WO2011058991A1 - 無線通信システム、基地局装置、移動局装置および無線通信方法 - Google Patents

無線通信システム、基地局装置、移動局装置および無線通信方法 Download PDF

Info

Publication number
WO2011058991A1
WO2011058991A1 PCT/JP2010/069996 JP2010069996W WO2011058991A1 WO 2011058991 A1 WO2011058991 A1 WO 2011058991A1 JP 2010069996 W JP2010069996 W JP 2010069996W WO 2011058991 A1 WO2011058991 A1 WO 2011058991A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
base station
station
transmission power
transmission
Prior art date
Application number
PCT/JP2010/069996
Other languages
English (en)
French (fr)
Inventor
修作 福元
史朗 菅原
秀一 竹花
英伸 福政
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/508,634 priority Critical patent/US20120230249A1/en
Priority to CN2010800500089A priority patent/CN102640546A/zh
Priority to JP2011540516A priority patent/JPWO2011058991A1/ja
Priority to EP10829950.4A priority patent/EP2501190A4/en
Publication of WO2011058991A1 publication Critical patent/WO2011058991A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15535Control of relay amplifier gain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to a radio communication system, a base station apparatus, a mobile station apparatus, and a radio communication method.
  • This application claims priority on November 10, 2009 based on Japanese Patent Application No. 2009-257216 for which it applied to Japan, and uses the content here.
  • the physical channel of the next generation mobile communication system is configured as shown in FIG. 9 (see, for example, Non-Patent Document 1).
  • the physical channel is directed from the UE to the eNB between the mobile station (hereinafter also referred to as “UE (User Equipment))” and the base station (hereinafter also referred to as “eNB (evolved Node B), evolved type Node B)”. It consists of an uplink channel and a downlink channel from the eNB to the UE.
  • the uplink channel includes a random access channel (PRACH) that performs random access, an uplink shared channel (PUSCH) that transmits uplink data according to the schedule management of the base station, and a control signal related to the downlink signal, etc. It is comprised from the uplink control channel (PUCCH) which performs transmission.
  • PRACH random access channel
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • the downlink channel includes a physical downlink shared channel (PDSCH) for transmitting data, a physical multicast channel (PMCH) for transmitting a multicast channel, and a physical downlink control channel (PDCCH) for transmitting L1 / L2 control information.
  • PDSCH physical downlink shared channel
  • PMCH physical multicast channel
  • PDCCH physical downlink control channel
  • PBCH physical broadcast channel
  • PCFICH physical control format indicator channel
  • PHICH physical hybrid ARQ indicator channel
  • the transmission power P PUSCH (i) of the uplink shared channel (PUSCH) is determined by the following equation (1) (for example, see Non-Patent Document 2).
  • P CMAX is the maximum transmission power determined based on the terminal class
  • M PUSCH (i) is the number of resource blocks allocated to the PUSCH
  • P O_PUSCH (j) is the received signal power (base station) that is the target of power control in the base station (The target value of the received signal power in FIG. 4), which is represented by the sum of the parameter determined by the base station and the parameter changed for each UE.
  • PL Pulse Loss
  • ⁇ TF (i) is a correction value corresponding to the adaptive modulation and coding parameter
  • f (i) is a TPC (Transmission Power Control) transmitted on the downlink PDCCH. This is a correction value using the absolute value or integrated value of the power control command.
  • the transmission power P PUSCH (i) that is the transmission power of the mobile station is 10 log 10 (M PUSCH (i)) + P O_PUSCH (j) + ⁇ (j) ⁇ PL + ⁇ TF (i) + f (i) ), But does not exceed the maximum transmit power P CMAX .
  • i in the above formula (1) is a sub-frame number, and j takes a value from 0 to 2 depending on the type of grant when the eNB assigns a transmission frame of the UE.
  • relay node hereinafter also referred to as “relay station” that relays (relays) a signal between a mobile station and a base station.
  • An RN is connected to a network via a specific base station.
  • a base station having this RN is called a donor eNB.
  • Some relay nodes have a physical cell ID different from that of the donor eNB and are called Type 1 that constitutes a cell different from the donor eNB, and others are called Type 2 that does not constitute a cell different from the eNB.
  • Type 1 that constitutes a cell different from the donor eNB
  • Type 2 does not constitute a cell different from the eNB.
  • the RN of Type 2 does not have a unique physical cell ID and does not constitute a new cell.
  • the RN of Type 2 does not relay all signals transmitted by the eNB, and does not have to transmit a control channel such as a synchronization signal, a common reference signal, or a PDCCH. In this case, the UE can receive these signals only from the eNB.
  • the connected eNB transmits an RRCConnectionReconfiguration message including information on the destination cell to instruct the handover (for example, see Non-Patent Document 3).
  • the UE changes the setting of the radio channel according to the information included in the RRCConnectionReconfiguration.
  • PO_PUSCH (j) which is a parameter related to power control, can be reset, and the accumulated value of f (i) is reset.
  • the PL calculates the value of the destination cell by measurement at the time of handover.
  • Type 2 RN that does not have a unique physical cell ID
  • the Type 2 RN area is not distinguished from the donor eNB cell, it is not possible to notify the mobile station of a unique parameter (for example, RN transmission power). For this reason, it is impossible to reset parameters related to power control, and it is difficult to appropriately set transmission power by the mobile station, that is, uplink transmission power.
  • the transmission power of the RN is smaller than that of the donor eNB, and the coverage area of the RN is narrower than that of the donor eNB. That is, the propagation distance between the UE and the RN is often smaller than the propagation distance between the eNB and the UE, and the transmission power of the UE is often excessive when moving from the eNB to the RN. Conversely, when the RN shifts to the eNB, the UE transmission power is often insufficient.
  • the present invention has been made in view of the above problems, and its purpose is to appropriately and quickly move even when a unique parameter (for example, RN transmission power) cannot be notified to a mobile station.
  • An object of the present invention is to provide a technique for controlling transmission power by a station.
  • a wireless communication system is a wireless communication system including a base station, one or more relay stations associated with the base station, and one or more mobile stations.
  • the mobile station and the base station communicate with each other without using the relay station, the mobile station and the base station are controlled via the relay station while controlling the transmission power of the mobile station using the first transmission power control method.
  • the transmission power of the mobile station is controlled using the second transmission power control method.
  • the radio communication system controls the transmission power of the mobile station using the second transmission power control method
  • the power used when controlling the transmission power of the mobile station using the first transmission power control method In addition to the control parameters, other parameters according to the difference between the channel quality between the mobile station and the base station and the channel quality between the mobile station and the relay station may be used.
  • the other parameter may be a parameter according to a difference between the received power at the base station for the mobile station transmission and the received power at the relay station for the mobile station transmission. Further, the other parameter may be a parameter according to a difference between a propagation path loss between the mobile station and the base station and a propagation path loss between the mobile station and the relay station. Further, the other parameter may be a parameter according to the difference between the SINR at the base station and the SINR at the relay station.
  • the difference between the propagation path loss between the mobile station and the base station for the mobile station transmission and the propagation path loss between the mobile station and the relay station for the mobile station transmission and a predetermined threshold value may be determined whether or not a relay station is used. Further, the predetermined threshold value may be adaptively changed.
  • the base station apparatus when the base station apparatus according to another aspect of the present invention communicates with a mobile station without going through a relay station, the transmission power of the mobile station is transmitted using the first transmission power control method. On the other hand, when communicating with the mobile station via the relay station, the transmission power of the mobile station is controlled using the second transmission power control method.
  • a base station device includes a communication channel quality between a mobile station and the base station device, and a communication channel quality between the mobile station and the relay station.
  • the comparison means for comparing the difference between the communication channel quality calculated by the communication channel quality calculation means and a predetermined threshold,
  • parameter notifying means for notifying the mobile station of a parameter corresponding to the difference in channel quality calculated by the channel quality calculating means.
  • the mobile station apparatus controls the transmission power using the first transmission power control method when communicating with the base station without using the relay station, When communicating with the base station via the relay station, the transmission power is controlled using the second transmission power control method.
  • a wireless communication method is a wireless communication between a base station, one or more relay stations associated with the base station, and one or more mobile stations.
  • the mobile station transmits the mobile station via the relay station while controlling the transmission power of the mobile station using the first transmission power control method.
  • the base station communicate with each other, the transmission power of the mobile station is controlled using the second transmission power control method.
  • the present invention in a mobile communication system having a relay station in addition to a base station and a mobile station, it is possible to appropriately perform uplink transmission power control of the mobile station.
  • FIG. 1 is a conceptual diagram of a wireless communication system to which an uplink transmission power control method according to an embodiment of the present invention is applied. It is a block diagram which shows an example of the mobile station used for the uplink transmission power control method by one Embodiment of this invention.
  • FIG. 6 is a block diagram illustrating an example of a base station using an uplink transmission power control method according to an embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating an example of a relay node (RN) using an uplink transmission power control method according to an embodiment of the present invention. It is a flowchart which shows an example of operation
  • RN relay node
  • FIG. 1 is a conceptual diagram of a radio communication system 1 to which an uplink transmission power control method according to an embodiment of the present invention is applied.
  • the wireless communication system 1 includes a mobile station 100, a base station 200, and an RN 300.
  • RN 300 is a relay station between mobile station 100 and base station 200.
  • the mobile station 100 is located in the area BA of the base station 200, and the mobile station 100 and the base station 200 communicate directly with each other without going through the RN 300 (hereinafter also referred to as “one hop”).
  • Communication mode in which mobile station 100 is located in area RA of RN 300 installed in the area of base station 200, and mobile station 100 and base station 200 communicate via RN 300 (hereinafter also referred to as “two-hop”) There is.
  • the connection between the RN 300 and the base station 200 may be a wired connection or a wireless connection.
  • the RN 300 is installed, for example, in a weak electric field environment such as in a building or underground, or in an environment where users are concentrated.
  • the wireless communication system 1 may include a plurality of base stations 200.
  • one RN 300 and one mobile station 100 are described in the area of the base station 200.
  • a plurality of RN 300 and a plurality of mobile stations 100 may exist in the area of the base station 200.
  • a configuration in which a plurality of RNs 300 belong to one base station 200 in other words, a configuration in which a plurality of RNs 300 are associated with one base station 200, may be in the area of the base station 200 or the RN 300
  • a plurality of mobile stations 100 may be in the area.
  • RNs 300 By arranging a plurality of RNs 300 in the area of one base station 200, there are the same effects as arranging small cells in many areas, and the effect of increasing the number of mobile stations accommodated per unit area can be obtained. . Further, by using the RN 300 instead of the eNB, the installation and operation costs can be reduced.
  • FIG. 2 is a block diagram illustrating an example of the mobile station 100.
  • the mobile station 100 includes a transmission / reception antenna 101, a transmission / reception circuit 102, a control circuit 105, and a peripheral circuit 106.
  • the control circuit 105 includes a storage unit 1051 and a calculation unit 1052.
  • the transmission / reception antenna 101 has a function of radiating radio waves with a predetermined gain in a frequency band used by the mobile station 100.
  • the transmission / reception circuit 102 has a function of transmitting / receiving a radio signal via the transmission / reception antenna 101.
  • the transmission / reception circuit 102 has a function of amplifying the received signal to a predetermined power value.
  • the transmission / reception circuit 102 has a function of converting the amplified reception signal into a baseband signal.
  • the transmission / reception circuit 102 has a function of outputting the converted baseband signal to the control circuit 105.
  • the transmission / reception circuit 102 has a function of converting the baseband signal input from the control circuit 105 into a transmission signal in a radio frequency band.
  • the transmission / reception circuit 102 has a function of inputting the transmission power control signal TP input from the control circuit 105. Further, the transmission / reception circuit 102 has a function of amplifying the transmission signal to a predetermined power value according to the transmission power control signal input from the control circuit 105 and transmitting it as a radio signal via the transmission / reception antenna 101.
  • the control circuit 105 has a function of processing a baseband signal input from the transmission / reception circuit 102. In addition, the control circuit 105 has a function of outputting the processed signal to the peripheral circuit 106. For example, the control circuit 105 performs demodulation, decoding, and digital / analog conversion processing on the baseband signal input from the transmission / reception circuit 102, converts the baseband signal into an audio signal, and outputs the audio signal to the peripheral circuit 106.
  • the control circuit 105 has a function of processing signals input from the peripheral circuits. Further, the control circuit 105 has a function of outputting the processed baseband signal to the transmission / reception circuit 102. For example, the control circuit 105 performs analog / digital conversion, encoding, and modulation processing on the voice input from the peripheral circuit 106 to convert it into a baseband signal, and outputs the baseband signal to the transmission / reception circuit 102.
  • the storage unit 1051 of the control circuit 105 stores the base station-specific parameter signal BP (M PUSCH (i), P O_PUSCH (j), ⁇ (i), etc. in the above equation (1)) input from the transmission / reception circuit 102.
  • parameters to be stored on the mobile station side ⁇ TF (i) in the above formula (1), etc. are stored in advance.
  • the calculation unit 1052 of the control circuit 105 includes the received power value DRP of the reference signal (reference signal) of the base station 200 input from the transmission / reception unit 102 and the reference signal of the base station 200 received in advance and stored in the storage unit 1051.
  • the downlink propagation path loss (PL) is calculated from the transmission power value, various parameters stored in advance in the storage unit 1051 are read out, and the uplink transmission power TP (for example, an expression (described later)) is determined by the system. 2) is calculated.
  • the peripheral circuit 106 is various circuits that control a display unit (not shown), a speaker (not shown), and the like.
  • the peripheral circuit 106 has a function of causing the speaker of the receiver to output sound based on the audio signal input from the control circuit 105.
  • the peripheral circuit 106 has a function of inputting voice from the microphone of the transmitter and outputting the input voice signal to the control circuit 105.
  • the peripheral circuit 106 has a function of displaying various information on the display unit in accordance with an instruction from the control circuit 105.
  • the mobile station 100 may include a plurality of peripheral circuits 106.
  • FIG. 3 is a block diagram showing an example of the configuration of the base station 200.
  • the base station 200 includes a transmission / reception antenna 201, a transmission / reception circuit 202 for UE, a transmission / reception circuit 203 for RN, a control circuit 205, and a peripheral circuit 206.
  • the control circuit 205 includes a storage unit 2051 and a calculation unit 2052.
  • the transmission / reception antenna 201 has a function of radiating and receiving radio waves with a predetermined gain in a frequency band used by the base station 200.
  • the UE transmission / reception circuit 202 has a function of receiving a radio signal via the transmission / reception antenna 201.
  • the UE transmission / reception circuit 202 has a function of amplifying the received signal to a predetermined power value.
  • the UE transmission / reception circuit 202 has a function of converting the amplified received signal into a baseband signal.
  • the UE transmission / reception circuit 202 has a function of outputting the converted baseband signal to the control circuit 205.
  • the UE transmission / reception circuit 202 has a function of converting the baseband signal input from the control circuit 205 into a transmission signal in a radio frequency band.
  • the UE transmission / reception circuit 202 has a function of inputting an uplink transmission power control signal (UL-TPC signal) input from the control circuit 205. Further, the UE transmission / reception circuit 202 inserts the uplink transmission power control signal (UL-TPC signal) input from the control circuit 205 into the PDCCH of the downlink control channel according to the format determined by the system, and transmits other signals. A function of amplifying the transmission signal to a predetermined power value and transmitting it as a radio signal via the transmission / reception antenna 201 is also provided. In addition, the UE transmission / reception circuit 202 has a function of measuring the received power of the transmission signal of the mobile station 100.
  • U-TPC signal uplink transmission power control signal
  • the RN transmission / reception circuit 203 has a function of transmitting / receiving control signals and data signals to / from the RN 300.
  • the UE transmission / reception circuit 202 may have the function of the RN transmission / reception circuit 203.
  • the control circuit 205 has a function of processing a baseband signal input from the UE-use transmission / reception circuit 202.
  • the control circuit 205 has a function of outputting the processed signal to the peripheral circuit 206.
  • the control circuit 205 converts the baseband signal input from the UE transmission / reception circuit 202 and outputs the converted signal to the peripheral circuit 206.
  • the control circuit 205 has a function of processing a signal input from each peripheral circuit.
  • the control circuit 205 has a function of outputting the processed baseband signal to the UE transmission / reception circuit 202.
  • the control circuit 205 converts the signal input from the peripheral circuit 206 into a baseband signal and outputs the baseband signal to the UE transmission / reception circuit 202.
  • the storage unit 2051 of the control circuit 205 stores the received power RRP of the transmission signal of the mobile station 100 measured by the RN 300 input from the transceiver circuit 203 for RN.
  • the calculation unit 2052 of the control circuit 205 compares the received power URP measured by the UE-use transceiver circuit 202 with the received power target value UT to generate an uplink transmission power signal (UL-TPC signal).
  • the arithmetic unit 2052 receives the received power value URP for the transmission power of the mobile station input from the UE transmission / reception circuit 202 and the received power of the transmission signal of the mobile station 100 measured in advance by the RN 300 stored in the storage unit 2051.
  • the difference between the propagation path loss at the base station 200 and the propagation path loss at the RN 300 for the transmission of the same mobile station 100 from the value RRP (difference if the propagation path loss is converted in dBm, converted into W If so, the ratio) is calculated.
  • FIG. 4 is a block diagram illustrating an example of the configuration of the RN 300.
  • the RN 300 includes a transmission / reception antenna 301, a transmission / reception circuit 302 for UE, a transmission / reception circuit 303 for eNB, a control circuit 305, and a peripheral circuit 306.
  • the control circuit 305 includes a storage unit 3051 and a calculation unit 3052.
  • the transmission / reception antenna 301 has a function of radiating and receiving radio waves with a predetermined gain in a frequency band used by the RN 300.
  • the UE transmission / reception circuit 302 has a function of receiving a radio signal via the transmission / reception antenna 301. In addition, the UE transmission / reception circuit 302 has a function of amplifying the received signal to a predetermined power value. Further, the UE transmission / reception circuit 302 has a function of converting the amplified received signal into a baseband signal. Further, the UE transmission / reception circuit 302 has a function of outputting the converted baseband signal to the control circuit 305. In addition, the UE transmission / reception circuit 302 has a function of converting the baseband signal input from the control circuit 305 into a transmission signal in a radio frequency band. In addition, the UE transmission / reception circuit 302 has a function of measuring received power for a transmission signal of a mobile station.
  • the eNB transceiver circuit 303 has a function of transmitting and receiving control signals and data signals to and from the base station 200.
  • the UE transmission / reception circuit 302 may have a function of the eNB transmission / reception circuit 303.
  • the control circuit 305 has a function of processing a baseband signal input from the UE transmission / reception circuit 302.
  • the baseband signal processing includes demodulation, decoding, and digital / analog conversion processing.
  • the control circuit 305 has a function of outputting the processed signal to the peripheral circuit 306.
  • the control circuit 305 converts the baseband signal input from the UE transmission / reception circuit 302 and outputs it to the peripheral circuit 306.
  • the control circuit 305 has a function of processing a signal input from each peripheral circuit. Processing of signals from the peripheral circuit includes analog / digital conversion, encoding, and modulation processing.
  • the control circuit 305 has a function of outputting the processed baseband signal to the UE transmission / reception circuit 302.
  • the control circuit 305 converts the signal input from the peripheral circuit 306 into a baseband signal and outputs the baseband signal to the UE transmission / reception circuit 302.
  • the analog / digital conversion and digital / analog conversion processes include, for example, sampling an audio signal at a sampling rate of 8 kHz and converting it into a digital signal, or conversely converting a digital signal into an audio signal.
  • the encoding and decoding processing includes, for example, turbo encoding at a coding rate of 1/3 or decoding processing using a Max-Log-MAP algorithm.
  • Modulation and demodulation include, for example, soft decision decoding in which a bit string is mapped to a signal using 16QAM signal points, and a baseband signal is converted into a bit string including likelihood information.
  • the storage unit 3051 of the control circuit 305 stores the received power URP of the transmission signal of the mobile station 100 measured by the base station 200 input from the transceiver circuit 303 for eNB.
  • the calculation unit 3052 of the control circuit 305 compares the received power RRP measured by the UE transmission / reception circuit 302 with the received power target value UT, and generates an uplink transmission power signal (UL-TPC signal).
  • an uplink transmission power control method according to the first embodiment of the present invention will be described.
  • the arithmetic unit 2052 of the base station 200 The received power of base station 200 is compared with the received power target value, and an uplink transmission power signal (UL-TPC signal) for mobile station 100 is generated.
  • the UE transmission / reception circuit 202 of the base station 200 transmits the uplink transmission power signal (UL-TPC signal) generated by the arithmetic unit 2052 to the mobile station 100 using the PDCCH of the downlink control channel.
  • operation unit 3052 of RN 300 uses received power of RN 300 as received power. Compared with the target value, an uplink transmission power signal (UL-TPC signal) for the mobile station 100 is generated.
  • the UE transmission / reception circuit 302 of the RN 300 transmits the uplink transmission power signal (UL-TPC signal) generated by the arithmetic unit 3052 to the mobile station 100 via the downlink control channel.
  • the transmission / reception circuit 102 extracts the uplink transmission power signal (UL-TPC signal) and supplies it to the computing unit 1052.
  • the arithmetic unit 1052 determines the uplink transmission signal power according to the following equation (2) using the uplink transmission power signal (UL-TPC signal) and the parameters stored in the storage unit 1051 in advance.
  • the above formula (2) will be described in comparison with the above formula (1).
  • the meaning of each term on the left side and the right side of the above formula (2) is the same as that of the above formula (1) except for the meaning of the last term “f 2 (i)” on the right side of the above formula (2). is there.
  • the PL (propagation path loss) calculated in the mobile station 100 is the same as that in the above formula (1), and in the above formula (2), the base station 200 and the mobile station 100 are both one-hop and two-hop.
  • the path loss between is used.
  • the channel loss between the RN 300 and the mobile station 100 is not used as PL (propagation channel loss) because the cell specific reference signal (CRS) for measuring PL (channel loss) is RN300. This is because it is difficult for the mobile station 100 to measure the PL (propagation path loss) between the RN 300 and the mobile station 100 when the mobile station 100 does not transmit.
  • CRS cell specific reference signal
  • f 2 (i) is a term of closed loop transmission power using an uplink transmission power signal (UL-TPC signal). That is, it is a correction value of transmission power.
  • f 2 (i) is different between the one-hop case and the two-hop case.
  • f as 2 (i) as shown in the following control (3), using the f (i) is the power control section of the above formula (1).
  • f 2 (i) is obtained by adding the correction value ( ⁇ PL RN ) in the case of two-hop to f (i) in the above equation (1).
  • the reason why the two-hop correction value (-PL RN ) is added is that the required transmission power for the uplink differs greatly between the one-hop case and the two-hop case. Note that f (i) is controlled based on the received power in the RN 300.
  • Switching between the control expression (3) and the control expression (4) may be performed by the mobile station 100 or by the NW side (base station 200 or RN 300 side).
  • f 2 (i) is calculated on the NW side and notified to the mobile station 100 as a TPC command (calculation of f 2 (i) corresponds to switching).
  • the mobile station 100 only needs to operate according to the TPC command, and is not conscious of switching the control formula.
  • a TPC command including + PL RN and -PL RN is notified to the mobile station 100 at the time of switching (selection of + PL RN or -PL RN corresponds to switching).
  • the NW side notifies the instruction for switching the control formula together with the correction value (PL RN ), or notifies the correction value (PL RN ) using the control formula switching as an instruction. Switch the above control formula.
  • the mobile station 100 uses the control formula (3) that is the first transmission power control method.
  • the transmission power of the mobile station 100 is transmitted using the control equation (4) which is the second transmission power control method.
  • the control equation (3) that is the first transmission power control method is used.
  • another parameter (PL RN ) is used.
  • the correction value (PL RN ), which is another parameter, is a parameter according to the difference between the channel quality between the mobile station 100 and the base station 200 and the channel quality between the mobile station 100 and the RN 300. Details will be described later.
  • the RN 300 acquires information on a plurality of mobile stations 100 existing in the area of the base station 200 from the base station 200 in advance, monitors transmission signals of each mobile station 100, measures received power, and transmits and receives for eNB It is assumed that the received power at RN 300 for transmission of mobile station 100 is notified to base station 200 via circuit 302.
  • the base station 200 measures the received power at the base station 200 for the transmission of the mobile station 100 and stores it in the storage unit 2051.
  • the RN 300 is Type 2 that does not have a unique physical cell ID.
  • the transmission power of the mobile station 100 is P UETX [dBm]
  • the reception power at the base station 200 is PeNB
  • the reception power at the RN300 is PRN
  • the mobile station 100 to the base station When the propagation loss to the station 200 is PL UE-eNB [dB] and the propagation loss from the mobile station 100 to the RN 300 is PL UE-RN [dB], the relationships shown in the following equations (5) and (6) are established.
  • the calculation unit 2052 of the base station 200 periodically or as necessary, according to the above formulas (5) and (6) and the following formula (7), a propagation path loss from the mobile station 100 to the base station 200, The difference (PL UE-eNB -PL UE-RN ) from the propagation path loss from the mobile station 100 to the RN 300 is calculated.
  • the base station 200 may notify the RN 300 of the values of PeNB and UETX so that the arithmetic unit 3052 of the RN 300 may calculate the difference of the propagation path loss instead of the arithmetic unit 2052 of the base station 200. .
  • PL UE-eNB- PL UE-RN P RN, UETX- P eNB, UETX (7)
  • the base station 200 calculates a correction value (PL RN ) according to the following equation (8). As shown in the above equation (7), since the correction value (PL RN ) is a difference in propagation path loss, either the above equation (7) or the above equation (8) may be calculated.
  • PL RN P RN, UETX -P eNB, UETX (8)
  • the control equation (3) that is the first transmission power control method is used.
  • the received power (P eNB, UETX ) at the base station 200 and the transmission of the mobile station 100 for the transmission of the mobile station 100 The other parameter (PL RN ) corresponding to the difference (P RN, UETX -P eNB, UETX ) with the received power (P RN, UETX ) at RN 300 is used.
  • the base station 200 that has calculated the correction value (PL RN ) uses the threshold value T RN-in to determine the location from the area of the base station 200 to the area of the RN 300. Specifically, base station 200 determines that mobile station 100 is located in the area of RN 300 when the correction value (PL RN ) is equal to or greater than threshold value T RN-in .
  • T RN-in (the same applies to T RN-out described later) may be a value obtained in advance based on a simulation or a field test, or may be a value that is adaptively updated. For example, if the TRN -in is changed according to the traffic in the service area of the base station 200, the cover area of the RN 300 can be controlled.
  • the base station 200 that has determined that the mobile station 100 is located in the area of the RN 300 transfers the transmission power control of the mobile station 100 to the RN 300, and the propagation by the RN 300 from the transmission power control that does not consider the difference in propagation loss by the base station 200. Transition to transmission power control that takes into account the difference in loss.
  • the base station 200 calculates f 2 (i) according to the control equation (4) instead of the control equation (3), and sends a TPC command including f 2 (i) via the RN 300.
  • the mobile station 100 is notified.
  • the mobile station 100 controls the uplink transmission power based on the notified f 2 (i).
  • the uplink transmission power control of the mobile station 100 can be appropriately performed after the transition from the one-hop state to the two-hop state.
  • base station 200 instead of calculating f 2 (i), base station 200 includes a correction value (PL RN ) and a TPC command including an instruction to calculate f 2 (i) according to the control equation (4). May be notified to the mobile station 100 via the RN 300. In this case, the mobile station 100 calculates f 2 (i) according to the control equation (4) instead of the control equation (3), and controls the uplink transmission power based on the calculated f 2 (i).
  • PL RN correction value
  • TPC command including an instruction to calculate f 2 (i) according to the control equation (4). May be notified to the mobile station 100 via the RN 300.
  • the mobile station 100 calculates f 2 (i) according to the control equation (4) instead of the control equation (3), and controls the uplink transmission power based on the calculated f 2 (i).
  • the computing unit 2052 of the base station 200 calculates a correction value (PL RN ) in the same manner as when the mobile station 100 approaches the RN 300 from the area of the base station 200.
  • the base station 200 that has calculated the correction value (PL RN ) uses the threshold value T RN-out to determine the location from the area of the RN 300 to the area of the base station 200. That is, the base station 200 determines that the mobile station 100 is located in the area of the base station 200 when the correction value (PL RN ) is equal to or less than the threshold T RN-out .
  • the base station 200 that has determined that the mobile station 100 is located in the area of the base station 200 requests the RN 300 to return the transmission power control of the mobile station 100, and from the transmission power control that considers the difference in propagation loss due to the RN 300.
  • the base station 200 shifts to transmission power control that does not consider the difference in propagation loss.
  • the base station 200 calculates f 2 (i) according to the control equation (3) instead of the control equation (4), and notifies the mobile station 100 of a TPC command including f 2 (i). To do.
  • the mobile station 100 controls the uplink transmission power based on the notified f 2 (i).
  • the base station 200 instead of calculating the f 2 (i), notifies the mobile station 100 the TPC command including the instruction to calculate the f 2 (i) according to the control formula (3) May be.
  • the mobile station 100 calculates f 2 (i) according to the control equation (3) instead of the control equation (4), and controls the uplink transmission power based on the calculated f 2 (i).
  • the uplink transmission power control of the mobile station 100 can be appropriately performed.
  • FIG. 5 is a flowchart illustrating an example of the operation when the mobile station 100 approaches the area of the RN 300 (when switching from one hop to two hops).
  • the mobile station 100 notifies the transmission power value to the base station 200 and the RN 300 (step S100).
  • the RN 300 receives the transmission power value from the mobile station 100 and measures the reception power (P RN, UETX ) from the mobile station 100 (step S110).
  • the base station 200 receives the transmission power value from the mobile station 100 and measures the reception power (P eNB, UETX ) from the mobile station 100 (step S120).
  • the RN 300 notifies the measured received power (P RN, UETX ) from the mobile station 100 to the base station 200 (step S111).
  • the base station 200 determines the propagation loss from the mobile station 100 to the base station 200 based on the transmission power value received from the mobile station 100 and the measured received power (P eNB, UETX ) from the mobile station 100. (PL UE-eNB ) is calculated (step S121).
  • the base station 200 determines the propagation loss from the mobile station 100 to the RN 300 from the transmission power value received from the mobile station 100 and the received power (P RN, UETX ) received from the mobile station 100 from the RN 300.
  • P RN, UETX received power
  • the base station 200 calculates a correction value (PL RN ) that is a difference in propagation path loss (P RN, UETX ⁇ P eNB, UETX ) (step S123).
  • the base station 200 determines whether or not the correction value (PL RN ), which is the difference in propagation path loss (P RN, UETX -P eNB, UETX ), is greater than or equal to the threshold value T RN-in (step S124). .
  • the base station 200 determines that the correction value (PL RN ), which is the difference in propagation path loss (P RN, UETX -P eNB, UETX ), is not equal to or greater than the threshold T RN-in (step S124: no), the RN 300 Step S110, the base station 200 returns to step S120. That is, the process within the broken line A in FIG. 5 (the process when the mobile station 100 is located in the area of the base station 200, the process within the broken line C in FIG. 7, and the process within the broken line D in FIG. 8 are the same). Repeatedly.
  • the correction value PL RN
  • the correction value (PL RN ) which is the difference in propagation path loss (P RN, UETX -P eNB, UETX ), is equal to or greater than the threshold value T RN-in (step S124: Yes)
  • the correction is performed.
  • value (PL RN) stores as PL RN-in, relative to RN300, at least, notification of transfer of transmission power control of the mobile station 100 and PL RN-in to RN300 to RN300 (step S125).
  • the RN 300 that has received the notification notifies the mobile station 100 that the power should be controlled in accordance with the notified PL RN-in and the control expression (4) (step S114).
  • the mobile station 100 can appropriately control so that the transmission power does not become excessive by reducing the transmission power.
  • the RN 300 may notify that the transmission power corresponding to the PL RN-in value should be reduced.
  • the mobile station 100 that has received the notification uses the notified PL RN-in as the PL RN and controls the uplink transmission power according to the control equation (4) (S101). That is, the operation is performed so as to reduce the transmission power corresponding to the PL RN-in value.
  • the received power at the RN 300 for the transmission of the mobile station 100 is substantially the same as the received power at the base station 200 for the transmission of the mobile station 100, so that the mobile station 100 has excessive power compared to the RN 300. It becomes possible to avoid continuing to transmit.
  • the mobile station 100 calculates f 2 (i) according to the control equation (4) while in the area of the RN 300.
  • the correction value (PL RN ) may be updated as necessary.
  • f (i) is a value determined by the same algorithm as f (i) at base station 200 in accordance with the received power (and reception quality) at RN 300 (power control from the received power at RN 300). If the signal is calculated, f (i) may be determined by the base station 200 or the RN 300, and the UL-TPC signal by f (i) is actually transmitted The base station 200 or the RN 300).
  • FIG. 6 is a flowchart showing an example of the operation when the mobile station 100 leaves the RN 300 area (from two hops to one hop).
  • steps S200, S210, S211, S220, S221, S222 and S223 are the same as steps S100, S110, S111, S120, S121, S122 and S123 of FIG. .
  • the base station 200 determines whether or not the correction value (PL RN ), which is the difference in propagation path loss (P RN, UETX ⁇ P eNB, UETX ), is equal to or less than the threshold value T RN ⁇ out ( Step S224).
  • step S224 the RN 300
  • the base station 200 determines that the correction value (PL RN ), which is the difference in propagation path loss (P RN, UETX -P eNB, UETX ) is not less than or equal to the threshold value T RN-out (step S224: no)
  • the RN 300 In step S210, the base station 200 returns to step S220. That is, the processing within the broken line B in FIG. 6 (processing when the mobile station 100 is in the area of the RN 300) is repeatedly executed.
  • the base station 200 determines that the correction value (PL RN ), which is the difference in propagation path loss (P RN, UETX -P eNB, UETX ), is equal to or less than the threshold value T RN-out (step S224: Yes), the base station 200 moves The RN 300 is requested to return the transmission power control of the station 100 to itself (step S225).
  • the correction value PL RN
  • P RN the difference in propagation path loss
  • the RN 300 that has received the notification notifies the mobile station 100 that power control should be performed according to the control equation (3) (step S214). Note that the RN 300 may notify that the transmission power for the PL RN-in value should be increased.
  • the mobile station 100 that has received the notification controls the uplink transmission power according to the control equation (3) (S220). That is, it operates to increase the transmission power for the PL RN-in value. As a result, it is possible to increase the transmission power of the mobile station 100 that was too small relative to the base station 200. Note that the mobile station 100 calculates f 2 (i) according to the control equation (3) while in the area of the base station 200.
  • FIG. 7 is a flowchart showing an example of another operation when the mobile station 100 approaches the area of the RN 300.
  • steps S300, S301, S310, S314, S320, S321, S323, S324 and S325 are the same as steps S100, S101, S110, S114, S120, S121, S123, S124 and S125 of FIG. Therefore, the description is omitted.
  • the RN 300 uses the transmission power value received from the mobile station 100 and the measured received power (P RN, UETX ) from the mobile station 100 to determine the propagation loss (PL UE ⁇ RN ) is calculated (step S311).
  • the RN 300 notifies the base station 200 of the calculated propagation loss (PL UE-RN ) from the mobile station 100 to the RN 300 (step S312).
  • the RN 300 may calculate a propagation loss (PL UE-RN ) from the mobile station 100 to the RN 300 and notify the base station 200 of it.
  • PL UE-RN propagation loss
  • FIG. 8 is a flowchart showing an example of another operation when the mobile station 100 approaches the area of the RN 300. Specifically, the flowchart shown in FIG. 8 is an example of an operation when the mobile station 100 calculates a difference in propagation path loss based on PH (Power Headroom).
  • PH Power Headroom
  • PH is a difference between the maximum transmission power P MAX determined based on the class of the mobile station 100 and the transmission power (desired transmission power) required for the mobile station 100, and If the transmission power is defined by the above equation (1), it is defined as the following equation (9).
  • steps S401, S411, S412, S414, S421, S423, S424, and S425 in FIG. 8 are the same as steps S301, S311, S312, S314, S321, S323, S324, and S325 in FIG. Since they are the same, description thereof is omitted.
  • the mobile station 100 notifies PH to the base station 200 and the RN 300 (step S400).
  • the RN 300 receives the transmission power value from the mobile station 100, calculates the actual transmission output value, and measures the reception power (P RN, UETX ) from the mobile station 100 (step S410).
  • P RN, UETX reception power
  • RN 300 calculates PCMAX-PH (i) as an actual transmission output value.
  • RN300 calculates PCMAX as the actual transmission output value.
  • the base station 200 receives the transmission power value from the mobile station 100, calculates the actual transmission output value, and measures the reception power (P eNB, UETX ) from the mobile station 100 (step S420). Note that the base station 200 calculates an actual transmission output value in the same manner as the RN 300.
  • the RN 300 and the base station 200 may calculate a difference in propagation path loss based on the PH.
  • the communication path quality between the mobile station 100 and the base station 200 and the communication path quality between the mobile station 100 and the RN 300 are used for the determination of the location in the area and the uplink transmission power control.
  • the parameter corresponding to the difference in communication quality the example using the difference in uplink received power and the difference in propagation path loss has been described.
  • the difference of SINR signal to interference and noise power ratio
  • SINR signal to interference and noise power ratio
  • the mobile station 100 has a GPS function so that the coordinates of the mobile station 100 are notified to the base station 200.
  • the base station 200 estimates the uplink channel quality from the coordinates of the mobile station 100, and the uplink station You may make it calculate the parameter showing the difference of channel quality.
  • the transmission power by the mobile station can be appropriately and quickly obtained. Can be set.
  • the PL value of the reference signal of the base station is used for the PL (Pathloss) term of the uplink power control. Therefore, for example, when the connection destination of the mobile station is switched from the base station to the RN, there arises a problem that the uplink transmission power becomes excessive with respect to the RN.
  • different power control is performed depending on whether the connection destination of the mobile station 100 is the base station 200 or the RN 300, so this problem can be solved.
  • the transmission power of the mobile station 100 is generally small. Therefore, by applying the present invention, interference (interference) to other cells is small. Therefore, the capacity of the entire system is increased.
  • the present invention solves the problem that it becomes excessive with respect to the RN 300 by introducing only one new parameter (PL RN ) without greatly changing the conventional power control method. it can. Further, even if the new parameter is an offset with respect to the target value, the same effect can be obtained.
  • the mobile station compares the reception quality at the mobile station with respect to the transmission from the base station and the reception quality at the mobile station with respect to the transmission from the RN (or another base station). Is connected, and uplink power control is performed according to the initial parameters of the base station or RN after the handover procedure.
  • uplink transmission power control cannot be performed appropriately with the conventional method.
  • reception quality reception power, Ec / Io, Pathloss, etc.
  • the service area is determined based on the UL signal propagation path loss in the base station 200 and the RN.
  • a program for realizing each function of mobile station 100, base station 200, and RN 300 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed.
  • the “computer system” may include an OS and hardware such as peripheral devices.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.
  • the “computer-readable recording medium” refers to a volatile memory (for example, DRAM (Dynamic) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc. that hold a program for a certain period of time.
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement
  • the present invention can be widely used in mobile communication systems having relay stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

 無線通信システム(1)は、基地局(200)と、基地局(200)に付随する1または複数のRN(300)と、1または複数の移動局(100)とを備える。無線通信システム(1)は、RN(300)を介さずに移動局(100)と基地局(200)とが通信するときは、第1の送信電力制御方法を用いて移動局(100)の送信電力を制御する一方、RN(300)を介して移動局(100)と基地局(200)とが通信するときは、第2の送信電力制御方法を用いて前記移動局の送信電力を制御する。

Description

無線通信システム、基地局装置、移動局装置および無線通信方法
 本発明は、無線通信システム、基地局装置、移動局装置および無線通信方法に関する。
 本願は、2009年11月10日に、日本に出願された特願2009-257216号に基づき優先権を主張し、その内容をここに援用する。
 現在、次世代移動通信システムの物理チャネルは、図9に示すような構成となることが決められている(例えば、非特許文献1参照)。物理チャネルは、移動局(以下、「UE(User Equipment)とも称する)と、基地局(以下、「eNB(evolved Node B、発展型ノードB)」とも称する)の間で、UEからeNBに向かうアップリンクチャネルと、eNBからUEに向かうダウンリンクチャネルとから構成される。
 アップリンクチャネルは、ランダムアクセスを行うランダムアクセスチャネル(PRACH)と、基地局のスケジュール管理にしたがってアップリンクデータの送信を行うアップリンクシェアドチャネル(PUSCH)と、ダウンリンク信号に関連する制御信号等の送信を行うアップリンク制御チャネル(PUCCH)とから構成される。
 ダウンリンクチャネルは、データを伝送する物理ダウンリンクシェアドチャネル(PDSCH)と、マルチキャストチャネルを伝送する物理マルチキャストチャネルと(PMCH)と、L1/L2制御情報を伝送する物理ダウンリンク制御チャネルと(PDCCH)と、セル固有の報知情報を伝送する物理ブロードキャストチャネル(PBCH)と、PDCCHを伝送するOFDMシンボル数を伝送する物理コントロールフォーマットインジケータチャネル(PCFICH)とアップリンクのHARQに対応するACK/NACKを伝送する物理ハイブリッドARQインジケータチャネル(PHICH)から構成される。
 アップリンクの信号電力は、通信中の基地局での受信品質とともに他の基地局に対しても干渉信号量という形で関与するので適切な電力設定が必要となる。現在、アップリンクシェアドチャネル(PUSCH)の送信電力PPUSCH(i)は、下記式(1)により決められている(例えば、非特許文献2参照)。
Figure JPOXMLDOC01-appb-M000001
 PCMAXは端末クラスに基づいて定められた最大送信電力、MPUSCH(i)はPUSCHに割り当てられるリソースブロック数、PO_PUSCH(j)は基地局における電力制御の目標とする受信信号電力(基地局における受信信号電力の目標値)であり基地局によって決まるパラメータとUE毎に変えるパラメータの和で表される。α(j)は後述するjの値が0または1の場合はセルで決まる0から1の範囲の係数となり、j=2の場合は1となる。PL(Pathloss)はUEで計算される伝搬路損失、ΔTF(i)は適応変調符号化パラメータに対応する補正値、f(i)は下りPDCCH上で送信されたTPC(Transmission Power Control:送信電力制御)コマンドの絶対値または積算値を用いた補正値である。上記式(1)は、移動局の送信電力である送信電力PPUSCH(i)が、10log10(MPUSCH(i))+PO_PUSCH(j)+α(j)・PL+ΔTF(i)+f(i)であるが、しかし最大送信電力PCMAXを超えないことを意味する。
 なお、上記式(1)のiは、サブムレーム番号であり、jは、eNBがUEの送信フレームの割り当てを行う際のgrantの種別によって0から2の値をとる。(j=0はsemi-persistent grant、j=1はdynamic scheduled grant、j=2はrandom access response grantである。)
 一方、移動局と基地局間で信号を中継(リレー)するリレーノード(RN、以下、「中継局」とも称する)の利用が検討されている。RNは特定の基地局を介してネットワークに接続するが、このRNを持つ基地局をドナーeNBという。リレーノードには、ドナーeNBとは異なる物理セルIDを持ち、ドナーeNBとは異なるセルを構成するType1と呼ばれるものと、eNBとは異なるセルを構成しないType2と呼ばれるものがある。Type2のRNは、独自の物理セルIDを持たず、新たなセルを構成する要素とはならない。Type2のRNは、eNBが送信する全ての信号を中継するわけではなく、同期シグナルや共通リファレンスシグナル、PDCCHなどの制御チャネルは送信しなくてよい。この場合、UEはこれらの信号をeNBのみから受信することができる。
 Type1のRNではUEの接続先がeNBからRNに移る場合、またはその逆の場合ハンドオーバのシーケンスを経る。ハンドオーバでは図10のように接続中のeNB(またはRN)が移動先のセルの情報を含んだRRCConnectionReconfigurationメッセージを送信して、ハンドオーバを指示する(例えば、非特許文献3参照)。
 UEは、RRCConnectionReconfigurationに含まれる情報に従って無線チャネルの設定を変更する。このとき、電力制御に関するパラメータであるPO_PUSCH(j)は再設定可能であり、f(i)の累積値はリセットされる。PLはハンドオーバの際のメジャメントによって移動先のセルの値を算出する。
3GPP TS36.201 LTE Physical layer-General Description v8.1.0 3GPP TS36.213 EUTRA Physical layer procedure v8.8.0 3GPP TS 36.331 V8.5.0
 ところが、独自の物理セルIDを持たないType2 RNの場合は、図10のようなハンドオーバの手順が無い。また、Type2 RNのエリアはドナーeNBのセルと区別されないため、独自のパラメータ(例えばRNの送信電力)を移動局に通知することができない。そのため、電力制御に関するパラメータを再設定することができず、移動局による送信電力、即ち、上り送信電力を適切に設定することが困難である。
 一般にRNの送信電力はドナーeNBより小さく、RNのカバーエリアはドナーeNBより狭い。即ち、UE-RN間の伝搬距離はeNB-UE間の伝搬距離より小さくなる場合が多く、eNBからRNに移行した際には、UEの送信電力は過剰である場合が多い。
 逆にRNからeNBに移行した際には,UEの送信電力が不足している場合が多い。
 クローズドループ(closed-loop)のTPCコマンドを用いて上記式(1)のf(i)の項を制御することにより、上り送信電力を徐々に適正値にあわせることが可能であるが、絶対値を用いる制御では設定値の範囲が十分でなく、また積算値を用いる場合は収束に時間がかかるという課題がある。
 本発明は、上記問題に鑑みてなされたものであり、その目的は、独自のパラメータ(例えばRNの送信電力)を移動局に通知することができない場合であっても、適切且つ迅速に、移動局による送信電力を制御する技術を提供することにある。
上記問題を解決するために、本発明の一態様である無線通信システムは、基地局と、基地局に付随する1または複数の中継局と、1または複数の移動局とを備える無線通信システムであって、中継局を介さずに移動局と基地局とが通信するときは、第1の送信電力制御方法を用いて移動局の送信電力を制御する一方、中継局を介して移動局と基地局とが通信するときは、第2の送信電力制御方法を用いて移動局の送信電力を制御する。
 上記無線通信システムは、第2の送信電力制御方法を用いて移動局の送信電力を制御するときは、第1の送信電力制御方法を用いて移動局の送信電力を制御するときに使用する電力制御パラメータに加え、移動局と基地局との間の通信路品質と移動局と中継局との間の通信路品質との差分に応じた他のパラメータを使用するようにしてもよい。
 上記無線通信システムにおいて、他のパラメータは、移動局の送信に対する基地局での受信電力と移動局の送信に対する中継局での受信電力との差分に応じたパラメータであってもよい。また、他のパラメータは、移動局と基地局との間の伝搬路損失と移動局と中継局との間の伝搬路損失との差分に応じたパラメータであってもよい。また、他のパラメータは、基地局でのSINRと中継局でのSINRとの差分に応じたパラメータであってもよい。
 上記無線通信システムにおいて、移動局の送信に対する移動局と基地局との間の伝搬路損失と移動局の送信に対する移動局と中継局との間の伝搬路損失との差分と所定の閾値との比較結果に応じて、移動局と基地局とが通信するときに、中継局を介するか否かを判断するようにしてもよい。また、所定の閾値は、適応的に変更するものであってもよい。
 上記問題を解決するために、本発明の他の態様である基地局装置は、中継局を介さずに移動局と通信するときは、第1の送信電力制御方法を用いて移動局の送信電力を制御する一方、中継局を介して移動局と通信するときは、第2の送信電力制御方法を用いて移動局の送信電力を制御する。
 上記問題を解決するために、本発明の他の態様である基地局装置は、移動局と該基地局装置との間の通信路品質と、移動局と中継局との間の通信路品質との通信路品質の差分を算出する通信路品質算出手段と、通信路品質算出手段によって算出された通信路品質の差分と所定の閾値とを比較する比較手段と、比較手段による比較結果に応じて、通信路品質算出手段によって算出された通信路品質の差分に応じたパラメータを移動局に通知するパラメータ通知手段とを備える。
 上記問題を解決するために、本発明の他の態様である移動局装置は、中継局を介さず基地局と通信するときは、第1の送信電力制御方法を用いて送信電力を制御し、中継局を介して基地局と通信するときは、第2の送信電力制御方法を用いて送信電力を制御する。
 上記問題を解決するために、本発明の他の態様である無線通信方法は、基地局と、基地局に付随する1または複数の中継局と、1または複数の移動局との間の無線通信方法であって、中継局を介さずに移動局と基地局とが通信するときは、第1の送信電力制御方法を用いて移動局の送信電力を制御する一方、中継局を介して移動局と基地局とが通信するときは、第2の送信電力制御方法を用いて移動局の送信電力を制御する。
 本発明によれば、基地局および移動局の他に中継局を有する移動通信システムにおいて、移動局の上り送信電力制御を適切に行うことができる。
本発明の一実施形態によるアップリンク送信電力制御方法を適用する無線通信システムの概念図である。 本発明の一実施形態によるアップリンク送信電力制御方法に用いる移動局の一例を示すブロック図である。 本発明の一実施形態によるアップリンク送信電力制御方法を用いる基地局の一例を示すブロック図である。 本発明の一実施形態によるアップリンク送信電力制御方法を用いるリレーノード(RN)の一例を示すブロック図である 移動局、基地局装置およびRNの動作の一例を示すフローチャートである。 移動局、基地局装置およびRNの動作の一例を示す別のフローチャートである。 移動局、基地局装置およびRNの動作の一例を示すさらに別のフローチャートである。 移動局、基地局装置およびRNの動作の一例を示すさらに別のフローチャートである。 従来技術を説明するための説明図である。 従来技術を説明するための説明図である。
 以下、図面を参照し、本発明の一実施形態について説明する。図1は、本発明の一実施形態によるアップリンク送信電力制御方法を適用する無線通信システム1の概念図である。無線通信システム1は、図1に示すように、移動局100、基地局200およびRN300を備える。RN300は、移動局100と基地局200との間の中継局である。
 無線通信システム1では、移動局100が基地局200のエリアBAに在圏し、移動局100と基地局200とがRN300を介さずに直接通信する通信態様(以下、「ワンホップ」とも称する)と、移動局100が基地局200のエリア内に設置されたRN300のエリアRAに在圏し、移動局100と基地局200とがRN300を介して通信する通信態様(以下、「ツーホップ」とも称する)がある。RN300と基地局200間の接続は、有線方式による接続であっても無線方式に接続であってもよい。なお、RN300は、例えば、建物内や地下など弱電界の環境、ユーザが密集している環境に設置される。
 なお、便宜上、図1において1つの基地局200を記載したが、無線通信システム1は複数の基地局200を備えていてもよい。また、図1において基地局200のエリア内には1つのRN300、1つの移動局100を記載したが、基地局200のエリア内には複数のRN300、複数の移動局100が存在してもよい。即ち、一の基地局200の配下に複数のRN300が属する構成、換言すれば、一の基地局200に複数のRN300が付随する構成であってもよく、基地局200のエリア内、または、RN300のエリア内に複数の移動局100が在圏してもよい。一の基地局200のエリア内に複数のRN300を配置することにより、多くのエリアの小さいセルを配置するのと同様な効果があり、単位面積あたりの収容移動局数を増加させる効果が得られる。さらにeNBでなくRN300を用いることによって設置、運用コストを安価に抑えることが可能となる。
 図2は、移動局100の一例を示すブロック図である。図2に示すように、移動局100は、送受信アンテナ101、送受信回路102、制御回路105および周辺回路106を備える。制御回路105は、記憶部1051および演算部1052を備える。
 送受信アンテナ101は、移動局100が用いる周波数帯域で、所定の利得で電波を放射する機能を備える。
 送受信回路102は、送受信アンテナ101を介して、無線信号を送受信する機能を備える。また、送受信回路102は、受信信号を所定の電力値まで増幅する機能を備える。
 また、送受信回路102は、増幅した受信信号をベースバンド信号に変換する機能を備える。また、送受信回路102は、変換したベースバンド信号を制御回路105に出力する機能を備える。また、送受信回路102は、制御回路105から入力したベースバンド信号を無線周波数帯の送信信号に変換する機能を備える。また、送受信回路102は、制御回路105から入力される送信電力制御信号TPを入力する機能を備える。また、送受信回路102は、制御回路105から入力した送信電力制御信号に従って送信信号を所定の電力値まで増幅し、送受信アンテナ101を介して無線信号として送信する機能を備える。
 制御回路105は、送受信回路102から入力したベースバンド信号を処理する機能を備える。また、制御回路105は、処理した信号を周辺回路106に出力する機能を備える。例えば、制御回路105は、送受信回路102から入力したベースバンド信号について、復調、復号、ディジタル/アナログ変換の処理を施して音声信号に変換し、周辺回路106に出力する。また、制御回路105は、各周辺回路から入力した信号を処理する機能を備える。また、制御回路105は、処理したベースバンド信号を送受信回路102に出力する機能を備える。例えば、制御回路105は、周辺回路106から入力した音声についてアナログ/ディジタル変換、符号化、変調の処理を施してベースバンド信号に変換し、送受信回路102に出力する。
 制御回路105の記憶部1051は、送受信回路102から入力した基地局固有のパラメータ信号BP(上記式(1)におけるMPUSCH(i)、PO_PUSCH(j)、α(i)等)を記憶するとともに、移動局側で記憶すべきパラメータ(上記式(1)におけるΔTF(i)等)を予め記憶している。
 制御回路105の演算部1052は、送受信部102から入力された基地局200の基準信号(リファレンスシグナル)の受信電力値DRPと、予め受信し記憶部1051に記憶された基地局200のリファレンスシグナルの送信電力値とからダウンリンクの伝搬路損失(PL)を算出し、予め記憶部1051に記憶された各種のパラメータを読み出し、システムにより定められているアップリンクの送信電力TP(例えば後述する式(2)による送信電力)を算出する。
 周辺回路106は、表示部(非図示)やスピーカ(非図示)等を制御する各種回路である。例えば、周辺回路106は、制御回路105から入力した音声信号に基づいて、受話部のスピーカに音声を出力させる機能を備える。また例えば、周辺回路106は、送話部マイクから音声を入力し、入力した音声信号を制御回路105に出力する機能を備える。
 また例えば、周辺回路106は、制御回路105からの指示に従って、表示部に各種情報を表示させる機能を備える。なお、図2では1つの周辺回路106を示したが、移動局100は複数の周辺回路106を備えていてもよい。
 図3は、基地局200の構成の一例を示すブロック図である。図3に示すように、基地局200は、送受信アンテナ201、対UE用送受信回路202、対RN用送受信回路203、制御回路205および周辺回路206を備える。制御回路205は、記憶部2051および演算部2052を備える。
 送受信アンテナ201は、基地局200が用いる周波数帯域で、所定の利得で電波を放射し、また電波を受信する機能を備える。
 対UE用送受信回路202は、送受信アンテナ201を介して、無線信号を受信する機能を備える。また、対UE用送受信回路202は、受信信号を所定の電力値まで増幅する機能を備える。また、対UE用送受信回路202は、増幅した受信信号をベースバンド信号に変換する機能を備える。また、対UE用送受信回路202は、変換したベースバンド信号を制御回路205に出力する機能を備える。また、対UE用送受信回路202は、制御回路205から入力したベースバンド信号を無線周波数帯の送信信号に変換する機能を備える。また、対UE用送受信回路202は、制御回路205から入力されるアップリンク送信電力制御信号(UL-TPC信号)を入力する機能を備える。また、対UE用送受信回路202は、制御回路205から入力したアップリンク送信電力制御信号(UL-TPC信号)を、システムにより定められたフォーマットに従ってダウンリンク制御チャネルのPDCCHに挿入し、他の信号とともに送信信号を所定の電力値まで増幅し、送受信アンテナ201を介して無線信号として送信する機能を備える。また、対UE用送受信回路202は、移動局100の送信信号に対する受信電力を測定する機能を備える。
 対RN用送受信回路203は、RN300との間で、制御信号およびデータ信号の送受信を行う機能を備える。なお、RN300と基地局200とが無線方式によって接続されている場合には、対UE用送受信回路202が、対RN用送受信回路203の機能を兼ね備える構成であってもよい。
 制御回路205は、対UE用送受信回路202から入力したベースバンド信号を処理する機能を備える。また、制御回路205は、処理した信号を周辺回路206に出力する機能を備える。例えば、制御回路205は、対UE用送受信回路202から入力したベースバンド信号を変換し、周辺回路206に出力する。また、制御回路205は、各周辺回路から入力した信号を処理する機能を備える。また、制御回路205は、処理したベースバンド信号を対UE用送受信回路202に出力する機能を備える。例えば、制御回路205は、周辺回路206から入力した信号をベースバンド信号に変換し、対UE用送受信回路202に出力する。
 制御回路205の記憶部2051は、対RN用送受信回路203から入力したRN300で測定した移動局100の送信信号の受信電力RRPを記憶する。
 制御回路205の演算部2052は、対UE用送受信回路202で測定した受信電力URPを受信電力目標値UTと比較して、アップリンク送信電力信号(UL-TPC信号)を生成する。また演算部2052は、対UE用送受信回路202から入力された移動局の送信電力に対する受信電力値URPと予め受信し記憶部2051に記憶されたRN300で測定した移動局100の送信信号の受信電力値RRPとから同一移動局100の送信に対する基地局200での伝搬路損失と、RN300での伝搬路損失の差分(伝搬路損失がdBmで換算されているのであれば差、Wで換算されているのであれば比)を算出する。
 図4は、RN300の構成の一例を示すブロック図である。図4に示すように、RN300は、送受信アンテナ301、対UE用送受信回路302、対eNB用送受信回路303、制御回路305および周辺回路306を備える。制御回路305は、記憶部3051および演算部3052を備える。
 送受信アンテナ301は、RN300が用いる周波数帯域で、所定の利得で電波を放射し、また電波を受信する機能を備える。
 対UE用送受信回路302は、送受信アンテナ301を介して、無線信号を受信する機能を備える。また、対UE用送受信回路302は、受信信号を所定の電力値まで増幅する機能を備える。また、対UE用送受信回路302は、増幅した受信信号をベースバンド信号に変換する機能を備える。また、対UE用送受信回路302は、変換したベースバンド信号を制御回路305に出力する機能を備える。また、対UE用送受信回路302は、制御回路305から入力したベースバンド信号を無線周波数帯の送信信号に変換する機能を備える。また、対UE用送受信回路302は、移動局の送信信号に対する受信電力を測定する機能を備える。
 eNB用送受信回路303は、基地局200との間で、制御信号およびデータ信号の送受信を行う機能を備える。なお、RN300と基地局200とが無線方式によって接続されている場合には、対UE用送受信回路302が、対eNB用送受信回路303の機能を兼ね備える構成であってもよい。
 制御回路305は、対UE用送受信回路302から入力したベースバンド信号を処理する機能を備える。ベースバンド信号の処理には復調、復号、ディジタル/アナログ変換の処理を含む。また、制御回路305は、処理した信号を周辺回路306に出力する機能を備える。例えば、制御回路305は、対UE用送受信回路302から入力したベースバンド信号を変換し、周辺回路306に出力する。また、制御回路305は、各周辺回路から入力した信号を処理する機能を備える。周辺回路からの信号の処理にはアナログ/ディジタル変換、符号化、変調の処理を含む。また、制御回路305は、処理したベースバンド信号を対UE用送受信回路302に出力する機能を備える。例えば、制御回路305は、周辺回路306から入力した信号をベースバンド信号に変換し、対UE用送受信回路302に出力する。
 アナログ/ディジタル変換およびディジタル/アナログ変換の処理は、例えば、音声信号を8kHzのサンプリング速度でサンプリングしてディジタル信号に変換し、または、逆にディジタル信号を音声信号に変換することを含む。符号化および復号処理は、例えば、符号化率1/3のターボ符号化、または、Max-Log-MAPアルゴリズムを用いた復号化処理を含む。変調および復調は、例えば、ビット列を16QAMの信号点をもちいた信号にマッピングし、また、ベースバンド信号を、尤度情報を含むビット列に変換する軟判定復号を含む。
 制御回路305の記憶部3051は、対eNB用送受信回路303から入力した基地局200で測定した移動局100の送信信号の受信電力URPを記憶する。
 制御回路305の演算部3052は、対UE用送受信回路302で測定した受信電力RRPを受信電力目標値UTと比較して、アップリンク送信電力信号(UL-TPC信号)を生成する。
 続いて、本発明の第1の実施形態によるアップリンク送信電力制御方法について説明する。移動局100が基地局200のエリアに在圏し、移動局100と基地局200とがRN300を介さずに直接通信する通信態様(ワンホップ)の場合には、基地局200の演算部2052は、基地局200の受信電力を受信電力目標値と比較して、移動局100に対するアップリンク送信電力信号(UL-TPC信号)を生成する。基地局200の対UE用送受信回路202は、演算部2052によって生成されたアップリンク送信電力信号(UL-TPC信号)を、ダウンリンク制御チャネルのPDCCHを用いて移動局100に送信する。
 移動局100がRN300のエリアに在圏し、移動局100と基地局200とがRN300を介して通信する態様(ツーホップ)の場合には、RN300の演算部3052は、RN300の受信電力を受信電力目標値と比較して、移動局100に対するアップリンク送信電力信号(UL-TPC信号)を生成する。RN300の対UE用送受信回路302は、演算部3052によって生成されたアップリンク送信電力信号(UL-TPC信号)を、ダウンリンク制御チャネルを介して移動局100に送信する。
 ワンホップおよびツーホップの何れの場合も、移動局100において、送受信回路102は、アップリンク送信電力信号(UL-TPC信号)を抽出して演算部1052に供給する。演算部1052は、アップリンク送信電力信号(UL-TPC信号)と、予め記憶部1051に記憶されているパラメータとを用いて、下記式(2)に従ってアップリンク送信信号電力を決定する。
Figure JPOXMLDOC01-appb-M000002
 上記式(2)を上記式(1)と比較して説明する。上記式(2)の左辺および右辺各項の意味するところは、上記式(2)の右辺最終項「f(i)」の意味するところを除いて上記式(1)のものと同じである。なお、移動局100において計算されるPL(伝搬路損失)は、上記式(1)と同様、上記式(2)においても、ワンホップおよびツーホップの何れの場合にも、基地局200と移動局100との間の伝搬路損失を用いる。ツーホップの場合に、PL(伝搬路損失)としてRN300と移動局100との間の伝搬路損失を用いないのは、PL(伝搬路損失)を測定するためのセルスペシフィックリファレンスシグナル(CRS)がRN300から送信されない場合、移動局100において、RN300と移動局100との間のPL(伝搬路損失)の測定が困難となるためである。
 f(i)は、アップリンク送信電力信号(UL-TPC信号)を用いたクローズドループ送信電力の項である。即ち、送信電力の補正値である。f(i)は、ワンホップの場合とツーホップの場合とで異なる。ワンホップの場合、f(i)として、下記制御式(3)に示すように、上記式(1)の電力制御項であるf(i)を用いる。ツーホップの場合、下記制御式(4)に示すように、f(i)として、上記式(1)のf(i)に、ツーホップの場合の補正値(-PLRN)を加えたものを用いる。ツーホップ用の補正値(-PLRN)を加えるのは、ワンホップの場合とツーホップの場合とで、アップリンクの所要送信電力が大きく異なるためである。なお、f(i)は、RN300における受信電力に基づいて制御する。
(i) = f(i) ・・・(3):ワンホップの場合
(i) = f(i)-PLRN ・・・(4):ツーホップの場合
 上記制御式(3)と上記制御式(4)の切り換えは、移動局100で行ってもよいし、NW側(基地局200またはRN300の側)で行ってもよい。例えば、絶対値を使用するTPCの場合には、NW側にてf(i)を算出し、TPCコマンドとして移動局100に通知する(f(i)の算出が切り替えに相当する)。この場合、移動局100は、TPCコマンドに従って動作すればよく、上記制御式の切り替えを意識しない。また、例えば、積算値を使用するTPCの場合、切り換え時に、+PLRN,-PLRNを含むTPCコマンドを移動局100に通知する(+PLRNまたは-PLRN、の選択が切り替えに相当する)。当該場合、NW側は、補正値(PLRN)とともに上記制御式の切り換えの指示を通知し、または、上記制御式の切り換えを指示として補正値(PLRN)を通知し、移動局100は、上記制御式を切り替える。
 換言すれば、無線通信システム1では、RN300を介さずに移動局100と基地局200とが通信するときは、第1の送信電力制御方法である上記制御式(3)を用いて移動局100の送信電力を制御する一方、RN300を介して移動局100と基地局200とが通信するときは、第2の送信電力制御方法である上記制御式(4)を用いて移動局100の送信電力を制御する。また、第2の送信電力制御方法である上記制御式(4)を用いて移動局100の送信電力を制御するときは、第1の送信電力制御方法である上記制御式(3)を用いて移動局100の送信電力を制御するときに使用する電力制御パラメータ(f(i))に加え、他のパラメータ(PLRN)を使用している。なお、他のパラメータである補正値(PLRN)は、移動局100と基地局200との間の通信路品質と移動局100とRN300との間の通信路品質との差分に応じたパラメータであるが、詳細は後述する。
 以下、具体例を用いて説明する。RN300は、予め基地局200から、基地局200のエリアに在圏する複数の移動局100の情報を取得し、各移動局100の送信信号をモニターし、受信電力を測定して、eNB用送受信回路302を介して、基地局200に移動局100の送信に対するRN300での受信電力を通知しているものとする。基地局200は、移動局100の送信に対する基地局200での受信電力を測定し、記憶部2051に記憶しているものとする。なお、RN300は、独自の物理セルIDを持たないType2であるものとする。
 また、移動局100の送信電力をPUETX[dBm]、基地局200での受信電力をPeNB,UETX[dBm]、RN300での受信電力をPRN,UETX[dBm]、移動局100から基地局200への伝搬損失をPLUE-eNB[dB]、移動局100からRN300への伝搬損失PLUE-RN[dB]とすると、下記式(5)、(6)に示す関係が成り立つ。
eNB,UETX = PUETX-PLUE-eNB ・・・(5)
RN,UETX = PUETX-PLUE-RN ・・・(6)
 移動局100が基地局200のエリアからRN300に近づくとき(ワンホップの状態からツーホップの状態になるとき)について説明する。
 基地局200の演算部2052は、定期的に、または、必要に応じて、上記式(5)(6)および下記式(7)に従って、移動局100から基地局200への伝搬路損失と、移動局100からRN300への伝搬路損失との差分(PLUE-eNB-PLUE-RN)を算出する。なお、基地局200は、PeNB,UETXの値をRN300に通知することによって、基地局200の演算部2052に代えて、RN300の演算部3052が当該伝搬路損失の差分を算出してもよい。
PLUE-eNB-PLUE-RN = PRN,UETX-PeNB,UETX ・・・(7)
 移動局100と基地局200とがRN300を介して通信するようになった場合(ツーホップになった場合)、基地局200は、下記式(8)に従って補正値(PLRN)を算出する。なお、上記式(7)に示すように、補正値(PLRN)は、伝搬路損失の差分であるため、上記式(7)または上記式(8)の何れかを算出してもよい。
PLRN = PRN,UETX-PeNB,UETX ・・・(8)
 即ち、第2の送信電力制御方法である上記制御式(4)を用いて移動局100の送信電力を制御するときは、第1の送信電力制御方法である上記制御式(3)を用いて移動局100の送信電力を制御するときに使用する電力制御パラメータ(f(i))に加え、移動局100の送信に対する基地局200での受信電力(PeNB,UETX)と移動局100の送信に対するRN300での受信電力(PRN,UETX)との差分(PRN,UETX-PeNB,UETX)に応じた他のパラメータ(PLRN)を使用している。
 補正値(PLRN)を算出した基地局200は、閾値TRN-inを用いて、基地局200のエリアからRN300のエリアへの在圏を判断する。具体的には、基地局200は、補正値(PLRN)が、閾値TRN-in以上であるとき、移動局100がRN300のエリアに在圏したと判断する。
 なお、TRN-in(後述するTRN-outも同様)は、シミュレーションまたはフィールドテストに基づき予め求めた値であってもよいし、適応的に更新される値であってもよい。例えば、基地局200のサービスエリアのトラフィックに応じて、TRN-inを変更するようにすれば、RN300のカバーエリアを制御することができる。
 移動局100がRN300のエリアに在圏したと判断した基地局200は、移動局100の送信電力制御をRN300に移譲し、基地局200による伝搬損失の差分を考慮しない送信電力制御からRN300による伝搬損失の差分を考慮する送信電力制御へと移行する。
 具体的には、基地局200は、上記制御式(3)に代えて上記制御式(4)に従ってf(i)を算出し、f(i)を含むTPCコマンドを、RN300を介して移動局100に通知する。移動局100は、通知されたf(i)に基づいて上り送信電力を制御する。以上のように、ワンホップの状態からツーホップの状態へ移行後には、移動局100の上り送信電力制御を適切に行うことができる。
 また、基地局200は、f(i)を算出することに代えて、補正値(PLRN)と上記制御式(4)に従ってf(i)を算出すべき旨の指示を含むTPCコマンドを、RN300を介して移動局100に通知してもよい。当該場合、移動局100は、上記制御式(3)に代えて上記制御式(4)に従ってf(i)を算出し、算出したf(i)に基づいて上り送信電力を制御する。
 移動局100がRN300のエリアから離れるとき(ツーホップの状態からワンホップの状態になるとき)について説明する。
 基地局200の演算部2052は、移動局100が基地局200のエリアからRN300に近づくときと同様に、補正値(PLRN)を算出する。
 補正値(PLRN)を算出した基地局200は、閾値TRN-outを用いて、RN300のエリアから基地局200のエリアへの在圏を判断する。即ち、基地局200は、補正値(PLRN)が、閾値TRN-out以下であるとき、移動局100が基地局200のエリアに在圏したと判断する。
 移動局100が基地局200のエリアに在圏したと判断した基地局200は、移動局100の送信電力制御を戻すことをRN300に要求し、RN300による伝搬損失の差分を考慮する送信電力制御から基地局200による伝搬損失の差分を考慮しない送信電力制御へと移行する。
 具体的には、基地局200は、上記制御式(4)に代えて上記制御式(3)に従ってf(i)を算出し、f(i)を含むTPCコマンドを移動局100に通知する。移動局100は、通知されたf(i)に基づいて上り送信電力を制御する。また、基地局200は、f(i)を算出することに代えて、上記制御式(3)に従ってf(i)を算出すべき旨の指示を含むTPCコマンドを移動局100に通知してもよい。当該場合、移動局100は、上記制御式(4)に代えて上記制御式(3)に従ってf(i)を算出し、算出したf(i)に基づいて上り送信電力を制御する。以上のように、ツーホップの状態からワンホップの状態へ移行後には、移動局100の上り送信電力制御を適切に行うことができる。
 図5は、移動局100がRN300のエリアに近づく場合(ワンホップからツーホップになる場合)の動作の一例を示すフローチャートである。図5において、移動局100は、送信電力値を基地局200およびRN300へ通知する(ステップS100)。RN300は、移動局100から送信電力値を受信するとともに、移動局100からの受信電力(PRN,UETX)を測定する(ステップS110)。基地局200は、移動局100から送信電力値を受信するとともに、移動局100からの受信電力(PeNB,UETX)を測定する(ステップS120)。
 ステップS110に続いてRN300は、測定した移動局100からの受信電力(PRN,UETX)を基地局200に通知する(ステップS111)。
 ステップS120に続いて基地局200は、移動局100から受信した送信電力値と、測定した移動局100からの受信電力(PeNB,UETX)とから、移動局100から基地局200への伝搬損失(PLUE-eNB)を算出する(ステップS121)。
 ステップS121に続いて基地局200は、移動局100から受信した送信電力値と、RN300から受信した移動局100からの受信電力(PRN,UETX)とから、移動局100からRN300への伝搬損失(PLUE-RN)を算出する(ステップS122)。
 ステップS122に続いて基地局200は、伝搬路損失の差分(PRN,UETX-PeNB,UETX)である補正値(PLRN)を算出する(ステップS123)。次いで、基地局200は、伝搬路損失の差分(PRN,UETX-PeNB,UETX)である補正値(PLRN)が閾値TRN-in以上であるか否かを判断する(ステップS124)。
 基地局200は、伝搬路損失の差分(PRN,UETX-PeNB,UETX)である補正値(PLRN)が閾値TRN-in以上でないと判断した場合(ステップS124:no)、RN300はステップS110、基地局200はステップS120に戻る。即ち、図5において破線A内の処理(移動局100は基地局200のエリアに在圏しているときの処理、図7の破線C内の処理、図8の破線D内の処理も同様)を繰り返し実行する。
 基地局200は、伝搬路損失の差分(PRN,UETX-PeNB,UETX)である補正値(PLRN)が閾値TRN-in以上であると判断した場合(ステップS124:Yes)、補正値(PLRN)をPLRN-inとして記憶するとともに、RN300に対して、少なくとも、PLRN-inと移動局100の送信電力制御をRN300に移譲する旨をRN300に通知する(ステップS125)。
上記通知を受信したRN300は、通知されたPLRN-inと、上記制御式(4)に従って電力制御するべき旨を移動局100に通知する(ステップS114)。かくして、移動局100は送信電力を下げて、送信電力が過剰にならないように適切に制御することができる。なお、RN300は、PLRN-in値分の送信電力を下げるべき旨を通知してもよい。
 上記通知を受信した移動局100は、通知されたPLRN-inをPLRNとし上記制御式(4)に従って、上り送信電力を制御する(S101)。即ち、PLRN-in値分の送信電力を下げるように動作する。これにより、移動局100の送信に対するRN300での受信電力は、移動局100の送信に対する基地局200での受信電力とほぼ同等な電力となるため、移動局100がRN300に対し、過剰な電力で送信し続けることを回避することができるようになる。なお、移動局100は、RN300のエリアに在圏中は、上記制御式(4)に従って、f(i)を算出する。
 なお、補正値(PLRN)を必要に応じて更新してもよい。このときのf(i)は、RN300での受信電力(および受信品質)に従い、基地局200でのf(i)と同様のアルゴリズムにより決定される値である(RN300での受信電力から電力制御信号が計算されるのであれば、f(i)を決定するのは基地局200であってもRN300であってもよいし、f(i)によるUL-TPC信号を実際に送信するのは、基地局200であってもRN300であってもよい)。
 図6は、移動局100がRN300のエリアから離れる場合(ツーホップからワンホップになる場合)の動作の一例を示すフローチャートである。なお、図6において、ステップS200、S210、S211、S220、S221、S222およびS223は、図5のステップS100、S110、S111、S120、S121、S122およびS123とそれぞれ同一であるため、説明を省略する。
 ステップS223に続いて基地局200は、伝搬路損失の差分(PRN,UETX-PeNB,UETX)である補正値(PLRN)が閾値TRN-out以下であるか否かを判断する(ステップS224)。
 基地局200は、伝搬路損失の差分(PRN,UETX-PeNB,UETX)である補正値(PLRN)が閾値TRN-out以下でないと判断した場合(ステップS224:no)、RN300はステップS210、基地局200はステップS220に戻る。即ち、図6において破線B内の処理(移動局100はRN300のエリアに在圏しているときの処理)を繰り返し実行する。
 基地局200は、伝搬路損失の差分(PRN,UETX-PeNB,UETX)である補正値(PLRN)が閾値TRN-out以下であると判断した場合(ステップS224:Yes)、移動局100の送信電力制御を自身に戻すことをRN300に要求する(ステップS225)。
上記通知を受信したRN300は、上記制御式(3)に従って電力制御するべき旨を移動局100に通知する(ステップS214)。なお、RN300は、PLRN-in値分の送信電力を上げるべき旨を通知してもよい。
 上記通知を受信した移動局100は、上記制御式(3)に従って、上り送信電力を制御する(S220)。即ち、PLRN-in値分の送信電力を上げるように動作する。これにより、基地局200に対して過小であった移動局100の送信電力を引き上げることが可能となる。なお、移動局100は、基地局200のエリアに在圏中は、上記制御式(3)に従って、f(i)を算出する。
 図7は、移動局100がRN300のエリアに近づく場合の他の動作の一例を示すフローチャートである。なお、図7において、ステップS300、S301、S310、S314、S320、S321、S323、S324およびS325は、図5のステップS100、S101、S110、S114、S120、S121、S123、S124およびS125とそれぞれ同一であるため、説明を省略する。
 ステップS310に続いてRN300は、移動局100から受信した送信電力値と、測定した移動局100からの受信電力(PRN,UETX)とから、移動局100からRN300への伝搬損失(PLUE-RN)を算出する(ステップS311)。次いで、RN300は、算出した移動局100からRN300への伝搬損失(PLUE-RN)を基地局200に通知する(ステップS312)。
 図7の動作によっても、図5の動作と同様の効果を得ることができる。なお、移動局100がRN300のエリアから離れる場合においても、RN300が、移動局100からRN300への伝搬損失(PLUE-RN)を算出し、基地局200に通知してもよい。
 図8は、移動局100がRN300のエリアに近づく場合の他の動作の一例を示すフローチャートである。具体的には、図8に示すフローチャートは、移動局100に、PH(Power Headroom)に基づいて伝搬路損失の差分を算出する場合の動作を例である。
 なお、PHは、移動局100のクラスに基づいて定められた最大送信電力PMAXと移動局100に要求されている送信電力(所望のの送信電力)との差分であって、移動局100の送信電力が上記式(1)により定義されているとすると、下記式(9)のように定義される。
Figure JPOXMLDOC01-appb-M000003
 なお、図8において、なお、図8において、ステップS401、S411、S412、S414、S421、S423、S424およびS425は、図7のステップS301、S311、S312、S314、S321、S323、S324およびS325とそれぞれ同一であるため、説明を省略する。
 図8において、移動局100は、PHを基地局200およびRN300へ通知する(ステップS400)。
 RN300は、移動局100から送信電力値を受信し、実際の送信出力値を算出して、移動局100からの受信電力(PRN,UETX)を測定する(ステップS410)。なお、PH≧0のときは、移動局100に要求されている送信出力値はPCMAX以下であるため、RN300は、PCMAX-PH(i)を実際の送信出力値として算出する。一方、PH≦0のときは、移動局100に要求されている送信出力はPCMAX超であるため、RN300は、PCMAXを実際の送信出力値として算出する。
 基地局200は、移動局100から送信電力値を受信し、実際の送信出力値を算出して、移動局100からの受信電力(PeNB,UETX)を測定する(ステップS420)。なお、基地局200は、RN300と同様に、実際の送信出力値を算出する。
 図8の動作によっても、図5、図6の動作と同様の効果を得ることができる。なお、移動局100がRN300のエリアから離れる場合においても、RN300および基地局200が、PHに基づいて伝搬路損失の差分を算出してもよい。
 なお、上記実施形態では、エリア内の在圏判断やアップリンクの送信電力制御に、移動局100と基地局200との間の通信路品質と移動局100とRN300との間の通信路品質との通信品質の差分に応じたパラメータの一例として、アップリンクの受信電力の差分、伝搬路損失の差分を用いる例を説明した。即ち、他の通信品質の差分を用いて、エリア内の在圏判断やアップリンクの送信電力制御を行ってもよい。例えば、SINR(信号対干渉および雑音電力比)の差分を用いてもよい。SINRを用いる場合、通信路品質の差分をより正確に反映できるので、特性がよくなる。また、例えば、移動局100がGPS機能を備えることにより移動局100の座標を基地局200に通知し、基地局200では移動局100の座標からアップリンクの通信路品質を推定し、アップリンクの通信路品質の差分をあらわすパラメータを算出するようにしてもよい。
 以上、上記実施形態によれば、独自のパラメータ(例えばRNの送信電力)を移動局に通知することができない場合であっても、適切且つ迅速に、移動局による送信電力、即ち上り送信電力を設定することができるようになる。
 即ち、基地局とRNが共通のセルIDを用いる通信システム(LTE-AのType2リレー等)においては、RNによるリファレンスシグナルの送信は必須ではないと予想される。よって、上り電力制御のPL(Pathloss)項に、基地局のリファレンスシグナルのPL値が用いられることとなる。従って、例えば、基地局からRNに移動局の接続先が切り替わる際には、上り送信電力が、RNに対しては過剰になるという問題が発生する。本発明では、移動局100の接続先が基地局200である場合とRN300である場合とで異なる電力制御を行うため、この問題を解決することができる。
 また、移動局100がRN300に接続している場合は、移動局100の送信電力は一般的に小さくなるため、本発明を適用することによって、他セルへの妨害(干渉)が小さくなる。よって、システム全体としての容量が大きくなる。
 また、本発明では、従来の電力制御方法に大きな変更を加えることなく、新たなパラメータ(PLRN)を1つ導入すれるたけで、RN300に対しては過剰になるという問題を解決することができる。また、新たなパラメータは、目標値に対するオフセットであっても、同様の効果を得ることができる。
 なお、従来の通信システムでは、基地局からの送信に対する移動局での受信品質と、RN(または、他の基地局)からの送信に対する移動局での受信品質とを比較することで、移動局がどちらに接続するかを判断し、ハンドオーバ手続き後に基地局またはRNの初期パラメータに従い,上り電力制御を実施している。しかしながら、RNから受信品質を比較する信号(リファレンスシグナル)が送信されない通信システムでは、従来の方法では、上り送信電力制御が適切に行うことができない。
 なお、RNから受信品質を比較する信号(リファレンスシグナル)が送信されない通信システムでは、移動局側での基地局(RN)毎の受信品質(受信電力、Ec/Io、Pathloss等)の比較による在圏の判断ができないため、本発明では、基地局200およびRNでのUL信号の伝搬路損失に基づいて在圏の判断を行っている。
 なお、移動局100、基地局200およびRN300の各機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、移動局100、基地局200およびRN300の各機能に係る上述した種々の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 以上、本発明の実施形態を図面を参照して詳述したが、具体的な構成は上記実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も特許請求の範囲に含まれる。
 本発明は、中継局を有する移動通信システムに広く用いることができる。
 1 無線通信システム 100 移動局 101 送受信アンテナ、 102 送受信回路 105 制御回路 1051 記憶部 1052 演算部 106 周辺回路 200 基地局 201 送受信アンテナ 202 対UE用送受信回路(パラメータ通知手段) 203 対RN用送受信回路 205 制御回路 2051 記憶部 2052 演算部(通信路品質算出手段、比較手段) 206 周辺回路 300 RN(リレーノード) 301 送受信アンテナ 302 対UE用送受信回路 303 対eNB用送受信回路 305 制御回路 3051 記憶部 3052 演算部 306 周辺回路

Claims (11)

  1.  基地局と、前記基地局に付随する1または複数の中継局と、1または複数の移動局とを備える無線通信システムであって、
     前記中継局を介さずに前記移動局と前記基地局とが通信するときは、第1の送信電力制御方法を用いて前記移動局の送信電力を制御する一方、前記中継局を介して前記移動局と前記基地局とが通信するときは、第2の送信電力制御方法を用いて前記移動局の送信電力を制御する、無線通信システム。
  2.  前記第2の送信電力制御方法を用いて前記移動局の送信電力を制御するときは、
     前記第1の送信電力制御方法を用いて前記移動局の送信電力を制御するときに使用する電力制御パラメータに加え、前記移動局と前記基地局との間の通信路品質と前記移動局と前記中継局との間の通信路品質との差分に応じた他のパラメータを使用する、請求項1に記載の無線通信システム。
  3.  前記他のパラメータは、
     前記移動局の送信に対する前記基地局での受信電力と移動局の送信に対する前記中継局での受信電力との差分に応じたパラメータである、請求項2に記載の無線通信システム。
  4.  前記他のパラメータは、
     前記移動局と前記基地局との間の伝搬路損失と前記移動局と前記中継局との間の伝搬路損失との差分に応じたパラメータである、請求項2に記載の無線通信システム。
  5.  前記他のパラメータは、
     前記基地局でのSINRと前記中継局でのSINRとの差分に応じたパラメータである、請求項2に記載の無線通信システム。
  6.  前記移動局の送信に対する前記移動局と前記基地局との間の伝搬路損失と前記移動局の送信に対する前記移動局と前記中継局との間の伝搬路損失との差分と所定の閾値との比較結果に応じて、前記移動局と前記基地局とが通信するときに、前記中継局を介するか否かを判断する、請求項1に記載の無線通信システム。
  7.  前記所定の閾値は、
     適応的に変更するものである、請求項6の無線通信システム。
  8.  中継局を介さずに移動局と通信するときは、第1の送信電力制御方法を用いて移動局の送信電力を制御する一方、中継局を介して移動局と通信するときは、第2の送信電力制御方法を用いて移動局の送信電力を制御する、基地局装置。 
  9.  移動局と該基地局装置との間の通信路品質と、前記移動局と前記中継局との間の通信路品質との通信路品質の差分を算出する通信路品質算出手段と、
     前記通信路品質算出手段によって算出された前記通信路品質の差分と所定の閾値とを比較する比較手段と、
     前記比較手段による比較結果に応じて、前記通信路品質算出手段によって算出された前記通信路品質の差分に応じたパラメータを前記移動局に通知するパラメータ通知手段と
     を備える、基地局装置。
  10.  中継局を介さず基地局と通信するときは、第1の送信電力制御方法を用いて送信電力を制御し、中継局を介して基地局と通信するときは、第2の送信電力制御方法を用いて送信電力を制御する、移動局装置。
  11.  基地局と、前記基地局に付随する1または複数の中継局と、1または複数の移動局との間の無線通信方法であって、
     前記中継局を介さずに前記移動局と前記基地局とが通信するときは、第1の送信電力制御方法を用いて前記移動局の送信電力を制御する一方、前記中継局を介して前記移動局と前記基地局とが通信するときは、第2の送信電力制御方法を用いて前記移動局の送信電力を制御する、無線通信方法。
PCT/JP2010/069996 2009-11-10 2010-11-10 無線通信システム、基地局装置、移動局装置および無線通信方法 WO2011058991A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/508,634 US20120230249A1 (en) 2009-11-10 2010-11-10 Wireless communication system, base station device, mobile station device, and wireless communication method
CN2010800500089A CN102640546A (zh) 2009-11-10 2010-11-10 无线通信系统、基站装置、移动站装置以及无线通信方法
JP2011540516A JPWO2011058991A1 (ja) 2009-11-10 2010-11-10 無線通信システム、基地局装置、移動局装置および無線通信方法
EP10829950.4A EP2501190A4 (en) 2009-11-10 2010-11-10 Wireless communication system, base station device, mobile station device, and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009257216 2009-11-10
JP2009-257216 2009-11-10

Publications (1)

Publication Number Publication Date
WO2011058991A1 true WO2011058991A1 (ja) 2011-05-19

Family

ID=43991649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069996 WO2011058991A1 (ja) 2009-11-10 2010-11-10 無線通信システム、基地局装置、移動局装置および無線通信方法

Country Status (6)

Country Link
US (1) US20120230249A1 (ja)
EP (1) EP2501190A4 (ja)
JP (1) JPWO2011058991A1 (ja)
KR (1) KR20120080623A (ja)
CN (1) CN102640546A (ja)
WO (1) WO2011058991A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084338A1 (ja) * 2011-12-08 2013-06-13 富士通株式会社 無線基地局、無線通信システム、送信電力制御方法及び無線端末
JP2014526851A (ja) * 2011-09-30 2014-10-06 日本電気株式会社 通信システム
JP2021521733A (ja) * 2018-05-11 2021-08-26 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. 無線通信方法、装置及びネットワーク機器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017737B (zh) * 2007-08-24 2014-08-06 黑莓有限公司 无线网络中中继站上的功率控制
KR101741154B1 (ko) * 2010-11-10 2017-06-15 삼성전자주식회사 차량형 이동 중계기를 포함하는 통신 시스템에서 차량 이동 단말, 차량형 이동 중계기 및 매크로 기지국의 통신 방법
JP6081741B2 (ja) * 2012-08-30 2017-02-15 株式会社Nttドコモ 移動局及び送信電力決定方法
CN104349437B (zh) * 2013-08-09 2018-10-19 上海诺基亚贝尔股份有限公司 用于抑制干扰的方法和用户设备
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
JP6849062B2 (ja) * 2017-06-15 2021-03-24 富士通株式会社 基地局装置、端末装置、無線通信システム及び通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199504A (ja) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp 通信装置、中継装置、伝送経路決定方法、無線伝送方法および無線伝送システム
WO2009011531A2 (en) * 2007-07-13 2009-01-22 Lg Electronics Inc. Power balancing in a cooperative communication network
JP2009257216A (ja) 2008-04-17 2009-11-05 Toyota Motor Corp 燃料噴射弁

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014893B2 (ja) * 2002-03-01 2007-11-28 株式会社エヌ・ティ・ティ・ドコモ マルチホップ接続用の無線通信システム、無線通信方法、これに用いる無線局
US7881741B2 (en) * 2005-03-18 2011-02-01 Panasonic Corporation Mobile station apparatus and wireless communication method
JP4727371B2 (ja) * 2005-09-29 2011-07-20 京セラ株式会社 通信端末、移動体通信システム、および通信方法
US8300570B2 (en) * 2006-06-02 2012-10-30 Research In Motion Limited Ranging regions for wireless communication relay stations
GB2441574A (en) * 2006-09-08 2008-03-12 Fujitsu Ltd Network entry to a multi-hop wireless communication system
KR101386211B1 (ko) * 2006-11-02 2014-04-17 한국전자통신연구원 이동 멀티홉 릴레이를 이용한 상향 액세스 링크 전력 제어방법 및 그 시스템
US20080107091A1 (en) * 2006-11-07 2008-05-08 Motorola, Inc. Broadcast efficiency in a multihop network
CN102017737B (zh) * 2007-08-24 2014-08-06 黑莓有限公司 无线网络中中继站上的功率控制
US8781392B2 (en) * 2008-01-16 2014-07-15 Qualcomm Incorporated Wireless communication information relay

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199504A (ja) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp 通信装置、中継装置、伝送経路決定方法、無線伝送方法および無線伝送システム
WO2009011531A2 (en) * 2007-07-13 2009-01-22 Lg Electronics Inc. Power balancing in a cooperative communication network
JP2009257216A (ja) 2008-04-17 2009-11-05 Toyota Motor Corp 燃料噴射弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT, CHTHL: "System Design Frameworks to Support TYPE II Relay Operation in LTE-A", 3GPP R1-092321, 3GPP, 29 July 2009 (2009-07-29), pages 1 - 11, XP008152834 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526851A (ja) * 2011-09-30 2014-10-06 日本電気株式会社 通信システム
US9923622B2 (en) 2011-09-30 2018-03-20 Nec Corporation Communication system
WO2013084338A1 (ja) * 2011-12-08 2013-06-13 富士通株式会社 無線基地局、無線通信システム、送信電力制御方法及び無線端末
JPWO2013084338A1 (ja) * 2011-12-08 2015-04-27 富士通株式会社 無線基地局、無線通信システム、送信電力制御方法及び無線端末
EP2790445A4 (en) * 2011-12-08 2015-05-06 Fujitsu Ltd WIRELESS BASE STATION, WIRELESS COMMUNICATION SYSTEM, METHOD FOR CONTROLLING TRANSMISSION PERFORMANCE AND WIRELESS DEVICE
US9642102B2 (en) 2011-12-08 2017-05-02 Fujitsu Limited Wireless base station, wireless communication system, and transmission power control method
JP2021521733A (ja) * 2018-05-11 2021-08-26 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. 無線通信方法、装置及びネットワーク機器
US11523348B2 (en) 2018-05-11 2022-12-06 Vivo Mobile Communication Co., Ltd. Wireless communication method and device, and network device
US11800457B2 (en) 2018-05-11 2023-10-24 Vivo Mobile Communication Co., Ltd. Wireless communication method and device, and network device
JP7456941B2 (ja) 2018-05-11 2024-03-27 維沃移動通信有限公司 無線通信方法、装置及びネットワーク機器

Also Published As

Publication number Publication date
KR20120080623A (ko) 2012-07-17
EP2501190A1 (en) 2012-09-19
US20120230249A1 (en) 2012-09-13
CN102640546A (zh) 2012-08-15
EP2501190A4 (en) 2017-03-15
JPWO2011058991A1 (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2011058991A1 (ja) 無線通信システム、基地局装置、移動局装置および無線通信方法
US11627532B2 (en) Uplink power control for distributed wireless communication
US8761826B2 (en) Uplink power control in coordinated multi-point wireless communication system
US9467210B2 (en) Transmission parameter adaptation in cooperative signal communication
JP5776791B2 (ja) 無線基地局、無線通信システム、送信電力制御方法及び無線端末
KR20090074257A (ko) 이동통신시스템, 기지국 및 이동국 및 통신제어방법
JP2013042310A (ja) 無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法
US9002398B2 (en) Method and arrangement in a wireless network for determining an uplink received power target value
JP5630906B2 (ja) 無線通信システムにおける送信電力制御装置及び方法
KR20130104500A (ko) 단말의 상향 링크 송신 전력을 제어하는 방법 및 장치
US20140056267A1 (en) Power compensating method, user equipment and base station
JP5084044B2 (ja) 無線通信システム、移動局装置及び無線通信方法
WO2016177110A1 (zh) 一种上行干扰控制方法、装置及计算机可读存储介质
JP2010041377A (ja) 無線通信システム、基地局装置、移動局装置及び無線通信方法
JP2010074739A (ja) 移動通信方法、移動通信システム及び無線基地局
JP2005318327A (ja) 通信端末装置及び送信電力制御方法
WO2013128605A1 (ja) 送信装置、受信装置、送信電力制御方法、及びプログラム
WO2019160461A1 (en) Altitude dependent uplink power control
WO2014205747A1 (zh) 一种功率控制方法和设备
US9756577B2 (en) Method for defining parameter values for controlling the transmission power of a piece of user equipment
JP5890541B1 (ja) 通信システム、第2基地局及び通信方法
KR20220058060A (ko) 무선통신 시스템에서 상향링크 전송전력 제어방법 및 장치
JP2011135313A (ja) 無線通信システム、無線通信方法、制御局装置、及び、プログラム
JPWO2014097352A1 (ja) 無線通信方法、無線通信システム、無線局および無線端末
KR20150063915A (ko) 단말간 직접 통신에서 단말의 송신 전력 제어 방법 및 이를 지원하는 단말

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050008.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540516

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127011647

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13508634

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010829950

Country of ref document: EP