WO2019213727A1 - Molécula de ácido nucleico cry1da códon-otimizada, construção de ácido nucleico, vetor, célula hospedeira, célula vegetal, planta transgênica, método para transformar uma célula, método para produzir uma planta transgênica, método de controle de pragas invertebradas de plantas de cultivo e usos da molécula de ácido nucleico - Google Patents

Molécula de ácido nucleico cry1da códon-otimizada, construção de ácido nucleico, vetor, célula hospedeira, célula vegetal, planta transgênica, método para transformar uma célula, método para produzir uma planta transgênica, método de controle de pragas invertebradas de plantas de cultivo e usos da molécula de ácido nucleico Download PDF

Info

Publication number
WO2019213727A1
WO2019213727A1 PCT/BR2019/050158 BR2019050158W WO2019213727A1 WO 2019213727 A1 WO2019213727 A1 WO 2019213727A1 BR 2019050158 W BR2019050158 W BR 2019050158W WO 2019213727 A1 WO2019213727 A1 WO 2019213727A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
sequence
plant
acid molecule
gene
Prior art date
Application number
PCT/BR2019/050158
Other languages
English (en)
French (fr)
Inventor
Newton PORTILHO CARNEIRO
Fernando HERCOS VALICENTE
Andréa ALMEIDA CARNEIRO
Roberto WILLIANS NODA
Meire DE CÁSSIA ALVES
Beatriz DE ALMEIDA BARROS
Original Assignee
Empresa Brasileira De Pesquisa Agropecuária - Embrapa
Helix Sementes E Mudas Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Empresa Brasileira De Pesquisa Agropecuária - Embrapa, Helix Sementes E Mudas Ltda. filed Critical Empresa Brasileira De Pesquisa Agropecuária - Embrapa
Priority to CN201980045855.7A priority Critical patent/CN113195723A/zh
Priority to MX2020011877A priority patent/MX2020011877A/es
Priority to US17/053,638 priority patent/US20210340558A1/en
Publication of WO2019213727A1 publication Critical patent/WO2019213727A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/14Plant cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to novel codon-optimized crylDa nucleic acid molecules from a gene sequence isolated from the bacterium Bacillus thuringiensis. These molecules are used for the production of nucleic acid constructs, vectors and host cells, allowing the production of transgenic plants such as maize resistant to invertebrate pests such as insects of the order Lepidoptera, particularly Spodoptera frugiperda (Noctuidae, Lepidoptera) and Diatrea saccharalis (Crambidae, Lepidoptera). Also subject to the present invention are transgenic plant cells and plants comprising the molecules or constructs of the invention.
  • transgenic plants in accordance with the present invention are capable of controlling caterpillars of said species that have become resistant to plants containing the cry1F gene.
  • the present invention relates to a method for transforming a cell, a method of controlling crop invertebrate pests and the use of nucleic acid molecules or constructs for the production of transgenic plants and for the control of invertebrate pests.
  • Genes of interest include genes that give plants resistance to herbicides, environmental stresses and invertebrate pests, for example.
  • cry gene derived from the Gram positive bacterium Bacillus thuringiensis (Bt).
  • Bacillus thuringiensis Bacillus thuringiensis
  • Such bacteria naturally occurring in many habitats, including soil, phylloplane, grain residues, dust, water, plant matter and insects, have the innate characteristic of forming protein crystals during the stationary and / or sporulation phase.
  • Protein crystals or delta-endotoxins representing 20-30% of the total cell protein (Boucias & Pendland, 1998), have specific insecticidal properties and may have various forms such as bipyramidal, spherical, rectangular, cuboidal and irregular. Bipyramidal crystals have a higher frequency of toxicity than crystals with other shapes, having particular activity against lepidopterans.
  • Cry proteins generally involves solubilization of crystals in the midgut of insect larvae, protease action on pro-toxins, adherence of active toxins to midgut receptors and insertion of said active toxins into the cell apical membrane, creating ion or pore channels (cytolysis).
  • cry genes are currently recognized.
  • Bt-based formulations represent a high percentage of biopesticide sales and have been used for over 40 years for pest control of the orders Lepidoptera and Diptera.
  • the production of the first transgenic plants containing cry genes did not produce satisfactory results.
  • native gene expression levels were lower than those required to provide adequate protection against target species in the field. This low concentration of Cry proteins was due, among other factors, to a mismatch between the codons of the gene donor species (Bt bacteria) and the gene receptor species (plants of interest).
  • codon AAG is preferably used over codon AAA for amino acid lysine (Liu, 2009). Due to this unique feature among different groups of organisms, insertion of native B. thuringiensis cry genes into plants leads to low expression of the Cry protein of interest.
  • bacterial genes have a low C + G content, in contrast to plant genes (Cambei & Gowri, 1990; Murray et al., 1989).
  • a + T-rich bacterial nucleotide sequences can be recognized by plants as splice sites (Liu, 2009), polyadenylation signals (Joshi, 1987; Diehn et al., 1998) or RNA destabilizing elements. , such as ATTTA (Ohme-Takagi et al., 1993). Therefore, to increase the expression of a cry gene from the bacterium Bt in the recipient organism, the gene must be "recoded” not only to fit the preferred amino acid codons but also to bring it closer to the G content. + C of the recipient organism.
  • cry genes can become a promising way to improve the efficiency and cost effectiveness of bioinsecticides and transgenic plants expressing these genes.
  • Different Bt isolates may show a very wide range of toxic activity against the same target species, and one isolate may be very active against one species and virtually inactive against another (Jarret & Burges, 1982).
  • Some combinations of Cry proteins have even shown synergistic toxicity to lepidopterans.
  • the larvae (25 larvae / bioassay / strain) were placed in disposable plastic containers (50 ml_) at a temperature of 27 ° C, 70% relative humidity, and 14 h / 10 h photophase. Strains were considered efficient when mortality was higher than 75%.
  • PCR Polymerase Chain Reaction
  • transgenic plants such as, for example, Bt transgenic maize
  • three basic requirements are required: (i) in vitro regeneration of the plant tissue to be transformed; (ii) the methodology for the insertion of the cry gene in the plant genome; and (iii) the genetic construction with cry genes and selection markers.
  • Type I calluses are compact, yellow or white and usually capable of regenerating plants
  • calluses described as Type II are soft, friable and highly embryogenic.
  • Type II callus-forming cultures grow rapidly, can be maintained for a long time and form a large number of easily regenerable somatic embryos (Vasil, 1987).
  • Type II corns are the most efficient in producing transgenic maize plants, Type I corns can also be used.
  • the occurrence of Type II friable embryogenic callus is not so common, only a limited number of maize genotypes can express this phenotype in culture medium, notably the A188 strain (Armstrong & Green, 1985) and the Hill hybrid (Armstrong). et al., 1991).
  • the different methods of genetic transformation of plants can be divided into two main groups: indirect methods and direct methods. Genetic transformation through the indirect method uses a bacterium, Agrobacterium tumefaciens, to introduce the gene of interest into the plant genome.
  • Agrobacterium is a soil bacterium capable of causing plant tumors in the region of infection. These tumors result from the presence of the Ti plasmid or tumor inducing plasmid in the bacterial cell.
  • Ti plasmid is a large circular (200 to 800 kb) double stranded DNA molecule that can replicate independently of the Agrobacterium tumefaciens genome (Gelvin, 2003).
  • Wild plasmid T-DNA regions contain genes that drive the production of opinions and hormones, such as auxin and cytokine, by the plant cell. Opinions are amino acids used only by Agrobacterium as a source of carbon and nitrogen, while hormones are responsible for inducing plant tumors.
  • the T-DNA is between 10 and 30 kb and its ends are delimited by two highly homologous 25 bp sequences, called right and left ends. Wild Agrobacterium transfers its T-DNA across plant cell membranes and incorporates it into plant genomic DNA.
  • T-DNA and its transfer to the plant cell is largely due to the virulence activity of proteins encoded in the vir region (Gelvin, 2003).
  • GDI gene of interest
  • GMS gene of marker
  • binary vectors were created (Bevan, 1984), which are smaller and capable of multiplying in both Agrobacterium and E. coli and easy to manipulate in the laboratory. These vectors have an artificial T-DNA into which different transgenes can be inserted and a Ti-compatible origin of replication in Agrobacterium. Binary vectors are introduced into unarmed Agrobacterium, ie Agrobacterium that carry Ti plasmids that have had the T-DNA region removed. The unarmed Agrobacterium Ti still has the virulence region (vir), and its genes are capable of acting in trans to transfer recombinant T-DNA from the binary vector (Gelvin, 2003).
  • vir virulence region
  • Agrobacterium tumefaciens is an excellent system for introducing genes into plant cells since: (i) DNA can be introduced into all plant tissues, eliminating the need for protoplast production; and (ii) T-DNA integration is a relatively accurate process.
  • the region of DNA to be transferred is defined by the flanking sequences, right and left ends. Occasionally reordering occurs, but in most cases sometimes the region is inserted intact into the plant genome.
  • Usually integrated T-DNAs show consistent genetic maps and proper segregation.
  • the characters introduced in this way have been stable over many generations of crossings. This stability is critical when marketing the generated transgenic plants (Hiei et al., 1994; Ishida et al., 1996).
  • Transgenes that is, genes that are inserted via molecular biology techniques, consist primarily of the coding region of the gene of interest or the selection marker gene and gene expression regulatory sequences.
  • the gene of interest (GDI) and the selection marker gene (GMS) are coding sequences or ORF (Open Reading Frame) of a given protein that, when expressed, defines a trait of interest.
  • GMS serves to identify and select cells that have heterologous DNA integrated into the genome. They are fundamental to the development of plant transformation technologies, since the process of transferring a transgene to a recipient cell and integrating it into the genome is very inefficient in most experiments, so the chances of recovering unselected transgenic lines are usually very low.
  • GMMS transgenic plants
  • bar genes isolated from Streptomyces hygroscopicus and pat gene isolated from Streptomyces viridochromogenes both encoding the enzyme phosphinothricin acetyltransferase (Pat) (De Block et al., 1989) are frequently used (Gordon-Kamm et al. 1990; Zhao et al. 2001, Ishida et al 2007).
  • Both the nucleotide sequence encoding the protein of interest and the one encoding the protein used in selecting transgenic calli are accompanied by regulatory sequences such as promoters and terminators, which are responsible for controlling gene expression. .
  • Promoters are DNA sequences, usually present at the 5 'ends of a coding region, used by RNA polymerase and transcription factors to initiate the gene transcription process (Buchanan et al., 2000).
  • the viral promoter 35S isolated from cauliflower mosaic virus (CaMV35S) is one of the most used to direct high level of constitutive expression in plants (Odell et al., 1985), however its monocotyledonous function is not as efficient when in dicotyledons.
  • the most commonly used promoter for directing expression of a constitutive protein in maize is currently the isolated promoter of the Ubi1 maize ubiquitin gene (Christensen & Quail, 1996).
  • the 3 'UTRs regions also known as terminator regions, are used to signal the termination of transcription (Lessard et al. 2002), preventing the production of chimeric RNA molecules and, consequently, the formation of new proteins. , if the polymerase complex continues transcribing beyond its termination signal.
  • the 3 'RTU sequences most commonly used in maize transformation gene constructs include the 3' regions Agrobacterium (nos) nopaline synthase gene (Depicker et al., 1982), CaMV35S (Frame et al., 2002), and potato pin11 proteinase inhibitor gene (An et al., 1989).
  • transgenic plants on the Brazilian market such as those with the cry1F gene in their genome (eg Herculex HX)
  • the cry1F gene in their genome eg Herculex HX
  • no longer control adequately, some of the pest species, such as caterpillar populations of Spodoptera frugiperda and Diatrea saccharalis species.
  • the present invention has been developed which reveals a novel codon-optimized crylDa nucleic acid molecule as well as the generation of transgenic corn plants expressing such a gene efficiently, thus obtaining effective control of several species of invertebrate pests, including those resistant to other transgenic maize crops at the time of the present invention (e.g. Herculex HX).
  • crylDa sequences led to very high efficiency pest control and were even effective against resistant pests of maize crops existing at the time of the present invention. , solving a prior art problem.
  • the nucleotide sequences ensured enhanced expression and made it possible to achieve exceptional results, as exemplified herein, which could not be expected with expectation. reasonable success in view of the state of the art teachings.
  • SEQ ID NO: 1 refers to the codon-optimized nucleic acid sequence of the crylDa gene of the present invention.
  • SEQ ID NO: 2 refers to the nucleic acid sequence of the crylDa gene isolated from the bacterium Bacillus thuringiensis, from which optimization was performed.
  • SEQ ID NO: 3 refers to the amino acid sequence translated from SEQ ID NO: 1 or SEQ ID NO: 2 (Cry1 Da protein).
  • SEQ ID NO: 4 refers to the nucleic acid sequence of the maize ubiquitin (ubi) gene promoter region used in constructing the present invention.
  • SEQ ID NO: 5 refers to the nucleic acid sequence of the 3 'UTR terminator region of the Agrobacterium (nos) nopaline synthase gene used in constructing the present invention.
  • SEQ ID NO: 6 refers to the nucleic acid sequence of the CaMV 35S gene duplicate Cauliflower Mosaic Virus gene promoter region used in the construction of the present invention.
  • SEQ ID NO: 7 refers to the nucleic acid sequence of the Tobacco etch (tev) translational enhancer region used in constructing the present invention.
  • SEQ ID NO: 8 refers to the nucleic acid sequence of the Streptomyces hygroscopicus phosphinothricin acetyl transferase (bar) selection gene coding region used in constructing the present invention.
  • SEQ ID NO: 9 refers to the nucleic acid sequence of the 3 'UTR terminator region of the Tvsp gene encoding the soy protein reserve protein used in constructing the present invention.
  • SEQ ID NO: 10 refers to the nucleic acid sequence of the nucleic acid construct of the present invention (comprising the maize ubiquitin (ubi) gene promoter (SEQ ID NO: 4), codon-optimized coding sequence of present invention (SEQ ID NO: 1) and 3 'UTR terminator sequence of nopaline synthase (nos) gene (SEQ ID NO: 5) - UBI :: cry1 Da :: NOS.
  • SEQ ID NO: 11 refers to the nucleic acid sequence of the nucleic acid construct of the present invention, in its entirety, comprising the (Tvsp gene 3 'UTR terminator region (SEQ ID NO: 9); coding region; phosphinothricin acetyl transferase selection gene (J bar) (SEQ ID NO: 8), translational enhancer region (tev) (SEQ ID NO: 7), duplicate CaMV 35S gene promoter region (SEQ ID NO: 6) ), ubiquitin (ubi) gene promoter region (SEQ ID NO: 4); codon-optimized crylDa gene nucleic acid sequence of the present invention (SEQ ID NO: 1); nopaline synthase gene 3 'UTR terminator region (SEQ ID NO: 5)).
  • SEQ ID NO: 12 refers to the primer 5'-3 'nucleic acid sequence used in the cloning experiments of the gene construct.
  • SEQ ID NO: 13 refers to the U1 primer 5'-3 'nucleic acid sequence used in the cloning experiments of the gene construct.
  • SEQ ID NO: 14 refers to the 5'-3 'nucleic acid sequence of the forward (FAR) primer used in the cloning experiments of the gene construct.
  • SEQ ID NO: 15 refers to the 5'-3 'nucleic acid sequence of the reverse BAR primer used in the cloning experiments of the gene construct.
  • SEQ ID NO: 16 refers to the 5'-3 'nucleic acid sequence of the forward Ubi primer used in the cloning experiments of the gene construct.
  • SEQ ID NO: 17 refers to the 5'-3 'nucleic acid sequence of the reverse Cry1 Da primer used in the cloning experiments of the gene construct.
  • SEQ ID NO: 18 refers to the 5'-3 'nucleic acid sequence of the direct (forward) cryl Da gene primer used in the gene selection experiments.
  • SEQ ID NO: 19 refers to the 5'-3 'nucleic acid sequence of the cry1 Da reverse gene primer used in the gene selection experiments.
  • SEQ ID NO: 21 refers to the 5'-3 'nucleic acid sequence of the reverse crylDa gene primer used in isolation experiments of the complete Bt 1 132C strain gene.
  • Figure 1 is the alignment of the codon-optimized crylDa gene nucleic acid sequence of the present invention (SEQ ID NO: 1) to the crylDa gene nucleic acid sequence isolated from the bacterium Bacillus thuringiensis from which has been optimized (SEQ ID NO: 2).
  • Figure 2 refers to the representative design of the plant expression vector pTF101 .1.
  • RB / R25 Right edge of T-DNA;
  • LB left edge of T-DNA;
  • 2XP35S Duplicate CaMV35S promoter of mosaic virus (Odell et al., 1985); TEV enhancer.
  • Figure 3 refers to the representative drawing of the Ubi :: cry1Da :: NOS and 2x35S :: bar :: Tvsp gene constructs inserted into the Hind III and EcoRI enzyme sites of the binary vector pTF 101.1, between the right and left edges. of the T-DNA.
  • Figure 4 is a representative laboratory bioassay result of Spodoptera frugiperda feeding on (A) non-transgenic maize and (B) transgenic maize comprising the codon-optimized crylDa nucleic acid molecule of the present invention (SEQ). ID NO: 1).
  • Figure 5 is a representative laboratory bioassay result of Diatrea saccharalis in (A) non-transgenic maize and (B) transgenic maize comprising the codon-optimized crylDa nucleic acid molecule of the present invention (SEQ). ID NO: 1).
  • SEQ codon-optimized crylDa nucleic acid molecule of the present invention
  • C we see caterpillars grown on non-transgenic corn leaves (caterpillar on the left) and transgenic corn of the present invention (caterpillar on the right).
  • Trat 1 transgenic maize comprising nucleic acid molecule codon optimized crylDa of the present invention (SEQ ID NO: 1) + Population of Cry1 F resistant caterpillars;
  • Trat 2 Non-transgenic L3 maize strain + Cry1 F resistant caterpillar population;
  • Trat 3 transgenic maize comprising the crylDa codon-optimized nucleic acid molecule of the present invention (SEQ ID NO: 1) + Population of susceptible caterpillars;
  • Trat 4 Non-transgenic L3 maize strain + Population of susceptible caterpillars.
  • Figure 7 refers to the photo result of the above reported injury note demonstrating (A) transgenic maize comprising the crylDa codon-optimized nucleic acid molecule of the present invention (SEQ ID NO: 1) and (B) plant non-transgenic control infested with cry1 F. resistant S. frugiperda caterpillars
  • the present invention relates to novel codon-optimized crylDa nucleic acid molecules from a gene sequence isolated from the bacterium Bacillus thuringiensis. These molecules are used for the production of nucleic acid constructs, vectors and host cells, allowing the production of transgenic plants such as maize resistant to invertebrate pests such as insects of the order Lepidoptera, particularly Spodoptera frugiperda (Noctuidae, Lepidoptera) and Diatrea saccharalis (Crambidae, Lepidoptera). Also subject to the present invention are transgenic plant and plant cells comprising the molecules or constructs of the invention.
  • transgenic plants in accordance with the present invention are capable of controlling caterpillars of said species that have become resistant to plants containing the cry1F gene.
  • the present invention relates to a method for transforming a cell, a method of controlling plant invertebrate pests and the use of nucleic acid molecules or constructs for the production of transgenic plants and for pest control. invertebrates.
  • a first object of the present invention is a codon-optimized crylDa nucleic acid molecule comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1.
  • said nucleic acid molecule comprises a nucleic acid sequence at least 90% similar to the sequence defined as SEQ ID NO: 1.
  • said nucleic acid molecule is as defined in SEQ ID NO: 1.
  • a second object of the present invention is a nucleic acid construct comprising the codon-optimized crylDa nucleic acid molecule comprising the nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1 preferably at least 90% similar to the sequence defined as SEQ ID NO: 1, more preferably SEQ ID NO: 1.
  • said construct further comprises a promoter sequence operably linked to said nucleic acid molecule, wherein said promoter sequence is preferably the maize ubiquitin (ubi) promoter sequence.
  • said construct further comprises a 3 'UTR terminator sequence, wherein said 3' UTR terminator sequence is preferably the nopaline synthase gene terminator (nos).
  • said construct further comprises a selection gene, operably linked to at least one promoter sequence and at least one terminator sequence, wherein the promoter sequence is preferably the CaMV 35S gene duplicate Cauliflower mosaic virus promoter sequence and the terminator sequence is preferably the Tvsp gene terminator sequence. coding for soy protein reserve protein.
  • said construct further comprises other regulatory sequences.
  • the construct comprises the nucleic acid sequence defined as SEQ ID NO: 10.
  • a third object of the present invention is a vector comprising the codon-optimized crylDa nucleic acid molecule comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably with at least 90% similarity to the sequence defined as SEQ ID NO: 1, more preferably being SEQ ID NO: 1 or the nucleic acid construct of the present invention as defined herein.
  • a fourth object of the present invention is a host cell comprising the codon-optimized crylDa nucleic acid molecule comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least 90% similar to the sequence defined as SEQ ID NO: 1, more preferably SEQ ID NO: 1, or the nucleic acid construct or vector of the present invention as defined herein.
  • a fifth object of the present invention is a plant cell, comprising the codon-optimized crylDa nucleic acid molecule, comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least 90% similar to the sequence defined as SEQ ID NO: 1, more preferably being SEQ ID NO: 1, or the nucleic acid construct of the present invention or the vector as defined herein.
  • a sixth object of the present invention is a transgenic plant comprising the codon-optimized crylDa nucleic acid molecule, comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least 90% similar to the sequence defined as SEQ ID NO: 1, more preferably being SEQ ID NO: 1, or the nucleic acid construct of the present invention as defined herein.
  • a seventh object of the present invention is a cell transformation method comprising introducing into said cell a codon-optimized crylDa nucleic acid molecule comprising a nucleic acid sequence at least 70% similar to the defined sequence. as SEQ ID NO: 1, preferably at least 90% similar to the sequence defined as SEQ ID NO: 1, more preferably SEQ ID NO: 1, or the nucleic acid construct or vector of the present invention as defined in this document.
  • said method comprises integrating the nucleic acid molecule into the cell genome.
  • An eighth object of the present invention is a method of producing a transgenic plant comprising cell transformation.
  • plant with the codon-optimized crylDa nucleic acid molecule comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least 90% similar to the sequence defined as SEQ ID NO: 1, more preferably SEQ ID NO: 1, or the nucleic acid construct or vector of the present invention as defined herein.
  • said method further comprises selecting a plant cell transformed with the codon-optimized crylDa nucleic acid molecule, comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ. ID NO: 1, preferably at least 90% similar to the sequence defined as SEQ ID NO: 1, more preferably SEQ ID NO: 1, or the nucleic acid construct or vector of the present invention as defined in present document.
  • said method further comprises regenerating a transgenic plant from said plant cell.
  • said transgenic plant is resistant to crop pests, wherein the transgenic plant is preferably a monocot, preferably a maize, rice, sugar cane, sorghum, wheat or brachyria.
  • said crop pest is preferably an insect, more preferably of the order Lepidoptera, most preferably Spodoptera frugiperda and / or Diatrea saccharalis.
  • a ninth object of the present invention is a method of controlling invertebrate pests of crop plants, wherein the crop plants comprise the codon-optimized crylDa nucleic acid molecule, comprising a nucleic acid sequence of at least 70%. similarity to the sequence defined as SEQ ID NO: 1, preferably at least 90% similarity to the sequence defined as SEQ ID NO: 1, more preferably being SEQ ID NO: 1, or the nucleic acid construct of the present invention.
  • the method comprises planting seeds obtained from a plant comprising the codon-optimized crylDa nucleic acid molecule, comprising a nucleic acid sequence at least 70% similar to the sequence SEQ ID NO: 1, preferably at least 90% similar to the sequence defined as SEQ ID NO: 1, more preferably SEQ ID NO: 1, or the nucleic acid construct of the present invention as defined herein in an area of cultivation of crop plants susceptible to invertebrate pests.
  • a tenth object of the present invention is a use of the codon-optimized crylDa nucleic acid molecule comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least 90% similarity to the sequence defined as SEQ ID NO: 1, more preferably being SEQ ID NO: 1, or the nucleic acid construct of the present invention, as defined herein, wherein the use is for the production of a transgenic plant, wherein the transgenic plant is preferably a monocot, preferably a corn, rice, sugar cane, sorghum, wheat or brachiaria.
  • said use comprises that the transgenic plant is resistant to invertebrate pests.
  • An eleventh object of the present invention is a use of the codon-optimized crylDa nucleic acid molecule, comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least at least 90% similarity to the sequence defined as SEQ ID NO: 1, more preferably being SEQ ID NO: 1, or the nucleic acid construct of the present invention, as defined herein, wherein the use is for control. invertebrate pests, preferably insects.
  • understand and any variations such as “understand” or “understanding”, should be interpreted as “open terms” and may include additional elements or groups of elements, which have not been explicitly described, and are not limiting.
  • nucleic acids should be interpreted as naturally occurring, synthetic or artificial nucleic acids or nucleotides. They include deoxyribonucleotides (DNA) or ribonucleotides (RNA) or any nucleotide analog and polymers or hybrids thereof in sense or antisense configuration, single stranded or double stranded. Unless otherwise stated, a specific nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the explicitly indicated sequences.
  • nucleic acid is used interchangeably herein with the terms “gene”, “cDNA”, “mRNA”, “oligonucleotide”, “nucleic acid molecule” or “primer”.
  • nucleic acid molecule refers to a single stranded or double stranded DNA or RNA base polymer, read from the 5 'to the 3' end. It includes chromosomal DNA, self-replicating plasmid, infectious DNA or RNA polymers that play a primarily structural role, among others. They also refer to a consecutive list of abbreviations, letters, characters or words, which represent nucleotides or genes, as commonly employed in the technical field of the present invention.
  • cognidized when referring to the molecules or sequences of the present invention, is to be interpreted as the molecule or nucleotide sequence that has undergone a process of adequacy of its constitution. nucleotides (C + G and A + T content) to the constitution of the host or recipient organism so that it could more efficiently express a heterologous protein. Codon optimization processes are known to one skilled in the art.
  • sequence similarity As a result of sequence similarity, “identity” and the like, with respect to another sequence, should be interpreted as the percentage of nucleotides in the sequence that is identical to the nucleotides of another sequence. , after sequence alignment and gapping, if necessary, to achieve the maximum percent sequence identity.
  • the expression "at minus 70% similarity ” is defined as 70% to 100% similarity or identity.
  • the similarity percentage is at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or 100%.
  • nucleic acid construct is to be interpreted as a single or double stranded linear or circular DNA construct that is capable of resulting in the expression of the protein of interest. Typically it comprises a promoter sequence and a coding sequence. Still, typically, the constructs may also comprise a 3 'UTR region. Such constructs may further comprise other regulatory or signaling sequences known to one skilled in the art.
  • the construct of the present invention comprises the nucleic acid sequence defined as SEQ ID NO: 10.
  • promoter is located 5 '(or upstream) from the transcription start site of a nucleotide sequence of interest whose transcription in mRNA it controls and provides a site for RNA polymerase specific binding and other transcription factors for the beginning of the transcript. It may include other regulatory sequences known to one skilled in the art. In accordance with the present invention, the promoter may be heterologous or homologous to the respective cell or host.
  • a nucleic acid sequence is "heterologous" to an organism or a second sequence of nucleic acid if it originates from a different species or, if from the same species, is modified from its original form.
  • Suitable promoters may be various for carrying out the present invention.
  • Suitable non-exhaustive promoters are, for example, the CaSV Cauliflower Mosaic Virus and FMV Scrofulal Mosaic Virus 19S and 35S promoters, duplicated or not, the Arabidopsis and ubiquitin (ubi) promoters, nopaline synthase (nos) and octopine synthase (ocs) promoters, the light-inducible promoter of the small ribulose 1,5-bisphosphate carboxylase (ssRUBISCO) subunit, among others.
  • the promoter sequence is the maize ubiquitin (ubi) promoter sequence, defined as SEQ ID NO: 4, and the Cauliflower Mosaic Virus Duplicate CaMV 35S gene promoter sequence, defined as SEQ ID NO: 6 .
  • 3 'UTR terminator sequence should be interpreted as the 3' terminator sequence of the untranslated region extending from the stop codon. Suitable 3 'UTR terminator sequences may be diverse for carrying out the present invention. Suitable non-exhaustive 3 'UTR terminator sequences are, for example, the Agrobacterium nopaline synthase (nos) terminator sequence, the Tvsp sequence of the gene encoding the soybean protein, the 3' region of CaMV 35S, and the potato pinll proteinase inhibitor gene.
  • nos Agrobacterium nopaline synthase
  • the 3 'UTR terminator sequence is the Agrobacterium nopaline synthase (nos) terminator sequence, defined as SEQ ID NO: 5, and the Tvsp sequence of the gene encoding the soybean reserve protein, defined as SEQ ID NO. : 9.
  • selection gene selection gene
  • selection marker selection marker gene
  • Suitable non-exhaustive selection genes are, for example, GUS (b-glucuronidase coding sequence), GFP (green fluorescent protein coding sequence), LUX (luciferase coding gene), antibiotic resistance marker genes (such as Tns (bla), Tn5 (npt11), TN7 (dhfr), penicillins, kanamycin, neomycin, methotrexate, tetracycline, etc.) transposons or herbicide tolerance genes (such as the 5-enol-pyruvyl enzyme modified shiquimate phosphate synthase (EPSPS), Streptomyces hygroscopicus phosphinothricin acetyl transferase (bar) gene, defined as SEQ ID NO: 8, pat gene, isolated from Streptomyces viridochromogenes, among others).
  • GUS b-glucuronidase coding sequence
  • GFP green fluorescent protein coding sequence
  • LUX luciferase coding gene
  • the selection gene according to the present invention is operably linked to at least one promoter sequence and at least one terminator sequence.
  • the promoter sequence is that of the duplicate CaMV 35S Cauliflower Mosaic Virus gene and the terminator sequence is the Tvsp sequence of the gene encoding the soybean reserve protein.
  • the terminator sequence is the Tvsp sequence of the gene encoding the soybean reserve protein.
  • suitable promoter and terminator sequences may also be used, such as, for example, the sequences listed herein.
  • regulatory sequences refers to, for example, enhancers and other expression control elements (e.g. polyadenylation), which may be located upstream (5 'UTR region) or downstream (3' UTR region), or even within or between other nucleotide sequences described in the invention.
  • the regulatory sequence is nucleic acid sequence of the Tobacco etch virus (tev) e / 7 / ⁇ to / 7 regional region, defined as SEQ ID NO: 7.
  • Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many host cell types and those that direct direct expression of the nucleotide sequence only in certain host cells or under certain conditions.
  • transformation and the like should be interpreted as a process for introducing heterologous DNA into a cell, plant tissue or plant. It can occur under natural or artificial conditions, such as by the use of various methods well known in the art, whether in a prokaryotic or eukaryotic host cell.
  • the method is generally selected based on the host cell to be transformed and may include, but is not limited to, viral infection, electroporation, lipofection, particle bombardment (biobalistic) and Agrobacterium mediated.
  • the nucleic acid molecule integrates into the genome of the cell.
  • transgene is to be interpreted as any nucleic acid sequence that is introduced into a cell by experimental manipulations and may or may not be integrated into the genome.
  • a transgene may be an "endogenous DNA sequence” or “exogenous DNA sequence” (ie “heterologous”).
  • endogenous DNA sequence refers to a nucleotide sequence that is naturally found in the cell into which it is introduced.
  • exogenous DNA sequence refers to a nucleotide sequence that is not naturally found in the cell into which it is introduced.
  • transgenic when referring to a transformed organism, means an organism transformed with a recombinant DNA molecule that preferably comprises a suitable promoter operably linked to a DNA sequence of interest.
  • vector shall be construed as a construct containing a DNA sequence that is operably linked to one or more suitable control sequences capable of expressing said DNA sequence in a suitable host.
  • control sequences include a promoter to effect transcription, an optional operator sequence for controlling such transcription, a sequence encoding the appropriate ribosome mRNA binding sites, and sequences that control the termination of transcription and translation, for example.
  • Suitable vectors for carrying out the present invention may be diverse.
  • Vectors are, for example, phages, viruses such as SV40, CMV, baculovirus, adenovirus, transposons, IS elements, plasmids, phagomids, cosmids, linear or circular DNA. These vectors may be autonomously replicated in the host organism or may be replicated by the chromosome.
  • the vector may also be a plasmid. According to the present document, the terms "plasmid” and "vector” are sometimes used interchangeably.
  • the vector according to the present invention comprises the codon-optimized crylDa nucleic acid molecule comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least 90% similarity to the sequence defined as SEQ ID NO: 1, more preferably being SEQ ID NO: 1, or the nucleic acid construct as defined herein.
  • the terms "host cell”, "host organism” and the like shall be construed as being the specific host organism or specific target cell, but also as the progeny or potential progeny of such organisms or cells. . Since, due to mutation or environmental effects, certain modifications may arise in successive generations, these offspring do not necessarily have to be identical to the parent cell. However, they are still scope of protection of the present invention.
  • the host cells may be prokaryotic or eukaryotic.
  • the host cell according to the present invention is a plant host cell.
  • the codon-optimized crylDa nucleic acid molecule comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least 90% similar to the sequence defined as SEQ ID NO: 1, more preferably being SEQ ID NO: 1, or the nucleic acid construct or vector of the present invention as defined herein.
  • transgenic plant cell transgenic plant
  • transgenic plant and the like should be interpreted as cells or plants that possess and preferably express, through experimental manipulations, a transgene, as well as refer to the progeny of a transgenic plant and subsequent generations of plants as above.
  • plant and the like should be interpreted as being part or all of the plant organism.
  • part in this context is meant plant cells and tissues, organs and parts of plants in all their manifestations, such as seeds, leaves, anthers, fibers, tubers, roots, root hairs, stems, embryos, corns, cotyledons, petioles, collected material, plant tissue, reproductive tissue and cell cultures.
  • Transgenic plants according to the present invention may be generated and self-fertilized or crossed with other individuals to obtain additional transgenic plants. Transgenic plants can also be obtained by vegetative propagation of plant cells. transgenic.
  • Any transformed plant obtained according to the invention may be used in a conventional breeding scheme or in vitro plant propagation to produce more transformed plants with the same characteristics and / or may be used to introduce the same characteristic in other varieties. of the same or related species. These plants are also part of the invention. Seeds obtained from genetically transformed plants also contain the same characteristic and are part of the invention.
  • the present invention is applicable to any plant and crop that can be transformed with any of the transformation methods known to those skilled in the art.
  • Plants according to the present invention may be monocotyledonous or dicotyledonous plants. Preferred monocotyledonous plants include, but are not limited to, maize, rice, sugar cane, sorghum, wheat or brachyria plants, more preferably maize.
  • the plants according to the present invention are transgenic pest resistant plants of culture.
  • One embodiment of the present invention relates to a method of producing a transgenic plant. Any method of producing a transgenic plant is within the scope of the present invention and is not of particular relevance for achieving the embodiments of the invention.
  • the method comprises transforming a plant cell with the codon-optimized crylDa nucleic acid molecule comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least 90% similarity to the sequence defined as SEQ ID NO: 1 plus preferably being SEQ ID NO: 1, or the nucleic acid construct of the present invention as defined herein.
  • the method further comprises selecting a plant cell transformed with the codon-optimized crylDa nucleic acid molecule comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least 90 % similarity to the sequence defined as SEQ ID NO: 1, more preferably being SEQ ID NO: 1, or the nucleic acid construct or vector of the present invention as defined herein.
  • the method further comprises regenerating a transgenic plant from said plant cell.
  • insects include those selected from the orders Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera, Orthroptera, Thysanoptera, Dermaptera,
  • Isoptera Anoplura, Siphonaptera, Trichoptera, among others.
  • Coleoptera Lepidoptera and Diptera.
  • the order Lepidoptera includes, but is not limited to, the families Papilionidae, Pieridae, Lycaenidae, Nymphalidae, Danaidae, Satyridae, Hesperiidae, Sphingidae, Saturniidae,
  • One embodiment of the present invention relates to a method of controlling invertebrate pests of crop plants. Any method of controlling invertebrate pests of crop plants is included within the scope of the present invention and is not of particular relevance to the achievement of the embodiments of the invention provided that the crop plants according to the present invention comprise the crop molecule.
  • codon-optimized crylDa nucleic acid comprising a nucleic acid sequence at least 70% similar to the sequence defined as SEQ ID NO: 1, preferably at least 90% similar to the sequence defined as SEQ ID NO: 1, plus preferably being SEQ ID NO: 1, or the nucleic acid construct of the present invention as defined herein, wherein the method preferably comprises planting seeds obtained from a plant comprising a nucleic acid sequence having at least 70% similarity to the sequence defined as SEQ ID NO: 1, preferably at least 90% simi sequence sequence defined as SEQ ID NO: 1, more preferably SEQ ID NO: 1, or the nucleic acid construct of the present invention as defined herein in a pest-susceptible cropland invertebrates.
  • the amplified fragment representing the complete cryIDa gene was cloned into the pGEM vector (Promega) by an adenine addition reaction and used for sequencing both strands using internal primers. Sequencing was performed from three clonings obtained from independent amplifications.
  • the sequence definition for the synthesis of the Bt gene present in the gene construct codes for a 625 amino acid protein corresponding to the cry1 Da protein active site and was based on three aspects: (i) Presence of C-terminal domains ( Endotoxin C), Central (Endotoxin M) and N-terminal (Endotoxin N); (ii) Protein active nucleus size - aa residues 1 to 625 (Abdul Az ⁇ z, H, Wei Hong, L. and Yusoff, K. Comparative study of cry1 D gene expressed in E.
  • the active protein codon - aa 1 to 625 residues / 1875 bp nucleotide sequence - originally isolated from B. thuringiensis (SEQ ID NO: 2) was modified to make it compatible with the corn codon.
  • the codon modification of the cryIDa gene was made with the aid of Optimizer software (http://genomes.urv.es/OPTIMIZER/Form.php) (Puigbo, 2007) and the sequence digitally sent for commercial synthesis.
  • the initially isolated sequence of strain BT 1132C had a GC content of 37.91% and was optimized for 63.8% (SEQ ID NO: 1) of CG content ( Figure 1).
  • the synthesized fragment was cloned into plasmid pUC19 with restriction enzyme sites compatible for cloning into the binary vector pTF101.
  • the synthesized sequence was confirmed by sequencing according to standard techniques.
  • Plasmid DNA was also cleaved with restriction enzymes and the band size seen on agarose gel was as expected, thus confirming the correct presence of the gene of interest in A. tumefaciens. All PCR fragment amplification reactions used the following conditions: 94 ° C for 2 min; 35 cycles of 94 ° C for 30 sec; 55 ° C for 30 sec; 72 ° C for 30 sec; a cycle of 72 ° C for 5 min. Results were visualized on 1% agarose gel stained with GelRed (Biotium). The photos were documented in digital image capture system.
  • Agrobacterium tumefaciens EHA 101 containing the gene constructs of interest (UBI :: cry1 Da :: NOST and 35S :: bar :: 35T) was used in the genetic transformation of maize.
  • the genotype used in this transformation protocol is Hill corn (Armstrong et al., 1991), according to the protocol by Frame et al. (2002), with minor modifications. Briefly, for the transformation of this genotype, immature embryos were collected between 1, 8 - 2.0 mm in length (10-12 days after pollination). Spikes used for embryo collection were immersed in a 1: 1 solution of commercial bleach (2.5% sodium hypochlorite) and distilled H2O with 1-2 drops of Tween 20 for 20 minutes. They were then rinsed with sterile distilled water for 5 minutes twice.
  • Immature embryos were collected with the aid of a spatula from a superficial cut of the grains.
  • Agrobacterium tumefaciens EHA101 was used to transfer the gene construct to maize.
  • a streak was made in YEP medium (5 gL 1 yeast extract; 10 gL 1 peptone; 5 gL -1 NaCl; 15 gL -1 agar) containing the necessary antibiotics (spectinomycin 100 mg.L 1 and 50 mg. L 1 kanamycin) and the plate was incubated for 2 to 3 days at 28 ° C motherboard).
  • a Agrobacterium streak using a colony isolated from the motherboard was made in YEP medium containing the necessary antibiotics. The plate was incubated for 2 to 5 days at 19 ° C. Agrobacterium was then resuspended in infection medium (4.0 gL 1 of N6 salts; 68.4 gL 1 of sucrose; 36.0 gL 1 of glucose; 0.7 gL 1 of proline; 1.5 mg.
  • the embryos were transferred to the surface of co-cultivation medium (4.0 gL 1 of N6 salts; 1.5 mg.L 1 of 2,4-D; 30.0 gL 1 of sucrose; 0 0.7 gL 1 proline; 1.0 mL.L 1 N6 vitamins (1000X); 0.85 mg.L ⁇ 1 AgN0 3 ; 100 pM acetoseringone; 300 mg.L ⁇ 1 L-cysteine; Phytagel 0 gL ⁇ 1 ; pH 5.8) with the scutellum facing upwards.
  • the plates were incubated in the dark at 20 ° C for 3 to 5 days.
  • the embryos were transferred to the resting medium (4.0 gL ⁇ 1 N6 salts; 1.5 mg.L ⁇ 1 2,4-D; 30.0 gL 1 sucrose; 5 gL ⁇ 1 MES; 0.7 gL 1 proline; 1.0 ml.L ⁇ 1 N6 vitamins (1000X); 0.85 mg.L 1 AgN0 3 ; 100 mg.L -1 Tioxin; 3 .0 gL- 1 of phytagel; pH 5.8) at 28 ° C (dark) for 7 to 15 days.
  • the resting medium 4.0 gL ⁇ 1 N6 salts; 1.5 mg.L ⁇ 1 2,4-D; 30.0 gL 1 sucrose; 5 gL ⁇ 1 MES; 0.7 gL 1 proline; 1.0 ml.L ⁇ 1 N6 vitamins (1000X); 0.85 mg.L 1 AgN0 3 ; 100 mg.L -1 Tioxin; 3 .0 gL- 1 of phytagel; pH 5.8) at 28
  • the embryos were transferred to the selection medium (4.0 gL 1 of N6 salts; 1.5 mg.L 1 of 2,4-D; 30.0 gL -1 of sucrose; 0.5 gL - 1 MES; 0.7 gL -1 proline; 1.0 mL.L 1 N6 vitamins (1000X); 0.85 mg.L 1 AgNOs; 100 mg.L 1 Thioxin; 1, 5 and 3, 0 mg / L bialaphos; 3.0 gL -1 phytagel; pH 5.8) (25 embryos / plate). Subcultures of these embryos in selective medium are performed every 15 days until selection of vigorously growing corns.
  • the selection medium 4.0 gL 1 of N6 salts; 1.5 mg.L 1 of 2,4-D; 30.0 gL -1 of sucrose; 0.5 gL - 1 MES; 0.7 gL -1 proline; 1.0 mL.L 1 N6 vitamins (1000X); 0.85 mg.L 1 AgNOs; 100 mg.L 1 Thioxin
  • Selected calli were transferred to regeneration medium (4.62 gL -1 MS salts; 60.0 gL -1 sucrose; 100 mg.L 1 myo-inositol; 1.0 ml_L L 1 of MS vitamins (1000X); 1.5 mg / L bialaphos; 4.0 gL -1 phytagel; pH 5.8) and incubated at 26 ⁇ 2 ° C (dark) for 15 to 21 days.
  • Callus ready for germination having a dry appearance and opaque white color, were transferred to the germination medium (4.62 gL -1 of MS salts; 30.0 gL -1 of sucrose; 100 mg.L -1 of myocardium).
  • Maize events were generated containing the codon-optimized crylDa nucleic acid molecule of the present invention (SEQ ID NO: 1), as per Table 2 below.
  • Event ME240913 (Event 01) was generated from the transformation of the temperate Hill hybrid was introgredent in the tropical L3 strain using molecular marker assisted selection.
  • Event 1 was tested for S. frugiperda control. Seeds of the event were germinated in a greenhouse and when the plants reached the stage between 10 and 12 leaves (end of the vegetative stage), the two youngest leaves of each plant were used in bioassays with Spodoptera frugiperda. Three repetitions were performed, with five caterpillars per repetition. Hill and L3 corn leaves were used as negative control (caterpillars grow normally) and Viptera corn leaves as positive control (caterpillars cannot grow). In this first test it was found that event ME240913 (Event 1) had good ability to control the development of the caterpillar, reaching 100% mortality (Table 3).
  • Diatrea saccharalis Assays The same events tested for S. frugiperda were also tested for Diatraea saccharalis. Five caterpillars a day were placed on leaves of the transgenic corn events and controls. It was observed that event ME240913 (Event 1) was also able to control the development of D. saccharalis. In this period, the caterpillars did not die but were unable to grow (Table 5).
  • CryIDa gene expression was analyzed by quantitative polymerase chain reaction (qPCR) assay according to standard technique known to one of ordinary skill in the art. The results of this analysis showed that events capable of inhibiting caterpillar growth express the cry1 Da gene efficiently.
  • the experiment was performed in a greenhouse with the planting of transgenic maize comprising the cryIDa codon-optimized nucleic acid molecule of the present invention (ME240913 (Event 1)) and non-transgenic maize (negative control).
  • ME240913 (Event 1)
  • non-transgenic maize negative control.
  • Neonate caterpillars belonging to two distinct populations of Spodoptera frugiperda were inoculated into maize plants (15 caterpillars per plant) at stage V7 and V8. After the infestation, the vessels were isolated with a voile cage and the injury scores were evaluated after 07, 14 and 21 days.
  • the experimental design consisted of 04 treatments, with 05 pots each, containing from 02 to 03 corn plants per pot:
  • Treatment 1 Transgenic event of the invention ME240913 (Event 01) infested with the Cry1 F protein resistant Spodoptera frugiperda population according to Leite et al. 2016
  • Treatment 2 Non-transgenic L3 isogenic strain infested with the population of Cry1 F protein resistant Spodoptera frugiperda according to Leite et al 2016.
  • Treatment 3 Transgenic event of the invention ME240913 (Event 01) infested with the susceptible caterpillar population derived from the maintenance creation of the Embrapa Corn and Sorghum entomology laboratory.
  • Treatment 4 Non-transgenic isogenic strain infested with the susceptible caterpillar population derived from the maintenance of the entomology laboratory of Embrapa Corn and Sorghum.
  • the results indicated that the transgenic plant comprising the codon-optimized crylDa nucleic acid molecule of the invention was able to control the infestation with the Cry1 F protein resistant Spodoptera frugiperda population, as well as in relation to the susceptible population, by inhibiting development (Figure 6) and protecting the plant from attack by such a pest (Figure 7), as observed by the injury note ( ⁇ IC, P 0.05).
  • the survival rate of Spodoptera frugiperda evaluated 21 days after release of caterpillars in different treatments, was 0% for treatments 1 and 3, and about 65% and 35% for treatments 2 and 4, respectively.
  • Bohorova NE Luna B, Brito RM, Huerta LD, Hoisington DA (1995) Regeneration potential of tropical, subtropical, midaltitude, and highland maize inbreeds. Maydica. 40: 275-281.
  • Bohorova N Maciel AM, Brito RM et al. Selection and characterization of Mexican strains of Bacillus thuringiensis active against four major lepidopteran maize pests. Entomophaga, Paris, v.4, p.153-155, 1996. Boucias DG, Pedland JC (1998) Principles of insect pathology. Boston. Kluwer Academic Publishers, 537p.
  • Valicente FH Bressan W, Paiva E (1994) Type-11 callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep. 17: 73-76.
  • Frame BR Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg EK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-Mediated transformation of maize embryos using a Standard binary vector system. Plant Physiol. 129: 13-22.
  • Glare TR M. O'Callaghan (2000) Bacillus thuringiensis: Biology, Ecology and Safety. JohnWiley & Sons, Ltd., 350p.
  • Petrillo CP Carneiro NP
  • Purcino AAC Carvalho CHS
  • Alves JD Carneiro AA (2008) Optimization of particle bombardment parameters for the genetic transformation of Brazilian maize strains. Search Agropec. Bras. 43 (3): 371-378.
  • OPTIMIZER A web server utility that optimizes a DNA or Protein sequence. Nucleic Acids Research, 35: W126-W131.
  • Rapela MA (1985) Organogenesis and somatic embryogenesis in tissue cultures of Argentina maize (Zea mays L.) J. Plant Physiol. 121: 119-122.
  • Valicente FH Barreto MR (2003) Bacillus thuringiensis survey in Brazil: geographic distribution and insecticidal activity against Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Neotropical Entomology. 32 (4): 639-644.
  • Vasil IK (1987) Developing cell and tissue culture Systems of the improvement of cereal and grass crops. J. Plant. Physiol. 128: 193-218.
  • Wilson T (1999) Untranslated eader sequences from RNA viruses as enhancers of translation. US patent # 5,891, 665.
  • Crystal proteins Recent Advances in understanding its insecticidal activity. In: Advanded Engineered Pesticides. Ed. Leo Kim. P3-42. New York. 430p.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Botany (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A presente invenção se refere a novas moléculas de ácido nucleico códon-otimizadas cry1Da a partir de uma sequência de gene isolado da bactéria Bacillus thuringiensis. Estas moléculas são utilizadas para a produção de construções de ácido nucléico, vetores e células hospedeiras, permitindo a produção de plantas transgênicas, tais como milho, resistentes a pragas invertebradas, tais como insetos da ordem Lepidoptera, particularmente Spodoptera frugiperda (Noctuidae, Lepidoptera) e Diatrea saccharalis (Crambidae, Lepidoptera). Também são objetos da presente invenção células vegetais e a plantas transgênicas compreendendo as moléculas ou as construções da invenção. Em especial, as plantas transgênicas, de acordo com a presente invenção, são capazes de controlar as lagartas das mencionadas espécies que se tornaram resistentes às plantas contendo o gene cry1F. Ainda, a presente invenção refere-se a um método para transformar uma célula, a um método de controle de pragas invertebradas de plantas de cultivo e aos usos das moléculas ou das construções de ácido nucleico para a produção de plantas transgênicas e para o controle de pragas invertebradas.

Description

“MOLÉCULA DE ÁCIDO NUCLEICO CRY1 DA CÓDON -OTIMIZADA, CONSTRUÇÃO DE ÁCIDO NUCLEICO, VETOR, CÉLULA HOSPEDEIRA, CÉLULA VEGETAL, PLANTA TRANSGÊNICA, MÉTODO PARA TRANSFORMAR UMA CÉLULA, MÉTODO PARA PRODUZIR UMA PLANTA TRANSGÊNICA, MÉTODO DE CONTROLE DE PRAGAS INVERTEBRADAS DE PLANTAS DE CULTIVO E USOS DA MOLÉCULA DE ÁCIDO NUCLEICO”
CAMPO DA INVENÇÃO
[001] A presente invenção se refere a novas moléculas de ácido nucleico códon-otimizadas crylDa a partir de uma sequência de gene isolado da bactéria Bacillus thuringiensis. Estas moléculas são utilizadas para a produção de construções de ácido nucléico, vetores e células hospedeiras, permitindo a produção de plantas transgênicas, tais como milho, resistentes a pragas invertebradas, tais como insetos da ordem Lepidoptera, particularmente Spodoptera frugiperda (Noctuidae, Lepidoptera) e Diatrea saccharalis (Crambidae, Lepidoptera). Também são objetos da presente invenção células vegetais e plantas transgênicas compreendendo as moléculas ou as construções da invenção. Em especial, as plantas transgênicas, de acordo com a presente invenção, são capazes de controlar as lagartas das mencionadas espécies que se tornaram resistentes às plantas contendo o gene cry1F. Ainda, a presente invenção refere-se a um método para transformar uma célula, a um método de controle de pragas invertebradas de plantas de cultivo e aos usos das moléculas ou das construções de ácido nucleico para a produção de plantas transgênicas e para o controle de pragas invertebradas.
ANTECEDENTES DA INVENÇÃO
[002] Avanços consistentes em técnicas de engenharia genética têm possibilitado o desenvolvimento de plantas de importância comercial transgênicas, contendo genes heterólogos de interesse, os quais conferem características desejáveis a tais plantas. Dentre os genes de interesse podem ser citados genes que conferem às plantas resistência a herbicidas, a estresses ambientais e a pragas invertebradas, por exemplo.
[003] No contexto de genes que codificam proteínas que são úteis para o controle de pragas invertebradas, pode ser citado o gene cry, oriundo da bactéria Gram positiva Bacillus thuringiensis (Bt). Tal bactéria, de ocorrência natural em diversos habitats, incluindo solo, filoplano, resíduos de grãos, poeira, água, matéria vegetal e insetos, possui a característica inata de formar cristais proteicos durante a fase estacionária e/ou de esporulação. Os cristais proteicos ou delta- endotoxinas, representando de 20 a 30% da proteína total da célula (Boucias & Pendland, 1998), possuem propriedades inseticidas específicas e podem ter várias formas, tais como: bipiramidal, esférica, retangular, cuboide e irregular. Os cristais bipiramidais apresentam uma maior frequência de toxicidade do que os cristais com outros formatos, possuindo particular atividade contra lepidópteros.
[004] O mecanismo de ação das proteínas Cry envolve, de forma geral, a solubilização dos cristais no intestino médio das larvas de insetos, a ação de proteases sobre as pro-toxinas, a aderência das toxinas ativas aos receptores do intestino médio e a inserção de ditas toxinas ativas na membrana apical celular, criando canais de íons ou poros (citólise).
[005] Uma vantagem que advém do uso das proteínas Cry é a atividade destas contra várias espécies de insetos, sendo consideradas seguras em relação a outros organismos, tais como os mamíferos. Outra vantagem é a relativa especificidade em relação aos insetos-praga das diferentes culturas. Atualmente são reconhecidos diversos genes cry. Os genes cry1, cry2 e cry9 são geralmente ativos contra lepidópteros; os genes cry2, cry4A, cry10, cry11, cry17, cry19, cry24, cry25, cry27, cry29, cry30, cry32, cry39 e cry40 são geralmente ativos contra dípteros; os genes cry3, cry7 e cry8 são geralmente ativos contra coleópteros; e os genes cry5, cry12, cry13 e cry14 são geralmente ativos contra nematódeos.
[006] As formulações à base de Bt disponíveis no mercado representam uma alta porcentagem das vendas dos biopesticidas e têm sido usadas há mais de 40 anos para o controle de pragas das ordens Lepidoptera e Diptera. A produção das primeiras plantas transgênicas contendo genes cry não apresentou resultados satisfatórios. De forma geral, os níveis de expressão dos genes nativos eram inferiores aos necessários para promover uma proteção adequada contra as espécies alvo em campo. Esta baixa concentração de proteínas Cry se deveu, entre outros fatores, a uma incompatibilidade entre os códons da espécie doadora do gene (bactéria Bt) e da espécie receptora do gene (plantas de interesse).
[007] Sabe-se que diferentes espécies utilizam códons preferenciais, em frequência particular, para a codificação de proteínas, e estas variações de códons, no contexto de transgenia, podem afetar negativamente a expressão gênica (Gustafsson, 2004). Por exemplo, em milho, o códon AAG é utilizado preferencialmente em relação ao códon AAA para o aminoácido lisina (Liu, 2009). Devido a esta característica singular entre diferentes grupos de organismos, a inserção de genes cry nativos de B. thuringiensis em plantas leva à baixa expressão da proteína Cry de interesse.
[008] Além disso, genes bacterianos possuem um baixo conteúdo de C+G, contrastando com os genes de plantas (Cambei & Gowri, 1990; Murray et al., 1989). As sequências nucleotí dicas bacterianas, ricas em A+T, podem ser reconhecidas por plantas como sítios de“splice” (Liu, 2009), sinais de poliadenilação (Joshi, 1987; Diehn et al., 1998) ou elementos de desestabilização do RNA, tais como ATTTA (Ohme-Takagi et al., 1993). Portanto, para aumentar a expressão de um gene cry oriundo da bactéria Bt no organismo receptor, o gene deve ser “recodificado”, não apenas para adequá-lo aos códons preferenciais de aminoácidos, mas também de forma a aproximá-lo do conteúdo de G+C do organismo receptor.
[009] A manipulação genética de genes cry pode se tornar uma forma promissora de melhorar a eficiência e a relação custo/benefício de bioinseticidas e de plantas transgênicas expressando estes genes. Diferentes isolados de Bt podem mostrar uma amplitude muito grande na atividade tóxica contra a mesma espécie alvo, sendo que um isolado pode ser muito ativo contra uma espécie e virtualmente inativo contra outra (Jarret & Burges, 1982). Algumas combinações de proteínas Cry demonstraram, inclusive, toxicidade sinérgica em relação aos lepidópteros. Estes autores relataram que em bioensaios houve sinergismo entre as proteínas CrylAa e Cry 1 Ac, enquanto que a mistura de CrylAa e CrylAb mostrou antagonismo em relação ao controle de Lymantria díspar.
[010] Considerando a diversidade de respostas obtidas pela combinação de proteínas inseticidas Cry e insetos praga, bem como a importância do controle de tais insetos em plantas de cultura, torna-se de particular relevância o estudo que visa à melhor elucidação das características decisivas para a obtenção de efeitos inseticidas satisfatórios, bem como o que objetiva ao desenvolvimento de novas plantas transgênicas resistentes aos insetos. [011] Em estudos anteriores, isolados de Bt foram testados contra Spodoptera frugiperda ou lagarta do cartucho in vitro, sendo realizada a caracterização molecular daqueles mais eficientes. O isolamento de cepas de Bt foi confirmado por meio de microscópio de contraste de fase, pela observação dos cristais proteicos. Bioensaios para avaliação da toxicidade das cepas de Bt foram então realizados pela exposição de larvas de dois dias de idade, criadas em dieta artificial, a uma suspensão de esporos e cristais. As lagartas (25 larvas/bioensaio/cepa) foram acondicionadas em recipientes plásticos descartáveis (50 ml_) a uma temperatura de 27 °C, umidade relativa de 70%, e fotofase de 14 h/10 h. As cepas foram consideradas eficientes quando a mortalidade foi superior a 75%.
[012] A literatura menciona que 13 sorovariedades de B. thuringiensis foram testadas em larvas de S. frugiperda e relata que os serovars (sv) galleriae, aizawai e tolworthi causaram mortalidade acima de 90%. Estes dados foram parcialmente confirmados pelos resultados obtidos no laboratório da Embrapa Milho e Sorgo, onde a sv tolworthi matou acima de 95%. Entretanto, as sv galleriae e aizawai não causaram mortalidade acima de 15%. Bohorova et al. (1996) testaram mais de 400 cepas contra as principais pragas da cultura do milho e, os resultados mostraram que 99% dos isolados causaram mortalidade abaixo de 50%. Estes números são importantes porque mostram a dificuldade em se encontrar isolados de Bt eficientes no controle da lagarta do cartucho. Esta dificuldade em controlar lagartas de S. frugiperda com as proteínas Cry é confirmada por Baum (1999), que afirma poder haver variação dentro do mesmo gênero.
[013] Atualmente, a Reação da Polimerase em Cadeia (PCR) é uma das técnicas moleculares mais usadas na caracterização de cepas de B. thuringiensis (Carozzi et al. 1991 , Cerón et al. 1994, Cerón et al. 1995, Bravo et al. 1998, Valicente et al. 2000). Dentre as cepas mais eficientes da coleção da Embrapa Milho e Sorgo, a maioria dos isolados apresentou os genes crylAb e cry1E, algumas os genes cry1B, cry1D, crylFb e apenas uma cepa até o momento o cry1C (Valicente et al. 2000, Valicente 2003). Bravo et. al 1998, fizeram uma caracterização de genes cry de uma coleção mexicana de B. thuringiensis e encontraram que os genes cry1D e cry1C foram os mais tóxicos para lagartas de S. frugiperda e S. exígua.
[014] Para a produção de plantas transgênicas, tais como, por exemplo, milho transgênico Bt, são necessários três requisitos básicos: (i) regeneração in vitro do tecido vegetal que será transformado; (ii) a metodologia para a inserção do gene cry no genoma da planta e, (iii) a construção genica, com genes cry e marcadores de seleção.
[015] O desenvolvimento de técnicas de culturas de células e tecidos aliado à tecnologia do DNA recombinante tem ampliado consideravelmente o potencial de utilização dos métodos de cultura in vitro para a produção de plantas de milho transgênicas. Como parte desse processo, o estabelecimento de sistemas de regeneração de plantas a partir de células somáticas, constitui-se em um pré-requisito de fundamental importância. A metodologia mais utilizada para regeneração do milho in vitro é a embriogênese somática, a qual tem a vantagem de produzir uma estrutura bipolar que pode, teoricamente, ser germinada e regenerada em um só passo.
[016] Em particular, no milho, a regeneração de plantas via embriogênese somática pode ocorrer a partir de calos do Tipo I ou Tipo II (Armstrong & Green, 1985). Os calos do Tipo I são compactos, amarelos ou brancos e normalmente capazes de regenerar plantas, os calos descritos como do Tipo II são macios, friáveis e altamente embriogênicos. As culturas formadoras de calos do Tipo II crescem rapidamente, podem ser mantidas por um longo período de tempo e formam um grande número de embriões somáticos facilmente regeneráveis (Vasil, 1987).
[017] Embora calos do Tipo II sejam os mais eficientes na produção de plantas transgênicas de milho, calos do Tipo I podem também ser utilizados. A ocorrência de calos embriogênicos friáveis do Tipo II não é tão comum, apenas um número limitado de genótipos de milho é capaz de expressar este fenótipo em meio de cultivo, notadamente a linhagem A188 (Armstrong & Green, 1985) e o híbrido Hill (Armstrong et al. 1991).
[018] Com o avanço da metodologia do cultivo in vitro e, particularmente, com alterações na composição dos meios de cultura e nas relações e doses dos reguladores de crescimento, passou a ser possível a regeneração de um crescente número de genótipos (Novac et al., 1983; Rapela, 1985; Duncan et al., 1985; Phillips et al., 1988; Prioli & Silva, 1989; Lupotto, 2004; Petrillo et al., 2008). No entanto, a maioria destes genótipos forma apenas calos compactos do Tipo I.
[019] Apesar da maioria dos genótipos de milho, capazes de regenerar plantas, ser de adaptação a clima temperado, genótipos de adaptação tropical capazes de regeneração têm também sido identificados (Carvalho et al., 1994; Bohorova et al., 1995, Santos-Serejo & Aguiar- Perecin, 2000; Petrillo et al., 2008), o que indica a possibilidade de se manipular genótipos elite tropicais via transformação genética. Embriões zigóticos imaturos são os explantes preferidos para a geração de culturas embriogênicas e produção de plantas transgênicas de milho.
[020] Os diferentes métodos de transformação genética de plantas podem ser divididos em dois grupos principais: métodos indiretos e métodos diretos. A transformação genética por meio do método indireto utiliza uma bactéria, Agrobacterium tumefaciens, para introduzir o gene de interesse no genoma da planta.
[021] Durante vários anos, a transformação de monocotiledôneas via Agrobacterium tinha uma eficiência muito baixa. Entretanto, recentemente, esta metodologia de transferência gênica tem se tornado o método de escolha para este grupo de plantas. Este método utiliza um sistema natural de transferência de genes desenvolvido pela Agrobacterium. Agrobacterium é uma bactéria de solo capaz de causar tumores vegetais na região da infecção. Estes tumores resultam da presença do plasmídeo Ti ou plasmídeo indutor de tumor na célula bacteriana. O plasmídeo Ti é uma molécula circular grande (200 a 800 kb) de DNA fita dupla que pode se replicar independentemente do genoma de Agrobacterium tumefaciens (Gelvin, 2003). Localizado no plasmídeo Ti se encontram duas regiões importantes para a transferência de genes da bactéria para a planta, a região do T-DNA e a região vir. As regiões dos T-DNAs de plasmídeos selvagens contêm genes que comandam a produção de opinas e hormônios, tais como auxina e citocinina, pela célula vegetal. As opinas são aminoácidos utilizados apenas pela Agrobacterium como fonte de carbono e nitrogénio, enquanto que os hormônios são responsáveis pela indução de tumores vegetais. O T-DNA tem entre 10 e 30 kb e suas extremidades são delimitados por duas sequências de 25 pb altamente homólogas, denominados extremidades direita e esquerda. Agrobacterium selvagem transfere o seu T-DNA através das membranas das células vegetais e o incorpora no DNA genômico da planta. O processamento do T-DNA e sua transferência para a célula vegetal é devido em grande parte à atividade de virulência das proteínas codificadas na região vir (Gelvin, 2003). [022] Para viabilizar a utilização da Agrobacterium em processos biotecnológicos de transferência de genes para plantas é necessário que os genes endógenos do T-DNA causadores de tumor sejam inativados e, que os genes exógenos, o gene de interesse (GDI) e o gene de marcador de seleção (GMS), sejam inseridos entre as extremidades direita e esquerda do T-DNA. O plasmídeo recombinante resultante é novamente colocado na Agrobacterium para ser transferido para células vegetais (Gelvin, 2003). Tecidos ou células transformados podem ser utilizados para regeneração de plantas transgênicas (Schafer et al., 1987; Hiei et al., 1994; Ishida et al., 1996).
[023] Por ser muito grande, o plasmídeo Ti é difícil de ser manipulado. Portanto, foram criados os vetores binários (Bevan, 1984), os quais são menores e capazes de multiplicar tanto em Agrobacterium como em E. coli e fáceis de manipular em laboratório. Estes vetores possuem um T- DNA artificial, no qual diferentes transgenes podem ser inseridos e uma origem de replicação compatível com o Ti na Agrobacterium. Os vetores binários são introduzidos em Agrobacterium desarmadas, ou seja, em Agrobacterium que carregam plasmídeos Ti que tiveram a região do T- DNA removida. O Ti de Agrobacterium desarmadas ainda possui a região de virulência {vir), sendo seus genes capazes de agir in trans para transferir o T-DNA recombinante do vetor binário (Gelvin, 2003).
[024] Agrobacterium tumefaciens constitui um excelente sistema de introdução de genes em células vegetais uma vez que: (i) o DNA pode ser introduzido em todos os tecidos da planta, o que elimina a necessidade da produção de protoplastos; e, (ii) a integração do T-DNA é um processo relativamente preciso. A região do DNA a ser transferida está definida pelas sequências flanqueadoras, extremidades direita e esquerda. Ocasionalmente se produz reordenações, mas na maioria das vezes a região é inserida intacta no genoma da planta. Normalmente os T-DNA integrados mostram mapas genéticos consistentes e segregação adequados. Ademais, os caracteres introduzidos por esta via têm se mostrado estáveis durante muitas gerações de cruzamentos. Esta estabilidade é crítica quando se pretende comercializar as plantas transgênicas geradas (Hiei et al., 1994; Ishida et al., 1996).
[025] Em particular, para o milho, a técnica de Agrobacterium foi relatada resultar em alta eficiência com alto número de eventos contendo apenas uma ou um baixo número de cópias do transgene no genoma quando comparado com a biobalística (Ishida et al., 1996; Zhao et al. 2001 ; Gordon-Kamm et al. 1990; Frame et al. 2002; Lupotto et al. 2004; Huang and Wei 2005; Ishida et al. 2007).
[026] Transgenes, isto é, os genes que são inseridos via técnicas de biologia molecular, são constituídos basicamente da região codificadora do gene de interesse ou do gene marcador de seleção e de sequências reguladoras da expressão gênica. O gene de interesse (GDI) e o gene marcador de seleção (GMS) são sequências de codificação ou ORF ( Open Reading Frame) de uma determinada proteína que, quando expressa, define uma característica de interesse. O GMS serve para identificar e selecionar as células que tenham o DNA heterólogo integrado no genoma. São fundamentais para o desenvolvimento de tecnologias de transformação de plantas, pois o processo de transferência de um transgene para uma célula receptora e sua integração no genoma é muito ineficiente na maioria dos experimentos, de forma que as chances de recuperação de linhas transgênicas sem seleção são geralmente muito baixas. Atualmente, os GMS mais utilizados para a produção de plantas transgênicas, tais como o milho, são aqueles que conferem tolerância a herbicidas. Dentre estes, os genes bar, isolados de Streptomyces hygroscopicus e o gene pat, isolado de Streptomyces viridochromogenes, ambos codificando a enzima fosfinotricina acetiltransferase (Pat) (De Block et al., 1989) são frequentemente utilizados (Gordon-Kamm et al. 1990; Zhao et al. 2001 , Ishida et al 2007).
[027] Tanto a sequência de nucleotídeos que codifica para a proteína de interesse, quanto aquela que codifica para a proteína utilizada na seleção dos calos transgênicos é acompanhada por sequências reguladoras, tais como promotores e terminadores, os quais são responsáveis pelo controle da expressão gênica.
[028] Promotores são sequências de DNA, normalmente presentes nas extremidades 5’ de uma região codificadora, usadas pela RNA polimerase e fatores de transcrição para iniciar o processo de transcrição gênica (Buchanan et al., 2000). O promotor virai 35S isolado do vírus do mosaico da couve-flor (CaMV35S) é um dos mais utilizados para direcionar alto nível de expressão constitutiva em plantas (Odell et al., 1985), entretanto seu funcionamento em monocotiledôneas não é tão eficiente quando em dicotiledôneas. O promotor mais utilizado para direcionar a expressão de uma proteína constitutiva em milho é atualmente o promotor isolado do gene da ubiquitina de milho Ubi1 (Christensen & Quail, 1996).
[029] As regiões 3’ UTRs, também conhecidas como regiões terminadoras, são utilizadas para sinalizar o término da transcrição (Lessard et al. 2002), impedindo que ocorra a produção de moléculas quiméricas de RNA e, consequentemente, a formação de novas proteínas, se o complexo da polimerase continuar transcrevendo além do seu sinal de término. As sequências 3’ UTRs mais utilizadas em construções gênicas para transformação de milho incluem as regiões 3’ do gene da nopalina sintase de Agrobacterium (nos) (Depicker et al., 1982), do CaMV35S (Frame et al., 2002), e a do gene inibidor de proteinase pinll de batata (An et al., 1989).
[030] Embora para algumas das técnicas acima reportadas se tenha dado ênfase aos resultados obtidos em milho, as técnicas para obtenção de plantas transgênicas são de conhecimento geral de um técnico no assunto, e poderão variar a depender da planta de interesse a ser utilizada. Tal técnico no assunto poderá, sem experimentação indevida, com base em seu conhecimento geral e na literatura científica disponível, facilmente adaptar as metodologias preferenciais reportadas no presente documento de forma a obter plantas transgênicas diversas.
[031] Apesar do aumento do conhecimento científico acerca do papel das proteínas Cry na atividade inseticida contra pragas de culturas, as abordagens até o momento não se mostraram promissoras o suficiente quando se considera que, no caso de algumas culturas, ocorre acentuada resistência das pragas àquelas proteínas, de modo que novas estratégias se fazem constantemente necessárias.
[032] Em particular, no caso de culturas de milho, já se observou que as plantas transgênicas existentes no mercado brasileiro, como por exemplo, às que possuem o gene cry1F em seu genoma (por exemplo, Herculex HX), não controlam mais, de forma adequada, algumas das espécies de pragas, tais como populações de lagartas das espécies Spodoptera frugiperda e Diatrea saccharalis.
[033] Neste sentido, para satisfazer as necessidades da arte anterior, desenvolveu-se a presente invenção, que revela uma nova molécula de ácido nucleico crylDa códon-otimizada, bem como a geração de plantas de milho transgênicas expressando tal gene de forma eficiente, obtendo, assim, efetivo controle de diversas espécies de pragas invertebradas, incluindo daquelas que se apresentavam resistentes a outras culturas de milho transgênicas à época da presente invenção (por exemplo, Herculex HX). Atualmente, no mercado brasileiro, não existe nenhuma planta transgênica de milho expressando a proteína Cryl Da isolada de Bacillus thuringiensis para o controle de, por exemplo, Spodoptera frugiperda, bem como, considerando-se as plantas transgênicas de milho existentes no estado da técnica, não se pode esperar que àquelas plantas ou seus insertos gênicos inseticidas levariam, com expectativa razoável de sucesso, ao controle eficiente de diferentes espécies de pragas ou mesmo de populações diversas daquela espécie.
[034] As sequências crylDa, tal como reveladas pela presente invenção, e possuindo conteúdo de G+C otimizado, levaram ao controle de pragas com eficiência muito elevada, tendo sido inclusive efetivas contra pragas resistentes das culturas de milho existentes à época da presente invenção, resolvendo um problema do estado da técnica. Conforme apontado anteriormente, ainda que eventual proteína seja igual ou semelhante às proteínas Cryl Da já reportadas, as sequências nucleotídicas, conforme aqui reveladas, garantiram expressão aprimorada e possibilitaram alcançar os resultados excepcionais, conforme aqui exemplificados, e que não poderiam ser esperados, com expectativa razoável de sucesso, em vista dos ensinamentos do estado da técnica.
[035] Neste sentido, a presente invenção representa, de forma robusta, um avanço em relação ao estado da técnica.
BREVE DESCRIÇÃO DAS SEQUÊNCIAS
[036] SEQ ID NO: 1 se refere à sequência de ácido nucleico códon- otimizada do gene crylDa da presente invenção. [037] SEQ ID NO: 2 se refere à sequência de ácido nucleico do gene crylDa isolado da bactéria Bacillus thuringiensis, a partir da qual realizou-se a otimização.
[038] SEQ ID NO: 3 se refere à sequência de aminoácidos traduzida a partir de SEQ ID NO: 1 ou SEQ ID NO: 2 (proteína Cry1 Da).
[039] SEQ ID NO: 4 se refere à sequência de ácido nucleico da região promotora do gene da ubiquitina do milho (ubi), utilizada na construção da presente invenção.
[040] SEQ ID NO: 5 se refere à sequência de ácido nucleico da região terminadora 3’ UTR do gene da nopalina sintase de Agrobacterium (nos), utilizada na construção da presente invenção.
[041] SEQ ID NO: 6 se refere à sequência de ácido nucleico da região promotora do gene do gene CaMV 35S duplicado do vírus do mosaico da couve-flor, utilizada na construção da presente invenção.
[042] SEQ ID NO: 7 se refere à sequência de ácido nucleico da região de enhancer traducional do vírus Tobacco etch ( tev ), utilizada na construção da presente invenção.
[043] SEQ ID NO: 8 se refere à sequência de ácido nucleico da região codificadora de gene de seleção de fosfinotricina acetil transferase (bar) de Streptomyces hygroscopicus, utilizada na construção da presente invenção.
[044] SEQ ID NO: 9 se refere à sequência de ácido nucleico da região terminadora 3’ UTR do gene Tvsp que codifica para a proteína de reserva vegetativa de soja, utilizada na construção da presente invenção.
[045] SEQ ID NO: 10 se refere à sequência de ácido nucleico da construção de ácido nucleico da presente invenção (compreendendo o promotor do gene da ubiquitina de milho (ubi) (SEQ ID NO: 4), sequência codificadora códon-otimizada da presente invenção (SEQ ID NO: 1) e sequência terminadora 3’ UTR do gene da nopalina sintase ( nos )) (SEQ ID NO: 5) - UBI::cry1 Da::NOS.
[046] SEQ ID NO: 1 1 se refere à sequência de ácido nucleico da construção de ácido nucleico da presente invenção, em sua integridade, compreendo as (região terminadora 3’ UTR do gene Tvsp (SEQ ID NO: 9); região codificadora de gene de seleção de fosfinotricina acetil transferase (J bar) (SEQ ID NO: 8), região de enhancer traducional ( tev ) (SEQ ID NO: 7); região promotora do gene do gene CaMV 35S duplicado (SEQ ID NO: 6), região promotora do gene da ubiquitina (ubi) (SEQ ID NO: 4); sequência de ácido nucleico códon-otimizada do gene crylDa da presente invenção (SEQ ID NO: 1 ); região terminadora 3’ UTR do gene da nopalina sintase (SEQ ID NO: 5)).
[047] SEQ ID NO: 12 se refere à sequência de ácido nucleico 5’-3’ do primer \J4 utilizado nos experimentos de clonagem da construção gênica.
[048] SEQ ID NO: 13 se refere à sequência de ácido nucleico 5’-3’ do primer U 1 utilizado nos experimentos de clonagem da construção gênica.
[049] SEQ ID NO: 14 refere à sequência de ácido nucleico 5’-3’ do primer BAR direto ( forward) utilizado nos experimentos de clonagem da construção gênica.
[050] SEQ ID NO: 15 refere à sequência de ácido nucleico 5’-3’ do primer BAR reverso ( reverse ) utilizado nos experimentos de clonagem da construção gênica.
[051 ] SEQ ID NO: 16 refere à sequência de ácido nucleico 5’-3’ do primer Ubi direto ( forward) utilizado nos experimentos de clonagem da construção gênica.
[052] SEQ ID NO: 17 refere à sequência de ácido nucleico 5’-3’ do primer Cry1 Da reverso ( reverse ) utilizado nos experimentos de clonagem da construção gênica. [053] SEQ ID NO: 18 refere à sequência de ácido nucleico 5’-3’ do primer do gene cryl Da direto ( forward) utilizado nos experimentos de seleção do gene.
[054] SEQ ID NO: 19 refere à sequência de ácido nucleico 5’-3’ do primer do gene cry1 Da reverso ( reverse ) utilizado nos experimentos de seleção do gene.
[055] SEQ ID NO: 20 à sequência de ácido nucleico 5’-3’ do primer do gene crylDa reverso ( forward) utilizado nos experimentos de isolamento do gene completo da cepa Bt 1 132C.
[056] SEQ ID NO: 21 refere à sequência de ácido nucleico 5’-3’ do primer do gene crylDa reverso ( reverse ) utilizado nos experimentos de isolamento do gene completo da cepa Bt 1 132C.
BREVE DESCRIÇÃO DAS FIGURAS
[057] A Figura 1 se refere ao alinhamento da sequência de ácido nucleico códon-otimizada do gene crylDa da presente invenção (SEQ ID NO: 1 ) em relação à sequência de ácido nucleico do gene crylDa isolado da bactéria Bacillus thuringiensis, a partir da qual realizou-se a otimização (SEQ ID NO: 2).
[058] A Figura 2 se refere ao desenho representativo do vetor de expressão em plantas pTF101 .1 . RB/R25: Borda direita do T-DNA; LB: borda esquerda do T-DNA; 2XP35S: Promotor CaMV35S duplicado do vírus do mosaico (Odell et al., 1985); TEV enhancer. enhancer traducional do vírus Tobacco etch (Gallie et al, 1995; Wilson, 1999); bar ORF: região codificadora do gene fosfinotricina acetil transferase de Streptomyces hygroscopicus que confere resistência ao herbicida fosfinotricina e seus derivados (Thompson et al, 1987; White et al, 1990; Becker et al, 1992); Tvsp: terminador 3’ do gene que codifica para a proteína de reserva vegetativa de soja (Mason et al., 1993); aadA: gene aminoglicoside 3’-adenilitransferase de Shigella flexneris 2a que confere resistência ao antibiótico espectinomicina e estreptomicina (Chinault et al., 1986); pVS1 : a ampla gama de plasmídeo hospedeiro de Pseudomonas (Hajdukiewicz et al, 1994); múltiplos sítios de clonagem formado pelas enzimas de restrição Pvull, EcoRI, Saci, Kpnl, Smal, Xmal, BamHI, Xbal, Sall, Pstl, Hindlll, Pstl.
[059] A Figura 3 se refere ao desenho representativo das construções genicas Ubi::cry1Da::NOS e 2x35S::bar::Tvsp inseridas nos sítios das enzimas Hind III e EcoRI do vetor binário pTF 101.1 , entre as bordas direita e esquerda do T-DNA.
[060] A Figura 4 se refere a um resultado representativo do bioensaio em laboratório de alimentação de Spodoptera frugiperda em (A) milho não- transgênico e (B) milho transgênico compreendendo a molécula de ácido nucléico códon-otimizada crylDa da presente invenção (SEQ ID NO: 1).
[061] A Figura 5 se refere a um resultado representativo do bioensaio em laboratório de alimentação de Diatrea saccharalis em (A) milho não- transgênico e (B) milho transgênico compreendendo a molécula de ácido nucléico códon-otimizada crylDa da presente invenção (SEQ ID NO: 1). Em (C) observam-se lagartas crescidas em folhas de milho não transgênico (lagarta da esquerda) e milho transgênico da presente invenção (lagarta da direita).
[062] A Figura 6 se refere ao resultado em gráfico da nota de injúria (±IC, P = 0,05) causada pela infestação de Spodoptera frugiperda em escala de Carvalho, 1970. Trat 1 = milho transgênico compreendendo a molécula de ácido nucléico códon-otimizada crylDa da presente invenção (SEQ ID NO: 1) + População de lagartas resistentes à Cry1 F; Trat 2 = Linhagem de milho L3 não transgênico + População de lagartas resistentes à Cry1 F; Trat 3 = milho transgênico compreendendo a molécula de ácido nucléico códon-otimizada crylDa da presente invenção (SEQ ID NO: 1) + População de lagartas suscetíveis; Trat 4 = Linhagem de milho L3 não transgênico + População de lagartas suscetíveis.
[063] A Figura 7 se refere ao resultado em foto da nota de injúria acima reportada demonstrando (A) o milho transgênico compreendendo a molécula de ácido nucléico códon-otimizada crylDa da presente invenção (SEQ ID NO: 1) e (B) planta controle não transgênica infestada com lagartas S. frugiperda resistentes ao cry1 F.
DESCRIÇÃO RESUMIDA DA INVENÇÃO
[064] A presente invenção se refere a novas moléculas de ácido nucléico códon-otimizadas crylDa a partir de uma sequência de gene isolado da bactéria Bacillus thuringiensis. Estas moléculas são utilizadas para a produção de construções de ácido nucléico, vetores e células hospedeiras, permitindo a produção de plantas transgênicas, tais como milho, resistentes a pragas invertebradas, tais como insetos da ordem Lepidoptera, particularmente Spodoptera frugiperda (Noctuidae, Lepidoptera) e Diatrea saccharalis (Crambidae, Lepidoptera). Também são objetos da presente invenção células vegetais e a plantas transgênicas compreendendo as moléculas ou as construções da invenção. Em especial, as plantas transgênicas, de acordo com a presente invenção, são capazes de controlar as lagartas das mencionadas espécies que se tornaram resistentes às plantas contendo o gene cry1F. Ainda, a presente invenção refere-se a um método para transformar uma célula, a um método de controle de pragas invertebradas de plantas de cultivo e aos usos das moléculas ou construções de ácido nucléico para a produção de plantas transgênicas e para o controle de pragas invertebradas. [065] Assim, um primeiro objeto da presente invenção é uma molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1.
[066] Em uma realização preferencial da presente invenção, a dita molécula de ácido nucleico compreende uma sequência de ácido nucleico com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1.
[067] Em uma outra realização preferencial da presente invenção, a dita molécula de ácido nucleico é conforme definida na SEQ ID NO: 1.
[068] Um segundo objeto da presente invenção é uma construção de ácido nucleico, compreendendo a molécula de ácido nucleico crylDa códon-otimizada, compreendendo a sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1.
[069] Em uma realização preferencial da presente invenção, a dita construção compreende adicionalmente uma sequência promotora ligada operativamente à mencionada molécula de ácido nucleico, em que dita sequência promotora é preferencialmente a sequência promotora da ubiquitina de milho (ubi).
[070] Em uma outra realização preferencial da presente invenção, a dita construção compreende adicionalmente uma sequência terminadora 3’ UTR, em que dita sequência terminadora 3’ UTR é preferencialmente a sequência terminadora do gene da nopalina sintase (nos).
[071] Em uma outra realização preferencial da presente invenção, a dita construção compreende adicionalmente um gene de seleção, operativamente ligado a pelo menos uma sequência promotora e pelo menos uma sequência terminadora, em que a sequência promotora é preferencialmente a sequência promotora do gene CaMV 35S duplicado do vírus do mosaico da couve-flor e a sequência terminadora é preferencialmente a sequência terminadora do gene Tvsp que codifica para a proteína de reserva vegetativa de soja.
[072] Em uma outra realização preferencial da presente invenção, a dita construção compreende adicionalmente outras sequências reguladoras.
[073] Em uma outra realização preferencial da presente invenção, a construção compreende a sequência de ácido nucleico definida como SEQ ID NO: 10.
[074] Um terceiro objeto da presente invenção é um vetor, compreendendo a molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 ou a construção de ácido nucleico da presente invenção, conforme definida no presente documento.
[075] Um quarto objeto da presente invenção é uma célula hospedeira, compreendendo a molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico ou o vetor da presente invenção, conforme definidos no presente documento.
[076] Um quinto objeto da presente invenção é uma célula vegetal, compreendendo a molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico da presente invenção ou o vetor, conforme definidos no presente documento.
[077] Um sexto objeto da presente invenção é uma planta transgênica, compreendendo a molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico da presente invenção, conforme definida no presente documento.
[078] Um sétimo objeto da presente invenção é um método de transformção de célula, compreendendo a introdução em dita célula a molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico ou o vetor da presente invenção, conforme definidos no presente documento. Em uma realização preferencial da presente invenção, o dito método compreende a integração da molécula de ácido nucleico no genoma da célula.
[079] Um oitavo objeto da presente invenção é um método de produção de uma planta transgênica, compreendendo a transformação de célula vegetal com a molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico ou o vetor da presente invenção, conforme definidos no presente documento. Em uma realização preferencial da presente invenção, o dito método compreende adicionalmente a seleção de uma célula vegetal transformada com a molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico ou o vetor da presente invenção, conforme definidos no presente documento.
[080] Em uma outra realização preferencial da presente invenção, o dito método compreende adicionalmente a regeneração de uma planta transgênica a partir da mencionada célula vegetal.
[081] Em outra realização preferencial da presente invenção, a dita planta transgênica é resistente a pragas de cultura, em que a planta transgênica é preferencialmente uma monocotiledônea, preferencialmente uma planta de milho, arroz, cana-de-açúcar, sorgo, trigo ou braquiária.
[082] Em outra realização preferencial da presente invenção, a dita praga de cultura é preferencialmente um inseto, mais preferencialmente da ordem Lepidoptera, mais preferencialmente ainda é Spodoptera frugiperda e/ou Diatrea saccharalis. [083] Um nono objeto da presente invenção é um método de controle de pragas invertebradas de plantas de cultivo, em que as plantas de cultivo compreendem a molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico da presente invenção, conforme definida no presente documento, em que o método compreende o plantio de sementes obtidas a partir de uma planta compreendendo a molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico da presente invenção, conforme definida no presente documento, em uma área de cultivo de plantas de cultura suscetíveis a pragas invertebradas.
[084] Um décimo objeto da presente invenção é um uso da molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico da presente invenção, conforme definida no presente documento, em que o uso é para a produção de uma planta transgênica, em que a planta transgênica é preferencialmente uma monocotiledônea, preferencialmente uma planta de milho, arroz, cana-de-açúcar, sorgo, trigo ou braquiária.
[085] Em uma realização preferencial da presente invenção, o dito uso compreende que a planta transgênica é resistente a pragas invertebradas.
[086] Um décimo primeiro objeto da presente invenção é um uso da molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico da presente invenção, conforme definida no presente documento, em que o uso é para o controle de pragas invertebradas, preferencialmente insetos.
[087] Qualquer um dentre os objetos ou suas realizações preferenciais acima descritos podem servir de base para compor os outros objetos e suas realizações preferenciais, ainda que tal(tais) relação(ões) não tenha(m) sido explicitamente descrita(s).
[088] Os inventores da presente invenção revelaram que, por meio da molécula de ácido nucleico crylDa códon-otimizada, conforme definida no presente documento, obteve-se plantas de milho transgênicas resistentes a pragas de cultura, incluindo pragas já resistentes às plantas transgênicas de milho do estado da técnica.
DESCRIÇÃO DETALHADA DA INVENÇÃO DEFINIÇÕES
[089] Salvo se definido de outro modo, todos os termos da técnica, anotações e outras terminologias científicas aqui utilizadas destinam-se a ter os significados normalmente compreendidos pelos técnicos no assunto do campo da presente invenção. Em alguns casos, os termos com significados comumente entendidos são definidos no presente documento com a finalidade de trazer clareza e/ou para pronta referência, e a inclusão de tais definições no presente documento não deve ser interpretada, necessariamente, como representando uma diferença substancial em relação ao que é geralmente entendido no estado da técnica.
[090] As técnicas e os procedimentos descritos ou referidos pelo presente documento são geralmente bem compreendidos e empregados usando a metodologia convencional pelos técnicos no assunto. Conforme apropriado, os processos que envolvem o uso de kits e reagentes disponíveis comercialmente são geralmente realizados de acordo com protocolos e/ou parâmetros definidos pelo fabricante, salvo quando indicado de outra forma.
[091] Vale ressaltar que a presente invenção, onde for apropriado, não se limita à metodologia, protocolos, linhagem de células, gêneros ou espécies de animais, construções e reagentes específicos descritos, os quais, de forma óbvia, podem variar. Além disso, a terminologia utilizada no presente documento é apenas para o propósito de descrever exemplos de realizações específicas, e não se destina a limitar o escopo da presente invenção.
[092] Ao longo do presente documento, as formas singulares “um”, “uma” e“o”,“a”, ou formas singulares de qualquer termo ou expressão, incluem as referências ao plural, a menos que o contexto dite claramente de outra forma.
[093] Ao longo do presente documento, a palavra “compreende”, e quaisquer variações como“compreendem” ou“compreendendo”, devem ser interpretadas como“termos abertos”, podendo implicar na inclusão de elementos ou grupos de elementos adicionais, os quais não foram explicitamente descritos, não possuindo caráter limitativo.
[094] Ao longo do presente documento, a palavra“consiste”, e quaisquer variações como“consistem” ou “consistindo”, devem ser interpretadas “termos fechados”, não podendo implicar na inclusão de elementos ou grupos de elementos adicionais, os quais não foram explicitamente descritos, possuindo caráter limitativo.
[095] Ao longo do presente documento, os valores exatos ou faixas de valores exatos fornecidos com relação a um fator, quantidade, concentração ou preferência particular devem ser interpretados como também fornecendo valores ou faixas de valores aproximados correspondentes, tal como por meio da expressão“cerca de”.
[096] Ao longo do presente documento, palavras e expressões como “preferencialmente”,“particularmente”,“por exemplo”,“como”,“tal como”, “mais particularmente” e similares, e suas variações, devem ser interpretadas como características inteiramente opcionais, realizações preferenciais ou exemplificações possíveis não exaustivas, sem conferir caráter limitativo de escopo.
[097] Ao longo do presente documento, palavras e expressões como “ácidos nucleicos”, “nucleotídeos” e similares devem ser interpretadas como ácidos nucleicos ou nucleotídeos que ocorrem naturalmente, sintéticos ou artificiais. Compreendem desoxirribonucleotídeos (DNA) ou ribonucleotídeos (RNA) ou qualquer análogo de nucleotídeo e polímeros ou híbridos dos mesmos na configuração sense ou antisense, de fita simples ou fita dupla. Salvo quando disposto de outra forma, uma sequência de ácido nucleico específica também abrange implicitamente variantes conservadoramente modificadas desta (por exemplo, substituições de códons degenerados) e sequências complementares, bem como as sequências explicitamente indicadas. O termo “ácido nucleico” é utilizado de maneira alternada no presente documento com os termos “gene”, “cDNA”, “mRNA”, “oligonucleotídeo”, “molécula de ácido nucleico” ou“ primer”.
[098] As expressões“molécula de ácido nucleico”,“sequência de ácido nucleico” e similares referem-se a um polímero de bases de DNA ou RNA de fita simples ou fita dupla, lido da extremidade 5’ para a extremidade 3’. Inclui DNA cromossômico, plasmídeo de autorreplicação, polímeros infecciosos de DNA ou RNA que desempenham um papel principalmente estrutural, entre outros. Também se referem a uma lista consecutiva de abreviaturas, letras, caracteres ou palavras, que representam nucleotídeos ou genes, conforme usualmente empregados no campo técnico da presente invenção.
[099] Ao longo do presente documento, a expressão“códon-otimizada”, quando se referir às moléculas ou às sequências da presente invenção, deve ser interpretada como a molécula ou sequência de nucleotídeos que passou por um processo de adequação da sua constituição de nucleotídeos (conteúdo C+G e A+T) à constituição do organismo hospedeiro ou receptor, para que pudesse expressar de modo mais eficiente uma proteína heteróloga. Processos de otimização de códon são conhecidos por um técnico no assunto.
[0100] Ao longo do presente documento, palavras e expressões como“similaridade de sequência”,“identidade” e similares, com relação a uma outra sequência, deve ser interpretada como a porcentagem de nucleotídeos na sequência que é idêntica aos nucleotídeos de outra sequência, após o alinhamento das sequências e a introdução de gaps, se necessário, para atingir a porcentagem máxima de identidade de sequência. De acordo com a presente invenção, a expressão “pelo menos 70% de similaridade” é definida como similaridade ou identidade de 70 a 100%. Preferencialmente, a porcentagem de similaridade é de pelo menos 75%, pelo menos 80%, pelo menos 85%, pelo menos 90%, pelo menos 95% ou 100%.
[0101] Ao longo do presente documento, a expressão“construção de ácido nucléico” deve ser interpretada como uma construção de DNA, de filamento único ou duplo, linear ou circular, que é capaz de resultar na expressão da proteína de interesse. Tipicamente, compreende uma sequência promotora e uma sequência codificadora. Ainda, tipicamente, as construções podem compreender também uma região 3’ UTR. Tais construções podem compreender ainda outras sequências reguladoras ou sinalizadoras conhecidas por um técnico no assunto. Preferencialmente, a construção da presente invenção compreende a sequência de ácido nucléico definida como SEQ ID NO: 10.
[0102] Ao longo do presente documento, palavras e expressões como “promotor”, “sequência promotora” e similares devem ser interpretadas como uma sequência de DNA que, uma vez operativamente ligada a uma sequência de nucleotídeos de interesse, é capaz de controlar a transcrição da sequência de nucleotídeos de interesse em RNA. Um promotor está localizado a 5’ (ou à montante) em relação ao local de início da transcrição de uma sequência de nucleotídeos de interesse cuja transcrição em mRNA ele controla e fornece um sítio para a ligação específica da RNA polimerase e outros fatores de transcrição para o início a transcrição. Pode incluir outras sequências reguladoras, conhecidas por um técnico no assunto. De acordo com a presente invenção, o promotor pode ser heterólogo ou homólogo à respectiva célula ou hospedeiro. Uma sequência de ácido nucléico é“heteróloga” a um organismo ou a uma segunda sequência de ácido nucleico se ela se origina a partir de uma espécie diferente ou, se a partir da mesma espécie, é modificada de sua forma original.
[0103] Podem ser diversos os promotores adequados para a realização da presente invenção. Promotores não exaustivos adequados são, por exemplo, os promotores 19S e 35S do vírus do mosaico da couve-flor CaMV e do vírus do mosaico da escrofulária FMV, duplicados ou não, os promotores de Arabidopsis e de ubiquitina de milho (ubi), os promotores da nopalina sintase (nos) e da octopina sintase (ocs), o promotor induzível pela luz da subunidade pequena de ribulose 1 ,5- bisfosfato carboxilase (ssRUBISCO), entre outros. Preferencialmente, a sequência promotora é a sequência promotora da ubiquitina de milho (ubi), definida como SEQ ID NO: 4, e a sequência promotora do gene CaMV 35S duplicado do vírus do mosaico da couve-flor, definida como SEQ ID NO: 6.
[0104] Ao longo do presente documento, a expressão“sequência terminadora 3’ UTR” deve ser interpretada como a sequência terminadora 3’ da região não traduzida, que se estende a partir do códon de terminação. Podem ser diversas as sequências terminadoras 3’ UTR adequadas para a realização da presente invenção. Sequências terminadoras 3’ UTR não exaustivas adequadas são, por exemplo, a sequência terminadora nopalina sintase (nos) de Agrobacterium, a sequência Tvsp do gene que codifica para a proteína de reserva vegetativa de soja, a região 3’ do CaMV 35S e a do gene inibidor de proteinase pinll de batata. Preferencialmente, a sequência terminadora 3’ UTR é a sequência terminadora nopalina sintase (nos) de Agrobacterium, definida como SEQ ID NO: 5, e a sequência Tvsp do gene que codifica para a proteína de reserva vegetativa de soja, definida como SEQ ID NO: 9. [0105] Ao longo do presente documento, palavras e expressões como“gene de seleção”, “marcador selecionável”, “gene marcador de seleção (GMS)” e similares devem ser interpretadas como genes que produzem um produto, o qual serve para selecionar ou diferenciar a célula ou tecido que o expressa, das demais células ou tecidos, os quais não o expressam. Podem ser diversos os genes de seleção adequados para a realização da presente invenção. Genes se seleção não exaustivos adequados são, por exemplo, GUS (sequência de codificação para b-glucuronidase), GFP (sequência de codificação para a proteína fluorescente verde), LUX (gene de codificação para luciferase), genes marcadores de resistência a antibióticos (como, por exemplo, transposons Tns (bla), Tn5 (nptll), TN7 (dhfr), penicilinas, canamicina, neomicina, metotrexato, tetraciclina, etc.) ou genes de tolerância a herbicidas (como o da enzima 5-enol-piruvil shiquimato fosfato sintase (EPSPS) modificado, gene de fosfinotricina acetil transferase {bar) de Streptomyces hygroscopicus, definido como SEQ ID NO: 8, gene pat, isolado de Streptomyces viridochromogenes, entre outros). O gene de seleção, de acordo com a presente invenção, é operativamente ligado a pelo menos uma sequência promotora e pelo menos uma sequência terminadora. Preferencialmente, a sequência promotora é a do gene CaMV 35S duplicado do vírus do mosaico da couve-flor e a sequência terminadora é a sequência Tvsp do gene que codifica para a proteína de reserva vegetativa de soja. No entanto, outras sequências promotoras e terminadoras adequadas podem também ser utilizadas, como, por exemplo, às sequências relacionadas no presente documento.
[0106] Ao longo do presente documento, a expressão “outras sequências reguladoras” refere-se a, por exemplo, enhancers e outros elementos de controle de expressão (por exemplo, sinais de poliadenilação), que podem estar localizados à montante (região 5’ UTR) ou à jusante (região 3’ UTR), ou mesmo dentro ou entre outras sequência nucleotídicas descritas na invenção. Preferencialmente, a sequência reguladora é sequência de ácido nucleico da região de e/7/?a/7certraducional do vírus Tobacco etch ( tev ), definida como SEQ ID NO: 7. Tais sequências reguladoras são descritas, por exemplo, em Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), e Gruber e Crosby, em: Methods in Plant Molecular Biology and Biotechnology, eds. Glick e Thompson, Capítulo 7, 89-108, CRC Press; Boca Raton, Florida, incluídos no presente como referência. Sequências reguladoras incluem as que direcionam a expressão constitutiva de uma sequência de nucleotídeos em muitos tipos de células hospedeiras e as que direcionam a expressão direta da sequência de nucleotídeos somente em certas células hospedeiras ou sob certas condições.
[0107] Ao longo do presente documento, o termo“transformação” e similares deve ser interpretado como um processo para a introdução de DNA heterólogo em uma célula, tecido vegetal ou planta. Pode ocorrer sob condições naturais ou artificiais, como pelo uso de vários métodos bem conhecidos na técnica, seja em uma célula hospedeira procarionte ou eucarionte. O método é geralmente selecionado com base na célula hospedeira que será transformada e pode incluir, mas não se limitar a, infecção virai, eletroporação, lipofecção, bombardeamento de partículas (biobalística) e mediada por Agrobacterium.
[0108] Uma das realizações da presente invenção refere-se a um método de transformação celular. Qualquer método de transformação celular está incluído no escopo da presente invenção, não sendo de particular relevância para a obtenção das realizações da invenção, desde que inclua a introdução em dita célula, por meios conhecidos por um técnico no assunto, da=molécula de ácido nucleico crylDa códon- otimizada compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico da presente invenção, conforme definida no presente documento. Preferencialmente. a molécula de ácido nucléico integra-se no genoma da célula.
[0109] Ao longo do presente documento, o termo“transgene” deve ser interpretado como qualquer sequência de ácido nucleico que é introduzida em uma célula por meio de manipulações experimentais, podendo ou não ser integrado ao genoma. Um transgene pode ser uma “sequência de DNA endógeno”, ou “sequência de DNA exógeno” (ou seja,“heterólogo”). A expressão“sequência de DNA endógeno” refere-se a uma sequência de nucleotídeos que é naturalmente encontrada na célula na qual é introduzida. A expressão“sequência de DNA exógeno” refere-se a uma sequência de nucleotídeos que não é naturalmente encontrada na célula na qual é introduzida. O termo “transgênico”, quando se refere a um organismo transformado, significa um organismo transformado com uma molécula de DNA recombinante que compreende preferencialmente um promotor adequado operacionalmente ligado a uma sequência de DNA de interesse.
[0110] Ao longo do presente documento, o termo“vetor” deve ser interpretado como uma construção contendo uma sequência de DNA que é operativamente ligada a uma ou mais sequências controle adequadas capazes de levar à expressão da dita sequência de DNA em um hospedeiro adequado. Tais sequências controle incluem um promotor para efetuar a transcrição, uma sequência operadora opcional para o controle de tal transcrição, uma sequência de codificação dos sítios de ligação adequados do mRNA ao ribossomo, e às sequências que controlam o término da transcrição e tradução, por exemplo.
[0111] Podem ser diversos os vetores adequados para a realização da presente invenção. Vetores são, por exemplo, fagos, vírus como SV40, CMV, baculovírus, adenovírus, transposons, elementos IS, plasmídeos, fagomídeos, cosmídeos, DNA linear ou circular. Esses vetores podem ser replicados de forma autónoma no organismo hospedeiro ou ser replicados pelo cromossomo. O vetor pode, também, ser um plasmídeo. De acordo com o presente documento, os termos “plasmídeo” e“vetor” são algumas vezes utilizados de forma alternada. Preferencialmente, o vetor, de acordo com a presente invenção, compreende a molécula de ácido nucleico crylDa códon-otimizada compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico, conforme definida no presente documento.
[0112] Ao longo do presente documento, as expressões “célula hospedeira”,“organismo hospedeiro” e similares devem ser interpretadas como sendo o organismo hospedeiro específico ou a célula alvo específica, mas também como sendo os descendentes ou potenciais descendentes desses organismos ou células. Uma vez que, devido à mutação ou aos efeitos ambientais, determinadas modificações podem surgir em gerações sucessivas, esses descendentes não precisam ser necessariamente idênticos à célula parental. No entanto, ainda estão incluídos no escopo de proteção da presente invenção. De acordo com a presente invenção, as células hospedeiras podem ser procarióticas ou eucarióticas. Preferencialmente, a células hospedeira, de acordo com a presente invenção, é uma célula hospedeira de planta. Preferencialmente, compreende a molécula de ácido nucleico crylDa códon-otimizada, compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico ou o vetor da presente invenção, conforme definidos no presente documento.
[0113] Ao longo do presente documento, palavras e expressões como“célula vegetal transgênica”,“planta transgênica” e similares devem ser interpretadas como células ou plantas que possuem e preferencialmente expressam, por meio de manipulações experimentais, um transgene, bem como também se referem à progénie de uma planta transgênica e gerações subsequentes de plantas, conforme acima.
[0114] Ao longo do presente documento, o termo “planta” e similares deve ser interpretado como sendo a parte ou o todo do organismo vegetal. Por “parte”, neste contexto, entende-se células vegetais e tecidos, órgãos e partes de plantas em todas as suas manifestações, como sementes, folhas, anteras, fibras, tubérculos, raízes, pelos de raízes, caules, embrião, calos, cotilédones, pecíolos, material coletado, tecido vegetal, tecido reprodutivo e culturas de células. As plantas transgênicas, de acordo com a presente invenção, podem ser geradas e autofecundadas ou cruzados com outros indivíduos a fim de obter plantas transgênicas adicionais. Plantas transgênicas também podem ser obtidas por propagação vegetativa de células vegetais transgênicas.
[0115] Qualquer planta transformada obtida de acordo com a invenção pode ser usada em um esquema de melhoramento convencional ou na propagação vegetal in vitro para produzir mais plantas transformadas com as mesmas características e/ou podem ser usadas para introduzir a mesma característica em outras variedades da mesma espécie ou de espécies relacionadas. Essas plantas também são parte da invenção. Sementes obtidas a partir das plantas transformadas geneticamente também contêm a mesma característica e são parte da invenção. A presente invenção é aplicável a qualquer planta e cultura que possa ser transformada com qualquer um dos métodos de transformação conhecidos pelos técnicos no assunto. As plantas, de acordo com a presente invenção, podem ser plantas monocotiledôneas ou dicotiledôneas. Plantas monocotiledôneas preferenciais incluem, mas não estão limitadas a plantas de milho, arroz, cana-de-açúcar, sorgo, trigo ou braquiária, mais preferencialmente milho. Ainda, preferencialmente, as plantas de acordo com a presente invenção são plantas transgênicas resistentes a pragas de cultura.
[0116] Uma das realizações da presente invenção refere-se a um método de produção de uma planta transgênica. Qualquer método de produção de uma planta transgênica está incluído no escopo da presente invenção, não sendo de particular relevância para a obtenção das realizações da invenção. Preferencialmente, o método compreende a transformação uma célula vegetal com a molécula de ácido nucleico crylDa códon-otimizada compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico da presente invenção, conforme definida no presente documento. Preferencialmente, o método compreende adicionalmente selecionar uma célula vegetal transformada com a molécula de ácido nucleico crylDa códon-otimizada compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico ou o vetor da presente invenção, conforme definidos no presente documento. Preferencialmente, o método compreende adicionalmente regenerar uma planta transgênica a partir da mencionada célula vegetal.
[0117] Ao longo do presente documento, palavras e expressões como“praga”,“pragas de cultura” e similares devem ser interpretadas como praga invertebradas, que incluem, mas não estão limitadas a insetos, fungos, bactérias, nematódeos, ácaros, carrapatos e semelhantes. Em particular, os insetos incluem os selecionados a partir das ordens Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera, Orthroptera, Thysanoptera, Dermaptera,
Isoptera, Anoplura, Siphonaptera, Trichoptera, entre outras. Preferencialmente, Coleoptera, Lepidoptera e Diptera.
[0118] Particularmente, a ordem Lepidoptera inclui, mas sem se limitar, às famílias Papilionidae, Pieridae, Lycaenidae, Nymphalidae, Danaidae, Satyridae, Hesperiidae, Sphingidae, Saturniidae,
Geometridae, Arctiidae, Noctuidae, Lymantriidae, Sesiidae, Crambidae e Tineidae, mais particularmente Spodoptera sp., particularmente Spodoptera frugiperda (Noctuidae) e Diatrea sp., particularmente Diatrea saccharalis (Crambidae).
[0119] Uma das realizações da presente invenção refere-se a um método de controle de pragas invertebradas de plantas de cultivo. Qualquer método de controle de pragas invertebradas de plantas de cultivo está incluído no escopo da presente invenção, não sendo de particular relevância para a obtenção das realizações da invenção, desde que as plantas de cultivo, de acordo com a presente invenção, compreendam a molécula de ácido nucleico crylDa códon-otimizada compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico da presente invenção, conforme definida no presente documento, em que o método compreende, preferencialmente, o plantio de sementes obtidas a partir de uma planta compreendendo uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1 , preferencialmente com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1 , mais preferencialmente sendo a SEQ ID NO: 1 , ou a construção de ácido nucleico da presente invenção, conforme definida no presente documento, em uma área de cultivo de plantas de cultura suscetíveis a pragas invertebradas.
[0120] Ao longo do presente documento, todos os títulos e subtítulos são utilizados apenas por conveniência e não deverão ser interpretados como limitações da presente invenção. EXEMPLOS
EXEMPLO 1 SELEÇÃO DO GENE CRYIDA
[0121] Foi realizada uma busca no banco de germoplasma de B. thuringiensis pertencente ao Laboratório de Controle Biológico com objetivo de detectar cepas capazes de controlar o desenvolvimento de Spodoptera frugiperda. Por meio de experimentos de PCR utilizando primers específicos do gene cryIDa (SEQ ID NO: 18 e SEQ ID NO: 19) (Cerón et al., 1994) foram identificadas cepas contendo o fragmento de 290 pb. Esses fragmentos foram sequenciados e comparados com banco de dados do NCBI. Primers representando regiões das bordas 5’ e 3’ do gene cryIDa baseados em sequências presentes no NCBI (SEQ ID NO: 20 e SEQ ID NO: 21) foram utilizados para isolar o gene completo da cepa Bt 1132C utilizando taq polimerase de alta fidelidade. O fragmento amplificado representando o gene completo cryIDa foi clonado no vetor pGEM (Promega) por meio de uma reação para adição de adenina e utilizado para sequenciamento de ambas fitas utilizando primers internos. O sequenciamento foi realizado de três clonagens obtidas de amplificações independentes.
[0122] A definição da sequência para a síntese do gene Bt presente na construção gênica codifica para uma proteína de 625 amino ácidos correspondente ao sítio ativo da proteína cry1 Da e foi baseada em três aspectos: (i) Presença dos domínios C-terminal (Endotoxina C), Central (Endotoxina M) e N-terminal (Endotoxina N); (ii) Tamanho do núcleo ativo da proteína - resíduos de aa 1 a 625 (Abdul Azΐz,H , Wei Hong,L. and Yusoff,K. Comparative study of cry1 D gene expressed in E. coli and Baculovirus expression system / http://www.ncbi.nlm.nih.goV/protein/AFK29089.1); (iii) Detecção in silico de sítios de hidrólise da protoxina cryI Da com as enzimas tripsina ou quimotripsina.
EXEMPLO 2 - MUDANÇA DO CÓDON DO GENE CRYIDA NATIVO
[0123] Em uma segunda etapa, modificou-se o códon do núcleo ativo da proteína - resíduos de aa 1 a 625 / sequência nucleotídica de 1875 bp - originalmente isolado de B. thuringiensis (SEQ ID NO: 2) para que ele ficasse compatível com o códon do milho. A modificação do códon do gene cryIDa foi feita com o auxílio do software Optimizer (http://genomes.urv.es/OPTIMIZER/Form.php) (Puigbo, 2007) e a sequência enviada digitalmente para síntese comercial. A sequência inicialmente isolada da estirpe BT 1132C possuía um conteúdo de CG de 37,91 % e foi otimizada para 63,8% (SEQ ID NO: 1) de conteúdo CG (Figura 1).
[0124] O fragmento sintetizado foi clonado no plasmídeo pUC19 com sítios de enzimas de restrição compatíveis para a clonagem no vetor binário pTF101. A sequência sintetizada foi confirmada por sequenciamento, de acordo com técnicas padrão.
EXEMPLO 3 - CONSTRUÇÃO GÊNICA
[0125] A clonagem do gene cryI Da 63,8%CG foi realizada no vetor binário pTF101 (Paz et al., 2004) contendo o promotor do gene da ubiquitina de milho (ubi) e o terminador do gene da nopalina sintase (nos). O plasmídeo pTF101 e o plasmídeo pUCcryl Da foram clivados com as enzimas EcoRI e Hindlll. Em seguida, uma reação de ligação foi realizada entre o vetor binário pTF101 e o gene UBI::cry1 Da::NOS. A clivagem e a ligação realizadas com enzimas de restrição e T4 ligase, respectivamente foram feitas conforme instrução do fabricante (Invitrogen / USA). O resultado desta clonagem foi transformado, via eletroporação (BioRad/MicroPulser), em E. coli HB101 utilizando o marcador de seleção espectinomicina e algumas colónias desta bactéria foram analisadas para verificar a presença do gene UBI::cry1 Da::NOS. A clonagem e direção foram confirmados por PCR e sequenciamento utilizando os primers descritos na Tabela 1 , que amplificam o fragmento referente ao promotor da Ubiquitina e clivagem com as enzimas Hindlll e BamHI. Para o sequenciamento foi utilizado o kit comercial BigDye Terminator v3.1 (Applied Biosystems). DNA plasmidial de duas colónias de bactéria contendo a construção gênica foi sequenciado e comparado com a sequência de interesse e constatou-se que elas eram idênticas.
[0126] Uma vez confirmada a clonagem do gene UBI::cry1 Da::NOS no plasmídeo pTF101 , esta construção gênica foi transferida para a Agrobacterium tumefaciens EHA101 , utilizando a metodologia de eletroporação (BioRad/MicroPulser). O mesmo procedimento acima foi realizado para comprovação da presença do vetor binário contendo o gene crylDa em A. tumefaciens. O DNA plasmidial foi isolado de colónias de A. tumefaciens, amplificado com primers para detecção do gene bar da Tabela 1 (gene de seleção presente no vetor binário). O DNA plasmidial também foi clivado com enzimas de restrição e o tamanho das bandas vistas em gel de agarose foi correspondente ao esperado, confirmando, assim, a presença correta do gene de interesse na A. tumefaciens. Todas as reações de amplificação de fragmentos por PCR utilizaram as seguintes condições: 94 °C por 2 min; 35 ciclos de 94 °C por 30 seg; 55 °C por 30 seg; 72 °C por 30 seg; um ciclo de 72 °C por 5 min. Os resultados foram visualizados em gel de agarose 1 % corados com GelRed (Biotium). As fotos foram documentadas em sistema de captura de imagem digital.
[0127] Agrobacterium tumefaciens EHA 101 contendo as construções gênicas de interesse (UBI::cry1 Da::NOST e 35S::bar::35T) foi utilizada na transformação genética de milho.
TABELA 1 - SEQUÊNCIAS DOS PRIMERS UTILIZADOS E O TAMANHO DOS SEUS
RESPECTIVOS AMPLICONS
Figure imgf000043_0001
EXEMPLO 4 - TRANSFORMAÇÃO GENÉTICA DE EMBRIÕES IMATUROS DE MILHO
Hlll VIA AGROBACTERIUM TUMEFACIENS
[0128] O genótipo utilizado neste protocolo de transformação é o milho Hill (Armstrong et al., 1991 ), conforme protocolo por Frame et al. (2002), com pequenas modificações. Brevemente, para a transformação deste genótipo, foram coletados embriões imaturos entre 1 ,8 - 2,0 mm de comprimento (10 -12 dias após a polinização). Espigas utilizadas para a coleta dos embriões foram mergulhadas em uma solução de 1 : 1 de água sanitária comercial (2,5% hipoclorito de sódio) e H2O destilada com 1 -2 gotas de Tween 20, por 20 minutos. Em seguida, foram enxaguadas com água destilada estéril por 5 minutos, duas vezes.
[0129] Os embriões imaturos foram coletados com 0 auxílio de uma espátula a partir de um corte superficial dos grãos. Para a transferência da construção gênica para 0 milho utilizou-se Agrobacterium tumefaciens EHA101 . A partir de uma cultura estoque da A. tumefaciens contendo a construção gênica de interesse, mantida em glicerol a -80 °C, uma estria foi feita em meio YEP (5 g.L1 de extrato de levedura; 10 g.L1 de peptona; 5 g.L-1 de NaCI; 15 g.L-1 de bacto ágar) contendo os antibióticos necessários (espectinomicina 100 mg.L1 e 50 mg.L1 kanamicina) e a placa foi incubada por 2 a 3 dias a 28 °C placa mãe). Para a transformação genética, uma estria da Agrobacterium utilizando uma colónia isolada da placa mãe foi feita em meio YEP contendo os antibióticos necessários. A placa foi incubada por 2 a 5 dias a 19 °C. Em seguida, a Agrobacterium foi ressuspendida em meio de infecção (4,0 g.L 1 de N6 sais; 68,4 g.L 1 de sacarose; 36,0 g.L 1 de glicose; 0,7 g.L 1 de prolina; 1 ,5 mg.L 1 de 2,4-D; 1 ,0 mL.L 1 N6 vitaminas (1000X = 1 ,0 g.L-1 de tiamina HCI; 0,5 g.L-1 de piridoxina HCI; 0,5 g.L-1 ácido nicotínico); pH 5,2) suplementado com 100 mM de acetoseringona até atingir uma OD550 = 0,3-0, 4 e, incubada em agitador a ~150 rpm, 23 °C por 2 horas.
[0130] Para a infecção dos embriões imaturos de milho, 50 a 100 embriões foram coletados em 1 ml_ de meio de infecção acrescido de acetoseringona. Após a coleta, os embriões foram enxaguados duas vezes, 1 ml_ da cultura bacteriana foi adicionado e a suspensão incubada por cinco minutos a 23 °C. Após a infecção, os embriões foram transferidos para a superfície de meio de co-cultivo (4,0 g.L 1 de N6 sais; 1 ,5 mg.L 1 de 2,4-D; 30,0 g.L 1 de sacarose; 0,7 g.L 1 de prolina; 1 ,0 mL.L 1 N6 vitaminas (1000X); 0,85 mg.L·1 de AgN03; 100 pM de acetoseringona; 300 mg.L·1 de L-cisteína; 3,0 g.L·1 de phytagel; pH 5,8) com o escutelo voltado para cima. As placas foram incubadas no escuro a 20 °C por 3 a 5 dias. Após o co-cultivo os embriões foram transferidos para o meio de repouso (4,0 g.L·1 de N6 sais; 1 ,5 mg.L·1 de 2,4-D; 30,0 g.L 1 de sacarose; 0,5 g.L·1 de MES; 0,7 g.L 1 de prolina; 1 ,0 mL.L·1 N6 vitaminas (1000X); 0,85 mg.L 1 de AgN03; 100 mg.L-1 de Tioxin; 3,0 g.L-1 de phytagel; pH 5,8) a 28 °C (escuro) por 7 a 15 dias. Em seguida, os embriões foram transferidos para o meio de seleção (4,0 g.L1 de N6 sais; 1 ,5 mg.L 1 de 2,4-D; 30,0 g.L-1 de sacarose; 0,5 g.L-1 de MES; 0,7 g.L-1 de prolina; 1 ,0 mL.L 1 N6 vitaminas (1000X); 0,85 mg.L 1 de AgNOs; 100 mg.L 1 de Tioxin; 1 ,5 e 3,0 mg/L de bialaphos; 3,0 g.L-1 de phytagel; pH 5,8) (25 embriões/placa). Subcultivos destes embriões em meio seletivo são realizados a cada 15 dias até a seleção de calos crescendo vigorosamente.
[0131] Calos selecionados foram transferidos para meio de regeneração (4,62 g.L-1 de MS sais; 60,0 g.L-1 de sacarose; 100 mg.L 1 de mio-inositol; 1 ,0 ml_. L·1 de MS vitaminas (1000X); 1 ,5 mg/L de bialaphos; 4,0 g.L-1 de phytagel; pH 5,8) e incubados a 26 ± 2 °C (escuro) por 15 a 21 dias. Calos prontos para a germinação, possuindo aspecto seco e coloração branca opaca, foram transferidos para o meio de germinação (4,62 g.L-1 de MS sais; 30,0 g.L-1 de sacarose; 100 mg.L-1 de mio-inositol; 1 ,0 mL.L 1 de MS vitaminas (1000X = 0,5 g.L-1 de tiamina HCI; 0,5 g.L-1 de piridoxina HCI; 0,05 g.L-1 ácido nicotínico); 3,0 g.L-1 de phytagel; pH 5,8) (12 calos por placa), 25 °C, 80-100 pE/m2/sec de intensidade luminosa, 16 horas de fotoperíodo). Plântulas com folhas e raízes foram transferidas para a casa-de-vegetação dentro de 14 a 20 dias.
[0132] Quando as raízes estiveram bem desenvolvidas e as estruturas foliares mediram cerca de 5 cm de comprimento, as plântulas foram transplantadas para vasos em casa de vegetação contendo uma mistura de solo e matéria orgânica (2/3 de solo e 1/3 de matéria orgânica (TDP 30/15) produzida comercialmente. EXEMPLO 5 - GERAÇÃO DE EVENTOS DE MILHO TRANSGÊNICO CONTENDO O
GENE CRY1 PA
[0133] Foram gerados eventos de milho contendo a molécula de ácido nucleico códon-otimizada crylDa da presente invenção (SEQ ID NO: 1), conforme Tabela 2 abaixo. O evento ME240913 (Evento 01) foi gerado a partir da transformação do híbrido temperado Hill foi introgredido na linhagem tropical L3, utilizando seleção assistida por marcadores moleculares.
TABELA 2
Figure imgf000046_0001
EXEMPLO 6 - BIOENSAIOS
[0134] Visando avaliar a suscetibilidade do milho transgênico expressando a proteína Cryl Da (codificada a partir da molécula de ácido nucléico códon-otimizada da presente invenção), realizaram-se bioensaios em laboratório.
[0135] Os ensaios foram realizados da seguinte maneira: lagartas neonatas da espécie Spodoptera frugiperda foram inoculadas em folhas de plantas de milho transgênico cry1 Da mantidas em casa de vegetação e na isolinha não transgênica (5 lagartas por recipiente), em estágio V7 e V8. Após a infestação, os recipientes foram fechados e as avaliações das notas de danos ocorreram após 05 dias. Em cada caso, o delineamento experimental foi composto por grupo tratamento (evento ME240913 (Evento 1) de milho transgênico contendo a construção cryl Da) e grupo controle (milho não transgênico).
[0136] Os parâmetros avaliados foram: nota de injúria utilizando a escala proposta por Carvalho, 1970 (0: planta com folhas não- danificadas; 1 : planta apresentando folhas raspadas; 2: planta apresentando folhas furadas; 3: planta apresentando folhas rasgadas; 4: planta apresentando lesão no cartucho; e 5: planta apresentando cartucho destruído); sobrevivência de lagartas (contou-se o número de lagartas sobreviventes em cada vaso); e biomassa de lagartas (utilizando balança de precisão de quatro casas decimais).
EXEMPLO 7 - BIOENSAIOS PARA CONTROLE DE SPODOPTERA FRUGIPERDA E DIATREA SACCHARALIS UTILIZANDO OS EVENTOS TRANSGÊNICOS DE MILHO GERADOS
[0137] Ensaios com Spodoptera frugiperda : inicialmente, o evento ME240913 (Evento 1) foi testado para o controle de S. frugiperda. Sementes do evento foram germinadas em casa de vegetação e quando as plantas atingiram o estádio entre 10 e 12 folhas (final do estádio vegetativo), as duas folhas mais novas de cada planta foram utilizadas em bioensaios com Spodoptera frugiperda. Foram realizadas três repetições, com cinco lagartas por repetição. Utilizou-se folhas dos milhos Hill e L3 como controle negativo (lagartas crescem normalmente) e folhas do milho Viptera como controle positivo (lagartas não conseguem crescer). Neste primeiro teste foi verificado que o evento ME240913 (Evento 1) possuía boa capacidade de controlar o desenvolvimento da lagarta, atingindo 100% de mortalidade (Tabela 3).
TABELA 3 - AVALIAÇÃO DE EVENTOS TRANSGÊNICOS DE MILHO COM RELAÇÃO
AO CONTROLE DE SPODOPTERA FRUGIPERDA ÍBIOENSAIO 1)
Figure imgf000047_0001
Figure imgf000048_0001
[0138] O bioensaio com este evento foi repetido, utilizou-se, desta vez, quatro repetições com 20 lagartas por repetição, e os resultados confirmaram que este evento possuía a capacidade de controlar o desenvolvimento da S. frugiperda (Figura 4 representativa dos bioensaios de alimentação com Spodoptera frugiperda em milho não- transgênico e milho transgênico da presente invenção). Em época diferente, foi realizado outro bioensaio para teste de mais dois dos eventos cryl Da gerados: ME260913 - Evento 2 (cryl Da) e ME240913 - Evento 4 (cryl Da) (Tabela 4). Estes dois eventos gerados também foram capazes de controlar eficientemente o desenvolvimento de S. frugiperda.
TABELA 4 - AVALIAÇÃO DE EVENTOS TRANSGÊNICOS DE MILHO COM RELAÇÃO
AO CONTROLE DE SPODOPTERA FRUGIPERDA (BIOENSAIO 2)
Figure imgf000048_0002
Figure imgf000049_0001
[0139] Ensaios com Diatrea saccharalis\ os mesmos eventos testados para a S. frugiperda foram testados também para a Diatraea saccharalis. Cinco lagartas de um dia foram colocadas em folhas dos eventos transgênicos de milho e controles. Foi observado que o evento ME240913 (Evento 1) também foi capaz de controlar o desenvolvimento da D. saccharalis. Neste período, as lagartas não morreram, mas não foram capazes de crescer (Tabela 5).
TABELA 5 - AVALIAÇÃO DE EVENTOS TRANSGÊNICOS DE MILHO COM RELAÇÃO
AO CONTROLE DE PlATRAEA SACCHARALIS ÍBIOENSAIO 1)
Figure imgf000050_0001
[0140] Foi realizado um novo bioensaio com esse evento para confirmar a toxicidade. Desta vez, foram utilizadas quatro repetições e 20 lagartas em cada repetição. O mesmo resultado obtido anteriormente foi conseguido neste segundo ensaio (Figura 5 representativa dos bioensaios de alimentação com Diatrea saccharalis em milho não- transgênico e milho transgênico da presente invenção). Em época diferente, foi realizado outro bioensaio para teste de mais um dos eventos cryl Da gerados ME260913 - Evento 2 (cryl Da) (Tabela 6). Este evento também foi capaz de controlar eficientemente o desenvolvimento de D. saccharalis.
TABELA 6 - AVALIAÇÃO DE EVENTOS TRANSGÊNICOS DE MILHO COM RELAÇÃO
AO CONTROLE DE PlATRAEA SACCHARALIS (BIOENSAIO 2)
Figure imgf000051_0001
Figure imgf000052_0001
EXEMPLO 8 ANÁLISES DE EXPRESSÃO DO GENE CRYIDA NOS EVENTOS
TRANSGÊNICOS DE MILHO
[0141] Analisou-se a expressão do gene cryIDa por meio do ensaio de reação em cadeia da polimerase quantitativa (qPCR), de acordo com técnica padrão conhecida por um técnico no assunto. Os resultados desta análise mostraram que os eventos, capazes de inibir o crescimento das lagartas, expressam o gene cry1 Da de forma eficiente.
EXEMPLO 9 - BIOENSAIOS UTILIZANDO LAGARTAS RESISTENTES AO MILHO
TRANSGÊNICO CONTENDO O GENE CRY1F
[0142] Ensaios foram realizados para verificar o potencial da molécula de ácido nucleico códon-otimizada cryIDa da presente invenção no controle de S. frugiperda resistente à proteína cry1 F.
[0143] O experimento foi realizado em casa de vegetação, com o plantio do milho transgênico, compreendo a molécula de ácido nucleico códon-otimizada cryIDa da presente invenção (ME240913 (Evento 1 )) e do milho não transgênico (controle negativo). Lagartas neonatas pertencentes a duas populações distintas de Spodoptera frugiperda foram inoculadas nas plantas de milho (15 lagartas por planta), em estágio V7 e V8. Após a infestação, os vasos foram isolados com gaiola voil e as avaliações das notas de injúria ocorreram após 07, 14 e 21 dias. O delineamento experimental foi composto por 04 tratamentos, com 05 vasos cada, contendo de 02 a 03 plantas de milho por vaso:
[0144] Tratamento 1 : Evento transgênico da invenção ME240913 (Evento 01 ) infestado com a população de Spodoptera frugiperda resistente à proteína Cry1 F de acordo com Leite et al. 2016.
[0145] Tratamento 2: Linhagem isogênica L3 não transgênica infestada com a população de Spodoptera frugiperda resistente à proteína Cry1 F de acordo com Leite et al 2016.
[0146] Tratamento 3: Evento transgênico da invenção ME240913 (Evento 01 ) infestado com a população de lagartas suscetíveis oriunda de criação de manutenção do laboratório de entomologia da Embrapa Milho e Sorgo.
[0147] Tratamento 4: Linhagem isogênica não transgênica infestada com a população de lagartas suscetíveis oriunda de criação de manutenção do laboratório de entomologia da Embrapa Milho e Sorgo.
[0148] Os resultados indicaram que a planta transgênica compreendendo a molécula de ácido nucleico códon-otimizada crylDa da invenção foi capaz de controlar a infestação com a população de Spodoptera frugiperda resistente à proteína Cry1 F, tão bem quanto em relação à população suscetível, inibindo seu desenvolvimento (Figura 6) e protegendo a planta do ataque por tal praga (Figura 7), conforme observado pela nota de injúria (±IC, P=0,05). O percentual de sobrevivência de Spodoptera frugiperda, avaliada 21 dias após a liberação de lagartas em diferentes tratamentos, foi de 0% para os tratamentos 1 e 3, e cerca de 65% e 35% para os tratamentos 2 e 4, respectivamente. A biomassa de Spodoptera frugiperda, avaliada 21 dias após a liberação de lagartas em diferentes tratamentos, foi de 0% para os tratamentos 1 e 3, e cerca de 260 mg e 300 mg para os tratamentos 2 e 4, respectivamente. Em ambos os casos, as médias não sobrepostas pelo IC, diferem entre si (P=0,05).
BIBLIOGRAFIA
[0149] An G, Mitra A, Hong KC, Costa MA, Na K, Thornburg RW et al. (1989) Functional analysis of the 3’ control region of the potato wound- inducible proteinase inhibitor II gene. Plant Cell 1 :115-122.
[0150] Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta. 164(2):207-214.
[0151] Armstrong CL, Grenn CE, Phillips RL (1991). Development and availability of germplasm with high type II culture formation response. Maize Genet. Coop. Newsl. 65:92-93.
[0152] Baum AB, TB Johnson, BCCarlton (1999) Bacillus thuringiensis - Natural and recombinant biopesticide products, p.189-209. In F.R. Hall & J.J. Menn (eds.), Methods in Biotechnology: Biopesticides: Use and delivery. Totowa, Humana Press, 626p.
[0153] Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T- DNA border. Plant Mol. Biol. 20:1 195-1197.
[0154] Bevan (1984). Binary Agrobacterium tumefaciens Vectors for plant transformation. Nucleic Acids Research 12:8711-8721.
[0155] Bohorova NE, Luna B, Brito RM, Huerta LD, Hoisington DA (1995) Regeneration potential of tropical, subtropical, midaltitude, and highland maize inbreeds. Maydica. 40:275-281.
[0156] Bohorova N, Maciel AM, Brito RM et al. Selection and characterization of mexican strains of Bacillus thuringiensis active against four major lepidopteran maize pests. Entomophaga, Paris, v.4, p.153- 165, 1996. [0157] Boucias DG, Pedland JC (1998) Principies of insect pathology. Boston. Kluwer Academic Publishers, 537p.
[0158] Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Pena G, Nunez-Valdez M, Soberon M, Quintero R. (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strains collection. Appl. Environ. Microbiol. 64: 4965-4972.
[0159] Buchanan B, Gruíssem W, Jones R (2000) Biochemistry and Molecular Biology of Plants (Rockville: ASPP).
[0160] Cambell, C.H., and Gowri, G. (1990) Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol. 92, 1-11.
[0161] Carozzi NB, Kramer VC, Warren GW, Evola S, Koziel MG (1991) Prediction of insectidal activity of Bacillus thuringiensis strains by polymerase Chain reaction product profiles. Appl. Environ. Microbiol. 57(11):3057-3061.
[0162] Carvalho CHS, Bohorova NE, Bordall PN, Abreu LL,
Valicente FH, Bressan W, Paiva E (1994) Type-ll callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep. 17:73-76.
[0163] Carvalho RPL (1970) Danos, flutuação da população, controle e comportamento de Spodoptera frugiperda (J. E. Smith, 1797) e susceptibilidade de diferentes genótipos de milho, em condições de campo. Tese de Doutorado. Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba. 170p.
[0164] Chinault AC, Blakesley VA, Roessler E, Willis DG, Smith CA, Cook RG, Fenwick RG (1986) Characterization of trnaferable plasmids from Shigella flexneris that confer resistance to trimethoprim, streptomycin and sulfonamides. Plasmids 15:119-131.
[0165] Christensen, A. H.; Quail, P. H. Ubiquitin promoter-based vectors for high-levels expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, v. 5, p. 213- 218, 1996.
[0166] Cerón J, Covarrubias L, Quintero R, Ortiz A, Ortiz M Aranda, E Lina L, Bravo A (1994) PCR analasys of the cryl insecticidal crystal family genes from Bacillus thuringiensis. Appl. Environ. Microbiol. 60: 353-356.
[0167] Cerón J, Ortiz A, Quintero R, Giiereca I, Bravo A (1995). Specific PCR primers directed to identify cryl and crylll genes within Bacillus thuringiensis strain collection. App. Environ. Microbiol. 61 (11):3826-3831.
[0168] De Block M, De Brower D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91 :694-701.
[0169] Depicker, A.; Stachel, S.; Dhaese, P.; Zambryski, P.;
Goodman, H. M. Nopaline synthase: transcript mapping and DNA sequence. J. Mol. Appl. Genet., v. 1 , p. 561-573, 1982.
[0170] Diehn SH, Chiu WL, De Rocker EJ, Green PJ (1998)
Prematuration polyadenilation at multiple sites within a Bacillus thruringiensis toxin gene-coding region. Plant Physiol. 1 17:1433-1443.
[0171] Duncan DR, Williams ME, Zehr BE, Widholm JM The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 1985. 165(3):322-332.
[0172] Federici B (2002) Case study: Bt crops. In: Atherton K (Ed) Genetically modified crops: assessing safety (chapter 8). Taylor &
Francis, New York.
[0173] Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg EK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-Mediated transformation of maize embryos using a Standard binary vector system. Plant Physiol. 129:13-22.
[0174] Frame, B; Wang K. 2004. Maize Transformation. In: Transgenic crops of the world - Essential Protocols. lan S. Curtis (Ed). Kluwer Academic Publishers, Netherlands. pp. 45-61.
[0175] Gallie DR, Tanguay RL, Leathers V (1995) The tobacco etch virus 5’leader and poly(A) tail are functionally synergistic regulators of translation. Gene 1 :561-573.
[0176] Glare TR, M. 0’Callaghan (2000) Bacillus thuringiensis: Biology, Ecologyand Safety. JohnWiley & Sons, Ltd., 350p.
[0177] Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the“gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67 (1)16-37.
[0178] Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, 0’Brien JV, Chambers SA, Adams Jr. WR, Willetts NG, Riche TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603-618.
[0179] Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346-353.
[0180] Hajdukiewicz P, Svab Z, Maliga P (1994) the small, versatible pPZP Family of Agrobacterium binary vectors for plant transformation. Plant MOI. Biol. 25:989-994.
[0181] Hiei Y, Ohta S, Komari T, Kumasho T (1994) Efficient transformation of rice mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA. Plant J.6:271-282.
[0182] Huang X-Q, Wei Z-M (2004) High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea Mays L). 22(11):793-800.
[0183] Ikemura, T1985. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2: 13-34.
[0184] Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nature Protocols 2:1614-1621.
[0185] Ishida V, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 6:745-750.
[0186] Jarrett P, Burges HD (1982) Effect of bacterial varieties on the susceptibility of the greater wax moth Galleria mellonella to Bacillus thuringiensis and its significance in classification of the bacterium. 31 (4):346-352.
[0187] Joshi CP (1987) Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucleic Acids Res. 15(23): 9627-9640.
[0188] Leite, N. A., Mendes, S. M., Santos-Amaya, O. F., Santos, C. A., Teixeira, T. P., Guedes, R. N., & Pereira, E. J. (2016). Rapid selection and characterization of Cry1 F resistnce in a Brazilian strain of fall armyworm. Entomologia Experimentalis et Applicata, 158(3), 236-247.
[0189] Lessard PA, Kulaveerasingam H, York GM, Strong A,
Sinskey AJ. 2002. Manipulating gene expression for the metabolic engineering of plants. Metabolic Engineering 4, 67-79.
[0190] Liu D (2009). Design of gene constructs for transgenic maize. In: Methods in Molecular Biology: Transgenic Maize. M. Paul Scott (ed.). Humana Press. USA. 526:3-20.
[0191] Lupotto E, Conti E, Reali A, Lanzanova C, Baldoni E, Allegri L (2004) Improving in vitro culture and regeneration conditions for Agrobacterium-mediated maize transformation. Maydica 49:221-29. [0192] Mason HS, DeWald D, Mullet JE (1993) Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5:241-251.
[0193] Murray, E.E., Lotzer, J., and Eberle, M. (1989) Codon usage in plants. Nucleic Acids Res. 17, 477-498.
[0194] Odell JT, Nagy F, Chua NH. (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 6:810-812.
[0195] Novac FJ, Dolezelova M, Nesticky M, Piovaric A (1983) Somatic embryogenesis and plant regeneration in Zea mays L. Maydica. 23:381-390.
[0196] Ohme-Takagi M, Taylor CB, Newman TC, Green P (1993)
The effect of sequences with high AU content on mRNA stability in tobacco. Proc. Natl Acad. Sci. USA. 90:11811-11815.
[0197] Paz M; Shou H; Guo Z; Zhang Z; Banerjee A; Wang K.
Assessment of conditions affecting Agrobacterium-mediated soybean transformation using cotyledonary node explant. Euphytica, 136:167-179 (2004).
[0198] Petrillo CP, Carneiro NP, Purcino AAC, Carvalho CHS, Alves JD, Carneiro AA (2008) Otimização dos parâmetrod de bombardeamento de partículas para a transformação genética de linhagens brasileiras de milho. Pesq. Agropec. Bras. 43(3):371-378.
[0199] Perlak, F.J.; Fuchs, R.L.; Dean, D.A.; Mcpherson, S.L.; Fishholff, D.A. 1991.Modification of the coding sequence enhances plant expression of insect control protein genes. Proceedings of the National Academy of Sciences of the USA, 88:3324-3328.
[0200] Phillips RL, Somers DA, Hibberd KA (1988) Cell/Tissue Culture and in vitro manipulation p.345-387. Corn and corn improvement- agronomy. Monograph no. 18, Madison, 3 ed.
[0201] Priolli LM, Silva WJ (1989) Somatic embryogenesis and plant regeneration capacity in tropical maize inbreds. Rev. Brasil. Genet. 12:553-566.
[0202] Puigbo P., Guzmán E., Romeu A. and Garcia-Vallvé S. 2007.
OPTIMIZER: A web server utility that optimize a DNA or Protein sequence.Nucleic Acids Research, 35:W126-W131.
[0203] Rapela MA (1985) Organogenesis and somatic embryogenesis in tissue cultures of Argentina maize (Zea mays L.) J. Plant Physiol. 121 :119-122.
[0204] Santos-Serejo JA, Aguiar-Perecin MLR (2000) Genótipos de milho com alta capacidade para embriogênese somática e regerneração de plantas obtidos a partir de calos. Sei. Agri. 57(4):717-722.
[0205] Schafer W, Gorz A, Gunter K (1987) T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium tumefaciens. Nature 327:529-532.
[0206] Shaw, G., and Kamen, R. (1986) A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659-667.
[0207] Thompson CJ, Movva NR, Tichard R, Crameri R, Davies JE,
Lauwereys M (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopios. EMBO J. 6:2519-2523.
[0208] Tojo, A., Aizawa, K. 1983. Dissolution and degradation of Bacillus thuringiensis d-endotoxin by gut juice protease of the silkworm Bombyx mori. Appl Environ Microbiol 45: 576-580.
[0209] Valicente FH, Barreto MR (2003) Bacillus thuringiensis survey in Brazil: geographical distribution and insecticidal activity against Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotropical Entomology. 32(4):639-644.
[0210] Valicente FH, Barreto MR, Vasconcelos MJV, Figueiredo JEF, Paiva E (2000). Identificação através de PCR dos genes Cryl de cepas de Bacillus thuringiensis Berliner eficientes contra a lagarta do cartucho, Spodoptera frugiperda (J.E.Smith) (Lepidóptera: Noctuidae). Anais da Sociedade Entomológica do Brasil. 29(1): 147-153.
[0211] Vasil IK (1987) Developing cell and tissue culture Systems of the improvement of cereal and grass crops. J. Plant. Physiol. 128:193- 218.
[0212] White J, Chang SY, Bibb M, Bibb M (1990) A cassette containing the bar gene of S. hygroscopicus: a selectable marker for plant transformation. Nucl. Acids Res 18:1062.
[0213] Wilson T (1999) Untranslated eader sequences from RNA viruses as enhancers of translation. US patent #5,891 ,665.
[0214] Yammamoto T, GK Powell (1993) Bacillus thuringiensis
Crystal proteins: Recent Advances in understanding its insecticidal activity. In: Advanded Engineered Pesticides. Ed. Leo Kim. P3-42. New York. 430p.
[0215] Zhao Z-Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation of maize mediated by Agrobacterium tumefaciens. Mol Breed 8:323-333.

Claims

REIVINDICAÇÕES
1. MOLÉCULA DE ÁCIDO NUCLEICO CRY1DA CÓDON- OTIMIZADA, caracterizada por compreender uma sequência de ácido nucleico com pelo menos 70% de similaridade com a sequência definida como SEQ ID NO: 1.
2. MOLÉCULA, de acordo com a reivindicação 1 , caracterizada por compreender uma sequência de ácido nucleico com pelo menos 90% de similaridade com a sequência definida como SEQ ID NO: 1.
3. MOLÉCULA, de acordo com a reivindicação 2, caracterizada por ser a sequência definida como SEQ ID NO: 1.
4. CONSTRUÇÃO DE ÁCIDO NUCLEICO, caracterizada por compreender a molécula de ácido nucleico, conforme definida em qualquer uma das reivindicações 1 a 3.
5. CONSTRUÇÃO, de acordo com a reivindicação 4, caracterizada por compreender adicionalmente uma sequência promotora ligada operativamente à mencionada molécula de ácido nucleico.
6. CONSTRUÇÃO, de acordo com a reivindicação 5, caracterizada pela sequência promotora ser a sequência promotora do gene da ubiquitina de milho (ubi).
7. CONSTRUÇÃO, de acordo com qualquer uma das reivindicações
4 a 6, caracterizada por compreender adicionalmente uma sequência terminadora 3’ UTR.
8. CONSTRUÇÃO, de acordo com a reivindicação 7, caracterizada pela sequência terminadora 3’ UTR ser a sequência terminadora do gene da nopalina sintase (nos).
9. CONSTRUÇÃO, de acordo com qualquer uma das reivindicações 4 a 8, caracterizada compreender adicionalmente um gene de seleção, operativamente ligado a pelo menos uma sequência promotora e pelo menos uma sequência terminadora.
10. CONSTRUÇÃO, de acordo com a reivindicação 9, caracterizada pela sequência promotora ser a sequência promotora do gene CaMV 35S duplicado do vírus do mosaico da couve-flor e a sequência terminadora ser a sequência terminadora do gene Tvsp que codifica para a proteína de reserva vegetativa de soja.
11. CONSTRUÇÃO, de acordo com qualquer uma das reivindicações 4 a 10, caracterizada por compreender adicionalmente outras sequências reguladoras.
12. CONSTRUÇÃO, de acordo com qualquer uma das reivindicações
4 a 11 , caracterizada por compreender a sequência de ácido nucleico definida como SEQ ID NO: 10.
13. VETOR, caracterizado por compreender a molécula de ácido nucleico, conforme definida em qualquer uma das reivindicações 1 a 3, ou a construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12.
14. CÉLULA HOSPEDEIRA, caracterizada por compreender a molécula de ácido nucleico, conforme definida em qualquer uma das reivindicações 1 a 3, ou a construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12, ou o vetor, conforme definido na reivindicação 13.
15. CÉLULA VEGETAL, caracterizada por compreender a molécula de ácido nucleico, conforme definida em qualquer uma das reivindicações 1 a 3, ou a construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12.
16. PLANTA TRANSGÊNICA, caracterizada por compreender a molécula de ácido nucleico, conforme definida em qualquer uma das reivindicações 1 a 3, ou a construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12.
17. MÉTODO DE TRANSFORMAÇÃO DE CÉLULA, caracterizado por compreender a introdução em dita célula a molécula de ácido nucleico, conforme definida em qualquer uma das reivindicações 1 a 3, ou a construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12.
18. MÉTODO, de acordo com a reivindicação 17, caracterizado pela molécula de ácido nucleico integrar no genoma da célula.
19. MÉTODO DE PRODUÇÃO DE PLANTA TRANSGÊNICA, caracterizado por compreender a transformação de célula vegetal com a molécula de ácido nucleico, conforme definida em qualquer uma das reivindicações 1 a 3, ou com a construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12.
20. MÉTODO, de acordo com a reivindicação 19, caracterizado por compreender adicionalmente a seleção de célula vegetal transformada com a molécula de ácido nucleico, conforme definida em qualquer uma das reivindicações 1 a 3, ou com a construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12.
21. MÉTODO, de acordo com qualquer uma das reivindicações 19 a
20, caracterizado por compreender adicionalmente a regeneração de planta transgênica a partir da mencionada célula vegetal.
22. MÉTODO, de acordo com qualquer uma das reivindicações 19 a
21 , caracterizado pela planta transgênica ser resistente a pragas de cultura.
23. MÉTODO, de acordo com qualquer uma das reivindicações 19 a
22, caracterizado pela planta transgênica ser uma monocotiledônea.
24. MÉTODO, de acordo com a reivindicação 23, caracterizado pela monocotiledônea ser uma planta de milho, arroz, cana-de-açúcar, sorgo, trigo ou braquiária.
25. MÉTODO, de acordo com qualquer uma das reivindicações 22 a 24, caracterizado pela praga de cultura ser um inseto.
26. MÉTODO, de acordo com a reivindicação 25, caracterizado pelo inseto ser da ordem Lepidoptera.
27. MÉTODO, de acordo com a reivindicação 26, caracterizado pelo inseto ser Spodoptera frugiperda.
28. MÉTODO, de acordo com a reivindicação 26, caracterizado pelo inseto ser Diatrea saccharalis.
29. MÉTODO DE CONTROLE DE PRAGAS INVERTEBRADAS DE PLANTAS DE CULTIVO, em que as plantas de cultivo compreendem a molécula de ácido nucleico, conforme definida em qualquer uma das reivindicações 1 a 3, ou a construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12, caracterizado por compreender o plantio de sementes obtidas a partir de uma planta compreendendo a molécula de ácido nucleico, conforme definida em qualquer uma das reivindicações 1 a 3, ou a construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12, em uma área de cultivo de plantas de cultura suscetíveis a pragas invertebradas.
30. USO DA MOLÉCULA DE ÁCIDO NUCLEICO, conforme definida em qualquer uma das reivindicações 1 a 3, ou da construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12, caracterizado por ser para a produção de uma planta transgênica.
31. USO, de acordo com a reivindicação 30, caracterizado pela planta transgênica ser uma monocotiledônea.
32. USO, de acordo com a reivindicação 31 , caracterizado pela planta monocotiledônea ser uma planta de milho, arroz, cana-de-açúcar, sorgo, trigo ou braquiária.
33. USO, de acordo com qualquer uma das reivindicações 30 a 32, caracterizado pela planta transgênica ser resistente a pragas invertebradas.
34. USO DA MOLÉCULA DE ÁCIDO NUCLEICO, conforme definida em qualquer uma das reivindicações 1 a 3, ou da construção de ácido nucleico, conforme definida em qualquer uma das reivindicações 4 a 12, caracterizado por ser para o controle de pragas invertebradas.
35. USO, de acordo com a reivindicação 34, caracterizado pelas pragas invertebradas serem insetos.
PCT/BR2019/050158 2018-05-07 2019-04-30 Molécula de ácido nucleico cry1da códon-otimizada, construção de ácido nucleico, vetor, célula hospedeira, célula vegetal, planta transgênica, método para transformar uma célula, método para produzir uma planta transgênica, método de controle de pragas invertebradas de plantas de cultivo e usos da molécula de ácido nucleico WO2019213727A1 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980045855.7A CN113195723A (zh) 2018-05-07 2019-04-30 密码子优化的cry1Da核酸分子、核酸构建体、载体、宿主细胞、植物细胞、转基因植物、转化细胞的方法、生产转基因植物的方法、控制作物植物中的无脊椎害虫的方法和该核酸分子的用途
MX2020011877A MX2020011877A (es) 2018-05-07 2019-04-30 Molécula de ácido nucleico cry1da codón-optimizada, constructo de ácido nucleico, vector, célula huéped, célula vegetal, planta transgénica, método para transformar una célula, método para producir una planta transgénica, método de control de plagas invertebradas de plantas de cultivo y usos de la molécula de ácido nucleico.
US17/053,638 US20210340558A1 (en) 2018-05-07 2019-04-30 Codon-optimised cryida nucleic acid molecule, nucleic acid construct, vector, host cell, plant cell, transgenic plant, method for transforming a cell, method for producing a transgenic plant, method for controlling invertebrate pests of crop plants, and uses of the nucleic acid molecule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020180092634 2018-05-07
BR102018009263A BR102018009263A8 (pt) 2018-05-07 2018-05-07 Molécula de ácido nucleico cry1da códon-otimizada, construção de ácido nucleico, vetor, célula hospedeira, célula vegetal, planta transgênica, método para transformar uma célula, método para produzir uma planta transgênica, método de controle de pragas invertebradas de plantas de cultivo e usos da molécula de ácido nucleico

Publications (1)

Publication Number Publication Date
WO2019213727A1 true WO2019213727A1 (pt) 2019-11-14

Family

ID=68467168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050158 WO2019213727A1 (pt) 2018-05-07 2019-04-30 Molécula de ácido nucleico cry1da códon-otimizada, construção de ácido nucleico, vetor, célula hospedeira, célula vegetal, planta transgênica, método para transformar uma célula, método para produzir uma planta transgênica, método de controle de pragas invertebradas de plantas de cultivo e usos da molécula de ácido nucleico

Country Status (6)

Country Link
US (1) US20210340558A1 (pt)
CN (1) CN113195723A (pt)
AR (1) AR115282A1 (pt)
BR (1) BR102018009263A8 (pt)
MX (1) MX2020011877A (pt)
WO (1) WO2019213727A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021087586A1 (pt) * 2019-11-06 2021-05-14 Empresa Brasileira De Pesquisa Agropecuária - Embrapa Molécula de ácido nucléico do evento transgênico de milho me240913 expressando a proteína cry1da, célula, planta e semente transgênica, usos das mesmas, produto de planta, método, kit e amplicon para detecção do evento, e métodos para produzir uma planta transgênica e de controle de insetos-pragas lepidópteros

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089553B (zh) * 2023-10-18 2023-12-19 莱肯生物科技(海南)有限公司 一种核酸分子及其在培育抗虫植物中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380831A (en) * 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US5500365A (en) * 1989-02-24 1996-03-19 Monsanto Company Synthetic plant genes
US20050155103A1 (en) * 1996-11-27 2005-07-14 Monsanto Technology Llc Transgenic plants expressing lepidopteran-active delta-endotoxins
WO2007107302A2 (en) * 2006-03-21 2007-09-27 Bayer Bioscience N.V. Novel genes encoding insecticidal proteins
WO2015143311A1 (en) * 2014-03-21 2015-09-24 Agrigenetics, Inc. Cry1d for controlling corn earworm
WO2016061377A2 (en) * 2014-10-16 2016-04-21 Monsanto Technology Llc Lepidopteran-active cry1da1 amino acid sequence variant proteins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013402A1 (en) * 1995-10-13 1997-04-17 Dow Agrosciences Llc Modified bacillus thuringiensis gene for lepidopteran control in plants
US7279336B2 (en) * 2000-09-14 2007-10-09 Gelvin Stanton B Methods and compositions for enhanced plant cell transformation
KR101841298B1 (ko) * 2009-12-16 2018-03-22 다우 아그로사이언시즈 엘엘씨 곤충 내성 관리를 위한 cry1da 및 cry1fa 단백질의 병용 사용

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380831A (en) * 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US5500365A (en) * 1989-02-24 1996-03-19 Monsanto Company Synthetic plant genes
US20050155103A1 (en) * 1996-11-27 2005-07-14 Monsanto Technology Llc Transgenic plants expressing lepidopteran-active delta-endotoxins
WO2007107302A2 (en) * 2006-03-21 2007-09-27 Bayer Bioscience N.V. Novel genes encoding insecticidal proteins
WO2015143311A1 (en) * 2014-03-21 2015-09-24 Agrigenetics, Inc. Cry1d for controlling corn earworm
WO2016061377A2 (en) * 2014-10-16 2016-04-21 Monsanto Technology Llc Lepidopteran-active cry1da1 amino acid sequence variant proteins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PUIGBÒ, P. ET AL.: "OPTIMIZER: a web server for optimizing the codon usage of DNA sequences", NUCLEIC ACIDS RES., 2007, pages 126 - 31, XP002509075 *
SONG, F. S. ET AL.: "A novel synthetic CrylAb gene resists rice insect pests", GENET MOL RES., vol. 13, no. 2, 2014, pages 2394 - 2408, XP055651735 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021087586A1 (pt) * 2019-11-06 2021-05-14 Empresa Brasileira De Pesquisa Agropecuária - Embrapa Molécula de ácido nucléico do evento transgênico de milho me240913 expressando a proteína cry1da, célula, planta e semente transgênica, usos das mesmas, produto de planta, método, kit e amplicon para detecção do evento, e métodos para produzir uma planta transgênica e de controle de insetos-pragas lepidópteros

Also Published As

Publication number Publication date
BR102018009263A2 (pt) 2019-11-19
US20210340558A1 (en) 2021-11-04
AR115282A1 (es) 2020-12-16
CN113195723A (zh) 2021-07-30
BR102018009263A8 (pt) 2023-01-31
MX2020011877A (es) 2021-06-15

Similar Documents

Publication Publication Date Title
US11060103B2 (en) Genes encoding insecticidal proteins
US5182200A (en) T-dna promoters
Surekha et al. Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera
Yao et al. Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids
US20230127734A1 (en) Increased protein expression in plants
US9994621B2 (en) Genes encoding insecticidal proteins
JPS6094041A (ja) 昆虫耐性植物
CN105112441A (zh) 具有增强的产量相关性状的植物和用于产生该植物的方法
BR112020014816A2 (pt) Molécula de ácido nucleico, sonda, par de oligonucleotídeos iniciadores e kit ou microarranjo para detectar um evento de transformação de milho, produto, e, métodos para detectar um evento de transformação de milho, para reprodução de milho, para controlar uma população de pragas de lepidóptera, para eliminar pragas de lepidóptera e para reduzir dano de pragas de lepidóptera em milho.
Dodds et al. Potential use of Agrobacterium-mediated gene transfer to confer insect resistance in sweet potato
WO2001021821A2 (en) Insect-resistant rice plants
WO2019213727A1 (pt) Molécula de ácido nucleico cry1da códon-otimizada, construção de ácido nucleico, vetor, célula hospedeira, célula vegetal, planta transgênica, método para transformar uma célula, método para produzir uma planta transgênica, método de controle de pragas invertebradas de plantas de cultivo e usos da molécula de ácido nucleico
CN113913457B (zh) 一种抑制或杀灭桃蛀螟的方法及其应用
BR112018001373B1 (pt) Molécula de ácido nucleico isolada, cassete de expressão, vetor de expressão, célula hospedeira, métodos para produzir uma planta transgênica e uma semente transgênica, para controlar a população de uma praga lepidóptera, para exterminar uma praga lepidóptera e para reduzir os danos de uma peste lepidóptera a uma planta, e, par de iniciadores
ZHANG et al. Breeding and identification of insect-resistant rice by transferring two insecticidal genes, sbk and sck
CN100424177C (zh) 融合杀虫基因cryci及其应用
AU2020319744B2 (en) Synthetic nucleotide sequences encoding insecticidal crystal protein and uses thereof
AU2012258422B2 (en) Novel genes encoding insecticidal proteins
CN114008208A (zh) 编码CRY2Ai蛋白的经密码子优化的合成核苷酸序列及其用途
CN102993281A (zh) 杀虫蛋白质、其编码基因及用途
BRPI0807573A2 (pt) Composições e métodos úteis para recombinação sítio-dirigida em plantas.
US20080256670A1 (en) AtRSp gene promoters
CN102993279A (zh) 杀虫蛋白质、其编码基因及用途
CN102993282A (zh) 杀虫蛋白质、其编码基因及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19798853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19798853

Country of ref document: EP

Kind code of ref document: A1