node to the relay node;
  • the second transmission time is a transmission time of an access UL signal sent by the terminal device to the relay node;
  • the first receiving time is a time when the backhaul DL signal of the donor base station arrives at the relay node
  • the second receiving time is a time when the access UL signal of the terminal device arrives at the relay node.
  • a wireless communication apparatus which is applied to a host base station, and the apparatus includes:
  • a third receiving unit configured to receive a first time adjustment instruction sent by the relay node of the host base station
  • a second adjusting unit configured to adjust the first sending time according to the first time adjustment instruction
  • the first transmission time is a transmission time of a backhaul DL signal sent by the host base station to the relay node;
  • the first time adjustment instruction is used to instruct the host base station to advance or delay the first transmission time of the signal, so that the difference between the first receiving time and the reference time determined by the relay node is less than a preset time difference. value;
  • the first receiving time is a time when the backhaul DL signal of the donor base station arrives at the relay node.
  • a network device comprising: a memory, a processor, and a program stored on the memory and executable on the processor, the program being implemented by the processor to implement the above application The steps of the wireless communication method of the relay node.
  • a network device comprising: a memory, a processor, and a program stored on the memory and executable on the processor, the program being implemented by the processor to implement the above application.
  • a computer readable storage medium is presented, the program being stored on a computer readable storage medium, the program being executed by a processor to implement the steps of the wireless communication method applied to the relay node.
  • a computer readable storage medium storing a program on a computer readable storage medium, the program being executed by a processor to implement the above-described steps of a wireless communication method applied to a host base station.
  • the relay node may control the transmit power of the backhaul DL signal of the host base station and/or the transmit power of the access UL signal of the terminal device according to the target received power value, so that the backhaul DL signal of the host base station arrives.
  • the difference between the signal power of the node and the signal power of the access device of the terminal device when reaching the relay node is within the tolerance of the relay node, thereby ensuring that the backhaul link and the access link in the relay system can At the same time, the backhaul link and the access link can be effectively multiplexed in the FDM or SDM mode.
  • the half-duplex mode of the relay node When the half-duplex mode of the relay node is maintained, the communication delay can be reduced and the communication efficiency of the system can be improved. In addition, there is no higher requirement for the capability of the relay node. The relay node still performs signal receiving and transmitting operations in the half-duplex mode, so the equipment cost is not increased.
  • the host base station can cooperate with the power control mechanism of the relay node to adjust the transmit power of the backhaul DL signal of the host base station, so that the signal power and the terminal when the backhaul DL signal of the host base station reaches the relay node
  • the difference between the signal powers is within the tolerance of the relay node, so that the backhaul link and the access link in the relay system can work simultaneously, so that the backhaul chain
  • the road and the access link can be effectively multiplexed in the FDM or SDM mode.
  • the half-duplex working mode of the relay node is maintained, the communication delay can be reduced and the communication efficiency of the system can be improved.
  • the relay node may control the transmission time of the backhaul DL signal of the host base station and/or the transmission time of the access UL signal of the terminal device according to the reference time, so that the host is in the same time slot or the same time interval.
  • the difference between the time when the backhaul DL signal of the base station arrives at the relay node and the time when the access UL signal of the terminal device arrives at the relay node is within the tolerance range of the relay node, thereby ensuring the backhaul link in the relay system and
  • the access link can work at the same time, so that the backhaul link and the access link can be effectively multiplexed in the FDM or SDM mode.
  • the communication delay can be reduced and improved. System communication efficiency.
  • the relay node still performs signal receiving and transmitting operations in the half-duplex mode, so the equipment cost is not increased.
  • the host base station can adjust the transmission time of the backhaul DL signal of the host base station according to the transmission time control mechanism of the relay node, so that the backhaul DL signal of the host base station in the same time slot or the same time interval is adjusted.
  • the difference between the time when the relay node arrives and the time when the access UL signal of the terminal device arrives at the relay node is within the tolerance of the relay node, thereby ensuring that the backhaul link and the access link in the relay system can At the same time, the backhaul link and the access link can be effectively multiplexed in the FDM or SDM mode.
  • the half-duplex working mode of the relay node is maintained, the communication delay can be reduced and the communication efficiency of the system can be improved.
  • the relay node still performs signal receiving and transmitting operations in the half-duplex mode, so the equipment cost is not increased.
  • FIG. 1 is a scene diagram of a single-hop relay system of the related art
  • the scenario diagram of the related art relay system of FIG. 2 adopts a TDM scheme for signal transmission
  • FIG. 3 is a scene diagram of a signal transmission of a relay system of the present disclosure using an FDM or SDM scheme
  • FIG. 4 is a flow chart of a method of wireless communication in accordance with an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a wireless communication method according to another embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a wireless communication method of another embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a wireless communication method of another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a wireless communication device according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a wireless communication apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a wireless communication apparatus according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WIMAX Worldwide Interoperability for Microwave Access
  • the terminal device may include, but is not limited to, a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a user equipment (User Equipment, UE), a mobile phone (handset).
  • a portable device, a vehicle, etc. the terminal device can communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal device can be a mobile phone (or Known as "cellular" telephones, computers with wireless communication capabilities, etc., the terminal devices can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices.
  • RAN Radio Access Network
  • a network device involved in an embodiment of the present disclosure is a device deployed in a radio access network to provide a wireless communication function for a terminal device.
  • the network device may be a base station, and the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functionality may vary.
  • an Evolved NodeB eNB or eNodeB
  • 3G 3rd Generation
  • the backhaul link refers to the communication link between the host base station and the relay node in the relay system, and the backhaul link may specifically include: returning the downlink and returning the uplink.
  • the relay node receives the downlink downlink signal sent by the host base station on the downlink downlink, which is also referred to as a “backhaul DL signal”; the relay node sends a backhaul chain to the host base station on the backhaul uplink.
  • the uplink signal also known as the "backhaul UL signal.”
  • An access link refers to a communication link between a relay node and a terminal device that accesses the relay cell.
  • the access link may include: accessing the downlink and accessing the uplink.
  • the relay node sends an access link downlink signal to the terminal device on the access downlink, which is also referred to as an “access DL signal”; the relay node receives the access chain sent by the terminal on the access uplink.
  • the uplink signal also known as the "access UL signal.” It should be noted that the terminal devices involved in the embodiments of the present disclosure refer to terminal devices that all access the relay cell.
  • the host base station refers to the upper-level node of the relay node. In practical applications, the host base station may be directly connected to the core network by wire, or may be connected to the core network through a host node of a higher-level host.
  • the relay node In a wireless relay system, the relay node needs to communicate with the base station and the terminal device. Due to the half-duplex working mode, the relay node cannot transmit and receive signals on the same carrier frequency (if in the same The self-interference problem of the relay node occurs when the carrier frequency occurs and the signal is received at the same time. Specifically, the relay node cannot transmit a signal on the access link when receiving the signal on the backhaul link, and the relay node cannot receive on the access link when transmitting the signal on the backhaul link. signal. Therefore, a certain resource allocation mechanism is needed to ensure that the relay node can normally receive and transmit signals.
  • FIG. 2 shows a signal transmission process between a donor base station, a relay node, and a terminal device in a relay system, where TX indicates that the corresponding network node is in a transmitting state, and RX indicates a corresponding network. The node is in the receiving state, and X indicates that the corresponding network node is not transmitting or receiving. It can be seen from FIG.
  • the host base station sends a signal to the relay node by transmitting the downlink to the relay node, and needs to occupy one time slot
  • the relay node needs to occupy one time slot by transmitting a signal to the terminal device by accessing the downlink
  • the terminal device sends a signal to the relay node by accessing the uplink, and needs to occupy one time slot
  • the relay node sends a signal to the host base station by transmitting the uplink, and needs to occupy one time slot, that is, complete the primary base station.
  • Two-way signal transmission with the terminal device requires four time slots.
  • both the donor base station and the donor base station are idle for half of the time (ie, do not transmit or receive signals), resulting in a large transmission delay and low communication efficiency of the relay system.
  • a reuse scheme for backhaul/access link lifting efficiency is proposed in 5G, specifically Frequency Division Multiplexing (FDM) scheme or Spatial Multiplexing Transmission (Spatial Domain Multiplexing) , SDM) program.
  • FDM Frequency Division Multiplexing
  • SDM Spatial Multiplexing Transmission
  • the relay node can simultaneously receive the backhaul DL signal from the donor base station and receive the access UL signal from the terminal device at the same time, or simultaneously send the backhaul UL signal to the host base station at the same time and The access DL signal is sent to the terminal device.
  • the backhaul link and the access link use different frequency resources. That is FDM.
  • the backhaul link and the access link can use the same frequency resource.
  • the two links are further distinguished by spatial resources.
  • FIG. 4 is a flowchart of a wireless communication method according to an embodiment of the present disclosure.
  • the method is applied to a relay node, and the method may include the following steps: step 401 and step 402, where
  • step 401 a target received power value is determined.
  • step 402 the first transmit power and/or the second transmit power are controlled according to the target received power value, such that the difference between the first received power and the second received power is less than a preset power threshold.
  • the first transmit power is the transmit power of the backhaul DL signal sent by the host base station of the relay node to the relay node
  • the second transmit power is the transmit power of the access UL signal sent by the terminal device to the relay node
  • the first received power is the received power when the backhaul DL signal of the host base station arrives at the relay node
  • the second received power is the received power when the access UL signal of the terminal device arrives at the relay node.
  • the preset power threshold is a maximum power difference between two signals that the relay node can tolerate.
  • the relay node may determine the target received power value with reference to the first received power; or the relay node may determine the target received power value with reference to the second received power; or the relay node may not reference the first received power and the first The second received power determines the target received power value.
  • the relay node does not refer to the first received power and the second received power when determining the target received power value, that is, the target received power value is set by the relay node.
  • the relay node adjusts the first transmit power and the second transmit power according to the target received power value, so that the difference between the first received power and the second received power is at the relay node.
  • the above-mentioned step 402 may specifically include at least one of the following steps: step 4021 and step 4022 (not shown), wherein
  • Step 4021 Control the first transmit power, so that the difference between the first received power and the target received power value is less than the first preset power threshold;
  • Step 4022 Control the second transmit power, so that the difference between the second received power and the target received power value is less than the second preset power threshold.
  • the preset power threshold, the first preset power threshold, and the second power threshold are different, wherein the preset power threshold refers to a tolerance of the relay node to the difference between the two signal powers.
  • the relay node controls the first transmit power and the second transmit power, and the first preset power threshold and the second preset power threshold are set, so that the difference between the first received power and the second received power is less than a preset. Power threshold.
  • the relay node first sets the target received power value, and then controls the transmit power of the backhaul DL signal of the host base station and the transmit power of the access UL signal of the terminal device, so that the signal strength of the backhaul DL signal when reaching the relay node is obtained.
  • the difference in signal strength when the access UL signal arrives at the relay node is within the tolerance of the relay node.
  • the relay node refers to the first received power when determining the target received power value, that is, the target received power value is set by the relay node according to the first received power;
  • the relay node needs to obtain the first received power, and then determines that the first received power is the target received power value, and based on the first received power, only adjusts the second transmit power to make the first received power.
  • the difference from the second received power is within the tolerance of the relay node.
  • the foregoing step 402 may specifically include the following steps:
  • the second transmit power is controlled such that a difference between the second received power and the target received power value is less than a preset power threshold.
  • the relay node may measure the received power when the backhaul DL signal of the host base station reaches the relay node, to obtain the first received power, and/or receive the signaling sent by the host base station, and determine the first according to the signaling. a received power; wherein the signaling carries related information for determining the first received power, where the related information may be a transmit power strength of the host base station to send the backhaul DL signal, so that the relay node has a transmit power strength and a path loss A difference operation is performed to obtain a first received power, where the signaling includes at least one of the following: radio resource control RRC signaling, medium access control MAC signaling, and physical layer signaling.
  • the relay node first sets the received power of the backhaul DL signal of the host base station to the target receiving power value, and then controls only the transmit power of the access UL signal of the terminal device, so that the backhaul DL signal arrives.
  • the difference between the signal strength at the node and the signal strength when the access UL signal arrives at the relay node is within the tolerance of the relay node.
  • the relay node refers to the second received power when determining the target received power value, that is, the target received power value is set by the relay node according to the second received power; In this case, the relay node determines that the second received power is the target received power value, and based on the second received power, only adjusts the first transmit power to make the difference between the first received power and the second received power.
  • the foregoing step 402 may specifically include the following steps:
  • the first transmit power is controlled such that a difference between the first received power and the target received power value is less than a preset power threshold.
  • the relay node first sets the received power when the access UL signal of the terminal device reaches the relay node to the target received power value, and then controls only the transmit power of the backhaul DL signal of the host base station, so that the backhaul DL signal arrives.
  • the difference between the signal strength at the node and the signal strength when the access UL signal arrives at the relay node is within the tolerance of the relay node.
  • the path loss of the road is determined, and the path loss refers to the power loss of the signal transmitted on the backhaul link.
  • the path loss may be measured by the relay node, and the measurement result is reported by the relay node to the host base station.
  • the relay node measures the path loss of the backhaul link between the relay node and the host base station. Sending a path loss to the host base station.
  • the relay node transmits an uplink signal to the host base station by using a certain set power, and the receiving base station measures the received power strength, and feeds back to the relay node, and the relay node sets the transmit power according to the known setting and the actual situation of the host base station.
  • the received power (usually the difference calculation) is used to calculate the path loss.
  • the path loss can be measured by the host base station.
  • the relay node transmits an uplink signal to the host base station at a certain set power, and the host base station measures the received power strength, and the host base station calculates the path loss according to the known set transmit power and the actual received power of the host base station.
  • the first power adjustment command is sent to the host base station, where the first power adjustment command is used to instruct the host base station to increase or decrease the first transmit power, so that the difference between the first received power and the target received power value is less than the preset power. Threshold.
  • the first power adjustment command may be similar to Transmission Power Control (TPC) in LTE or NR.
  • TPC Transmission Power Control
  • the host base station After receiving the first power adjustment instruction, the host base station performs an operation of increasing or decreasing the transmission power accordingly.
  • the relay node may adjust the second transmit power of the terminal device by setting a reasonable open loop power control parameter (eg, P0, alpha, etc.), and/or sending a closed loop power control command TPC to the terminal device.
  • a reasonable open loop power control parameter eg, P0, alpha, etc.
  • the relay node can control the transmit power of the backhaul DL signal of the host base station and/or the transmit power of the access UL signal of the terminal device according to the target received power value, so that the host base station
  • the difference between the signal power when the backhaul DL signal arrives at the relay node and the signal power when the access UL signal of the terminal device arrives at the relay node is within the tolerance of the relay node, thereby ensuring the backhaul link in the relay system and
  • the access link can work at the same time, so that the backhaul link and the access link can be effectively multiplexed in FDM or SDM mode, and the communication delay can be reduced and the system can be improved while maintaining the half-duplex working mode of the relay node. Communication efficiency.
  • the relay node still performs signal receiving and transmitting operations in the half-duplex mode, so the equipment cost is not increased.
  • FIG. 5 is a flowchart of a method for wireless communication according to another embodiment of the present disclosure. The method is applied to a host base station. As shown in FIG. 5, the method may include the following steps: Step 501 and Step 502, where
  • step 501 a target received power value and/or a first power adjustment command sent by the relay node of the donor base station is received.
  • step 502 the first transmit power is adjusted based on the target received power value and/or the first power adjustment command.
  • the first transmit power is the transmit power of the backhaul DL signal sent by the host base station to the relay node
  • the target received power value is used by the host base station to determine the first transmit power
  • the first transmit power is determined by the target received power value
  • the first power adjustment instruction is used to indicate that the host base station increases or decreases the first transmit power, so that the difference between the first received power and the target received power value
  • the first received power is less than the preset power threshold, and the first received power is the received power when the backhaul DL signal of the host base station arrives at the relay node.
  • the path loss may be measured by the relay node and sent by the relay node to the host base station; or the path loss may be measured by the host base station, and the specific measurement method and the content in the embodiment shown in FIG. Similar, I will not repeat them here.
  • the host base station can adjust the transmit power of the backhaul DL signal of the host base station in cooperation with the power control mechanism of the relay node, so that the backhaul DL signal of the host base station arrives at the relay node.
  • the difference between the signal power and the signal power of the access device's access UL signal to the relay node is within the tolerance of the relay node, thereby ensuring that the backhaul link and the access link in the relay system can work simultaneously.
  • the backhaul link and the access link can be effectively multiplexed in the FDM or SDM mode.
  • FIG. 6 is a flowchart of a wireless communication method according to another embodiment of the present disclosure, where the method is applied to a relay node, and the method may include the following steps: step 601 and step 602, where
  • step 601 a reference time is determined.
  • the reference time may be an absolute time or a relative time.
  • step 602 the first transmission time and/or the second transmission time are controlled according to the reference time such that the difference between the first reception time and the second reception time is less than the preset time difference.
  • the first transmission time is a transmission time of the backhaul DL signal sent by the host base station of the relay node to the relay node
  • the second transmission time is a transmission time of the access UL signal sent by the terminal device to the relay node
  • the first receiving time is the time when the backhaul DL signal of the host base station arrives at the relay node
  • the second receiving time is the time when the access UL signal of the terminal device arrives at the relay node.
  • the preset time difference is a maximum value of two signal arrival time intervals that the relay node can tolerate.
  • the relay node may determine the reference time by referring to the first receiving time; or the relay node may determine the reference time by referring to the second receiving time; or the relay node may determine not referring to the first receiving time and the second receiving time. Base time.
  • the relay node does not refer to the first receiving time and the second receiving time when determining the reference time, that is, the reference time is set by the relay node; in this case
  • the above step 601 may specifically include the following steps: determining that the frame timing of the relay node is the reference time. At this time, the relay node adjusts both the first transmission time and the second transmission time based on the reference time, so that the difference between the first reception time and the second reception time is within the tolerance range of the relay node.
  • the foregoing step 602 may specifically include at least one of the following steps: step 6021 and step 6022, where
  • Step 6021 Control the first transmission time, so that the difference between the first receiving time and the reference time is less than the first preset time difference;
  • Step 6022 Control the second transmission time so that the difference between the second reception time and the reference time is less than the second preset time difference.
  • the preset time difference value, the first preset time difference value, and the second preset time difference value are different, wherein the preset time difference value refers to the relay node pair two signals.
  • the tolerance of the arrival time difference, the relay node controls the first transmission time and the second transmission time, and sets the first preset time difference and the second preset time difference to make the first receiving time and the first The difference between the two receiving times is less than the preset time difference.
  • the relay node first sets the reference time, and then controls the transmission time of the backhaul DL signal of the host base station and the transmission time of the access UL signal of the terminal device, so that the time when the backhaul DL signal arrives at the relay node and access UL The difference in time when the signal arrives at the relay node is within the tolerance of the relay node.
  • the relay node refers to the first receiving time when determining the reference time, that is, the reference time is set by the relay node according to the first receiving time; in this case, The relay node needs to obtain the first receiving time, and then determines that the first receiving time is the reference time. Based on the first receiving time, only the second transmitting time is adjusted to make the difference between the first receiving time and the second receiving time. The value is within the tolerance of the relay node.
  • the foregoing step 402 may specifically include the following steps:
  • the second transmission time is controlled such that the difference between the second reception time and the reference time is less than the preset time difference.
  • the relay node may measure the received power when the backhaul DL signal of the donor base station arrives at the relay node, to obtain a first receiving time.
  • the relay node first sets the time when the backhaul DL signal of the host base station reaches the relay node as the reference time, and then only controls the transmission time of the access UL signal of the terminal device, so that the backhaul DL signal arrives at the relay node.
  • the difference between the time and the time when the access UL signal arrives at the relay node is within the tolerance of the relay node.
  • the relay node refers to the second receiving time when determining the reference time, that is, the reference time is set by the relay node according to the second receiving time; in this case, The relay node determines that the second receiving time is the reference time, and based on the second receiving time, only adjusts the first transmitting time, so that the difference between the first receiving time and the second receiving time is tolerated at the relay node.
  • the foregoing step 402 may specifically include the following steps:
  • the first transmission time is controlled such that the difference between the first reception time and the reference time is less than the preset time difference.
  • the relay node first sets the time when the access UL signal of the terminal device reaches the relay node as the reference time, and then only controls the transmission time of the backhaul DL signal of the host base station, so that the backhaul DL signal arrives at the relay node.
  • the difference between the time and the time when the access UL signal arrives at the relay node is within the tolerance of the relay node.
  • the time is such that the difference between the first reception time and the reference time is less than the preset time difference.
  • the relay node may send the second time adjustment command to the terminal device in the random access process to adjust the uplink sending time of the terminal device.
  • the relay node may adjust the uplink sending time of the terminal device by sending a closed-loop timing adjustment command (TAC).
  • TAC closed-loop timing adjustment command
  • the relay node can control the transmission time of the backhaul DL signal of the host base station and/or the transmission time of the access UL signal of the terminal device according to the reference time, so that the same time slot or The difference between the time when the backhaul DL signal of the donor base station arrives at the relay node and the time when the access UL signal of the terminal device arrives at the relay node in the same time interval is within the tolerance range of the relay node, thereby ensuring the The backhaul link and the access link can work simultaneously, so that the backhaul link and the access link can be effectively multiplexed in FDM or SDM mode, and the communication can be reduced while maintaining the half-duplex working mode of the relay node. Delay, improve system communication efficiency. In addition, there is no higher requirement for the capability of the relay node. The relay node still performs signal receiving and transmitting operations in the half-duplex mode, so the equipment cost is not increased.
  • FIG. 7 is a flowchart of a method for wireless communication according to another embodiment of the present disclosure. The method is applied to a host base station. As shown in FIG. 7, the method may include the following steps: Step 701 and Step 702, where
  • step 701 a first time adjustment instruction sent by a relay node of the host base station is received.
  • step 702 the first transmission time is adjusted according to the first time adjustment instruction.
  • the first transmission time is a transmission time of the backhaul DL signal sent by the host base station to the relay node
  • the first time adjustment instruction is used to indicate that the host base station advances or delays the first transmission time of the signal, so that the first reception is performed.
  • the difference between the time and the reference time determined by the relay node is less than the preset time difference, and the first receiving time is the time when the backhaul DL signal of the donor base station arrives at the relay node.
  • the specific adjustment process is similar to the content in the embodiment shown in FIG. 6, and details are not described herein again.
  • the host base station can adjust the transmission time of the backhaul DL signal of the host base station according to the transmission time control mechanism of the relay node, so that the host is in the same time slot or the same time interval.
  • the difference between the time when the backhaul DL signal of the base station arrives at the relay node and the time when the access UL signal of the terminal device arrives at the relay node is within the tolerance range of the relay node, thereby ensuring the backhaul link in the relay system and
  • the access link can work at the same time, so that the backhaul link and the access link can be effectively multiplexed in FDM or SDM mode, and the communication delay can be reduced and the system can be improved while maintaining the half-duplex working mode of the relay node. Communication efficiency.
  • the relay node still performs signal receiving and transmitting operations in the half-duplex mode, so the equipment cost is not increased.
  • FIG. 8 is a schematic structural diagram of a wireless communication apparatus according to an embodiment of the present disclosure. As shown in FIG. 8, the wireless communication apparatus 800 is applied to a relay node, and the wireless communication apparatus 800 may include: a first determining unit 801 and a first Control unit 802, wherein
  • a first determining unit 801 configured to determine a target received power value
  • the first control unit 802 is configured to control, according to the target received power value, the first transmit power and/or the second transmit power, so that the difference between the first received power and the second received power is less than a preset power threshold. ;
  • the first transmit power is a transmit power of a backhaul DL signal sent by the host base station of the relay node to the relay node;
  • the second transmit power is a transmit power of an access UL signal sent by the terminal device to the relay node;
  • the first received power is a received power when the backhaul DL signal of the donor base station arrives at the relay node;
  • the second received power is a received power when the access UL signal of the terminal device reaches the relay node.
  • the relay node can control the transmit power of the backhaul DL signal of the host base station and/or the transmit power of the access UL signal of the terminal device according to the target received power value, so that the host base station
  • the difference between the signal power when the backhaul DL signal arrives at the relay node and the signal power when the access UL signal of the terminal device arrives at the relay node is within the tolerance of the relay node, thereby ensuring the backhaul link in the relay system and
  • the access link can work at the same time, so that the backhaul link and the access link can be effectively multiplexed in FDM or SDM mode, and the communication delay can be reduced and the system can be improved while maintaining the half-duplex working mode of the relay node. Communication efficiency.
  • the relay node still performs signal receiving and transmitting operations in the half-duplex mode, so the equipment cost is not increased.
  • the first control unit 802 includes at least one of the following:
  • a first power control word unit configured to control the first transmit power, so that a difference between the first received power and the target received power value is less than a first preset power threshold
  • a second power control word unit configured to control the second transmit power, such that a difference between the second received power and the target received power value is less than a second preset power threshold.
  • the first determining unit 801 includes:
  • a first power value determining subunit configured to determine that the first received power is a target received power value
  • the first control unit 802 includes:
  • a third power control word unit configured to control the second transmit power, so that a difference between the second received power and the target received power value is less than a preset power threshold.
  • the first determining unit 801 includes:
  • a second power value determining subunit configured to determine that the second received power is a target received power value
  • the first control unit 802 includes:
  • a fourth power control word unit configured to control the first transmit power, so that a difference between the first received power and the target received power value is less than a preset power threshold.
  • the first control unit 802 includes:
  • a first sending subunit configured to send the target received power value to the host base station
  • the target received power value is used by the host base station to determine the first transmit power, and the first transmit power is used by the target received power value and a return chain between the relay node and a donor base station.
  • the road loss of the road is determined.
  • the wireless communication device 800 further includes:
  • a first measuring unit configured to measure a path loss of the backhaul link between the relay node and the host base station
  • the first sending unit is configured to send the path loss to the host base station.
  • the path loss is measured by the host base station.
  • the first control unit 802 includes:
  • a second sending subunit configured to send a first power adjustment instruction to the host base station
  • the first power adjustment command is used to instruct the host base station to increase or decrease the first transmit power, so that a difference between the first received power and the target received power value is less than a preset power threshold.
  • the first control unit 802 includes:
  • a third sending subunit configured to send a second power adjustment instruction to the terminal device
  • the second power adjustment command is used to instruct the terminal device to increase or decrease the second transmit power, so that a difference between the second receive power and the target received power value is less than a preset power threshold.
  • the wireless communication device 800 further includes:
  • a second measuring unit configured to measure a received power when the backhaul DL signal of the host base station reaches the relay node, to obtain the first received power
  • a first receiving unit configured to receive signaling sent by the host base station, and determine the first received power according to the signaling
  • the signaling carries related information for determining the first received power.
  • the signaling includes at least one of the following: radio resource control RRC signaling, media access control MAC signaling, and physical layer signaling.
  • FIG. 9 is a schematic structural diagram of a wireless communication apparatus according to another embodiment of the present disclosure. As shown in FIG. 9, the wireless communication apparatus 900 is applied to a host base station, and the wireless communication apparatus 900 may include: a second receiving unit 901 and a first Adjustment unit 902, wherein
  • the second receiving unit 901 is configured to receive a target received power value and/or a first power adjustment command sent by the relay node of the host base station;
  • the first adjusting unit 902 is configured to adjust the first transmit power according to the target received power value and/or the first power adjustment command;
  • the first transmit power is a transmit power of a backhaul DL signal sent by the host base station to the relay node;
  • the target received power value is used by the host base station to determine the first transmit power, and the first transmit power is determined by the target received power value and a backhaul link between the relay node and a donor base station Road loss determination;
  • the first power adjustment instruction is used to instruct the host base station to increase or decrease the first transmit power, so that a difference between the first received power and the target received power value is less than a preset power threshold;
  • the first received power is a received power when the backhaul DL signal of the donor base station arrives at the relay node.
  • the host base station can adjust the transmit power of the backhaul DL signal of the host base station in cooperation with the power control mechanism of the relay node, so that the backhaul DL signal of the host base station arrives at the relay node.
  • the difference between the signal power and the signal power of the access device's access UL signal to the relay node is within the tolerance of the relay node, thereby ensuring that the backhaul link and the access link in the relay system can work simultaneously.
  • the backhaul link and the access link can be effectively multiplexed in the FDM or SDM mode.
  • FIG. 10 is a schematic structural diagram of a wireless communication apparatus according to another embodiment of the present disclosure. As shown in FIG. 10, the wireless communication apparatus 1000 is applied to a relay node, and the wireless communication apparatus 1000 may include: a second determining unit 1001 and a Two control unit 1002, wherein
  • a second determining unit 1001 configured to determine a reference time
  • the second control unit 1002 is configured to control, according to the reference time, the first transmission time and/or the second transmission time, so that the difference between the first reception time and the second reception time is less than the preset time difference;
  • the first transmission time is a transmission time of a backhaul DL signal sent by the host base station of the relay node to the relay node;
  • the second transmission time is a transmission time of an access UL signal sent by the terminal device to the relay node;
  • the first receiving time is a time when the backhaul DL signal of the donor base station arrives at the relay node
  • the second receiving time is a time when the access UL signal of the terminal device arrives at the relay node.
  • the relay node can control the transmission time of the backhaul DL signal of the host base station and/or the transmission time of the access UL signal of the terminal device according to the reference time, so that the same time slot or The difference between the time when the backhaul DL signal of the donor base station arrives at the relay node and the time when the access UL signal of the terminal device arrives at the relay node in the same time interval is within the tolerance range of the relay node, thereby ensuring the The backhaul link and the access link can work simultaneously, so that the backhaul link and the access link can be effectively multiplexed in FDM or SDM mode, and the communication can be reduced while maintaining the half-duplex working mode of the relay node. Delay, improve system communication efficiency. In addition, there is no higher requirement for the capability of the relay node. The relay node still performs signal receiving and transmitting operations in the half-duplex mode, so the equipment cost is not increased.
  • the second determining unit 1001 includes:
  • the first time determining subunit is configured to determine a frame timing of the relay node as a reference time.
  • the second control unit 1002 includes at least one of the following:
  • a first time control subunit configured to control the first transmission time, so that a difference between the first receiving time and the reference time is less than a first preset time difference
  • a second time control subunit configured to control the second transmission time, so that the difference between the second reception time and the reference time is less than the second preset time difference.
  • the second determining unit 1001 includes:
  • a second time determining subunit configured to determine that the first receiving time is a reference time
  • the second control unit 1002 includes:
  • a third time control subunit configured to control the second transmission time, so that a difference between the second reception time and the reference time is less than a preset time difference.
  • the second determining unit 1001 includes:
  • a third time determining subunit configured to determine that the second receiving time is a reference time
  • the second control unit 1002 includes:
  • a fourth time control subunit configured to control the first transmission time, so that a difference between the first receiving time and the reference time is less than a preset time difference.
  • the second control unit 1002 includes:
  • a fourth time determining subunit configured to determine a time when the backhaul DL signal of the host base station arrives at the relay node
  • a time comparison subunit configured to compare a time when the backhaul DL signal of the base station reaches the relay node with the reference time, to obtain a comparison result
  • An instruction generating subunit configured to generate a first time adjustment instruction according to the comparison result
  • a fourth sending subunit configured to send the first time adjustment instruction to the host base station
  • the first time adjustment instruction is used to instruct the host base station to advance or delay the first transmission time of the signal, so that the difference between the first reception time and the reference time is less than a preset time difference.
  • the second control unit 1002 includes:
  • a fifth sending subunit configured to send a second time adjustment instruction to the terminal device
  • the second time adjustment instruction is used to instruct the terminal device to advance or delay the second transmission time, so that the difference between the second reception time and the reference time is less than a preset time difference.
  • the wireless communication device 1000 further includes:
  • a third measuring unit configured to measure a time when the backhaul DL signal of the host base station reaches the relay node, to obtain the first receiving time.
  • FIG. 11 is a schematic structural diagram of a wireless communication apparatus according to another embodiment of the present disclosure. As shown in FIG. 11, a wireless communication apparatus 1100 is applied to a host base station, and the wireless communication apparatus 1100 may include: a third receiving unit 1101 and a second Adjustment unit 1102, wherein
  • the third receiving unit 1101 is configured to receive a first time adjustment instruction sent by the relay node of the host base station;
  • the second adjusting unit 1102 is configured to adjust the first sending time according to the first time adjustment instruction
  • the first transmission time is a transmission time of a backhaul DL signal sent by the host base station to the relay node;
  • the first time adjustment instruction is used to instruct the host base station to advance or delay the first transmission time of the signal, so that the difference between the first receiving time and the reference time determined by the relay node is less than a preset time difference. value;
  • the first receiving time is a time when the backhaul DL signal of the donor base station arrives at the relay node.
  • the host base station can adjust the transmission time of the backhaul DL signal of the host base station according to the transmission time control mechanism of the relay node, so that the host is in the same time slot or the same time interval.
  • the difference between the time when the backhaul DL signal of the base station arrives at the relay node and the time when the access UL signal of the terminal device arrives at the relay node is within the tolerance range of the relay node, thereby ensuring the backhaul link in the relay system and
  • the access link can work at the same time, so that the backhaul link and the access link can be effectively multiplexed in FDM or SDM mode, and the communication delay can be reduced and the system can be improved while maintaining the half-duplex working mode of the relay node. Communication efficiency.
  • the relay node still performs signal receiving and transmitting operations in the half-duplex mode, so the equipment cost is not increased.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device shown in FIG. 12 can implement the details of the wireless communication method in the method embodiment of any of FIGS. 4-7, and achieve the same effect.
  • the network device 1200 includes a processor 1201, a transceiver 1202, a memory 1203, a user interface 1204, and a bus interface, where:
  • the network device 1200 further includes: a program stored on the memory 1203 and operable on the processor 1201; when the network device 1200 is a relay node, when the program is executed by the processor 1201, the following steps are implemented:
  • the first transmit power is a transmit power of a downlink backhaul DL signal of a backhaul link sent by the base station of the relay node to the relay node;
  • the second transmit power is a relay of the terminal device to the relay
  • the first received power is the received power when the backhaul DL signal of the donor base station arrives at the relay node;
  • the second received power is The received power of the access device of the terminal device when it reaches the relay node.
  • the first transmission time is a transmission time of a backhaul DL signal sent by the host base station of the relay node to the relay node;
  • the second transmission time is an access UL signal sent by the terminal device to the relay node.
  • the first receiving time is the time when the backhaul DL signal of the donor base station arrives at the relay node;
  • the second receiving time is that the access UL signal of the terminal device arrives at the relay node Time of time.
  • the first transmit power is a transmit power of a backhaul DL signal sent by the host base station to the relay node; the target received power value is used by the host base station to determine the first transmit power, the first Transmitting power is determined by the target received power value and a path loss of a backhaul link between the relay node and the donor base station; the first power adjustment instruction is used to instruct the host base station to increase or decrease the number Transmitting power such that a difference between the first received power and the target received power value is less than a preset power threshold; the first received power is a reception when the backhaul DL signal of the donor base station arrives at the relay node power.
  • first time adjustment instruction sent by the relay node of the host base station; adjusting the first transmission time according to the first time adjustment instruction; wherein the first transmission time is the a transmission time of the backhaul DL signal sent by the relay node; the first time adjustment instruction is used to instruct the host base station to advance or delay the first transmission time of the signal, so that the first receiving time and the relay node are The determined reference time difference is less than a preset time difference; the first receiving time is a time when the backhaul DL signal of the donor base station arrives at the relay node.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1201 and various circuits of memory represented by memory 1203.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1202 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1204 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1201 is responsible for managing the bus architecture and general processing, and the memory 1203 can store data used by the processor 1201 in performing operations.
  • the embodiment of the present disclosure further provides a computer readable storage medium.
  • the computer readable storage medium stores a computer program, where the computer program is executed by the processor to implement various processes of the wireless communication method embodiment, and can achieve the same technology. The effect, to avoid repetition, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • Embodiments of the present disclosure also provide a computer program product comprising instructions that, when executed by a computer, execute the wireless communication method described above.
  • the computer program product can run on the network device described above.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种无线通信方法、装置及网络设备,一种无线通信方法包括:确定目标接收功率值;根据所述目标接收功率值,对第一发射功率和/或第二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值。一种无线通信方法包括:确定基准时间;根据所述基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值。

Description

无线通信方法、装置及网络设备
相关申请的交叉引用
本申请主张在2018年5月11日在中国提交的中国专利申请No.201810450490.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种无线通信方法、装置及网络设备。
背景技术
中继(Relay)技术是一种在基站与终端设备,例如又称作用户设备(User Equipment,UE)之间增加一个或多个中继节点,由中继节点对无线信号进行一次或多次转发的无线通信技术。在一个典型的中继系统应用场景中,如图1所示,该应用场景中包括:宿主基站(Donor gNB)101、中继节点(Relay node)102和终端设备103,其中,宿主基站101所服务的小区称为主小区(Donor cell),中继节点102所服务的小区称为中继小区(Relay cell);宿主基站101与中继节点102之间的通信链路称为回传链路(backhaul link),又可称作回程链路,或者回程线路;中继节点102与接入中继小区的终端设备103之间的通信链路称为接入链路(access link)。
相关技术中,采用时分复用(Time Division Multiplexing,TDM)方案,以确保中继节点在半双工的工作模式下能够正常接收和发送信号。
然而,由于完成一次宿主基站与终端设备之间的双向信号传输,需要四个时隙,且宿主基站与终端设备有一半时间处于空闲状态,因此会导致传输时延较大,系统通信效率较低。
发明内容
本公开实施例的目的是提供一种无线通信方法、装置及网络设备,以解决相关技术中存在的传输时延较大,系统通信效率较低的技术问题。
为解决上述技术问题,本公开实施例是这样实现的:
第一方面,提出了一种无线通信方法,应用于中继节点,所述方法包括:
确定目标接收功率值;
根据所述目标接收功率值,对第一发射功率和/或第二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值;
其中,所述第一发射功率为所述中继节点的宿主基站向所述中继节点发送的回传链路下行backhaul DL信号的发射功率;
所述第二发射功率为终端设备向所述中继节点发送的接入链路上行access UL信号的发射功率;
所述第一接收功率为所述宿主基站的所述backhaul DL信号到达所述中继节点时的接收功率;
所述第二接收功率为所述终端设备的所述access UL信号到达所述中继节点时的接收功率。
第二方面,提出了一种无线通信方法,应用于宿主基站,所述方法包括:
接收所述宿主基站的中继节点发送的目标接收功率值和/或第一功率调整指令;
根据所述目标接收功率值和/或所述第一功率调整指令,调整第一发射功率;
其中,所述第一发射功率为所述宿主基站向所述中继节点发送的backhaul DL信号的发射功率;
所述目标接收功率值用于所述宿主基站确定所述第一发射功率,所述第一发射功率由所述目标接收功率值和所述中继节点与宿主基站之间的回传链路的路损确定,所述backhaul DL信号在所述回传链路上传输;
所述第一功率调整指令用于指示所述宿主基站提高或降低所述第一发射功率,以使得第一接收功率和所述目标接收功率值的差值小于预设功率阈值;
所述第一接收功率为所述宿主基站的所述backhaul DL信号到达所述中 继节点时的接收功率。
第三方面,提出了一种无线通信方法,应用于中继节点,所述方法包括:
确定基准时间;
根据所述基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值;
其中,所述第一发射时间为所述中继节点的宿主基站向所述中继节点发送的backhaul DL信号的发射时间;
所述第二发射时间为终端设备向所述中继节点发送的access UL信号的发射时间;
所述第一接收时间为所述宿主基站的所述backhaul DL信号到达所述中继节点时的时间;
所述第二接收时间为所述终端设备的所述access UL信号到达所述中继节点时的时间。
第四方面,提出了一种无线通信方法,应用于宿主基站,所述方法包括:
接收所述宿主基站的中继节点发送的第一时间调整指令;
根据所述第一时间调整指令,调整第一发射时间;
其中,所述第一发射时间为所述宿主基站向所述中继节点发送的backhaul DL信号的发射时间;
所述第一时间调整指令用于指示所述宿主基站提前或延迟信号所述第一发射时间,以使得第一接收时间和所述中继节点所确定的基准时间的差值小于预设时间差值;
所述第一接收时间为所述宿主基站的所述backhaul DL信号到达所述中继节点时的时间。
第五方面,提出了一种无线通信装置,应用于中继节点,所述装置包括:
第一确定单元,用于确定目标接收功率值;
第一控制单元,用于根据所述目标接收功率值,对第一发射功率和/或第 二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值;
其中,所述第一发射功率为所述中继节点的宿主基站向所述中继节点发送的backhaul DL信号的发射功率;
所述第二发射功率为终端设备向所述中继节点发送的access UL信号的发射功率;
所述第一接收功率为所述宿主基站的所述backhaul DL信号到达所述中继节点时的接收功率;
所述第二接收功率为所述终端设备的所述access UL信号到达所述中继节点时的接收功率。
第六方面,提供了一种无线通信装置,应用于宿主基站,所述装置包括:
第二接收单元,用于接收所述宿主基站的中继节点发送的目标接收功率值和/或第一功率调整指令;
第一调整单元,用于根据所述目标接收功率值和/或所述第一功率调整指令,调整第一发射功率;
其中,所述第一发射功率为所述宿主基站向所述中继节点发送的backhaul DL信号的发射功率;
所述目标接收功率值用于所述宿主基站确定所述第一发射功率,所述第一发射功率由所述目标接收功率值和所述中继节点与宿主基站之间的回传链路的路损确定,所述backhaul DL信号在所述回传链路上传输;
所述第一功率调整指令用于指示所述宿主基站提高或降低所述第一发射功率,以使得第一接收功率和所述目标接收功率值的差值小于预设功率阈值;
所述第一接收功率为所述宿主基站的所述backhaul DL信号到达所述中继节点时的接收功率。
第七方面,提出了一种无线通信装置,应用于中继节点,所述装置包括:
第二确定单元,用于确定基准时间;
第二控制单元,用于根据所述基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值;
其中,所述第一发射时间为所述中继节点的宿主基站向所述中继节点发送的backhaul DL信号的发射时间;
所述第二发射时间为终端设备向所述中继节点发送的access UL信号的发射时间;
所述第一接收时间为所述宿主基站的backhaul DL信号到达所述中继节点时的时间;
所述第二接收时间为所述终端设备的access UL信号到达所述中继节点时的时间。
第八方面,提出了一种无线通信装置,应用于宿主基站,所述装置包括:
第三接收单元,用于接收所述宿主基站的中继节点发送的第一时间调整指令;
第二调整单元,用于根据所述第一时间调整指令,调整第一发射时间;
其中,所述第一发射时间为所述宿主基站向所述中继节点发送的backhaul DL信号的发射时间;
所述第一时间调整指令用于指示所述宿主基站提前或延迟信号所述第一发射时间,以使得第一接收时间和所述中继节点所确定的基准时间的差值小于预设时间差值;
所述第一接收时间为所述宿主基站的所述backhaul DL信号到达所述中继节点时的时间。
第九方面,提出了一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述应用于中继节点的无线通信方法的步骤。
第十方面,提出了一种网络设备,包括:存储器、处理器及存储在所述 存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述应用于宿主基站的无线通信方法的步骤。
第十一方面,提出了一种计算机可读存储介质,所述计算机可读存储介质上存储程序,所述程序被处理器执行时实现上述应用于中继节点的无线通信方法的步骤。
第十二方面,提出了一种计算机可读存储介质,所述计算机可读存储介质上存储程序,所述程序被处理器执行时实现上述应用于宿主基站的无线通信方法的步骤。
由以上本公开实施例提供的技术方案可见,本公开实施例方案至少具备如下一种技术效果:
本公开实施例中,中继节点可以依据目标接收功率值,对宿主基站的backhaul DL信号的发射功率和/或终端设备的access UL信号的发射功率进行控制,使得宿主基站的backhaul DL信号到达中继节点时的信号功率与终端设备的access UL信号到达中继节点时的信号功率的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以达到降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
本公开实施例中,宿主基站能够配合中继节点的功率控制机制,对该宿主基站的backhaul DL信号的发射功率进行调整,以使得宿主基站的backhaul DL信号到达中继节点时的信号功率与终端设备的access UL信号到达中继节点时的信号功率的差值在中继节点的容忍范围内,从而可以保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以达到降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高 的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
本公开实施例中,中继节点可以依据基准时间,对宿主基站的backhaul DL信号的发射时间和/或终端设备的access UL信号的发射时间进行控制,使得在同一时隙或同一时间间隔内宿主基站的backhaul DL信号到达中继节点时的时间与终端设备的access UL信号到达中继节点时的时间的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以达到降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
本公开实施例中,宿主基站能够配合中继节点的发射时间控制机制,对该宿主基站的backhaul DL信号的发射时间进行调整,以使得在同一时隙或同一时间间隔内宿主基站的backhaul DL信号到达中继节点时的时间与终端设备的access UL信号到达中继节点时的时间的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附 图。
图1是相关技术的一种单跳中继系统的场景图;
图2中相关技术的中继系统采用TDM方案进行信号传输的场景图;
图3是本公开的中继系统采用FDM或SDM方案进行信号传输的场景图;
图4是本公开的一个实施例的无线通信方法的流程图;
图5是本公开的另一个实施例的无线通信方法的流程图;
图6是本公开的另一个实施例的无线通信方法的流程图;
图7是本公开的另一个实施例的无线通信方法的流程图;
图8是本公开的一个实施例的无线通信装置的结构示意图;
图9是本公开的另一个实施例的无线通信装置的结构示意图;
图10是本公开的一个实施例的无线通信装置的结构示意图;
图11是本公开的另一个实施例的无线通信装置的结构示意图;
图12是本公开的一个实施例的网络设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应理解,本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统、频分双工(Frequency Division Duplex,FDD)系统、时分双工(Time  Division Duplex,TDD)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、或全球互联微波接入(Worldwide Interoperability for Microwave Access,WIMAX)通信系统、第五代(5-th Generation,5G)移动通信系统,或者新空口(New Radio,NR)系统,及后续演进通信系统等。
在本公开实施例中,终端设备可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)、车辆(vehicle)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本公开实施例中所涉及到的网络设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述网络设备可以为基站,所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等。在采用不同的无线接入技术的系统中,具有基站功能的设备的名称可能会有所不同。例如在LTE网络中,称为演进的节点B(Evolved NodeB,eNB或eNodeB),在第三代(3rd Generation,3G)网络中,称为节点B(Node B),或者后续演进通信系统中网络侧的设备等等。
为了便于理解,首先对本公开实施例中涉及到的一些概念进行介绍。
回传链路(backhaul link),指的是中继系统中的宿主基站与中继节点之间的通信链路,回传链路具体可以包括:回传下行链路和回传上行链路,其中,中继节点在回传下行链路上接收宿主基站发送的回传链路下行信号,又称为“backhaul DL信号”;中继节点在回传上行链路上向宿主基站发送回传链路上行信号,又称为“backhaul UL信号”。
接入链路(access link),指的是中继节点与接入中继小区的终端设备之 间的通信链路,接入链路具体可以包括:接入下行链路和接入上行链路,其中,中继节点在接入下行链路上向终端设备发送接入链路下行信号,又称为“access DL信号”;中继节点在接入上行链路上接收终端发送的接入链路上行信号,又称为“access UL信号”。需要说明的是,本公开实施例中涉及到的终端设备是指均接入中继小区的终端设备。
宿主基站,指的是中继节点的上一级节点,在实际应用中,宿主基站可能直接与核心网有线连接,也可能通过更上级的宿主节点中继连接到核心网。
在无线中继系统中,中继节点需要与宿主基站、终端设备进行通信,由于采用半双工的工作模式,中继节点不能在同一个载波频率上既发送又同时接收信号(如果在同一个载波频率上即发生又同时接收信号,则会造成中继节点的自干扰问题)。具体来说,中继节点在接收回传链路上的信号时,不能在接入链路发送信号,反之,中继节点在回传链路上发送信号时,不能在接入链路上接收信号。因此,需要一定的资源分配机制保证中继节点能够正常接收和发送信号。
为了保证中继节点能够以半双工模式操作,在4G LTE中继系统中,采用TDM复用方案。具体来说,如图2所示,图2示出了中继系统中宿主基站、中继节点与终端设备之间的信号传输过程,其中,TX表示相应网络节点处于发送状态,RX表示相应网络节点处于接收状态,X表示相应网络节点处于不发送也不接收。从图2中可以看出:宿主基站通过回传下行链路向中继节点发送信号,需要占用一个时隙;中继节点通过接入下行链路向终端设备发送信号,需要占用一个时隙;终端设备通过接入上行链路向中继节点发送信号,需要占用一个时隙;中继节点通过回传上行链路向宿主基站发送信号,需要占用一个时隙,也就是说,完成一次宿主基站与终端设备之间的双向信号传输,需要四个时隙。而且宿主基站和宿主基站均有一半时间处于空闲状态(即不发送也不接收信号),导致传输时延较大,中继系统的通信效率低。
为了进一步提高中继系统的传输效率,5G中提出了backhaul/access link 提升效率的复用方案,具体为频分多路复用(Frequency Division Multiplexing,FDM)方案或者空间复用传输(Spatial Domain Multiplexing,SDM)方案。
在FDM方案中,中继节点可以在同一个时刻同时完成接收来自于宿主基站的backhaul DL信号和接收来自于终端设备的access UL信号,或者在同一个时刻同时完成向宿主基站发送backhaul UL信号和向终端设备发送access DL信号。如图3所示,当回传下行链路和访问上行链路同时工作,或者回传上行链路和访问下行链路同时工作时,回传链路和接入链路使用不同的频率资源,即FDM。
在SDM方案中,当回传下行链路和访问上行链路同时工作,或者回传上行链路和访问下行链路同时工作时,回传链路和接入链路可以使用相同的频率资源,两条链路进一步以空间资源进行区分。
结合图2与图3可以看出:相比4G LTE中的TDM方案,在FDM或SDM方案中,完成一次宿主基站和终端设备之间的双向信号传输,仅需要两个时隙,而且宿主基站、中继节点和终端设备在每个时隙均进行信号的接收和发送操作,因此,降低了数据传输时延以及提高了中继系统的通信效率。然而,目前5G的技术讨论中,仅提出了FDM/SDM方案的概念,没有具体的技术方案设计。
本公开实施例中,考虑到中继节点与宿主基站和终端设备的距离不同、无线传播环境不同,宿主基站和终端设备的发射功率不同,为了支持回传链路和接入链路同时工作,并以FDM或SDM方式复用回传链路和接入链路,需要解决以下两个技术问题:
技术问题一,由于中继节点需要同时接收来自于宿主基站的backhaul DL信号和来自于终端设备的access UL信号,如果两个信号到达中继节点的信号强度差异过大,超出了中继节点的容忍度,则将导致中继节点无法正常接收任何一路信号。因此,需要合理的功率控制方案。
技术问题二,由于中继节点需要同时接收来自于宿主基站的backhaul DL 信号和来自于终端设备的access UL信号,如果两个信号到达中继节点的时间不同步,且同步偏差超出了中继节点的容忍度,则将导致中继节点接收时两个信号不正交,造成相互干扰,导致中继节点无法正常接收任何一路信号。因此,需要合理的定时同步机制。
为了解决上述技术问题一,本公开实施例提供了一种无线通信方法。如图4所示,图4是本公开的一个实施例的无线通信方法的流程图,该方法应用于中继节点,该方法可以包括以下步骤:步骤401和步骤402,其中,
在步骤401中,确定目标接收功率值。
在步骤402中,根据目标接收功率值,对第一发射功率和/或第二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值。
本公开实施例中,第一发射功率为中继节点的宿主基站向中继节点发送的backhaul DL信号的发射功率,第二发射功率为终端设备向中继节点发送的access UL信号的发射功率,第一接收功率为宿主基站的backhaul DL信号到达中继节点时的接收功率,第二接收功率为终端设备的access UL信号到达中继节点时的接收功率。
本公开实施例中,预设功率阈值为中继节点能够容忍的两个信号之间的最大功率差值。
本公开实施例中,中继节点可以参考第一接收功率确定目标接收功率值;或者中继节点可以参考第二接收功率确定目标接收功率值;或者中继节点可以不参考第一接收功率和第二接收功率确定目标接收功率值。
可选地,在一个实施方式中,中继节点在确定目标接收功率值时不参考第一接收功率和第二接收功率,也就说是,目标接收功率值是由中继节点自行设定的;在此情况下,中继节点以目标接收功率值为依据,对第一发射功率和第二发射功率均做出调整,以使得第一接收功率与第二接收功率的差值在中继节点的容忍范围内,此时,上述步骤402具体可以包括以下步骤中的至少一个:步骤4021和步骤4022(图未示),其中,
步骤4021,对第一发射功率进行控制,以使得第一接收功率和目标接收功率值的差值小于第一预设功率阈值;
步骤4022,对第二发射功率进行控制,以使得第二接收功率和目标接收功率值的差值小于第二预设功率阈值。
本公开实施例中,预设功率阈值、第一预设功率阈值和第二功率阈值三者是不同的,其中,预设功率阈值指的是中继节点对两个信号功率差异的容忍度,中继节点在对第一发射功率和第二发射功率进行控制,通过设定第一预设功率阈值和第二预设功率阈值,使得第一接收功率与第二接收功率的差值小于预设功率阈值。
可见,中继节点先设定目标接收功率值,然后对宿主基站的backhaul DL信号的发射功率和终端设备的access UL信号的发射功率均进行控制,使得backhaul DL信号到达中继节点时的信号强度与access UL信号到达中继节点时的信号强度之差,在中继节点的容忍范围内。
可选地,在另一个实施方式中,中继节点在确定目标接收功率值时参考第一接收功率,也就说是,目标接收功率值是由中继节点依据第一接收功率设定;在此情况下,中继节点需要获得第一接收功率,之后确定第一接收功率为目标接收功率值,以第一接收功率为依据,仅对第二发射功率做出调整,以使得第一接收功率与第二接收功率的差值在中继节点的容忍范围内,此时,上述步骤402具体可以包括以下步骤:
对第二发射功率进行控制,以使得第二接收功率和目标接收功率值的差值小于预设功率阈值。
可选地,中继节点可以对宿主基站的backhaul DL信号到达中继节点时的接收功率进行测量,得到第一接收功率;和/或接收宿主基站发送的信令,根据所述信令确定第一接收功率;其中,该信令中携带有用于确定第一接收功率的相关信息,该相关信息可以为宿主基站向发送backhaul DL信号的发射功率强度,以便中继节点对发射功率强度与路损进行求差运算,得到第一接收 功率,该信令包括下述至少一项:无线资源控制RRC信令、媒体接入控制MAC信令和物理层信令。
可见,中继节点先将宿主基站的backhaul DL信号到达中继节点时的接收功率设定为目标接收功率值,然后仅对终端设备的access UL信号的发射功率进行控制,使得backhaul DL信号到达中继节点时的信号强度与access UL信号到达中继节点时的信号强度之差,在中继节点的容忍范围内。
可选地,在另一个实施方式中,中继节点在确定目标接收功率值时参考第二接收功率,也就说是,目标接收功率值是由中继节点依据第二接收功率设定;在此情况下,中继节点确定第二接收功率为目标接收功率值,以第二接收功率为依据,仅对第一发射功率做出调整,以使得第一接收功率与第二接收功率的差值在中继节点的容忍度范围内,此时,上述步骤402具体可以包括以下步骤:
对第一发射功率进行控制,以使得第一接收功率和目标接收功率值的差值小于预设功率阈值。
可见,中继节点先将终端设备的access UL信号到达中继节点时的接收功率设定为目标接收功率值,然后仅对宿主基站的backhaul DL信号的发射功率进行控制,使得backhaul DL信号到达中继节点时的信号强度与access UL信号到达中继节点时的信号强度之差,在中继节点的容忍范围内。
本公开实施例中,在对第一发射功率进行控制时,可以采用以下方式中的至少一种:
a、向宿主基站发送目标接收功率值;其中,该目标接收功率值用于宿主基站确定第一发射功率,第一发射功率由目标接收功率值和中继节点与宿主基站之间的回传链路的路损确定,路损指的是信号在回传链路上传输的功率损失。
相应的,宿主基站在接收到目标接收功率值之后,根据回传链路的路损测量情况进行功率补偿,例如,按照公式P_backhaul=P_target+pathloss_BH, 确定第一发射功率,其中,P_backhaul为第一发射功率,P_target为目标接收功率值,pathloss_BH为路损。
可选地,路损可以由中继节点测量得到,并由中继节点将测量结果上报给宿主基站,此时,中继节点测量中继节点与宿主基站之间的回传链路的路损;向宿主基站发送路损。
具体的,中继节点以某一设定功率向宿主基站发射上行信号,由宿主基站测量接收功率强度,并反馈给中继节点,中继节点根据已知的设定发射功率和宿主基站的实际接收功率(通常为差值运算),算出路损。
可选地,路损可以由宿主基站测量得到。
具体的,中继节点以某一设定功率向宿主基站发射上行信号,由宿主基站测量接收功率强度,宿主基站根据已知的设定发射功率和宿主基站的实际接收功率,算出路损。
b、向宿主基站发送第一功率调整指令;其中,第一功率调整指令用于指示宿主基站提高或降低第一发射功率,以使得第一接收功率和目标接收功率值的差值小于预设功率阈值。
可选地,第一功率调整指令可以类似于LTE或NR中的传输功率控制(Transmission Power Control,TPC)。宿主基站在接收到第一功率调整指令后,相应执行发射功率提升或下降的操作。
本公开实施例中,在对第二发射功率进行调整时,可以采用以下方式:
向终端设备发送第二功率调整指令;其中,第二功率调整指令用于指示终端设备提高或降低第二发射功率,以使得第二接收功率和目标接收功率值的差值小于预设功率阈值。
可选地,中继节点可以通过设置合理的开环功率控制参数(例如P0,alpha等),和/或向终端设备发送闭环功率控制命令TPC等,调整终端设备的第二发射功率。
由上述实施例可见,该实施例中,中继节点可以依据目标接收功率值, 对宿主基站的backhaul DL信号的发射功率和/或终端设备的access UL信号的发射功率进行控制,使得宿主基站的backhaul DL信号到达中继节点时的信号功率与终端设备的access UL信号到达中继节点时的信号功率的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
图5是本公开的另一个实施例的无线通信方法的流程图,该方法应用于宿主基站,如图5所示,该方法可以包括以下步骤:步骤501和步骤502,其中,
在步骤501中,接收宿主基站的中继节点发送的目标接收功率值和/或第一功率调整指令。
在步骤502中,根据目标接收功率值和/或第一功率调整指令,调整第一发射功率。
本公开实施例中,第一发射功率为宿主基站向中继节点发送的backhaul DL信号的发射功率,目标接收功率值用于宿主基站确定第一发射功率,第一发射功率由目标接收功率值和中继节点与宿主基站之间的回传链路的路损确定,第一功率调整指令用于指示宿主基站提高或降低第一发射功率,以使得第一接收功率和目标接收功率值的差值小于预设功率阈值,第一接收功率为宿主基站的backhaul DL信号到达中继节点时的接收功率。
本公开实施例中,路损可以由中继节点测量得到,并由中继节点发送给宿主基站;或者,路损可以宿主基站测量得到,具体的测量方法与图4所示实施例中的内容类似,在此不再赘述。
由上述实施例可见,该实施例中,宿主基站能够配合中继节点的功率控制机制,对该宿主基站的backhaul DL信号的发射功率进行调整,以使得宿主 基站的backhaul DL信号到达中继节点时的信号功率与终端设备的access UL信号到达中继节点时的信号功率的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
为了解决上述技术问题二,本公开实施例提供了一种无线通信方法。如图6所示,图6是本公开的另一个实施例的无线通信方法的流程图,该方法应用于中继节点,该方法可以包括以下步骤:步骤601和步骤602,其中,
在步骤601中,确定基准时间。
其中,基准时间可以为绝对时间,也可以为相对时间。
在步骤602中,根据基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值。
本公开实施例中,第一发射时间为中继节点的宿主基站向中继节点发送的backhaul DL信号的发射时间,第二发射时间为终端设备向中继节点发送的access UL信号的发射时间,第一接收时间为宿主基站的backhaul DL信号到达中继节点时的时间,第二接收时间为终端设备的access UL信号到达中继节点时的时间。
本公开实施例中,预设时间差值为中继节点能够容忍的两个信号到达时间间隔的最大值。
本公开实施例中,中继节点可以参考第一接收时间确定基准时间;或者中继节点可以参考第二接收时间确定基准时间;或者中继节点可以不参考第一接收时间和第二接收时间确定基准时间。
可选地,在一个实施方式中,中继节点在确定基准时间时不参考第一接收时间和第二接收时间,也就说是,基准时间是由中继节点自行设定的;在 此情况下,上述步骤601具体可以包括以下步骤:确定中继节点的帧定时为基准时间。此时,中继节点以基准时间为依据,对第一发射时间和第二发射时间均做出调整,以使得第一接收时间与第二接收时间的差值在中继节点的容忍范围内,此时,上述步骤602具体可以包括以下步骤中的至少一个:步骤6021和步骤6022,其中,
步骤6021,对第一发射时间进行控制,以使得第一接收时间和基准时间的差值小于第一预设时间差值;
步骤6022,对第二发射时间进行控制,以使得第二接收时间和基准时间的差值小于第二预设时间差值。
本公开实施例中,预设时间差值、第一预设时间差值和第二预设时间差值三者是不同的,其中,预设时间差值指的是中继节点对两个信号到达时间差异的容忍度,中继节点在对第一发射时间和第二发射时间进行控制,通过设定第一预设时间差值和第二预设时间差值,使得第一接收时间与第二接收时间的差值小于预设时间差值。
可见,中继节点先设定基准时间,然后对宿主基站的backhaul DL信号的发射时间和终端设备的access UL信号的发射时间均进行控制,使得backhaul DL信号到达中继节点时的时间与access UL信号到达中继节点时的时间之差,在中继节点的容忍范围内。
可选地,在一个实施方式中,中继节点在确定基准时间时参考第一接收时间,也就说是,基准时间是由中继节点依据第一接收时间设定;在此情况下,中继节点需要获得第一接收时间,之后确定第一接收时间为基准时间,以第一接收时间为依据,仅对第二发射时间做出调整,以使得第一接收时间与第二接收时间的差值在中继节点的容忍范围内,此时,上述步骤402具体可以包括以下步骤:
对第二发射时间进行控制,以使得第二接收时间和基准时间的差值小于预设时间差值。
可选地,中继节点可以对宿主基站的backhaul DL信号到达中继节点时的接收功率进行测量,得到第一接收时间。
可见,中继节点先将宿主基站的backhaul DL信号到达中继节点时的时间设定为基准时间,然后仅对终端设备的access UL信号的发射时间进行控制,使得backhaul DL信号到达中继节点时的时间与access UL信号到达中继节点时的时间之差,在中继节点的容忍范围内。
可选地,在另一个实施方式中,中继节点在确定基准时间时参考第二接收时间,也就说是,基准时间是由中继节点依据第二接收时间设定;在此情况下,中继节点确定第二接收时间为基准时间,以第二接收时间为依据,仅对第一发射时间做出调整,以使得第一接收时间与第二接收时间的差值在中继节点的容忍范围内,此时,上述步骤402具体可以包括以下步骤:
对第一发射时间进行控制,以使得第一接收时间和基准时间的差值小于预设时间差值。
可见,中继节点先将终端设备的access UL信号到达中继节点时的时间设定为基准时间,然后仅对宿主基站的backhaul DL信号的发射时间进行控制,使得backhaul DL信号到达中继节点时的时间与access UL信号到达中继节点时的时间之差,在中继节点的容忍范围内。
本公开实施例中,在对第一发射时间进行控制时,可以采用以下方式:
确定宿主基站的backhaul DL信号到达中继节点时的时间;将宿主基站的backhaul DL信号到达中继节点时的时间与基准时间进行比较,得到比较结果;根据比较结果,生成第一时间调整指令;向宿主基站发送第一时间调整指令,告知宿主基站以一定时间单位(例如16Ts),提前或延后发送backhaul DL信号;其中,第一时间调整指令用于指示宿主基站提前或延迟信号第一发射时间,以使得第一接收时间和基准时间的差值小于预设时间差值。
本公开实施例中,在对第二发射时间进行调整时,可以采用以下方式:
向终端设备发送第二时间调整指令;其中,第二时间调整指令用于指示 终端设备提前或延迟第二发射时间,以使得第二接收时间和基准时间的差值小于预设时间差值。
可选地,中继节点可以通过随机接入过程中向终端设备发送第二时间调整指令,调整终端设备的上行发送时间。
可选地,中继节点可以通过发送闭环定时调整命令(Timing Adjustment Command,TAC),调整终端设备的上行发送时间。
由上述实施例可见,该实施例中,中继节点可以依据基准时间,对宿主基站的backhaul DL信号的发射时间和/或终端设备的access UL信号的发射时间进行控制,使得在同一时隙或同一时间间隔内宿主基站的backhaul DL信号到达中继节点时的时间与终端设备的access UL信号到达中继节点时的时间的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
图7是本公开的另一个实施例的无线通信方法的流程图,该方法应用于宿主基站,如图7所示,该方法可以包括以下步骤:步骤701和步骤702,其中,
在步骤701中,接收宿主基站的中继节点发送的第一时间调整指令。
在步骤702中,根据第一时间调整指令,调整第一发射时间。
本公开实施例中,第一发射时间为宿主基站向中继节点发送的backhaul DL信号的发射时间,第一时间调整指令用于指示宿主基站提前或延迟信号第一发射时间,以使得第一接收时间和中继节点所确定的基准时间的差值小于预设时间差值,第一接收时间为宿主基站的backhaul DL信号到达中继节点时的时间。其中具体的调整过程与图6所示实施例中的内容类似,在此不再赘述。
由上述实施例可见,该实施例中,宿主基站能够配合中继节点的发射时间控制机制,对该宿主基站的backhaul DL信号的发射时间进行调整,以使得在同一时隙或同一时间间隔内宿主基站的backhaul DL信号到达中继节点时的时间与终端设备的access UL信号到达中继节点时的时间的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
图8是本公开的一个实施例的无线通信装置的结构示意图,如图8所示,无线通信装置800,应用于中继节点,该无线通信装置800可以包括:第一确定单元801和第一控制单元802,其中,
第一确定单元801,用于确定目标接收功率值;
第一控制单元802,用于根据所述目标接收功率值,对第一发射功率和/或第二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值;
其中,所述第一发射功率为所述中继节点的宿主基站向所述中继节点发送的backhaul DL信号的发射功率;
所述第二发射功率为终端设备向所述中继节点发送的access UL信号的发射功率;
所述第一接收功率为所述宿主基站的所述backhaul DL信号到达所述中继节点时的接收功率;
所述第二接收功率为所述终端设备的所述access UL信号到达所述中继节点时的接收功率。
由上述实施例可见,该实施例中,中继节点可以依据目标接收功率值,对宿主基站的backhaul DL信号的发射功率和/或终端设备的access UL信号的 发射功率进行控制,使得宿主基站的backhaul DL信号到达中继节点时的信号功率与终端设备的access UL信号到达中继节点时的信号功率的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
可选地,作为一个实施例,所述第一控制单元802,包括以下至少一项:
第一功率控制字单元,用于对第一发射功率进行控制,以使得第一接收功率和所述目标接收功率值的差值小于第一预设功率阈值;
第二功率控制字单元,用于对第二发射功率进行控制,以使得第二接收功率和所述目标接收功率值的差值小于第二预设功率阈值。
可选地,作为一个实施例,所述第一确定单元801,包括:
第一功率值确定子单元,用于确定所述第一接收功率为目标接收功率值;
所述第一控制单元802,包括:
第三功率控制字单元,用于对第二发射功率进行控制,以使得第二接收功率和所述目标接收功率值的差值小于预设功率阈值。
可选地,作为一个实施例,所述第一确定单元801,包括:
第二功率值确定子单元,用于确定所述第二接收功率为目标接收功率值;
所述第一控制单元802,包括:
第四功率控制字单元,用于对第一发射功率进行控制,以使得第一接收功率和所述目标接收功率值的差值小于预设功率阈值。
可选地,作为一个实施例,所述第一控制单元802,包括:
第一发送子单元,用于向所述宿主基站发送所述目标接收功率值;
其中,所述目标接收功率值用于所述宿主基站确定所述第一发射功率,所述第一发射功率由所述目标接收功率值和所述中继节点与宿主基站之间的 回传链路的路损确定。
可选地,作为一个实施例,所述无线通信装置800,还包括:
第一测量单元,用于测量所述中继节点与宿主基站之间的回传链路的路损;
第一发送单元,用于向所述宿主基站发送所述路损。
可选地,作为一个实施例,所述路损由所述宿主基站测量得到。
可选地,作为一个实施例,所述第一控制单元802,包括:
第二发送子单元,用于向所述宿主基站发送第一功率调整指令;
其中,所述第一功率调整指令用于指示所述宿主基站提高或降低所述第一发射功率,以使得第一接收功率和所述目标接收功率值的差值小于预设功率阈值。
可选地,作为一个实施例,所述第一控制单元802,包括:
第三发送子单元,用于向所述终端设备发送第二功率调整指令;
其中,所述第二功率调整指令用于指示所述终端设备提高或降低所述第二发射功率,以使得第二接收功率和所述目标接收功率值的差值小于预设功率阈值。
可选地,作为一个实施例,所述无线通信装置800,还包括:
第二测量单元,用于对所述宿主基站的backhaul DL信号到达所述中继节点时的接收功率进行测量,得到所述第一接收功率;和/或
第一接收单元,用于接收所述宿主基站发送的信令,根据所述信令确定所述第一接收功率;
其中,所述信令中携带有用于确定所述第一接收功率的相关信息。
可选地,作为一个实施例,所述信令包括下述至少一项:无线资源控制RRC信令、媒体接入控制MAC信令和物理层信令。
图9是本公开的另一个实施例的无线通信装置的结构示意图,如图9所示,无线通信装置900,应用于宿主基站,该无线通信装置900可以包括: 第二接收单元901和第一调整单元902,其中,
第二接收单元901,用于接收所述宿主基站的中继节点发送的目标接收功率值和/或第一功率调整指令;
第一调整单元902,用于根据所述目标接收功率值和/或所述第一功率调整指令,调整第一发射功率;
其中,所述第一发射功率为所述宿主基站向所述中继节点发送的backhaul DL信号的发射功率;
所述目标接收功率值用于所述宿主基站确定所述第一发射功率,所述第一发射功率由所述目标接收功率值和所述中继节点与宿主基站之间的回传链路的路损确定;
所述第一功率调整指令用于指示所述宿主基站提高或降低所述第一发射功率,以使得第一接收功率和所述目标接收功率值的差值小于预设功率阈值;
所述第一接收功率为所述宿主基站的backhaul DL信号到达所述中继节点时的接收功率。
由上述实施例可见,该实施例中,宿主基站能够配合中继节点的功率控制机制,对该宿主基站的backhaul DL信号的发射功率进行调整,以使得宿主基站的backhaul DL信号到达中继节点时的信号功率与终端设备的access UL信号到达中继节点时的信号功率的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
图10是本公开的另一个实施例的无线通信装置的结构示意图,如图10所示,无线通信装置1000,应用于中继节点,该无线通信装置1000可以包括:第二确定单元1001和第二控制单元1002,其中,
第二确定单元1001,用于确定基准时间;
第二控制单元1002,用于根据所述基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值;
其中,所述第一发射时间为所述中继节点的宿主基站向所述中继节点发送的backhaul DL信号的发射时间;
所述第二发射时间为终端设备向所述中继节点发送的access UL信号的发射时间;
所述第一接收时间为所述宿主基站的backhaul DL信号到达所述中继节点时的时间;
所述第二接收时间为所述终端设备的access UL信号到达所述中继节点时的时间。
由上述实施例可见,该实施例中,中继节点可以依据基准时间,对宿主基站的backhaul DL信号的发射时间和/或终端设备的access UL信号的发射时间进行控制,使得在同一时隙或同一时间间隔内宿主基站的backhaul DL信号到达中继节点时的时间与终端设备的access UL信号到达中继节点时的时间的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
可选地,作为一个实施例,所述第二确定单元1001,包括:
第一时间确定子单元,用于确定所述中继节点的帧定时为基准时间。
可选地,作为一个实施例,所述第二控制单元1002,包括以下至少一项:
第一时间控制子单元,用于对第一发射时间进行控制,以使得第一接收时间和所述基准时间的差值小于第一预设时间差值;
第二时间控制子单元,用于对第二发射时间进行控制,以使得第二接收时间和所述基准时间的差值小于第二预设时间差值。
可选地,作为一个实施例,所述第二确定单元1001,包括:
第二时间确定子单元,用于确定所述第一接收时间为基准时间;
所述第二控制单元1002,包括:
第三时间控制子单元,用于对第二发射时间进行控制,以使得第二接收时间和所述基准时间的差值小于预设时间差值。
可选地,作为一个实施例,所述第二确定单元1001,包括:
第三时间确定子单元,用于确定所述第二接收时间为基准时间;
所述第二控制单元1002,包括:
第四时间控制子单元,用于对第一发射时间进行控制,以使得第一接收时间和所述基准时间的差值小于预设时间差值。
可选地,作为一个实施例,所述第二控制单元1002,包括:
第四时间确定子单元,用于确定所述宿主基站的backhaul DL信号到达所述中继节点时的时间;
时间比较子单元,用于将所述宿主基站的backhaul DL信号到达所述中继节点时的时间与所述基准时间进行比较,得到比较结果;
指令生成子单元,用于根据所述比较结果,生成第一时间调整指令;
第四发送子单元,用于向所述宿主基站发送所述第一时间调整指令;
其中,所述第一时间调整指令用于指示所述宿主基站提前或延迟信号所述第一发射时间,以使得第一接收时间和所述基准时间的差值小于预设时间差值。
可选地,作为一个实施例,所述第二控制单元1002,包括:
第五发送子单元,用于向所述终端设备发送第二时间调整指令;
其中,所述第二时间调整指令用于指示所述终端设备提前或延迟所述第二发射时间,以使得第二接收时间和所述基准时间的差值小于预设时间差值。
可选地,作为一个实施例,所述无线通信装置1000,还包括:
第三测量单元,用于对所述宿主基站的backhaul DL信号到达所述中继节点时的时间进行测量,得到所述第一接收时间。
图11是本公开的另一个实施例的无线通信装置的结构示意图,如图11所示,无线通信装置1100,应用于宿主基站,该无线通信装置1100可以包括:第三接收单元1101和第二调整单元1102,其中,
第三接收单元1101,用于接收所述宿主基站的中继节点发送的第一时间调整指令;
第二调整单元1102,用于根据所述第一时间调整指令,调整第一发射时间;
其中,所述第一发射时间为所述宿主基站向所述中继节点发送的backhaul DL信号的发射时间;
所述第一时间调整指令用于指示所述宿主基站提前或延迟信号所述第一发射时间,以使得第一接收时间和所述中继节点所确定的基准时间的差值小于预设时间差值;
所述第一接收时间为所述宿主基站的backhaul DL信号到达所述中继节点时的时间。
由上述实施例可见,该实施例中,宿主基站能够配合中继节点的发射时间控制机制,对该宿主基站的backhaul DL信号的发射时间进行调整,以使得在同一时隙或同一时间间隔内宿主基站的backhaul DL信号到达中继节点时的时间与终端设备的access UL信号到达中继节点时的时间的差值在中继节点的容忍范围内,从而保证中继系统中的回传链路和接入链路可以同时工作,使得回传链路和接入链路能够以FDM或SDM方式有效复用,在维持中继节点半双工工作模式的情况下,可以降低通信时延、提升系统通信效率。此外,也没有对中继节点能力提出更高的要求,中继节点仍然以半双工模式进行信号的接收和发送操作,因此不增加设备成本。
图12是本公开的一个实施例的网络设备的结构示意图。图12所示的网络设备能够实现图4-7任一方法实施例中无线通信方法的细节,并达到相同的效果。如图12所示,网络设备1200包括:处理器1201、收发机1202、存储器1203、用户接口1204和总线接口,其中:
在本公开实施例中,网络设备1200还包括:存储在存储器上1203并可在处理器1201上运行的程序;当网络设备1200为中继节点时,程序被处理器1201执行时实现如下步骤:
确定目标接收功率值;根据所述目标接收功率值,对第一发射功率和/或第二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值;其中,所述第一发射功率为所述中继节点的宿主基站向所述中继节点发送的回传链路下行backhaul DL信号的发射功率;所述第二发射功率为终端设备向所述中继节点发送的接入链路上行access UL信号的发射功率;所述第一接收功率为所述宿主基站的所述backhaul DL信号到达所述中继节点时的接收功率;所述第二接收功率为所述终端设备的所述access UL信号到达所述中继节点时的接收功率。
或者,确定基准时间;根据所述基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值;其中,所述第一发射时间为所述中继节点的宿主基站向所述中继节点发送的backhaul DL信号的发射时间;所述第二发射时间为终端设备向所述中继节点发送的access UL信号的发射时间;所述第一接收时间为所述宿主基站的backhaul DL信号到达所述中继节点时的时间;所述第二接收时间为所述终端设备的access UL信号到达所述中继节点时的时间。
当网络设备1200为宿主基站时,程序被处理器1201执行时实现如下步骤:
接收所述宿主基站的中继节点发送的目标接收功率值和/或第一功率调整指令;根据所述目标接收功率值和/或所述第一功率调整指令,调整第一发 射功率;其中,所述第一发射功率为所述宿主基站向所述中继节点发送的backhaul DL信号的发射功率;所述目标接收功率值用于所述宿主基站确定所述第一发射功率,所述第一发射功率由所述目标接收功率值和所述中继节点与宿主基站之间的回传链路的路损确定;所述第一功率调整指令用于指示所述宿主基站提高或降低所述第一发射功率,以使得第一接收功率和所述目标接收功率值的差值小于预设功率阈值;所述第一接收功率为所述宿主基站的backhaul DL信号到达所述中继节点时的接收功率。
或者,接收所述宿主基站的中继节点发送的第一时间调整指令;根据所述第一时间调整指令,调整第一发射时间;其中,所述第一发射时间为所述宿主基站向所述中继节点发送的backhaul DL信号的发射时间;所述第一时间调整指令用于指示所述宿主基站提前或延迟信号所述第一发射时间,以使得第一接收时间和所述中继节点所确定的基准时间的差值小于预设时间差值;所述第一接收时间为所述宿主基站的backhaul DL信号到达所述中继节点时的时间。
在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1201代表的一个或多个处理器和存储器1203代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1202可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1204还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1201负责管理总线架构和通常的处理,存储器1203可以存储处理器1201在执行操作时所使用的数据。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述无线通信方法实 施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本公开实施例还提供一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指令时,所述计算机执行上述无线通信方法。具体地,该计算机程序产品可以运行于上述网络设备上。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (33)

  1. 一种无线通信方法,应用中继节点,包括:
    确定目标接收功率值;
    根据所述目标接收功率值,对第一发射功率和/或第二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值;
    其中,所述第一发射功率为所述中继节点的宿主基站向所述中继节点发送的回传链路下行backhaul DL信号的发射功率;
    所述第二发射功率为终端设备向所述中继节点发送的接入链路上行access UL信号的发射功率;
    所述第一接收功率为所述宿主基站的所述backhaul DL信号到达所述中继节点时的接收功率;
    所述第二接收功率为所述终端设备的所述access UL信号到达所述中继节点时的接收功率。
  2. 根据权利要求1所述的方法,其中,所述根据所述目标接收功率值,对第一发射功率和/或第二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值,包括以下至少一项:
    对所述第一发射功率进行控制,以使得所述第一接收功率和所述目标接收功率值的差值小于第一预设功率阈值;
    对所述第二发射功率进行控制,以使得所述第二接收功率和所述目标接收功率值的差值小于第二预设功率阈值。
  3. 根据权利要求1所述的方法,其中,所述确定目标接收功率值,包括:确定所述第一接收功率为目标接收功率值;
    所述根据所述目标接收功率值,对第一发射功率和/或第二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值,包括:
    对所述第二发射功率进行控制,以使得所述第二接收功率和所述目标接 收功率值的差值小于预设功率阈值。
  4. 根据权利要求1所述的方法,其中,所述确定目标接收功率值,包括:确定所述第二接收功率为目标接收功率值;
    所述根据所述目标接收功率值,对第一发射功率和/或第二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值,包括:
    对所述第一发射功率进行控制,以使得所述第一接收功率和所述目标接收功率值的差值小于预设功率阈值。
  5. 根据权利要求2或4所述的方法,其中,所述对第一发射功率进行控制,包括:
    向所述宿主基站发送所述目标接收功率值;
    其中,所述目标接收功率值用于所述宿主基站确定所述第一发射功率,所述第一发射功率由所述目标接收功率值和所述中继节点与宿主基站之间的回传链路的路损确定,所述backhaul DL信号在所述回传链路上传输。
  6. 根据权利要求5所述的方法,还包括:
    测量所述中继节点与所述宿主基站之间的回传链路的路损;
    向所述宿主基站发送所述路损。
  7. 根据权利要求5所述的方法,其中,所述路损由所述宿主基站测量得到。
  8. 根据权利要求2或4所述的方法,其中,所述对第一发射功率进行控制,包括:
    向所述宿主基站发送第一功率调整指令;
    其中,所述第一功率调整指令用于指示所述宿主基站提高或降低所述第一发射功率,以使得第一接收功率和所述目标接收功率值的差值小于预设功率阈值。
  9. 根据权利要求2或3所述的方法,其中,所述对第二发射功率进行控制,包括:
    向所述终端设备发送第二功率调整指令;
    其中,所述第二功率调整指令用于指示所述终端设备提高或降低所述第二发射功率,以使得第二接收功率和所述目标接收功率值的差值小于预设功率阈值。
  10. 根据权利要求3所述的方法,其中,在所述确定所述第一接收功率为目标接收功率值的步骤之前,还包括:
    对所述宿主基站的所述backhaul DL信号到达所述中继节点时的接收功率进行测量,得到所述第一接收功率;和/或
    接收所述宿主基站发送的信令,根据所述信令确定所述第一接收功率;
    其中,所述信令中携带有用于确定所述第一接收功率的相关信息。
  11. 根据权利要求10所述的方法,其中,所述信令包括下述至少一项:无线资源控制RRC信令、媒体接入控制MAC信令和物理层信令。
  12. 一种无线通信方法,应用于宿主基站,包括:
    接收所述宿主基站的中继节点发送的目标接收功率值和/或第一功率调整指令;
    根据所述目标接收功率值和/或所述第一功率调整指令,调整第一发射功率;
    其中,所述第一发射功率为所述宿主基站向所述中继节点发送的backhaul DL信号的发射功率;
    所述目标接收功率值用于所述宿主基站确定所述第一发射功率,所述第一发射功率由所述目标接收功率值和所述中继节点与宿主基站之间的回传链路的路损确定,所述backhaul DL信号在所述回传链路上传输;
    所述第一功率调整指令用于指示所述宿主基站提高或降低所述第一发射功率,以使得第一接收功率和所述目标接收功率值的差值小于预设功率阈值;
    所述第一接收功率为所述宿主基站的所述backhaul DL信号到达所述中继节点时的接收功率。
  13. 一种无线通信方法,应用于中继节点,包括:
    确定基准时间;
    根据所述基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值;
    其中,所述第一发射时间为所述中继节点的宿主基站向所述中继节点发送的backhaul DL信号的发射时间;
    所述第二发射时间为终端设备向所述中继节点发送的access UL信号的发射时间;
    所述第一接收时间为所述宿主基站的所述backhaul DL信号到达所述中继节点时的时间;
    所述第二接收时间为所述终端设备的所述access UL信号到达所述中继节点时的时间。
  14. 根据权利要求13所述的方法,其中,所述确定基准时间,包括:
    确定所述中继节点的帧定时为基准时间。
  15. 根据权利要求13所述的方法,其中,所述根据所述基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值,包括以下至少一项:
    对所述第一发射时间进行控制,以使得所述第一接收时间和所述基准时间的差值小于第一预设时间差值;
    对所述第二发射时间进行控制,以使得所述第二接收时间和所述基准时间的差值小于第二预设时间差值。
  16. 根据权利要求13所述的方法,其中,所述确定基准时间,包括:确定所述第一接收时间为基准时间;
    所述根据所述基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值,包括:
    对所述第二发射时间进行控制,以使得所述第二接收时间和所述基准时 间的差值小于预设时间差值。
  17. 根据权利要求13所述的方法,其中,所述确定基准时间,包括:确定所述第二接收时间为基准时间;
    所述根据所述基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值,包括:
    对所述第一发射时间进行控制,以使得所述第一接收时间和所述基准时间的差值小于预设时间差值。
  18. 根据权利要求15或17所述的方法,其中,所述对第一发射时间进行控制,包括:
    确定所述宿主基站的backhaul DL信号到达所述中继节点时的时间;
    将所述宿主基站的backhaul DL信号到达所述中继节点时的时间与所述基准时间进行比较,得到比较结果;
    根据所述比较结果,生成第一时间调整指令;
    向所述宿主基站发送所述第一时间调整指令;
    其中,所述第一时间调整指令用于指示所述宿主基站提前或延迟信号所述第一发射时间,以使得第一接收时间和所述基准时间的差值小于预设时间差值。
  19. 根据权利要求15或16所述的方法,其中,所述对第二发射时间进行控制,包括:
    向所述终端设备发送第二时间调整指令;
    其中,所述第二时间调整指令用于指示所述终端设备提前或延迟所述第二发射时间,以使得第二接收时间和所述基准时间的差值小于预设时间差值。
  20. 根据权利要求16所述的方法,在所述确定所述第一接收时间为基准时间的步骤之前,还包括:
    对所述宿主基站的backhaul DL信号到达所述中继节点时的时间进行测量,得到所述第一接收时间。
  21. 一种无线通信方法,应用于宿主基站,包括:
    接收所述宿主基站的中继节点发送的第一时间调整指令;
    根据所述第一时间调整指令,调整第一发射时间;
    其中,所述第一发射时间为所述宿主基站向所述中继节点发送的backhaul DL信号的发射时间;
    所述第一时间调整指令用于指示所述宿主基站提前或延迟信号所述第一发射时间,以使得第一接收时间和所述中继节点所确定的基准时间的差值小于预设时间差值;
    所述第一接收时间为所述宿主基站的所述backhaul DL信号到达所述中继节点时的时间。
  22. 一种无线通信装置,应用于中继节点,包括:
    第一确定单元,用于确定目标接收功率值;
    第一控制单元,用于根据所述目标接收功率值,对第一发射功率和/或第二发射功率进行控制,以使得第一接收功率和第二接收功率的差值小于预设功率阈值;
    其中,所述第一发射功率为所述中继节点的宿主基站向所述中继节点发送的backhaul DL信号的发射功率;
    所述第二发射功率为终端设备向所述中继节点发送的access UL信号的发射功率;
    所述第一接收功率为所述宿主基站的所述backhaul DL信号到达所述中继节点时的接收功率;
    所述第二接收功率为所述终端设备的所述access UL信号到达所述中继节点时的接收功率。
  23. 一种无线通信装置,应用于宿主基站,包括:
    第二接收单元,用于接收所述宿主基站的中继节点发送的目标接收功率值和/或第一功率调整指令;
    第一调整单元,用于根据所述目标接收功率值和/或所述第一功率调整指令,调整第一发射功率;
    其中,所述第一发射功率为所述宿主基站向所述中继节点发送的backhaul DL信号的发射功率;
    所述目标接收功率值用于所述宿主基站确定所述第一发射功率,所述第一发射功率由所述目标接收功率值和所述中继节点与宿主基站之间的回传链路的路损确定,所述backhaul DL信号在所述回传链路上传输;
    所述第一功率调整指令用于指示所述宿主基站提高或降低所述第一发射功率,以使得第一接收功率和所述目标接收功率值的差值小于预设功率阈值;
    所述第一接收功率为所述宿主基站的所述backhaul DL信号到达所述中继节点时的接收功率。
  24. 一种无线通信装置,应用于中继节点,包括:
    第二确定单元,用于确定基准时间;
    第二控制单元,用于根据所述基准时间,对第一发射时间和/或第二发射时间进行控制,以使得第一接收时间和第二接收时间的差值小于预设时间差值;
    其中,所述第一发射时间为所述中继节点的宿主基站向所述中继节点发送的backhaul DL信号的发射时间;
    所述第二发射时间为终端设备向所述中继节点发送的access UL信号的发射时间;
    所述第一接收时间为所述宿主基站的backhaul DL信号到达所述中继节点时的时间;
    所述第二接收时间为所述终端设备的access UL信号到达所述中继节点时的时间。
  25. 一种无线通信装置,应用于宿主基站,包括:
    第三接收单元,用于接收所述宿主基站的中继节点发送的第一时间调整 指令;
    第二调整单元,用于根据所述第一时间调整指令,调整第一发射时间;
    其中,所述第一发射时间为所述宿主基站向所述中继节点发送的backhaul DL信号的发射时间;
    所述第一时间调整指令用于指示所述宿主基站提前或延迟信号所述第一发射时间,以使得第一接收时间和所述中继节点所确定的基准时间的差值小于预设时间差值;
    所述第一接收时间为所述宿主基站的所述backhaul DL信号到达所述中继节点时的时间。
  26. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至11中任一项所述的无线通信方法的步骤。
  27. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求12所述的无线通信方法的步骤。
  28. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求13至20中任一项所述的无线通信方法的步骤。
  29. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求21所述的无线通信方法的步骤。
  30. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储程序,所述程序被处理器执行时实现如权利要求1至11中任一项所述的无线通信方法的步骤。
  31. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储程序,所述程序被处理器执行时实现如权利要求12所述的无线通信方法的步 骤。
  32. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储程序,所述程序被处理器执行时实现如权利要求13至20中任一项所述的无线通信方法的步骤。
  33. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储程序,所述程序被处理器执行时实现如权利要求21所述的无线通信方法的步骤。
PCT/CN2019/085107 2018-05-11 2019-04-30 无线通信方法、装置及网络设备 WO2019214501A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020207035430A KR102357945B1 (ko) 2018-05-11 2019-04-30 무선 통신 방법, 장치 및 네트워크 기기
JP2020563562A JP7456941B2 (ja) 2018-05-11 2019-04-30 無線通信方法、装置及びネットワーク機器
EP19800341.0A EP3793269A4 (en) 2018-05-11 2019-04-30 WIRELESS COMMUNICATION METHODS AND APPARATUS, AND NETWORK DEVICE
BR112020023023-5A BR112020023023A2 (pt) 2018-05-11 2019-04-30 dispositivo e método de comunicação sem fio, e dispositivo de rede
AU2019266680A AU2019266680B2 (en) 2018-05-11 2019-04-30 Wireless communication methods and apparatuses, and network device
US17/094,684 US11523348B2 (en) 2018-05-11 2020-11-10 Wireless communication method and device, and network device
JP2022039233A JP7305832B2 (ja) 2018-05-11 2022-03-14 無線通信方法、装置及びネットワーク機器
AU2022203008A AU2022203008B2 (en) 2018-05-11 2022-05-05 Wireless communication method and device, and network device
US17/980,743 US11800457B2 (en) 2018-05-11 2022-11-04 Wireless communication method and device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810450490.3 2018-05-11
CN201810450490.3A CN110475329B (zh) 2018-05-11 2018-05-11 无线通信方法、装置及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/094,684 Continuation US11523348B2 (en) 2018-05-11 2020-11-10 Wireless communication method and device, and network device

Publications (1)

Publication Number Publication Date
WO2019214501A1 true WO2019214501A1 (zh) 2019-11-14

Family

ID=68467698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085107 WO2019214501A1 (zh) 2018-05-11 2019-04-30 无线通信方法、装置及网络设备

Country Status (8)

Country Link
US (2) US11523348B2 (zh)
EP (1) EP3793269A4 (zh)
JP (2) JP7456941B2 (zh)
KR (1) KR102357945B1 (zh)
CN (1) CN110475329B (zh)
AU (2) AU2019266680B2 (zh)
BR (1) BR112020023023A2 (zh)
WO (1) WO2019214501A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329387A (zh) * 2021-06-18 2021-08-31 英华达(上海)科技有限公司 蓝牙耳机通信方法及装置
EP4132159A4 (en) * 2020-03-24 2023-09-06 Vivo Mobile Communication Co., Ltd. POWER ADJUSTMENT METHOD AND NODE DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221547A1 (ko) * 2018-05-18 2019-11-21 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327593A (zh) * 2012-03-21 2013-09-25 中国移动通信集团公司 一种自适应上行功控方法及移动中继设备
CN103686931A (zh) * 2012-09-18 2014-03-26 中国移动通信集团公司 一种接入方法及装置、用户设备
CN106993065A (zh) * 2016-01-20 2017-07-28 大唐移动通信设备有限公司 一种基于DeNB的上下行传输代理方法及代理装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268574A (ja) * 1993-03-11 1994-09-22 Hitachi Ltd セルラ移動通信システム
JP3848253B2 (ja) * 2000-07-18 2006-11-22 サムスン エレクトロニクス カンパニー リミテッド 移動通信システムにおけるアップリンク同期伝送方式ハンドオーバ及びアップリンク同期伝送方式の転換を遂行する方法
JP2008048160A (ja) 2006-08-16 2008-02-28 Fujitsu Ltd 基地局装置及び移動端末の故障検出装置並びにそれらの故障検出方法
US8417255B2 (en) * 2007-03-16 2013-04-09 Qualcomm Incorporated Data transmission and power control in a multihop relay communication system
EP2156574B1 (en) * 2007-06-21 2013-02-27 Nokia Corporation Methods, computer program products and apparatus providing improved use of relays in wireless communication
KR100932270B1 (ko) * 2007-11-29 2009-12-16 한국전자통신연구원 무선센서네트워크에서의 시각 동기화 방법
JP5145991B2 (ja) * 2008-02-07 2013-02-20 富士通株式会社 無線中継局
US8576900B2 (en) * 2008-06-15 2013-11-05 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal from relay station in radio communication system
CN102113238B (zh) 2008-07-30 2015-03-18 Lg电子株式会社 无线通信系统中的中继站及其操作方法
CN101729127A (zh) * 2008-10-17 2010-06-09 中兴通讯股份有限公司 时间同步节点和方法
JP2010109914A (ja) 2008-10-31 2010-05-13 Mitsubishi Electric Corp 無線中継システムおよび無線中継装置
US8190083B2 (en) * 2008-11-18 2012-05-29 Qualcomm Incorporated Methods and apparatus for communicating in a system including relay stations
JP5504970B2 (ja) * 2009-09-25 2014-05-28 ソニー株式会社 管理サーバ、通信システム、通信端末、および中継装置
US8396505B2 (en) * 2009-10-02 2013-03-12 Kyocera Corporation Radio communication system, network side device, small cell base station, and transmission power control method
WO2011058991A1 (ja) 2009-11-10 2011-05-19 シャープ株式会社 無線通信システム、基地局装置、移動局装置および無線通信方法
US8121050B2 (en) * 2010-04-08 2012-02-21 Exelis Inc. Maintaining time of day synchronization
CN102918894B (zh) * 2010-04-09 2016-08-03 瑞典爱立信有限公司 无线网络中用于确定上行链路接收功率目标值的方法和装置
US8699386B2 (en) * 2010-08-18 2014-04-15 Qualcomm Incorporated H-ARQ timing and backhaul subframe configuration for TDD relay in LTE-A
US9014690B2 (en) * 2010-09-07 2015-04-21 Telefonaktiebolaget L M Ericsson (Publ) Monitoring cellular radio access node performance
US9461730B2 (en) * 2010-10-29 2016-10-04 Telefonaktiebolaget Lm Ericsson (Publ) Self-interference suppression control for a relay node
KR20120083651A (ko) * 2011-01-18 2012-07-26 삼성전자주식회사 여러 다른 종류로 이루어진 네트워크에서 네트워크 진입을 위한 방법 및 장치
KR101973465B1 (ko) * 2011-03-25 2019-04-29 엘지전자 주식회사 이동통신 시스템에서 백홀 링크 서브프레임 구조 및 그 정보 전송 방법
JP5669664B2 (ja) 2011-05-16 2015-02-12 京セラ株式会社 無線基地局及び通信制御方法
KR101790041B1 (ko) * 2011-06-24 2017-11-20 삼성전자주식회사 릴레이 노드의 송신 전력 설정 방법 및 장치
JP5784139B2 (ja) * 2011-11-01 2015-09-24 株式会社日立製作所 通信システム
JP6154377B2 (ja) 2012-07-27 2017-06-28 京セラ株式会社 移動通信システム、移動通信方法、無線基地局、無線端末及びプロセッサ
US9357417B2 (en) * 2012-08-17 2016-05-31 Telefonaktiebolaget L M Ericsson Methods, systems and devices for obtaining system information in a wireless network
US9769807B2 (en) * 2012-09-28 2017-09-19 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, radio network node and methods therein
KR102060496B1 (ko) * 2013-02-12 2019-12-30 삼성전자주식회사 시간 동기화를 위한 단말 장치 및 방법
WO2014169576A1 (en) 2013-04-15 2014-10-23 Telefonaktiebolaget L M Ericsson (Publ) Secondary cell synchronization for carrier aggregation
BR112016014196A2 (pt) * 2013-12-24 2017-08-08 Sony Corp Aparelhos e métodos de comunicação por rádio e de controle de comunicação
CN105530692A (zh) * 2014-10-27 2016-04-27 中兴通讯股份有限公司 一种下行发送功率控制的方法和装置
CN114499604A (zh) * 2018-01-25 2022-05-13 成都华为技术有限公司 一种功率控制方法及装置
WO2019208994A1 (en) * 2018-04-23 2019-10-31 Lg Electronics Inc. Method and apparatus for supporting integrated backhaul and access link in wireless communication system
US10470136B1 (en) * 2018-08-10 2019-11-05 At&T Intellectual Property I, L.P. Downlink power control enhancements for multi-hop integrated access and backhaul
WO2020035947A1 (ja) * 2018-08-17 2020-02-20 株式会社Nttドコモ 無線通信装置及び無線通信方法
CN110536406B (zh) * 2018-09-27 2023-05-26 中兴通讯股份有限公司 传输定时方法及装置、基站、计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327593A (zh) * 2012-03-21 2013-09-25 中国移动通信集团公司 一种自适应上行功控方法及移动中继设备
CN103686931A (zh) * 2012-09-18 2014-03-26 中国移动通信集团公司 一种接入方法及装置、用户设备
CN106993065A (zh) * 2016-01-20 2017-07-28 大唐移动通信设备有限公司 一种基于DeNB的上下行传输代理方法及代理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Enhancements to Support NR Backhaul Links", 3GPP TSG RAN WGI MEETING #92BIS , R1-1804835, vol. RAN WG1, 7 April 2018 (2018-04-07), Sanya, CHINA, XP051414190 *
QUALCOMM INCORPORATED: "Network Synchronization for Multi-Hop IAB, R2-1808008", 3GPP TSG RAN WG2 MEETING #102 BUSAN, vol. RAN WG2, 10 May 2018 (2018-05-10), Busan, South Korea, pages 1 - 9, XP051464246 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4132159A4 (en) * 2020-03-24 2023-09-06 Vivo Mobile Communication Co., Ltd. POWER ADJUSTMENT METHOD AND NODE DEVICE
CN113329387A (zh) * 2021-06-18 2021-08-31 英华达(上海)科技有限公司 蓝牙耳机通信方法及装置
CN113329387B (zh) * 2021-06-18 2022-09-23 英华达(上海)科技有限公司 蓝牙耳机通信方法及装置

Also Published As

Publication number Publication date
JP7305832B2 (ja) 2023-07-10
KR102357945B1 (ko) 2022-02-08
AU2019266680B2 (en) 2022-06-02
JP7456941B2 (ja) 2024-03-27
AU2019266680A1 (en) 2020-12-17
JP2021521733A (ja) 2021-08-26
CN110475329B (zh) 2020-11-06
JP2022078285A (ja) 2022-05-24
EP3793269A1 (en) 2021-03-17
KR20210006450A (ko) 2021-01-18
EP3793269A4 (en) 2021-09-15
US20230056341A1 (en) 2023-02-23
US11800457B2 (en) 2023-10-24
US11523348B2 (en) 2022-12-06
AU2022203008A1 (en) 2022-05-26
BR112020023023A2 (pt) 2021-02-02
US20210058874A1 (en) 2021-02-25
AU2022203008B2 (en) 2023-07-06
CN110475329A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
US11122523B2 (en) Information transmission method and apparatus
WO2018107520A1 (zh) 控制上行功率的方法和设备
US11800457B2 (en) Wireless communication method and device, and network device
US20160345316A1 (en) Time advance for dual connectivity
US20220116882A1 (en) Reference signal determination method and device, and ue
US11974172B2 (en) Service node updating method, terminal device, and network-side device
US20220272648A1 (en) Integrated access backhaul node downlink timing adjustment in presence of frequency offset
CN114071612B (zh) 辅小区组的主小区更新方法、装置及存储介质
CN113260050B (zh) Iab网络的复用调度方法和iab节点
WO2020094118A1 (zh) 数据传输方法、发送端设备和接收端设备
KR20200083541A (ko) 신호 간섭 회피 방법 및 네트워크 기기
CN115175295B (zh) 终端设备的控制方法、装置及存储介质
CA3065405A1 (en) Uplink transmission method and terminal device
CN115706645A (zh) Ul定位参考信号的激活方法、装置、终端及网络侧设备
EP3657872B1 (en) Path switching method and related equipment
CN114071796A (zh) 一种中继链路连接控制方法及装置
US20240179727A1 (en) Communication method and communication apparatus
WO2024093081A1 (en) Terminal devices, network device, and methods for multi-path communications
AU2017427013B2 (en) Data transmission method, network device and terminal device
CN115942446A (zh) 信息传输方法、装置、终端及基站
CN115696387A (zh) 资源控制方法、信息传输方法、装置、终端及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020023023

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207035430

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019800341

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019266680

Country of ref document: AU

Date of ref document: 20190430

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020023023

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201111