WO2019214134A1 - Procédé et système d'imagerie tridimensionnelle de vaisseau sanguin cérébral transcrâniens - Google Patents

Procédé et système d'imagerie tridimensionnelle de vaisseau sanguin cérébral transcrâniens Download PDF

Info

Publication number
WO2019214134A1
WO2019214134A1 PCT/CN2018/106862 CN2018106862W WO2019214134A1 WO 2019214134 A1 WO2019214134 A1 WO 2019214134A1 CN 2018106862 W CN2018106862 W CN 2018106862W WO 2019214134 A1 WO2019214134 A1 WO 2019214134A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo
preset
signal
array probe
transcranial
Prior art date
Application number
PCT/CN2018/106862
Other languages
English (en)
Chinese (zh)
Inventor
邢英琦
杨弋
郑永平
吴伟文
任冠清
邹文
肖振华
Original Assignee
深圳市德力凯医疗设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市德力凯医疗设备股份有限公司 filed Critical 深圳市德力凯医疗设备股份有限公司
Publication of WO2019214134A1 publication Critical patent/WO2019214134A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data

Definitions

  • FIG. 5 is a structural schematic diagram of a transcranial three-dimensional cerebrovascular imaging system provided by the present invention.
  • FIG. 6 is a structural schematic diagram of a terminal device in a transcranial three-dimensional cerebrovascular imaging system according to the present invention.
  • S122 Perform amplification filtering on the focused echo signal, convert the filtered focused echo signal into a digital signal, and acquire a first preset number of first echo data according to the digital signal.
  • Each array element respectively transmits a first sub-ultrasonic signal with a different delay to the first sub-depth range, and receives a first sub-echo signal of the first sub-ultrasonic signal; and then controls each array element of the ring-array probe to a second
  • the sub-depth range transmits a second sub-ultrasonic signal having a different delay, receives the second sub-echo signal of the second sub-ultrasonic signal, and so on until the ultrasonic signal is sent to the sub-depth range, and finally corresponds to each sub-depth range
  • the echo signal is extracted to the first echo data of the first preset data amount corresponding to the first scanning position.
  • the preset depth range may be equally divided into a plurality of sub-depth ranges, and the number of the plurality of sub-depth ranges may be obtained, and then the first preset quantity and the quantity of the quotient may be determined, and each The quotient number of echo data is extracted from the echo signals corresponding to the sub-depth ranges.
  • the first preset number cannot be divisible, the quotient + remainder number of echo data can be selected in any sub-depth range. It should be noted that for each scanning position in the preset motion trajectory, the same acquisition process as the first scanning position may be employed.
  • the form of transmitting the ultrasonic signal in the first scanning position may adopt the manner of sub-depth transmission in the foregoing embodiment to further improve the accuracy of the acquired echo data.
  • echo signals that are not at different time points can be obtained by transmitting the ultrasonic signals multiple times, and the echo data streams are determined according to the echo data at different time points, so that the Doppler spectrum can be formed according to the echo data.
  • the ultrasonic receiver after receiving the signal, performs processing such as amplification filtering and digital-to-analog conversion into a digital signal, and processing the digital signal to obtain echo data of the first preset data on the receiving beam.
  • a plurality of pulses are transmitted at the same scanning position, and each pulse obtains a first predetermined number of echo data, wherein each echo data corresponds to a detection depth. That is to say, multiple echo data are acquired for each detection depth, and autocorrelation operations or fast Fourier transform (FFT) operations are performed on multiple echo data of each detection depth to obtain echo data corresponding to each detection depth.
  • FFT fast Fourier transform
  • the preset swing trajectory and the preset swing angle are all preset, and the ring array probe swings according to the preset swing trajectory, and presets in each swing After the swing angle, ultrasonic transmission and echo signal reception are sequentially performed.
  • the preset oscillating trajectory is a "back" shape
  • two stepping motors (referred to as a first stepping motor and a second stepping motor respectively) connected to the ring array transducer in the probe box
  • the control loop energy transducer reaches a maximum swing angle
  • the first stepper motor controls the loop array transducer to swing to a maximum swing angle in a first predetermined direction (eg, 11.5° on one side)
  • the second stepper motor controls
  • the ring array transducer swings to a maximum swing angle in a second predetermined direction
  • the second preset direction is preferably a direction perpendicular to the first preset direction.
  • the first component motor sequentially swings the preset swing angle along the maximum swing angle of the first preset direction and stops at the position after the swing, and repeatedly transmits the ultrasonic wave and receives the ultrasonic wave back.
  • the wave signal step after acquiring the first preset number of echo data, continues to swing the preset swing angle in the first preset direction until the ring array transducer reaches the maximum swing angle, thereby acquiring the first plane a first number of echo data; then the second stepping motor controls the ring array transducer to swing the preset swing angle in the second predetermined direction, and performs the steps of repeatedly transmitting the ultrasonic wave and receiving the echo signal of the ultrasonic wave, and acquiring After the first preset number of echo data, the first stepping motor repeats the above process, and swings from the current position to the maximum swing angle to obtain the first number of echo data of the second plane; The two stepping motor movement reaches a maximum deflection angle, and the first stepping motor repeats the above stepping process to obtain the first number of data strip echoes of the second number of screens , So obtaining a first cumulative number ⁇ the number of bars of the second ultrasound echo data, thereby obtaining echo data space of the first predetermined number ⁇ ⁇ second number of the first
  • the ring array probe can also scan according to other trajectories, for example, linear scanning, sector scanning, rotational scanning, back-type scanning, and the like.
  • the first stepping motor and the second stepping motor acquire the first ultrasonic beam echo data at 0 degrees, and then control the first stepping motor and the second component motor to swing, so that the ultrasonic beam is the first ultrasonic wave.
  • the beam position is center-scanned to obtain M1 scanning lines, and the circumferential diameter is gradually enlarged until the Mn strip scanning line is obtained.
  • the M1+M2+...+Mn lines are cumulatively obtained, thereby obtaining data of the first predetermined number of spaces ⁇ (M1+M2+...+Mn) points.
  • the cerebral blood flow information may include a gray scale, a blood flow velocity, a blood flow rate, and a blood flow direction, and the cerebral blood flow data corresponding to the first preset number* second preset number of echo data is obtained according to the
  • the three-dimensional imaging algorithm can obtain three-dimensional images of intracranial cerebral blood flow.
  • the three-dimensional image of the cerebrovascular may include a cerebral vascular morphology and a mutual position between the cerebral vessels, wherein the cerebral vascular morphology may include positional information, shape information, and size information of the cerebral blood vessel.
  • S21 Extracting location information of the collection location, and acquiring cerebral blood flow information corresponding to the location information according to the echo signal corresponding to the location information, where the cerebral blood flow information includes at least a blood flow direction, a blood flow velocity, and a blood flow;
  • the three-dimensional cerebrovascular and/or cerebral blood flow images are obtained by three-dimensional reconstruction, and the three-dimensional reconstruction algorithm may adopt a Bessel three-dimensional interpolation algorithm.
  • a three-dimensional grayscale image of a cerebral blood vessel can be generated based on the collected cerebral blood flow information.
  • the acquiring the cerebral blood flow information according to the echo signal, and generating the three-dimensional cerebral blood vessel and/or the cerebral blood flow image according to the cerebral blood flow information may include:
  • S22a Generate a three-dimensional cerebrovascular gray scale image according to the position information and the position information corresponding to the cerebral blood flow information.
  • the two-dimensional image corresponding to each echo data may be mapped into the three-dimensional body according to the corresponding spatial position information, and then obtained by using the three-dimensional interpolation reconstruction algorithm.
  • Continuous and complete 3D grayscale map wherein, the three-dimensional gray scale map does not carry a gray-scale image without a blood flow direction, and when the three-dimensional gray scale map is displayed through the interface splitting section, a B-ultrasound image can be obtained.
  • the three-dimensional grayscale map can assist the doctor in clinical analysis by the brightness of different grayscale colors in the case where the small blood vessels are not obvious or the small blood vessels are filtered out.
  • This embodiment provides a transcranial three-dimensional cerebrovascular imaging method, which is the same as the imaging process of the first embodiment, and the difference lies in the acquisition process of the echo data of the ring array probe for each scanning position, thereby
  • the array probe details the acquisition and acquisition process of the echo data at each scanning position.
  • the data acquisition process of the ring array probe may specifically include:
  • step C Sweep the first probe angle of the loop probe according to the scan position and the scan depth corresponding to each echo signal, and repeat the step of step B until all the probe angles in the probe angle sequence are covered.
  • the acquisition of the scanning position is performed, and the ring array probe is swung to the next scanning position and step AC until the preset swinging trajectory is completed.
  • the ring array probe sends an ultrasonic signal to the intracranial cerebrovascular corresponding to the scanning position, receives an echo signal of the ultrasonic signal, and extracts a first predetermined number of echo data in the echo signal, according to the A time point corresponding to the first preset number of echo data determines a depth of detection corresponding to each echo data to obtain a detection depth set corresponding to the scan position.
  • the loop probe For detecting the first depth of detection in the set of depths, first swinging the loop probe to a first predetermined angle, and sending the ultrasonic signal to the first depth of detection, and acquiring the current echo of the current echo signal of the ultrasonic signal Wave signal strength; if the current echo signal strength is greater than the stored echo signal strength, the stored echo signal strength and its corresponding ring array probe are updated using the current echo signal strength and its corresponding current loop probe angle Angle, until all probe angles in the preset probe angle sequence are covered, repeating the above process for the second depth of detection of the set of depths until all probe depths within the set of probe depths are covered.
  • the ring array probe is swung to the next scan point according to the preset swing trajectory and the preset swing angle.
  • hemodynamic information of continuous depth can be obtained in the longitudinal direction; the deflection angle of the probe is precisely adjusted by the mechanical structure, and when the point A is scanned, A is obtained.
  • the echo signal of the point calculates the spatial position corresponding to point A through the deflection angle and depth of the loop probe; because it is a spherical swivel, the deflection angle can be conical in space, so that the position information of the cross section of the blood vessel can be measured.
  • the echo signal of point B is obtained; the angle of deflection reaches point C, and the echo signal of point C is obtained, so that the echo signals can be determined according to points A, B and C.
  • the corresponding cerebral blood flow information can be obtained.
  • the position and size of the three-dimensional space of the blood vessel can be calculated through the position of the blood vessel, and the blood flow pattern can be calculated by the blood flow velocity and the energy value.
  • the depth of point A refers to the linear distance from the probe surface to A.
  • the deflection angle values of the probe in the X and Y directions are respectively counted, and the depth position in the Z direction is combined.
  • the spatial position of point A relative to the coordinate origin is obtained; similarly, the spatial position information of points B and C can be calculated.
  • the blood flow velocity at point A is ⁇ B point blood flow velocity
  • the blood flow velocity at point C is ⁇ B blood flow velocity.
  • point B is the strongest, and points A and C are weak.
  • multiple ultrasonic pulses can be transmitted for each depth of detection, and the echo data of the position is determined according to the echo signals of the multiple ultrasonic pulses. This process has been described in the first embodiment and will not be described here.
  • the current echo signal corresponding to the current probe angle can be received in real time, and the current echo signal strength corresponding to the current echo signal is obtained in real time, according to the preset echo signal.
  • Intensity Interval The signal display color list determines the signal display color of the current echo signal strength and displays it in real time on the corresponding display point of the display screen.
  • the echo signal strength interval may be pre-divided, and the echo signal intensity interval is correspondingly matched with the color.
  • the color of the echo signal is set. To use the color corresponding to the signal strength interval.
  • an echo signal strength interval-signal display color list is set in advance, wherein the echo signal intensity interval-signal display color list includes a first echo signal intensity interval, a second echo signal strength interval, and a third time. a wave signal intensity interval, a black signal display color corresponding to the first echo signal intensity interval, a blue signal display color corresponding to the second echo signal intensity interval, and a red signal display color corresponding to the third echo signal intensity interval .
  • the present invention also provides a transcranial three-dimensional cerebrovascular imaging system, as shown in FIG. 5, which includes a ring array probe 100 and a control device 200 for passing
  • the mechanical device controls the intracranial ultrasound focus scan to receive echo signals at each scan position; the control device is used to implement the steps in the transcranial three-dimensional cerebrovascular imaging method as described above.
  • the control device includes a transcranial processing device connected to a ring array probe and a terminal device, and a terminal device for controlling the terminal device
  • the signal is sent to the ring probe and the echo signal collected by the ring probe is stored.
  • the terminal device includes at least one processor 20; a display screen 21; and a memory 22, which may further include a communication interface (Communications Interface) 23 and bus 24.
  • the processor 20, the display screen 21, the memory 22, and the communication interface 23 can complete communication with each other through the bus 24.
  • the display 21 is set to display the user guidance interface preset in the initial setting mode.
  • the communication interface 23 can transmit information.
  • Processor 20 may invoke logic instructions in memory 22 to perform the methods in the above-described embodiments.
  • logic instructions in the memory 22 described above may be implemented in the form of software functional units and sold or used as separate products, and may be stored in a computer readable storage medium.
  • the memory 22 is a computer readable storage medium, and can be configured to store a software program, a computer executable program, a program instruction or a module corresponding to the method in the embodiment of the present disclosure.
  • the processor 20 performs the functional application and data processing by executing software programs, instructions or modules stored in the memory 22, i.e., implements the methods in the above embodiments.
  • the memory 22 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 22 may include a high speed random access memory, and may also include a nonvolatile memory. For example, a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, etc., may also be used to store a program code. State storage medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

La présente invention concerne un procédé d'imagerie tridimensionnelle de vaisseau sanguin cérébral transcrânien consistant : à utiliser une sonde de réseau annulaire pouvant être balayé automatiquement pour envoyer des signaux ultrasonores qui ont des retards différents à différentes positions de balayage dans le crâne, de telle sorte que les signaux ultrasonores qui ont des retards différents sont focalisés sur une pluralité de profondeurs prédéfinies dans une direction axiale de faisceau de façon à détecter des vaisseaux sanguins cérébraux intracrâniens au moyen de la focalisation des signaux ultrasonores ; à retarder numériquement et à focaliser les signaux d'écho des signaux ultrasonores reçus, de telle sorte que les signaux d'écho sont améliorés de façon à améliorer la forme spatiale, la précision de position et la force de signal des informations acquises des vaisseaux sanguins cérébraux et/ou du flux sanguin cérébral, ce qui permet d'améliorer la définition et le taux de détection d'images tridimensionnelles de vaisseaux sanguins cérébraux et/ou de flux sanguin cérébral. De plus, la sonde de réseau annulaire (100) a comme caractéristiques moins de passages et un petit volume, et peut être portée sur la tête au lieu d'une sonde de surveillance TCD, et permet ainsi de réaliser le balayage et la surveillance tridimensionnels des vaisseaux sanguins cérébraux intracrâniens. L'invention concerne également un système d'imagerie de vaisseau sanguin cérébral tridimensionnelle transcrânien.
PCT/CN2018/106862 2018-05-07 2018-09-21 Procédé et système d'imagerie tridimensionnelle de vaisseau sanguin cérébral transcrâniens WO2019214134A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810425008.0 2018-05-07
CN201810425008.0A CN108852414A (zh) 2018-05-07 2018-05-07 一种经颅三维脑血管成像方法及系统

Publications (1)

Publication Number Publication Date
WO2019214134A1 true WO2019214134A1 (fr) 2019-11-14

Family

ID=64327366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106862 WO2019214134A1 (fr) 2018-05-07 2018-09-21 Procédé et système d'imagerie tridimensionnelle de vaisseau sanguin cérébral transcrâniens

Country Status (2)

Country Link
CN (1) CN108852414A (fr)
WO (1) WO2019214134A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752377B (zh) * 2019-02-02 2024-02-13 佛山科学技术学院 一种分光式双模态投影层析组织血管成像装置及方法
CN110448334A (zh) * 2019-08-12 2019-11-15 云南中医药大学 一种血管成像的检测方法
CN110584709B (zh) * 2019-08-14 2022-03-11 深圳市德力凯医疗设备股份有限公司 一种脑血流数据的采集方法、存储介质及超声设备
CN110866913A (zh) * 2019-11-21 2020-03-06 桂林电子科技大学 一种深度递归心血管图像显示方法
CN111110276B (zh) * 2019-12-19 2022-08-02 深圳市德力凯医疗设备股份有限公司 一种超声设备中信号过载保护方法、存储介质及超声设备
CN111110278B (zh) * 2019-12-30 2022-07-05 深圳市德力凯医疗设备股份有限公司 一种采集参数的配置方法、存储介质及超声设备
CN112043308B (zh) * 2020-08-31 2022-09-16 深圳市德力凯医疗设备股份有限公司 一种颅内三维脑血流重建方法、存储介质及超声设备
CN114366163B (zh) * 2022-01-11 2023-08-25 深圳市德力凯医疗设备股份有限公司 基于快速扫描的脑血流数据采集方法、系统及智能终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347341A (zh) * 2007-07-17 2009-01-21 阿洛卡株式会社 超声波诊断装置
US20100130866A1 (en) * 2008-07-16 2010-05-27 Joan Carol Main Method for determining flow and flow volume through a vessel
CN101889216A (zh) * 2007-12-07 2010-11-17 皇家飞利浦电子股份有限公司 用于对血管成像的方法和系统
CN105232086A (zh) * 2015-10-29 2016-01-13 深圳市德力凯医疗设备股份有限公司 一种基于经颅多普勒的颅内血流三维信息显示方法及系统
CN108852415A (zh) * 2018-05-07 2018-11-23 深圳市德力凯医疗设备股份有限公司 一种经颅三维脑血管复合成像方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08280098A (ja) * 1995-04-07 1996-10-22 Olympus Optical Co Ltd 超音波探触子用圧電素子
US6120454A (en) * 1998-02-03 2000-09-19 Boston Scientific Corporation Annular array ultrasound catheter
JP3688566B2 (ja) * 2000-08-15 2005-08-31 アロカ株式会社 超音波診断装置
US9630028B2 (en) * 2006-08-11 2017-04-25 Koninklijke Philips N.V. Ultrasound system for cerebral blood flow imaging and microbubble-enhanced blood clot lysis
CN101313855B (zh) * 2007-06-01 2010-06-16 深圳市德力凯电子有限公司 一种用于自动检测脑血流的方法
CN103549977A (zh) * 2013-11-05 2014-02-05 深圳大学 一种经颅多普勒平面环形相控阵探头
JP6006249B2 (ja) * 2014-03-24 2016-10-12 富士フイルム株式会社 音響波処理装置、音響波処理装置の信号処理方法およびプログラム
CN105030278B (zh) * 2015-05-21 2017-11-21 深圳市德力凯医疗设备股份有限公司 一种用于自动扫描颅内脑血管的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347341A (zh) * 2007-07-17 2009-01-21 阿洛卡株式会社 超声波诊断装置
CN101889216A (zh) * 2007-12-07 2010-11-17 皇家飞利浦电子股份有限公司 用于对血管成像的方法和系统
US20100130866A1 (en) * 2008-07-16 2010-05-27 Joan Carol Main Method for determining flow and flow volume through a vessel
CN105232086A (zh) * 2015-10-29 2016-01-13 深圳市德力凯医疗设备股份有限公司 一种基于经颅多普勒的颅内血流三维信息显示方法及系统
CN108852415A (zh) * 2018-05-07 2018-11-23 深圳市德力凯医疗设备股份有限公司 一种经颅三维脑血管复合成像方法及系统

Also Published As

Publication number Publication date
CN108852414A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2019214127A1 (fr) Système et procédé d'imagerie cérébrovasculaire transcrânienne composite tridimensionnelle
WO2019214134A1 (fr) Procédé et système d'imagerie tridimensionnelle de vaisseau sanguin cérébral transcrâniens
US20200275910A1 (en) Ultrasound imaging using apparent point-source transmit transducer
JP6438769B2 (ja) 多数開口超音波を用いた物質の硬度の決定
JP7346542B2 (ja) 超音波コントローラユニット及び方法
JP4582827B2 (ja) 超音波診断装置
US9161742B2 (en) Ultrasound imaging apparatus
US20180168549A1 (en) Ultrasonic scanner with a multiple faceted mirror
EP2610641B1 (fr) Ultrasons et système pour former une image ultrasonore Doppler
EP1815795B1 (fr) Appareil supersonographique
JP7167045B2 (ja) 音響センサーを位置決めするためのロケーションデバイス及びシステム
CN112912010A (zh) 用于导出与来自血管的流量有关的参数的方法和系统
JP5714221B2 (ja) 超音波診断装置及び超音波送受信方法
CN108135570B (zh) 超声成像设备和超声成像设备的控制方法
CN113164156A (zh) 用于引导式超声数据采集的系统和方法
WO2019214137A1 (fr) Système doppler transcrânien fondé sur une sonde à réseau annulaire
WO2019058753A1 (fr) Dispositif de diagnostic par ultrasons et procédé de commande de dispositif de diagnostic par ultrasons
KR20180096342A (ko) 초음파 영상장치 및 그 제어방법
TWI431270B (zh) 高頻超音波成像系統及方法
KR20150118732A (ko) 초음파 장치 및 그 제어 방법
US20220361961A1 (en) An ultrasound system
JP2010110642A (ja) 超音波診断装置
EP3685753A1 (fr) Appareil d'imagerie à ultrasons et procédé de commande correspondant
WO2019214136A1 (fr) Système d'imagerie cérébrovasculaire tridimensionnelle transcrânien
JP2008155059A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918116

Country of ref document: EP

Kind code of ref document: A1