WO2019214369A1 - 辐射检查系统和港口设施 - Google Patents

辐射检查系统和港口设施 Download PDF

Info

Publication number
WO2019214369A1
WO2019214369A1 PCT/CN2019/080804 CN2019080804W WO2019214369A1 WO 2019214369 A1 WO2019214369 A1 WO 2019214369A1 CN 2019080804 W CN2019080804 W CN 2019080804W WO 2019214369 A1 WO2019214369 A1 WO 2019214369A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
inspection device
carrier
radiation
inspection system
Prior art date
Application number
PCT/CN2019/080804
Other languages
English (en)
French (fr)
Inventor
李荐民
李玉兰
宗春光
顾菁宇
李营
杨学敬
于昊
王东宇
宋全伟
王伟珍
樊旭平
孟辉
杜龙
江涛
刘耀红
徐光明
凌松云
陈志强
李元景
张丽
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to PL435912A priority Critical patent/PL241871B1/pl
Publication of WO2019214369A1 publication Critical patent/WO2019214369A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/222Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/271Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects using a network, e.g. a remote expert, accessing remote data or the like

Definitions

  • the invention relates to the technical field of safety detection, in particular to a radiation inspection system and a port facility.
  • Smart Port is a new concept put forward in recent years. Smart Port has a networked, digital port infrastructure, automated, intelligent port transportation equipment and a port business that is deeply integrated with next-generation information technology.
  • Fully automated terminals are an important symbol of smart port construction.
  • the fully automated terminal that is, the entire terminal has no staff, all equipment under the control of the computer, automatic operation, cooperation, and complete container transshipment.
  • the automatic guided transport vehicle AGV
  • the intelligent single-machine navigation system will re-plan the route at the first time to ensure On-site safety.
  • the AGV also enables 24 hours of uninterrupted operation. In order to reduce pollution, the AGVs are all electrically powered.
  • Existing radiation inspection systems such as a combination of mobile inspection systems, rapid inspection inspection systems and vehicle mobile inspection systems.
  • the combined mobile inspection system has the advantage of high image quality, but the system pass rate is low, and the track of the system operation requires civil construction, which is inconvenient to relocate.
  • the fast inspection inspection system has the characteristics of high pass rate, but it requires a lot of civil construction and cannot be relocated.
  • Both the combined inspection system and the quick inspection inspection system require civil works, but the entire AGV operation site is covered with positioning magnetic nails, so it is difficult to carry out civil works at the site.
  • the combined inspection system and the quick inspection inspection system occupy a large area, and the space available for the inspection system in the fully automated terminal is limited, and it is impossible to arrange a sufficient number of inspection systems to meet the inspection requirements, and if the number of inspection systems is Insufficient requirements will require all AGVs to bypass the fixed position inspection system, which will greatly reduce the inspection and work efficiency of the terminal.
  • the vehicle-mounted mobile inspection system has two modes of active scanning and fast inspection scanning and can be flexibly changed.
  • the system uses the truck chassis, which is subject to the left rudder/right rudder and other related road regulations. More importantly, The movement within the terminal also requires personnel to intervene in the vehicle and cannot match the unmanned environment of the fully automated terminal.
  • the above several commonly used inspection systems are not suitable for use in fully automated terminals.
  • the ideal inspection system used in fully automated terminals should have no civil construction, flexible transition, energy saving and environmental protection, good image quality, high scanning efficiency, and connection. The characteristics of the dispatching system into the port.
  • the invention provides a radiation inspection system comprising:
  • a movable carrier for detachably carrying an inspection device
  • a fixed support device is provided on the inspection device and can lift the inspection device when the ground is touched to suspend the inspection device relative to the carrier.
  • a bottom lift mechanism is further included for lifting the inspection device from the bottom to switch the fixed support device between a grounded state or a grounded state, and in the grounded state, the inspection device is supported by the fixed support device In the off-ground state, the inspection device is carried by the vehicle.
  • the fixed support device includes a telescoping support leg that acts as a bottom lift mechanism to lift the inspection device.
  • the fixed support device further includes a retractable horizontal leg mounted on the inspection device and configured to horizontally move the support leg to extend and retract relative to the inspection device.
  • the support legs are vertical legs that are vertically expandable in the vertical direction.
  • the bottom lift mechanism includes a lift device disposed between the inspection device and the carrier.
  • the lifting device is disposed on a top surface of the carrier, or the lifting device is disposed at a bottom of the inspection device.
  • the fixed support device includes a support member disposed at a side of the inspection device and extending downwardly, the support member for supporting the inspection device when the ground is touched to suspend the inspection device relative to the carrier.
  • the fixed support device further includes a support seat disposed above the carrier through the support base, and the support members are disposed on both sides of the support base and extend downward.
  • the support member has a support height in the grounded state that is greater than the load bearing height of the carrier.
  • the support base is a panel structure and the support member is a leg.
  • the support member is in clearance fit with the side of the carrier.
  • the support height of the support member is adjustable.
  • the method further includes:
  • a guiding groove disposed on the top surface of the carrier for positioning and aligning the inspection device
  • a clamping device is disposed on the top surface of the carrier for clamping the inspection device for fixing.
  • the carrier is an automated guided transport vehicle.
  • the inspection device includes a equipment compartment, a radiation source, a signal acquisition device, and a detector, the radiation source and signal acquisition device being disposed within the equipment compartment, the detector being disposed inside or outside the equipment compartment.
  • the inspection device has a hoisting interface that conforms to the container/vehicle hoisting interface.
  • the present invention also provides a port facility comprising the radiation inspection system described above.
  • a vehicle dispatch system is also included, and the radiation inspection system is coupled to the vehicle dispatch system.
  • the radiation inspection system of the present invention can provide a support device on the inspection device, and the fixed support device can support the inspection device when the ground is touched, so that the inspection device is suspended relative to the carrier, so that the vehicle can be driven away.
  • the inspection device when the transition is required, the vehicle approaches the inspection device, and the inspection device is carried on the carrier when the fixed support device is off the ground, so that the inspection device can be self-loading and unloading, no civil construction and flexible transition, saving inspection Cost, with high enforceability.
  • the port facility provided by the present invention also has the above-mentioned beneficial technical effects accordingly.
  • FIG. 1 is a schematic overall structural view of an embodiment of a radiation inspection system according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the overall structure of an embodiment of a radiation inspection system according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a fixed support device in a radiation inspection system when it touches a ground according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view showing a support leg extending and touching a ground in a radiation inspection system according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a fixed support device in a radiation inspection system when it is off the ground according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a support leg in a radiation inspection system according to an embodiment of the present invention when retracted and removed from the ground;
  • FIG. 7 is a schematic structural view of a horizontal leg retracted in a radiation inspection system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a carrier in a radiation inspection system according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of an embodiment of a fixed support device in a radiation inspection system according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a radiation inspection system in a radiation inspection system according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural view of a fixed support device in a radiation inspection system when it is off the ground according to an embodiment of the present invention
  • FIG. 12 is a schematic structural view of a radiation inspection system in a radiation inspection system according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural view of a fixed support device in a radiation inspection system when it touches a ground according to an embodiment of the present invention.
  • the radiation inspection system includes:
  • a movable carrier 1 for detachably carrying an inspection device
  • the fixed support device is disposed on the inspection device and can lift the inspection device when the ground is touched to suspend the inspection device relative to the carrier 1.
  • the fixed support device can lift the inspection device when the ground is touched to hang the inspection device relative to the carrier 1 Placed so that the carrier 1 can drive away from the inspection device.
  • the carrier 1 approaches the inspection device again, as shown in Figures 7 and 11, when the fixed support device is off the ground, the inspection device is carried on the carrier 1
  • the self-loading and unloading of the inspection device is realized, no civil construction is required, and the flexible transition can be realized, which saves the inspection cost and has high implementability.
  • the inspection device comprises an equipment compartment 2, a radiation source 3, a signal acquisition device 4 and a detector 5, and the radiation source 3 and the signal acquisition device 4 are disposed in the equipment compartment 2, for example, the vehicle 1
  • the transport is flexible.
  • the carrier 1 can also be a truck chassis or other vehicle.
  • the radiation inspection system is a transmission inspection system, as shown in FIG. 1, the detector 5 is disposed outside the equipment compartment 2; when the radiation inspection system is a backscatter inspection system, as shown in FIG. 2, the detector 5 is disposed in the equipment compartment. 2 internal.
  • the inspection device has a hoisting interface that conforms to the container/vehicle hoisting interface, and the rail crane can be used to hoist the inspection device for a transition without the need for a carrier.
  • the carrier 1 carries the entire inspection device to scan the container transported by the transport vehicle in the port, and can perform active scanning and quick inspection scanning, and can carry the entire inspection device for rotation. field.
  • the inspection device can also be detached from the carrier 1 by the fixed support device after being transported by the carrier 1 to a designated location, and then subjected to a quick inspection scan to avoid long-term occupation of the carrier 1.
  • the radiation inspection system of the invention can be arranged along the container transportation inside the terminal, and the scanning is automatically completed during the transportation of the container, thereby avoiding the bypass of the container and reducing the efficiency.
  • the radiation inspection system has two modes of operation: the vehicle operating mode and the independent operating mode.
  • the radiation inspection system is a transmission inspection system.
  • the vehicle operation mode that is, the inspection device is carried by the carrier 1 during the scanning inspection, the boom of the detector 5 is unfolded to form a scanning channel of a fixed size.
  • the radiation inspection system has two scanning modes: active and fast.
  • active mode the container AGV of the port carries the inspected container to the scanning position and stops.
  • the carrier 1 carries the inspection device to move, the radiation source generates high-energy X-rays, the radiation passes through the inspected container, and the detector array receives the X-rays, and finally generates Scan the image.
  • the quick check mode the inspection device is stationary, and the container AGV carries the inspected container through the scanning channel, and the inspection system automatically completes the scanning and generates a scanned image.
  • the radiation inspection system is a backscatter inspection system
  • the inspection device in an independent mode of operation, the inspection device is supported on the ground by a fixed support device.
  • the inspection system In the stand-alone mode, the inspection system only has a fixed scan mode.
  • the radiation inspection system includes a bottom lift mechanism for lifting the inspection device from the bottom to switch the fixed support device between a grounded state or a grounded state, as shown in FIGS. 3 and 13, in a touchdown In the state, the inspection device is suspended relative to the carrier 1, and the inspection device is supported by the fixed support device; as shown in Figs. 7 and 11, the inspection device is carried by the carrier 1 in the off-ground state.
  • the arrangement of the bottom lifting mechanism facilitates switching between the grounding state and the grounding state of the fixed supporting device, and has high implementability.
  • the fixed support device assists the inspection device in moving between the carrier 1 and the ground, and the fixed support may include hydraulic, pneumatic, electric or other forms of mechanical devices.
  • the fixed support device includes a telescoping support leg 6.
  • the support leg 6 is a vertical leg that can be vertically expanded and contracted in the vertical direction to improve the lifting efficiency.
  • the support leg 6 serves as a bottom lifting mechanism for lifting and lowering the inspection device. As shown in FIG. 3 and FIG. 4, when the support leg 6 extends out of the ground, the inspection device is raised and the vehicle is lifted off the carrier (not shown in FIG. 3).
  • the inspection device is lowered and carried on the carrier (not shown in Figures 5 and 7), and the support leg 6 continues to retract and off the ground, thereby enabling
  • the support leg 6 is switched between a grounded state or a grounded state to enable self-assembly and unloading of the inspection device.
  • the retractable support legs are commercially available components that are easy to access and have high implementability.
  • the support legs 6 are located at the four corners of the inspection device, and in the running state, the support legs 6 are contracted; as shown in FIG. 3, during the unloading process, the support legs 6 are extended inside. Move down and finally support the ground.
  • the support leg 6 moves upward from the ground and finally shrinks to the inside.
  • the four support legs 6 are simultaneously raised and lowered, and the position and front end of the two support legs 6 of the rear end surface of the inspection device are inspected.
  • the two support legs 6 are symmetrically arranged.
  • the fixed support device further comprises a retractable horizontal leg 7 mounted on the inspection device and used to horizontally move the support leg 6 to The inspection device is extended and retracted, so that the design can reduce the space occupied by the radiation inspection system and is compact.
  • the support leg 6 In the running state, as shown in FIG. 7, the support leg 6 is tightened on the surface of the equipment compartment 2.
  • the horizontal support 7 moves horizontally to support the support 6
  • the outer side moves and stops after having a certain distance from the surface of the equipment compartment 2; as shown in FIG.
  • the inner side of the supporting leg 6 is extended downward and finally supported on the ground; the vehicle 1 is driven away from the inspection device, and can be pressed according to the object to be inspected
  • the height adjusts the height of the support leg 6, thereby adjusting the height of the scanning channel, and the support leg 6 can also be fully contracted, that is, the inspection device is completely placed on the ground, and the hydraulic leg is tightened on the surface of the equipment compartment 2.
  • the loading process of the inspection device is the reverse of the unloading process and no further description is made here.
  • the bottom lift mechanism includes a lift device 10 disposed between the inspection device and the carrier 1.
  • the lifting device 10 is disposed on the top surface of the carrier 1, which facilitates structural arrangement and optimizes space; of course, the lifting device 10 can also be disposed at the bottom of the inspection device.
  • the lifting device 10 between the inspection device and the carrier 1 it is also possible to lift the inspection device from the bottom to switch the fixed support device between the grounded state and the grounded state, as shown in FIGS. 10 and 11, when When the lifting device 10 is raised, the fixed supporting device is off the ground, and the inspection device is carried on the carrier 1; as shown in FIG. 12 and FIG.
  • the lifting device 10 when the lifting device 10 is lowered, the fixed supporting device touches the ground, and the lifting device 10 continues to descend.
  • the inspection device is supported by the fixed support device, and the lifting device 10 switches the fixed support device between the grounded state and the grounded state to realize self-assembly and unloading of the inspection device, and has high implementability.
  • the fixed support device includes a support member 12 disposed at a side portion of the inspection device and extending downward, and the support member 12 is configured to support the inspection device when the ground is touched to suspend the inspection device relative to the carrier 1, the structure Simple and easy to implement.
  • the fixed support device further includes a support base 11 disposed above the carrier 1 through the support base 11, and the support member 12 is disposed on both sides of the support base 11 and extends downward. Ensure structural stability. In order to ensure that the support member 12 supports the inspection device when it touches the ground, the support height of the support member 12 in the ground contact state is greater than the load bearing height of the carrier 1.
  • the support base 11 is a plate structure
  • the support member 12 is a leg, which has a simple structure and saves processing costs.
  • the support member can also be a panel or frame.
  • the support member 12 is clearance-fitted with the side of the carrier 1 such that the support member 12 can be positioned in contact with the side of the carrier 1 during the transition, avoiding rotation.
  • the inspection device is shaken due to the travel of the carrier 1 to improve the transition and scanning stability.
  • the support height of the support member 12 is adjustable, so that the inspection device can adjust its height at any time when it is fixed, satisfying the inspection requirements of different height positions, and expanding the application range.
  • the radiation inspection system further includes a guide slot 8 disposed on the top surface of the carrier 1 for positioning the alignment inspection device; and/or a clamping disposed on the top surface of the carrier 1 Device 9 for clamping the inspection device to achieve fixation.
  • the guiding groove 8 and/or the clamping device 9 facilitates the loading of the inspection device onto the carrier 1 and ensures installation reliability, with high implementability.
  • the guide groove 8 is mounted on the left and right boundaries of the upper surface of the carrier 1, and the clamping device 9 is mounted on the front and rear ends of the carrier 1.
  • the guide groove 8 allows the inspection device to align the carrier in the left-right direction during loading, and clamps
  • the device 9 can be a hydraulic cylinder with a certain travel distance. After the inspection device is placed on the carrier 1, the front and rear positions of the inspection device can be fine-tuned by adjusting the clamping device 9.
  • the radiation inspection system of the present invention is suitable for use in a port or outside a port.
  • the radiation inspection system can be powered by mains or battery modules instead of gasoline or diesel, in line with the concept of green energy conservation and environmental protection in fully automated terminals.
  • the battery module of the radiation inspection system and the battery of the vehicle can be charged simultaneously with the utility power (if the vehicle is equipped with a battery), and the battery modules of the vehicle and the radiation inspection system can also be charged simultaneously by the charging pile.
  • the radiation inspection system can be quickly loaded onto a flatbed truck for transfer movement, scanning goods/vehicles transported on the road, and the radiation inspection system can also be powered by gasoline or diesel.
  • the present invention also provides a port facility comprising the radiation inspection system described above.
  • the port facility is especially an automated dock, and the radiation inspection system of the invention is particularly suitable for use in fully automated terminals. Since the radiation inspection system of the present invention can save the inspection cost, accordingly, the port facility of the present invention also has the above-mentioned beneficial technical effects, and details are not described herein again.
  • the port facility further includes a vehicle dispatching system
  • the radiation inspection system is connected to the vehicle dispatching system
  • the driving route, the scanning location, etc. of the radiation inspection system are remotely controlled by the vehicle dispatching system.
  • the scanned image is wirelessly transmitted to the centralized image inspection room, and the image inspector analyzes the image to improve the efficiency of the scanning inspection, and has high implementability.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Automatic Assembly (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种辐射检查系统,包括:检查装置,用于检查集装箱/车辆;可移动的载具(1),用于可装卸地承载检查装置;固定支撑装置,设置在检查装置上,用于在触地时支起检查装置以使检查装置相对于载具(1)悬空。该辐射检查装置通过在检查装置上设置固定支撑装置,固定支撑装置能够在触地时支起检查装置以使检查装置相对于载具(1)悬空放置,从而使得载具(1)可以驶离检查装置,当需要转场时,载具驶近检查装置,固定支撑装置离地时检查装置承载于载具(1)上,实现了检查装置的可自装卸,无需土建且可灵活转场,节约了检查成本,具有较高的可实施性。还提供一种包括该辐射检查系统的港口设施。

Description

辐射检查系统和港口设施
相关申请
本申请是以申请号为201810436838.3,申请日为2018年5月9日,发明名称为“辐射检查系统和港口设施”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本申请中。
技术领域
本发明涉及安全检测技术领域,尤其涉及一种辐射检查系统和港口设施。
背景技术
智慧港口是近年来提出的新理念。智慧港口拥有网络化、数字化的港口基础设施,自动化、智能化的港口运输装备和与新一代信息技术深度融合的港口业务。
全自动化码头是智慧港口建设的一个重要标志。全自动化码头,即整个码头没有工作人员,所有设备都在计算机控制下,实现自动运行、共同协作,完成集装箱的转运。集装箱到堆场后,采用自动引导运输车(AGV)快速准确地移动到目标位置,可实现自动避让功能,当行驶路线中出现障碍物,智能单机导航系统将在第一时间重新规划路线,确保现场安全。为了进一步提高效率,AGV还可实现24小时不间断运行。为了减少污染,自动引导运输车AGV全部采用电力驱动。
现有的辐射检查系统,常见的有组合移动式检查系统、快检类检查系统和车载移动式检查系统等。其中,组合移动式检查系统具有图像质量高的优点,但是系统通过率较低,且系统运行的轨道需要土建,不方便搬迁。快检类检查系统具有通过率高的特点,但是需要大量土建,无法进行搬迁。组合式检查系统和快检式检查系统都需要土建,但是整个AGV运行场地布满定位磁钉,所以在该场地进行土建比较困难。另外,组合式检查系统和快检式检查系统占地面积较大,全自动化码头内可完全给检查系统使用的场地空间有限,无法布置满足查验需求的充足数量的检查系统,而如果检查系统数量不足会要求全部AGV绕行固定位置的检查系统,会大幅降低码头的查验和工作效率。车载移动式检查系统,虽然具备主动扫描和快检扫描两种工作模式并可灵活转场,但是系统使用卡车底盘,会受到左舵/右舵以及其他相关道路法规的限制,更重要的是在码头内的移动同样需要人员在车上操作干预,无法与全自动化码头的无 人运行环境相匹配。
以上几种常用的检查系统均不适合在全自动化码头使用,在全自动化码头使用的理想的检查系统应具备无需土建、可灵活转场、节能环保、图像质量好、扫描效率高、并可接入港口的调度系统的特点。
发明内容
本发明提供了一种辐射检查系统,其包括:
检查装置,用于检查集装箱/车辆;
可移动的载具,用于可装卸地承载检查装置;
固定支撑装置,设置在检查装置上并在触地时能够支起检查装置以使检查装置相对于载具悬空。
在一些实施例中,还包括底部升降机构,用于从底部升降检查装置以使固定支撑装置在触地状态或离地状态之间切换,在触地状态下,检查装置由固定支撑装置支起;在离地状态下,检查装置由载具承载。
在一些实施例中,固定支撑装置包括可伸缩的支撑支腿,支撑支腿作为底部升降机构来升降检查装置。
在一些实施例中,固定支撑装置还包括可伸缩的水平支腿,水平支腿安装在检查装置上并用于水平移动支撑支腿以使其相对于检查装置伸出和收回。
在一些实施例中,支撑支腿为在竖直方向上可上下伸缩的竖直支腿。
在一些实施例中,底部升降机构包括设置在检查装置与载具之间的举升装置。
在一些实施例中,举升装置设置在载具的顶面上,或者,举升装置设置在检查装置的底部。
在一些实施例中,固定支撑装置包括设置在检查装置侧部并向下延伸的支撑部件,支撑部件用于在触地时支起检查装置以使检查装置相对于载具悬空。
在一些实施例中,固定支撑装置还包括支撑座,检查装置通过支撑座设置在载具的上方,支撑部件设置在支撑座两侧并向下延伸。
在一些实施例中,支撑部件在触地状态下的支撑高度大于载具的承载高度。
在一些实施例中,支撑座为板件结构,支撑部件为支腿。
在一些实施例中,支撑部件与载具的侧部间隙配合。
在一些实施例中,支撑部件的支撑高度可调。
在一些实施例中,还包括:
导向槽,设置在载具顶面上,用于定位对准安装检查装置;和/或,
夹紧装置,设置在载具顶面上,用于夹紧检查装置以实现固定。
在一些实施例中,载具为自动引导运输车。
在一些实施例中,检查装置包括设备舱、射线源、信号采集装置以及探测器,射线源和信号采集装置设置在设备舱内,探测器设置在设备舱内部或外部。
在一些实施例中,检查装置具有吊装接口,吊装接口与集装箱/车辆的吊装接口一致。
本发明还提供了一种港口设施,其包括上述的辐射检查系统。
在一些实施例中,还包括载具调度系统,辐射检查系统接入载具调度系统。
基于上述技术方案,本发明辐射检查系统通过在检查装置上设置固定支撑装置,固定支撑装置能够在触地时支起检查装置以使检查装置相对于载具悬空放置,从而使得载具可以驶离检查装置,当需要转场时,载具驶近检查装置,固定支撑装置离地时检查装置承载于载具上,实现了检查装置的可自装卸,无需土建且可灵活转场,节约了检查成本,具有较高的可实施性。本发明提供的港口设施也相应地具有上述有益技术效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明仅用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明一实施例的辐射检查系统一实施例的整体结构示意图;
图2为本发明一实施例的辐射检查系统一实施例的整体结构示意图;
图3为本发明一实施例的辐射检查系统中固定支撑装置在触地时的结构示意图;
图4为本发明一实施例的辐射检查系统中支撑支腿伸出并触地时结构示意图;
图5为本发明一实施例的辐射检查系统中固定支撑装置在离地时的结构示意图;
图6为本发明一实施例的辐射检查系统中支撑支腿缩回并离地时结构示意图;
图7为本发明一实施例的辐射检查系统中水平支腿缩回时结构示意图;
图8为本发明一实施例的辐射检查系统中载具的结构示意图;
图9为本发明一实施例的辐射检查系统中固定支撑装置实施例的结构示意图;
图10为本发明一实施例的辐射检查系统中举升装置上升时的结构示意图;
图11为本发明一实施例的辐射检查系统中固定支撑装置在离地时的结构示意图;
图12为本发明一实施例的辐射检查系统中举升装置下降时的结构示意图;
图13为本发明一实施例的辐射检查系统中固定支撑装置在触地时的结构示意图。
各附图标记分别代表:
1、载具;2、设备舱;3、射线源;4、信号采集装置;5、探测器;6、支撑支腿;7、水平支腿;8、导向槽;9、夹紧装置;10、举升装置;11、支撑座;12、支撑部件。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
本发明的具体实施方式是为了便于对本发明的构思、所解决的技术问题、构成技术方案的技术特征和带来的技术效果有更进一步的说明。需要说明的是,对于这些实施方式的说明并不构成对本发明的限定。此外,下面所述的本发明的实施方式中涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明辐射检查系统一个示意性的实施例中,如图1~图13所示,辐射检查系统包括:
检查装置,用于检查集装箱/车辆;
可移动的载具1,用于可装卸地承载检查装置;
固定支撑装置,设置在检查装置上并在触地时能够支起检查装置以使检查装置相对于载具1悬空。
在该示意性的实施例中,通过在检查装置上设置固定支撑装置,如图3和图13所示,固定支撑装置能够在触地时支起检查装置以使检查装置相对于载具1悬空放置,从而使得载具1可以驶离检查装置,当需要转场时,载具1再驶近检查装置,如图7和图11所示,固定支撑装置离地时检查装置承载于载具1上,实现了检查装置的可自装卸,无需土建且可灵活转场,节约了检查成本,具有较高的可实施性。
其中,如图1和图2所示,检查装置包括设备舱2、射线源3、信号采集装置4以及探测器5,射线源3和信号采集装置4设置在设备舱2内,载具1例如为自动引导运输车,即AGV,运输灵活。当然载具1也可以为卡车底盘或其他运载工具。当辐射检查系统为透射检查系统时,如图1所示,探测器5设置在设备舱2外部;当辐射 检查系统为背散射检查系统时,如图2所示,探测器5设置在设备舱2内部。在一些实施例中,检查装置具有与集装箱/车辆的吊装接口一致的吊装接口,可以使用轨道吊来吊装检查装置进行转场,无需载具。
以载具1为自动引导运输车(AGV)为例,载具1承载整个检查装置对港口内由运输车运输的集装箱进行扫描,可以主动扫描和快检扫描,并可承载整个检查装置进行转场。检查装置还可由载具1运输到指定地点后通过固定支撑装置从载具1上脱离卸载,然后进行快检扫描,避免长期占用载具1。本发明辐射查系统可布置于码头内集装箱运输沿线,在集装箱运输途中自动完成扫描,避免集装箱绕行而降低效率。
辐射检查系统具有两种工作模式:载具工作模式和独立工作模式。
如图1所示,对于辐射检查系统为透射检查系统,在载具工作模式下,即扫描检查时载具1承载检查装置,探测器5的臂架展开形成固定大小的扫描通道。在载具工作模式下,辐射检查系统具备主动和快检两种扫描模式。在主动模式下,港口的集装箱AGV承载被检集装箱到达扫描位置后停止,载具1承载检查装置移动,射线源产生高能X射线,射线穿过被检集装箱,探测器阵列接收X射线,最终生成扫描图像。在快检模式下,检查装置静止不动,集装箱AGV承载被检集装箱通过扫描通道,检查系统自动完成扫描并生成扫描图像。
如图2所示,对于辐射检查系统为背散射检查系统,在独立工作模式下,检查装置由固定支撑装置在地面上支撑。在独立工作模式下,检查系统只具备固定扫描模式。
在一些实施例中,辐射检查系统包括底部升降机构,用于从底部升降检查装置以使固定支撑装置在触地状态或离地状态之间切换,如图3和图13所示,在触地状态下,检查装置相对于载具1悬空,检查装置由固定支撑装置支起;如图7和图11所示,在离地状态下,检查装置由载具1承载。底部升降机构的设置易于实现固定支撑装置在触地状态或离地状态之间切换,具有较高的可实施性。
固定支撑装置帮助检查装置在载具1和地面之间移动,固定支撑可包括液压、气动、电动或其他形式的机械装置。
在一些实施例中,如图3~图7所示,固定支撑装置包括可伸缩支撑支腿6。支撑支腿6为在竖直方向上可上下伸缩的竖直支腿,提高升降效率。支撑支腿6作为底部升降机构来升降检查装置,如图3和图4所示,当支撑支腿6伸出触地后继续伸出,检查装置上升而脱离载具(图3中未示出),如图5~图7所示,当支撑支腿6收回,检查装置下降并承载于载具(图5和图7未示出)上,支撑支腿6继续收回并离地, 从而使支撑支腿6在触地状态或离地状态之间切换来实现了检查装置的可自装卸。可伸缩的支撑支腿为市售部件,易于获取,具有较高的可实施性。如图5和图7所示,支撑支腿6位于检查装置的四个角,在行驶状态下,支撑支腿6收缩;如图3所示,在卸载过程中,支撑支腿6内部伸出向下移动,最终支撑于地面,在装载过程中,支撑支腿6从地面向上移动最终收缩于内部,四个支撑支腿6同步升降,检查装置后端面的两个支撑支腿6位置与前端面的两个支撑支腿6对称设置。
在一些实施例中,如图5和图7所示,固定支撑装置还包括可伸缩的水平支腿7,水平支腿7安装在检查装置上并用于水平移动支撑支腿6以使其相对于检查装置伸出和收回,这样设计可以减少辐射检查系统的占用空间,结构紧凑。在行驶状态下,如图7所示,支撑支腿6收紧于设备舱2表面,当载具1到达指定工作场地后,如图5所示,水平支腿7水平移动支撑支腿6向外侧移动,与设备舱2表面一定具有距离后停止;如图3所示,支撑支腿6内部伸出向下移动,最终支撑于地面;载具1从检查装置下方驶离,可根据被检查物的高度调整支撑支腿6的高度,进而调整扫描通道的高度,也可将支撑支腿6完全收缩,即检查装置完全置于地面,液压支腿收紧于设备舱2表面。
检查装置的装载过程为卸载过程的逆过程,在此不做额外的描述。
在另一些实施例中,如图9~图13所示,底部升降机构包括设置在检查装置与载具1之间的举升装置10。如图10所示,举升装置10设置在载具1的顶面上,这样有利于结构设置,优化空间;当然,举升装置10也可以设置在检查装置的底部。通过在检查装置与载具1之间设置举升装置10同样能实现从底部升降检查装置以使固定支撑装置在触地状态或离地状态之间切换,如图10和11所示,当举升装置10上升时,固定支撑装置离地,检查装置承载于载具1上;如图12和图13所示,当举升装置10下降时,固定支撑装置触地,举升装置10继续下降,检查装置由固定支撑装置支起,举升装置10使固定支撑装置在触地状态或离地状态之间切换来实现检查装置的可自装卸,具有较高的可实施性。
如图9所示,固定支撑装置包括设置在检查装置侧部并向下延伸的支撑部件12,支撑部件12用于在触地时支起检查装置以使检查装置相对于载具1悬空,结构简单,易于实现。在一些实施例中,如图9所示,固定支撑装置还包括支撑座11,检查装置通过支撑座11设置在载具1的上方,支撑部件12设置在支撑座11两侧并向下延伸,确保结构稳定性。为了保证支撑部件12在触地时支起检查装置,支撑部件12在触地 状态下的支撑高度大于载具1的承载高度。
在一些实施例中,如图9所示,支撑座11为板件结构,支撑部件12为支腿,结构简单,节省加工成本。当然,在其他实施例中,支撑部件还可以为板件或框架。
在一些实施例中,如图9和图11所示,支撑部件12与载具1的侧部间隙配合,这样在转场时支撑部件12与载具1的侧部能够接触定位,避免在转场过程或扫描过程中由于载具1的行进而使检查装置晃动发生滑落,提高转场和扫描稳定性。在一些实施例中,支撑部件12的支撑高度可调,这样检查装置在固定时可以随时调节其高度,满足不同高度位置的检查需要,扩大适用范围。
在将检查装置装载到载具1的过程中,存在检查装置与载具1不容易对准的情况,若对不准,在载具1承载检查装置行驶的过程中存在很大的危险。在一些改进的实施例中,辐射检查系统还包括设置在载具1顶面上的导向槽8,用于定位对准安装检查装置;和/或,设置在载具1顶面上的夹紧装置9,用于夹紧检查装置以实现固定。导向槽8和/或夹紧装置9有利于方便将检查装置装载到载具1上且保证了安装可靠性,具有较高的可实施性。导向槽8安装在载具1的上表面左右边界上,夹紧装置9安装在载具1的前后端,导向槽8可使得检查装置在装载过程中在左右方向上对准载具,夹紧装置9可以为液压油缸,有一定的行程距离,当检查装置放置在载具1上之后,可通过调整夹紧装置9来微调检查装置的前后位置。
本发明辐射检查系统适合在港口内使用,也可以在港口外使用。在港口内,辐射检查系统可采用市电或电池模块供电,而不使用汽油或柴油供电,符合全自动化码头绿色节能环保的理念。可使用市电同时对辐射检查系统的电池模块和载具的电池充电(如果载具配备电池),也可通过充电桩同时对载具和辐射检查系统的电池模块充电。如需在港口外使用,辐射检查系统能够快速装载于平板卡车上进行转场移动,可以扫描公路上运输的货物/车辆,辐射检查系统也可使用汽油或柴油供电。
本发明还提供了一种港口设施,其包括上述的辐射检查系统。港口设施尤其为自动化码头,本发明辐射检查系统尤其适合在全自动化码头使用。由于本发明辐射检查系统能够节约检查成本,相应地,本发明港口设施也具有上述的有益技术效果,在此不再赘述。
在本发明港口设施一些具体或进一步的实施例中,港口设施还包括载具调度系统,辐射检查系统接入载具调度系统,通过载具调度系统远程控制辐射检查系统的行驶路线、扫描地点等,并远程监控辐射检查系统的状态,扫描图像通过无线传输到集 中图检室内,由图像检查员对图像进行分析,提高扫描检查效率,具有较高的可实施性。
以上结合的实施例对于本发明的实施方式做出详细说明,但本发明不局限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明的原理的情况下对这些实施方式进行多种变化、修改、等效替换和变型仍落入在本发明的保护范围之内。

Claims (19)

  1. 一种辐射检查系统,包括:
    检查装置,用于检查集装箱/车辆;
    可移动的载具(1),用于可装卸地承载所述检查装置;
    固定支撑装置,设置在所述检查装置上,用于在触地时支起所述检查装置以使所述检查装置相对于所述载具(1)悬空。
  2. 根据权利要求1所述的辐射检查系统,其中,包括底部升降机构,用于从底部升降所述检查装置以使所述固定支撑装置在触地状态或离地状态之间切换,在所述触地状态下,所述检查装置由所述固定支撑装置支起;在所述离地状态下,所述检查装置由所述载具(1)承载。
  3. 根据权利要求2所述的辐射检查系统,其中,所述固定支撑装置包括可伸缩的支撑支腿(6),所述支撑支腿(6)作为所述底部升降机构来升降所述检查装置。
  4. 根据权利要求3所述的辐射检查系统,其中,所述固定支撑装置还包括可伸缩的水平支腿(7),所述水平支腿(7)安装在所述检查装置上并用于水平移动所述支撑支腿(6)以使其相对于所述检查装置伸出和收回。
  5. 根据权利要求3所述的辐射检查系统,其中,所述支撑支腿(6)为在竖直方向上可上下伸缩的竖直支腿。
  6. 根据权利要求2所述的辐射检查系统,其中,所述底部升降机构包括设置在所述检查装置与所述载具(1)之间的举升装置(10)。
  7. 根据权利要求6所述的辐射检查系统,其中,所述举升装置(10)设置在所述载具(1)的顶面上,或者,所述举升装置(10)设置在检查装置的底部。
  8. 根据权利要求6所述的辐射检查系统,其中,所述固定支撑装置包括设置在所述检查装置侧部并向下延伸的支撑部件(12),所述支撑部件(12)用于在触地时支起所述检查装置以使所述检查装置相对于所述载具(1)悬空。
  9. 根据权利要求8所述的辐射检查系统,其中,所述固定支撑装置还包括支撑座(11),所述检查装置通过所述支撑座(11)设置在所述载具(1)的上方,所述支撑部件(12)设置在所述支撑座(11)两侧并向下延伸。
  10. 根据权利要求8所述的辐射检查系统,其中,所述支撑部件(12)在触地状态下的支撑高度大于所述载具(1)的承载高度。
  11. 根据权利要求9所述的辐射检查系统,其中,所述支撑座(11)为板件结构,所述支撑部件(12)为支腿。
  12. 根据权利要求8所述的辐射检查系统,其中,所述支撑部件(12)与所述载具(1)的侧部间隙配合。
  13. 根据权利要求8所述的辐射检查系统,其中,所述支撑部件(12)的支撑高度可调。
  14. 根据权利要求2所述的辐射检查系统,其中,还包括:
    导向槽(8),设置在所述载具(1)顶面上,用于定位对准安装所述检查装置;和/或,
    夹紧装置(9),设置在所述载具(1)顶面上,用于夹紧所述检查装置。
  15. 根据权利要求1所述的辐射检查系统,其中,所述载具(1)为自动引导运输车。
  16. 根据权利要求1所述的辐射检查系统,其中,所述检查装置包括设备舱(2)、射线源(3)、信号采集装置(4)以及探测器(5),所述射线源(3)和信号采集装置(4)设置在所述设备舱(2)内,所述探测器(5)设置在所述设备舱(2)内部或外部。
  17. 根据权利要求1所述的辐射检查系统,其中,所述检查装置具有吊装接口,所述吊装接口与集装箱/车辆的吊装接口一致。
  18. 一种港口设施,包括权利要求1~17任一项所述的辐射检查系统。
  19. 根据权利要求18所述的港口设施,其中,还包括载具调度系统,所述辐射检查系统接入所述载具调度系统。
PCT/CN2019/080804 2018-05-09 2019-04-01 辐射检查系统和港口设施 WO2019214369A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL435912A PL241871B1 (pl) 2018-05-09 2019-04-01 Układ do kontroli promieniowaniem oraz instalacja portowa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810436838.3 2018-05-09
CN201810436838.3A CN108398726A (zh) 2018-05-09 2018-05-09 辐射检查系统和港口设施

Publications (1)

Publication Number Publication Date
WO2019214369A1 true WO2019214369A1 (zh) 2019-11-14

Family

ID=63101659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080804 WO2019214369A1 (zh) 2018-05-09 2019-04-01 辐射检查系统和港口设施

Country Status (3)

Country Link
CN (1) CN108398726A (zh)
PL (1) PL241871B1 (zh)
WO (1) WO2019214369A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018664A (zh) * 2021-10-27 2022-02-08 新乡市方正公路工程监理咨询有限责任公司 公路实验室土样夯实设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398726A (zh) * 2018-05-09 2018-08-14 清华大学 辐射检查系统和港口设施

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101712439A (zh) * 2009-11-27 2010-05-26 三一汽车制造有限公司 起重机转场辅助装置、运输拖车及拆装起重机的方法
CN201580913U (zh) * 2009-11-27 2010-09-15 三一汽车制造有限公司 起重机转场辅助装置、运输拖车
US20160025889A1 (en) * 2002-07-23 2016-01-28 Rapiscan Systems, Inc. Compact Mobile Cargo Scanning System
CN105379425A (zh) * 2013-01-31 2016-03-02 瑞皮斯坎系统股份有限公司 便携式安全检查系统
CN105366584A (zh) * 2015-12-10 2016-03-02 同方威视技术股份有限公司 车载式辐射检测系统用升降机构及车载式辐射检测系统
CN106841084A (zh) * 2017-04-19 2017-06-13 中国电子科技集团公司第三十八研究所 基于太赫兹成像技术的车载移动式安检系统及其使用方法
CN108398726A (zh) * 2018-05-09 2018-08-14 清华大学 辐射检查系统和港口设施
CN208283573U (zh) * 2018-05-09 2018-12-25 清华大学 辐射检查系统和港口设施

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160025889A1 (en) * 2002-07-23 2016-01-28 Rapiscan Systems, Inc. Compact Mobile Cargo Scanning System
CN101712439A (zh) * 2009-11-27 2010-05-26 三一汽车制造有限公司 起重机转场辅助装置、运输拖车及拆装起重机的方法
CN201580913U (zh) * 2009-11-27 2010-09-15 三一汽车制造有限公司 起重机转场辅助装置、运输拖车
CN105379425A (zh) * 2013-01-31 2016-03-02 瑞皮斯坎系统股份有限公司 便携式安全检查系统
CN105366584A (zh) * 2015-12-10 2016-03-02 同方威视技术股份有限公司 车载式辐射检测系统用升降机构及车载式辐射检测系统
CN106841084A (zh) * 2017-04-19 2017-06-13 中国电子科技集团公司第三十八研究所 基于太赫兹成像技术的车载移动式安检系统及其使用方法
CN108398726A (zh) * 2018-05-09 2018-08-14 清华大学 辐射检查系统和港口设施
CN208283573U (zh) * 2018-05-09 2018-12-25 清华大学 辐射检查系统和港口设施

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018664A (zh) * 2021-10-27 2022-02-08 新乡市方正公路工程监理咨询有限责任公司 公路实验室土样夯实设备

Also Published As

Publication number Publication date
PL435912A1 (pl) 2021-09-06
PL241871B1 (pl) 2022-12-19
CN108398726A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
EP3290962B1 (en) Movable article inspection system and inspection method
KR101501434B1 (ko) 크레인과 트랙터 사이의 충전 시스템
CN103523675A (zh) 轨道吊自动化堆场操作控制系统及自动装卸方法
WO2018041037A1 (zh) 集装箱检查系统和港口设施
CN107860782A (zh) 移动式物品检查系统
CN110539808A (zh) 一种重载转运对接agv设备
CN110053989A (zh) 批量箱体类货物的全自动装车系统及装车方法
WO2019214369A1 (zh) 辐射检查系统和港口设施
CN202544437U (zh) 一种应急通信基站
US8790062B2 (en) Distribution system
CN109956338A (zh) 一种高铁物流集装器装卸机器人及其装卸集装器的方法
CN109264625B (zh) 一种便于调节高度的龙门升举机
WO2019192327A1 (zh) 集装箱检查系统、转运方法及港口设施
CN208283573U (zh) 辐射检查系统和港口设施
CN206903318U (zh) 一种自动泊车的立体车库
AU8408091A (en) Stationary direction changing device for a handling trolley
JP2021535863A (ja) 積載システムおよび車輪付き鉄道運搬車
CN212224816U (zh) 运输子母车
CN213569206U (zh) 一种智能自动化龙门起重系统
CN210879630U (zh) 一种新型自动化表面处理系统
CN212224807U (zh) 运输母车
CN210122347U (zh) 一种同轨迹e-frame大件物料转运车
WO2021196122A1 (zh) 一种到港货物运输转送装置及方法
CN111140058A (zh) 运输子母车
CN207861447U (zh) 汽车扰流板智能周转系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799900

Country of ref document: EP

Kind code of ref document: A1