WO2019212218A1 - 광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체 - Google Patents

광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체 Download PDF

Info

Publication number
WO2019212218A1
WO2019212218A1 PCT/KR2019/005168 KR2019005168W WO2019212218A1 WO 2019212218 A1 WO2019212218 A1 WO 2019212218A1 KR 2019005168 W KR2019005168 W KR 2019005168W WO 2019212218 A1 WO2019212218 A1 WO 2019212218A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
oxide film
sintered
nanoparticles
photosintered
Prior art date
Application number
PCT/KR2019/005168
Other languages
English (en)
French (fr)
Inventor
김학성
유충현
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180058780A external-priority patent/KR102088100B1/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to EP19796171.7A priority Critical patent/EP3783626A4/en
Publication of WO2019212218A1 publication Critical patent/WO2019212218A1/ko
Priority to US17/085,502 priority patent/US20210047533A1/en
Priority to US17/874,993 priority patent/US20220356365A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/047Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1136Conversion of insulating material into conductive material, e.g. by pyrolysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1492Periodical treatments, e.g. pulse plating of through-holes

Definitions

  • the present invention relates to a photosintered nanoink, a photosintering method, and a conductive nanostructure, and relates to a photosintered nanoink, a photosintering method, and a conductive nanostructure including copper nanoparticles.
  • Printed electronics technology has the advantages of low capital investment, eco-friendliness, and large-scale mass production compared to the existing photolithography process because the electrode can be formed by simple processes such as printing, sintering, and inspection.
  • flexible substrates such as PET, photopaper, and PI substrates
  • it can be applied to various electronic products such as flexible displays, solar cells, RFID, and flexible electronic products.
  • conductive inks using gold, silver, and copper nanoparticles are mainly used to form electrodes of electronic products.
  • One technical problem to be solved by the present invention is to provide a photosintered nanoink, a photosintering method, and a conductive nanostructure easily photosintered on a low heat resistant substrate.
  • Another technical problem to be solved by the present invention is to provide a low-cost photosintered nanoink, a photosintering method and a conductive nanostructure.
  • Another technical problem to be solved by the present invention is to provide an optical conductivity sintered nano ink, a photo sintering method and a conductive nano structure.
  • Another technical problem to be solved by the present invention is to sinter the copper nano ink, but to minimize the damage of the low heat resistant substrate.
  • Another technical problem to be solved by the present invention is to improve the adhesion between the copper nano-ink and the substrate.
  • the technical problem to be solved by the present invention is not limited to the above.
  • the present invention provides a conductive nanostructure.
  • the conductive nanostructure may include conductive nanoparticles and an oxide film surrounding the conductive nanoparticles.
  • the conductive nanoparticles may include copper nanoparticles, and the oxide layer may include Cu 2 O.
  • the plurality of the oxide films may include surrounding the conductive nanoparticles, respectively.
  • the ratio of the thickness of the oxide film to the radial length of the conductive nanoparticles may include 0.1% or more and 8% or less.
  • the thickness of the oxide film may include 0.1 nm or more and 7.8 nm or less.
  • the present invention provides a photo-sintered nano ink.
  • the photosintered nanoink may include a photosintering precursor including a conductive nanoparticle, and an oxide film surrounding the conductive nanoparticle, a polymer binder resin, and an adhesive.
  • the conductive nanoparticles may include copper nanoparticles, and the oxide layer may include Cu 2 O.
  • the polymer binder resin may include 0.5 to 5 wt% of the total weight of the photosintered nano ink.
  • the polymer binder resin may have a weight average molecular weight of 10,000 to 500,000.
  • the polymer binder resin polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), ethyl cellulose (EC), polyvinyl butyral, polyethylene glycol, polymethyl methacrylate, dextran And at least one of azobis and sodium dodecylbenzene sulfate.
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • EC ethyl cellulose
  • polyvinyl butyral polyethylene glycol
  • polymethyl methacrylate polymethyl methacrylate
  • dextran dextran
  • at least one of azobis and sodium dodecylbenzene sulfate at least one of azobis and sodium dodecylbenzene sulfate.
  • the adhesive may include at least one of a urethane resin, an acrylic resin, an epoxy resin, an epoxy silane, and a styrene resin.
  • the present invention provides a light sintering method.
  • the photosintering method may include preparing a photosintering nanoink including a conductive nanoparticle and a photosintering precursor including an oxide film surrounding the conductive nanoparticle, a polymer binder resin, and an adhesive, A photo-sintering ink coating step of coating a photo-sintered nano ink on a substrate, and a photo-sintering step of photo-sintering the photo-sintered nano ink coated on the substrate using white light.
  • the temperature at which the photosintered nanoink coated on the substrate is heated by the white light may include a temperature higher than the temperature at which the substrate is heated by the white light.
  • the preparing of the photo-sintered nano ink may include preparing conductive nanoparticles, providing oxygen on the conductive nanoparticles, forming the oxide film, and the conductive film on which the oxide film is formed. Mixing the nanoparticles with the base solution comprising the polymer binder resin, and the adhesive.
  • the concentration of oxygen provided on the conductive nanoparticles may include 8000 ppm or more and less than 17000 ppm.
  • the photosintering method comprises the steps of preparing a photosintering nanoink comprising a conductive nanoparticles, a photosintering precursor comprising an oxide surrounding the conductive nanoparticles, a polymer binder resin, and an adhesive, A photosintering ink coating step of coating the photosintered nano ink on a substrate, and a photosintering step of photosintering the photosintered nano ink coated on the substrate using white light.
  • the conductive nanoparticles may include copper nanoparticles
  • the oxide layer may include Cu 2 O. Accordingly, a light sintering method that can be easily applied to a substrate having low heat resistance characteristics such as a flexible substrate can be provided.
  • FIG. 1 is a flowchart illustrating a light sintering method according to an embodiment of the present invention.
  • FIG. 2 is a view showing a conductive nanostructure according to an embodiment of the present invention.
  • FIG. 3 is a diagram comparing conductive nanostructures having an oxide film including Cu 2 O and conductive nanostructures having an oxide film including CuO according to an exemplary embodiment of the present invention.
  • FIG. 4 is a view showing a light sintering process according to an embodiment of the present invention.
  • FIG. 5 is a graph of pulsed white light used in the light sintering method according to an embodiment of the present invention.
  • Example 6 is a photograph of the copper nanoparticles included in the photo-sintered nano ink according to Example 1 of the present invention.
  • FIG. 8 is a photograph comparing photosintered states of photosintered nanoinks according to Examples 1 and 2 of the present invention.
  • FIG. 9 is a photograph comparing the characteristics of the white light applied to the photo-sintered nano ink according to the embodiment of the present invention over time.
  • FIG. 13 is an XRD analysis graph of an oxide film-treated copper nanoparticles including photosintered nanoinks according to Example 1 of the present invention.
  • FIG. 14 is a graph comparing time-dependent characteristics of white light applied to photosintered nanoinks according to an embodiment of the present invention.
  • first, second, and third are used to describe various components, but these components should not be limited by the terms. These terms are only used to distinguish one component from another. Thus, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment.
  • Each embodiment described and illustrated herein also includes its complementary embodiment.
  • the term 'and / or' is used herein to include at least one of the components listed before and after.
  • connection is used herein to mean both indirectly connecting a plurality of components, and directly connecting.
  • FIG. 1 is a flowchart illustrating a light sintering method according to an embodiment of the present invention
  • Figure 2 is a view showing a conductive nanostructure according to an embodiment of the present invention.
  • the photo-sintered nano ink is prepared (S100).
  • the method may include mixing the conductive nanoparticles 10 having the oxide film 20 with the base solution.
  • the oxide film 20 may surround the conductive nanoparticles 10. Accordingly, the conductive nanostructure 100 may be formed. That is, the light sintered nano ink may be formed by mixing the base solution and the conductive nano structure 100 according to the embodiment. In other words, the conductive nanostructure 100 may be used as a photosintering precursor for manufacturing the photosintering nanoink.
  • the oxide film 20 may perform a function of sintering the sintered nanoparticles while minimizing damage to the low heat resistant substrate in the photosintering step described below.
  • damage is caused to the low heat resistant substrate by photosintering energy applied for sintering the photosintered nanoparticles. That is, the degree of light sintering energy necessary for sintering the light sintered nanoparticles may cause damage to the low heat resistant substrate.
  • the oxide film 20 increases the temperature of the photosintered nanoparticles when the oxide film 20 surrounds the photosintered nanoparticles. can do. Accordingly, the sintering quality of the nanoparticles can be improved.
  • the light sintering energy applied to the low heat resistant substrate is low, damage to the substrate can be minimized. It is possible to improve the quality of sintering while preventing damage to the low heat resistant substrate.
  • the low heat resistant substrate may mean a substrate made of a material having a glass transition temperature (Tg) of 200 degrees or less, for example, a polymer, such as PES, PC, PET, and PEN.
  • Tg glass transition temperature
  • a ratio (t / R,%) of the thickness t of the oxide film 20 to the thickness t of the oxide film 20 and the length of the radius R of the conductive nanoparticle 10 is determined.
  • the thickness of the oxide film 20 may be controlled to 0.1 nm or more and 7.8 nm or less.
  • the ratio (t / R) of the thickness t of the oxide film 20 to the radius R of the conductive nanoparticles 10 may be controlled to 0.1% or more and 8% or less. Accordingly, the photosintered nano ink can be easily photosintered even in low energy white light.
  • the thickness of the oxide film 20 is less than 0.1 nm or the ratio of the thickness t of the oxide film 20 to the length of the radius R of the conductive nanoparticle 10 is less than 0.1%.
  • the thickness of the oxide film 20 is too thin, a problem that can not prevent damage to the substrate from the white light may occur. That is, since the energy of the white light required for sintering the nanoparticles 10 is not sufficiently lowered, the substrate 10 may be damaged.
  • the thickness of the oxide film 20 is greater than 7.8 nm or the thickness (t) ratio (t / R) of the oxide film 20 to the length of the radius (R) of the conductive nanoparticles 10 is greater than 8% In this case, the thickness of the oxide film 20 is too thick, may cause a problem that light sintering is not easily performed.
  • a ratio (t / R,%) of the thickness t of the oxide film 20 to the thickness t of the oxide film 20 and the length of the radius R of the conductive nanoparticle 10 is determined.
  • concentration of oxygen provided to the conductive nanoparticles 10 may be controlled.
  • the concentration of oxygen provided to the conductive nanoparticles 10 may be greater than or equal to 8000 ppm and less than 17000 ppm.
  • the ratio of the thickness t of the oxide film 20 to the length t of the oxide film 20 and the length of the radius R of the conductive nanoparticle 10 is in the above-described range. Can be controlled.
  • the concentration of oxygen provided to the conductive nanoparticles 10 is 17000 ppm or more, the thickness of the oxide film 20 becomes too thick, so that a large number in the photosintering nano ink in the photosintering step described later. Pore of can be formed. When a large number of pores are formed in the photosintered nanoink, a problem may occur in that conductivity is reduced.
  • the conductive nanoparticles may be copper nanoparticles.
  • the photosintering method according to the embodiment may have economic advantages.
  • the oxide layer formed by providing oxygen to the copper nanoparticles may include Cu 2 O.
  • the oxide film contains CuO may exceed the nanosize. More specific details of the above description will be described with reference to FIG. 3.
  • FIG. 3 is a diagram comparing conductive nanostructures having an oxide film including Cu 2 O and conductive nanostructures having an oxide film including CuO according to an exemplary embodiment of the present invention.
  • the conductive nanostructures 100 according to the embodiment may include a plurality of oxide films. 20 may surround each of the plurality of conductive nanoparticles 10. Accordingly, the same number of conductive nanostructures 100 as the conductive nanoparticles 10 may be formed. In addition, the formed plurality of conductive nanostructures 100 may be spaced apart from each other. As a result, the conductive nanostructure 100 according to the embodiment may have a size of nano (nano).
  • the oxide film 60 including CuO may include a plurality of conductive nanoparticles 50. Can be enclosed simultaneously. Accordingly, when the number of the conductive nanoparticles 50 increases, as the oxide layer 60 including CuO surrounds a large number of the conductive nanoparticles 50, a problem of increasing size increases. May occur. As a result, when the oxide film of the conductive nanostructure includes CuO, a problem may occur that is larger than the size of nano.
  • the base solution may include a dispersant, a solvent, a polymer binder resin, and an adhesive.
  • the dispersant may be a copolymer including ionic groups such as Disperbyk 180, Disperbyk 111, Styrenemaleic hydride copolymer (SMA 1440flake), 2-butoxyethyl acetate, propylene glycol monomethyl ether acetate, di Ethylene glycol monoethyl ether acetate, ethylene glycol butyl ether, cyclohexanone, cyclohexanol, 2-ethoxyethyl acetate, ethylene glycol diacetate, A-terpineol, isobutyl alcohol, and diethyllene glycol butyl ether).
  • the solvent is ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol ( dipropylene glycol, hexylene glycol, glycerin, isopropyl alcohol, 2-methoxy ethanol, pentyl alcohol, hexyl alcohol alcohol, butyl alcohol, octyl alcohol, form amide, methyl ethyl ketone, ethyl alcohol, methyl alcohol, and acetone acetone).
  • the polymer binder resin may be ethyl cellulose (EC), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyvinyl butyral, polyethylene glycol, polymethyl methacrylate, dextran, azobis And at least one of sodium dodecyl benzene sulfate.
  • EC ethyl cellulose
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • polyvinyl butyral polyethylene glycol
  • polymethyl methacrylate polymethyl methacrylate
  • dextran dextran
  • azobis azobis And at least one of sodium dodecyl benzene sulfate.
  • the polymeric binder resin can function as a reducing agent.
  • the polymer binder resin may perform a function of reducing the oxide film.
  • photosintering energy for example, ethyl cellulose (EC)
  • alcohol-based gas may be generated while the ethyl cellulose (EC) is decomposed.
  • the generated alcoholic gas can reduce the oxide film.
  • the nanoparticles with reduced oxide film can be sintered.
  • the oxide film serves to trap the photosintering energy applied to the nanoparticles, thereby helping to reach the temperature required for the sintering. After that, the oxide film may be removed by a reducing agent.
  • the polymer binder resin may be 0.5 to 5 wt% with respect to the total weight of the photosintered nano ink.
  • the polymer binder resin may have a weight average molecular weight of 10,000 to 500,000.
  • the polymer binder resin may not be easily dispersed in the base solution.
  • the polymer binder resin when the polymer binder resin has a weight average molecular weight of more than 5 wt% or more than 500,000 of the total weight of the photo-sintered nano ink, the polymer binder resin may be agglomerated in the base solution.
  • the adhesive may include at least one of urethane resin, acrylic resin, epoxy resin, epoxy silane, and styrene resin.
  • the adhesive may be polyurethane diol (PUD).
  • the adhesive may prevent the heat generated from the photosintered nanoink in the photosintering step described later, to be transferred to the substrate. Accordingly, the adhesive can prevent thermal deformation of the substrate.
  • the adhesive may improve the adhesion between the photo-sintered nano ink and the substrate may be provided with excellent strength and rigidity. As a result, when the photosintered nanoink according to the embodiment includes the adhesive, in the photosintering step, a polymer substrate having low heat resistance characteristics may be used.
  • the low heat resistant substrate may refer to a substrate made of a material having a glass transition temperature (Tg) of 200 degrees or less, for example, a polymer, such as PES, PC, PET, and PEN.
  • Tg glass transition temperature
  • the flexible substrate which is a next generation substrate, has a low heat resistance property, and in the case of such a low heat resistance substrate, deformation may be caused by high temperature heat generated in the photosintering step.
  • the adhesive may prevent the heat generated in the photosintering step from being transferred to the substrate as described above. Accordingly, when the photosintered nanoink according to the embodiment includes the adhesive, substrates having low heat resistance characteristics in the photosintering process may be used.
  • FIG. 4 is a view showing a light sintering process according to an embodiment of the present invention.
  • the light sintered nano ink 200 may be coated on the substrate 300 (S200).
  • the substrate 300 may include photo paper, PET, paper, polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, polyethylene naphthalate (PEN), acrylic resin, heat resistant epoxy ( Epoxy), BT epoxy / glass fiber, vinyl acetate resin (EVA), butyl rubber resin, polyarylate, and polyimide.
  • the photo-sintered nano ink 200 may be screen printed, inkjet printed, micro-contact printed, imprinted on the substrate 300. ), Gravure printing, gravure-offset printing, flexography printing, and spin coating.
  • the light sintered nano ink 200 may be dried.
  • the light sintered nano ink 200 may be dried by any one method of NIR irradiation, a hot air fan, an oven (heat chamber), a hot plate (hot plate), infrared irradiation.
  • the drying temperature in the step of drying the optical sintered nano ink 200, the drying temperature may be maintained at 60 °C to 150 °C.
  • the drying temperature when the drying temperature is less than 60 ° C., the light sintered nano ink 200 may not be sufficiently dried.
  • the drying temperature when the drying temperature is more than 150 °C can damage the substrate 300.
  • the light sintering nano ink 200 is not sufficiently dried or the substrate 300 is damaged, there may be a problem that the light sintering described below is not easily performed.
  • the optical sintered nano ink 200 may be photosintered by irradiating microwave white light (S300).
  • the microwave white light may be irradiated from the light source 400.
  • the light source 400 may be a xenon flash lamp.
  • step S300 A detailed description of step S300 will be made with reference to FIG. 5.
  • FIG. 5 is a graph of pulsed white light used in the light sintering method according to an embodiment of the present invention.
  • a pulse width of the light source 400 may be 0.01 to 100 ms.
  • the pulse gap of the light source 400 may be 0.01 to 10 ms.
  • the pulse number of the light source 400 may be 1 to 100 times.
  • the intensity of the light source 400 may be 0.1 J / cm 2 to 100 J / cm 2 .
  • the intensity of the light source 400 may vary depending on the type of the substrate 300. For example, when the substrate 300 is a PET substrate, the intensity of the light source 400 may be 1 to J / cm 2 to 5 J / cm 2 . In contrast, when the substrate 300 is a PI substrate, the intensity of the light source 400 may be 5 J / cm 2 to 20 J / cm 2 .
  • the pulse width of the light source 400 is greater than 100 ms, the incident energy per unit time is reduced, so that the efficiency of sintering may be lowered. If the pulse gap is greater than 10 ms or the number of pulses is greater than 100 times, and the intensity is less than 0.1 J / cm 2 , the photosintering ink 300 cannot be sintered due to too low energy, and the pulse gap is 0.01 If the size is less than ms or the intensity is greater than 100 J / cm 2 , there is a problem that the lifespan of the equipment and the lamp is rapidly reduced because the equipment and the lamp are exerted.
  • the photosintering method according to an embodiment of the present invention, the conductive nanoparticles 10, and a photo sintering precursor including the oxide 20 surrounding the conductive nanoparticles, the polymer binder resin, and the adhesive
  • the photosintering nanoink may include a photosintering step of photosintering using white light.
  • the conductive nanoparticles 10 may include copper nanoparticles
  • the oxide layer 20 may include Cu 2 O.
  • the light sintering method according to an embodiment of the present invention as the conductive nanoparticles 10 included in the light sintered nano ink is surrounded by the oxide 20, even with low energy white light, Sintering can be easily performed. As a result, a light sintering method can be provided that can be easily applied to a substrate having low heat resistance characteristics such as a flexible substrate.
  • the light sintering method, the light sintering nano ink, and the conductive nano structure according to the embodiment of the present invention have been described.
  • specific experimental examples and characteristics evaluation results of the light sintering method, the light sintering nano ink, and the conductive nano structure according to the embodiment of the present invention will be described.
  • DEGPE diethylene glycol butyl ether
  • EG Ethylene glycol
  • A-terienol 0.15g of EC (Ethylcellulose)
  • PUD Polyurethane diol
  • the optical sintered nanoink according to Example 1 was printed on a PET substrate having a thickness of 50 ⁇ m at a speed of 100 mm / s using a screen printer, and dried using infrared rays having a temperature of 100 ° C.
  • Microwave white light was irradiated to sinter the photosintered nanoink according to Example 1.
  • the number of pulses of the microwave white light is one
  • the pulse width is 2 ms
  • the light sintering energy is 3 J / cm 2 .
  • the base solution described in the method for preparing the photosintered nanoink according to Example 1 is prepared.
  • the optical sintered nano ink according to Example 2 was printed on a PET substrate having a thickness of 50 ⁇ m at a speed of 100 mm / s using a screen printer, and dried using infrared rays having a temperature of 100 ° C.
  • Microwave white light was irradiated to sinter the photosintered nanoink according to Example 2.
  • the number of pulses of the microwave white light is one
  • the pulse width is 2 ms
  • the light sintering energy is 3 J / cm 2 .
  • the base solution described in the method for preparing the photosintered nanoink according to Example 1 is prepared.
  • the optical sintered nanoink according to Example 3 was printed on a PI substrate having a thickness of 25 ⁇ m at a speed of 100 mm / s using a screen printer, and dried using infrared rays having a temperature of 100 ° C.
  • Microwave white light was irradiated to sinter the photosintered nanoink according to Example 3.
  • the number of pulses of the microwave white light is one
  • the pulse width is 5 ms
  • the light sintering energy is 6 J / cm 2 .
  • the base solution described in the method for preparing the photosintered nanoink according to Example 1 is prepared.
  • the optical sintered nanoink according to Example 4 was printed on a PI substrate having a thickness of 25 ⁇ m at a speed of 100 mm / s using a screen printer, and dried using infrared rays having a temperature of 100 ° C.
  • Microwave white light was irradiated to sinter the photosintered nanoink according to Example 4.
  • the number of pulses of the microwave white light is one
  • the pulse width is 5 ms
  • the light sintering energy is 6 J / cm 2 .
  • the base solution described in the method for preparing the photosintered nanoink according to Example 1 is prepared.
  • the optical sintered nano ink according to Example 4 was printed on a PET substrate having a thickness of 50 ⁇ m at a speed of 100 mm / s using a screen printer, and dried using infrared rays having a temperature of 100 ° C.
  • Microwave white light was irradiated to sinter the photosintered nanoink according to Example 4.
  • the number of pulses of the microwave white light is one
  • the pulse width is 5 ms
  • the light sintering energy is 3 J / cm 2 .
  • the optical sintered nanoink according to Comparative Example 1 prepared was printed on a PET substrate having a thickness of 50 ⁇ m at a speed of 100 mm / s using a screen printer, and dried using infrared rays having a temperature of 100 ° C.
  • Microwave white light was irradiated to photosinter the photosintered nanoink according to Comparative Example 1.
  • the number of pulses of the microwave white light is one
  • the pulse width is 2 ms
  • the light sintering energy is 3 J / cm 2 .
  • Example 1 O 8000 ppm PET 1 pulse, pulse width 2 ms, energy 3 J / cm 2
  • Example 2 O 17000 ppm PET 1 pulse, pulse width 2 ms, energy 3 J / cm 2
  • Example 3 O 8000 ppm PI 1 pulse, pulse width 5 ms, energy 6 J / cm 2
  • Example 4 O 17000 ppm PI 1 pulse, pulse width 5 ms, energy 6 J / cm 2
  • Example 5 O 8000 ppm PET 1 pulse, pulse width 5 ms, energy 3 J / cm 2 Comparative Example 1 X 8000 ppm PET 1 pulse, pulse width 2 ms, energy 3 J / cm 2
  • Example 6 is a photograph of the copper nanoparticles included in the photo-sintered nano ink according to Example 1 of the present invention.
  • FIGS. 7A and 7B HR-TEM images of copper nanoparticles included in the photo-sintered nanoinks according to Examples 1 and 2 were used.
  • the copper nanoparticles contained in the photo-sintered nano-ink according to Example 1 it was confirmed that the thickness of the oxide film is about 3.1 nm.
  • the copper nanoparticles contained in the photo-sintered nano-ink according to Example 2 it was confirmed that the thickness of the oxide film is about 5.1 nm.
  • FIG. 8 is a photograph comparing photosintered states of photosintered nanoinks according to Examples 1 and 2 of the present invention.
  • FIGS. 8A and 8B SEM (Scanning Electron Microscope) images of the photo-sintered nano-inks according to Example 1 and Example 2 were optically sintered.
  • Figure 8 (a) when the photo-sintered nano-ink according to Example 1 is optically sintered, it was confirmed that there are almost no pores (pore) after sintering.
  • Figure 8 (b) when the photo-sintered nano-ink according to the second embodiment is photo-sintered, it can be confirmed that the pores (proe) formed after sintering.
  • the concentration of oxygen treated to form an oxide film of copper nanoparticles should be controlled to 8000 ppm or more and less than 17000 ppm.
  • FIG. 9 is a photograph comparing the characteristics of the white light applied to the photo-sintered nano ink according to the embodiment of the present invention over time.
  • the resistance (Resistivity, ⁇ cm) of the photo-sintered nanoinks according to Examples 1 to 4 was measured and shown. As can be seen in Figure 12, the resistance of the photo-sintered nano ink according to the embodiments 3 and 4 is similar, but the photo-sintered nano ink according to the embodiments 1 and 2 is confirmed that a significant difference in resistance appears could.
  • the oxygen concentration of the oxide film of the copper nanoparticles included in the photo-sintered nano ink is different between 8000 ppm and 17000 ppm, the difference in resistance is not large on the PI substrate, but the PET substrate is remarkably different. have.
  • the concentration of oxygen treated to form an oxide film of copper nanoparticles should be controlled to 8000 ppm or more and less than 17000 ppm. It can also be seen that the concentration of oxygen can be controlled according to the glass transition temperature of the target substrate.
  • FIG. 13 is an XRD analysis graph of an oxide film-treated copper nanoparticles including photosintered nanoinks according to Example 1 of the present invention.
  • Intensity (au) according to 2theta (°) of the oxide film-treated copper nanoparticles included in the photo-sintered nanoink according to Example 1 was measured. As can be seen in FIG. 13, it can be seen that the copper nanoparticles subjected to the oxide film treatment included in the photosintered nanoink according to Example 1 include only Cu 2 O in the oxide film.
  • FIG. 14 is a graph comparing time-dependent characteristics of white light applied to photosintered nanoinks according to an embodiment of the present invention.
  • the oxide film of the copper nanoparticles may be made of a copper oxide film. That is, the oxide film may be based on the same components as those of the nanoparticles.
  • the oxide film may be made of Cu 2 O.
  • CuO is used as the oxide film, chemically stable but photosintered nanoparticles form agglomerates, thereby deteriorating photosintering quality.
  • the present invention has experimentally proved that by applying Cu 2 O as an oxide film, a low resistance photo-sintered electrode can be manufactured in a low heat resistant substrate.
  • the nano ink since the nano ink contains an adhesive, it may serve to block photosintering energy applied to the substrate. Accordingly, damage to the low heat resistant substrate can be minimized. In other respects, it is meaningful in that the low heat resistant substrate can be protected by an adhesive, thereby increasing the intensity of photosintering energy. Furthermore, the adhesion between the nanoparticles sintered by the adhesive, that is, the electrode and the substrate, can be greatly improved. Accordingly, even in a flexible environment, mechanically robust characteristics may be provided.
  • the thickness of the oxide film can be controlled according to the characteristics of the substrate and can be easily controlled by adjusting the oxygen flow rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

광소결 나노잉크가 제공된다. 상기 광소결 나노잉크는 전도성 나노입자, 및 상기 전도성 나노입자를 둘러싸는 산화막을 포함하는 광소결 전구체, 고분자 바인더 수지, 및 접착제를 포함할 수 있다.

Description

광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체
본 발명은 광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체에 관한 것으로서, 구리 나노입자를 포함하는 광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체에 관련된 것이다.
최근 전자 소자 또는 장치 제조에 있어서 인쇄 기반의 인쇄전자 기술이 주목 받고 있다. 인쇄전자 기술이란 인쇄, 소결, 검사라는 간단한 공정만으로 전극 형성이 가능하기 때문에 적은 공정으로 인하여 기존 포토리소그래피 공정에 비해 월등히 낮은 설비 투자비용, 친환경성, 대면적 대량생산 등의 이점을 가지고 있다. 또한, PET, photopaper, PI 기판과 같은 유연 기판에 적용이 가능하기 때문에 플렉서블 디스플레이, 태양 전지, RFID, 플렉서블 전자제품 등 다양한 전자 제품에 적용이 가능하다. 현재 전자 제품의 전극의 형성을 위해 금, 은, 그리고 구리 나노입자를 이용한 전도성 잉크가 주로 이용되고 있다. 기존의 전도성 나노 잉크의 소결 방법은 현재 열 소결 방법이 있으나 300°C 이상의 고온에서 소결이 이루어지기 때문에 차세대 기판인 플렉서블 기판에 적용이 불가능하다. 따라서 새로운 소결 방법으로 레이저 소결법, 플라즈마 소결법, 마이크로웨이브 소결법 등이 제안되었으나, 대량생산에 적합하지 못해 본 발명자에 의해 백색광 극단파 광소결 방법이 개발되었다.
상기 제안된 백색광 극단파 광소결 방법을 이용하여 저가형 전극 제조를 위해 플렉서블 기판에 인쇄되는 저가형 전도성 나노 잉크의 관점에서 많은 개발이 이루어지고 있다. 이에 고내열성 플렉서블 기판에 적용되는 광소결형 전도성 구리 나노잉크 및 페이스트의 개발이 활발하게 이루어졌으나, 저가형 플렉서블 기판인 저내열성 폴리머 기판에는 낮은 전기 전도성, 낮은 접착 특성으로 인해 적용에 어려움이 있다. 따라서 플렉서블 기판위에 형성되는 전극의 저가화를 위해서는 저내열성 폴리머 기판에 소결되는 저가형 전도성 구리 나노잉크의 개발이 필요한 실정이다.
본 발명이 해결하고자 하는 일 기술적 과제는, 저내열성 기판에 용이하게 광소결 되는 광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체를 제공하는 데 있다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 비용이 저렴한 광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체를 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 전기 전도도가 향상된 광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체를 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는 구리 나노잉크를 광소결하되, 저내열성 기판의 손상을 최소화하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는 구리 나노잉크와 기판 간의 접착력을 향상시키는 데 있다.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다.
상술된 기술적 과제들을 해결하기 위해 본 발명은 전도성 나노 구조체를 제공한다.
일 실시 예에 따르면, 상기 전도성 나노 구조체는 전도성 나노입자, 및 상기 전도성 나노입자를 둘러싸는 산화막을 포함할 수 있다.
일 실시 예에 따르면, 상기 전도성 나노입자는 구리 나노입자를 포함하고, 상기 산화막은 Cu2O를 포함할 수 있다.
일 실시 예에 따르면, 상기 전도성 나노입자 및 상기 산화막이 복수개인 경우, 복수의 상기 산화막은 각각 상기 전도성 나노입자를 둘러싸는 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 전도성 나노입자의 반지름 길이에 대한 상기 산화막의 두께의 비율은, 0.1 % 이상 8 % 이하인 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 산화막의 두께는 0.1 nm 이상 7.8 nm 이하인 것을 포함할 수 있다.
상술된 기술적 과제들을 해결하기 위해 본 발명은 광소결 나노잉크를 제공한다.
일 실시 예에 따르면, 상기 광소결 나노잉크는 전도성 나노입자, 및 상기 전도성 나노입자를 둘러싸는 산화막을 포함하는 광소결 전구체, 고분자 바인더 수지, 및 접착제를 포함할 수 있다.
일 실시 예에 따르면, 상기 전도성 나노입자는 구리 나노입자를 포함하고, 상기 산화막은 Cu2O를 포함할 수 있다.
일 실시 예에 따르면, 상기 고분자 바인더 수지는 상기 광소결 나노잉크 전체 중량 대비 0.5 내지 5 wt%인 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 고분자 바인더 수지는 10,000 내지 500,000의 중량평균분자량을 가질 수 있다.
일 실시 예에 따르면, 상기 고분자 바인더 수지는, 폴리비닐필롤리돈 (PVP), 폴리비닐알콜 (PVA), 에틸셀룰로오스(EC), 폴리비닐부티랄, 폴리에틸렌글리콜, 폴리메틸메타크릴레이트, 덱스트란, 아조비스 및 도데실벤젠황산나트륨 중 적어도 어느 하나를 포함할 수 있다.
일 실시 예에 따르면, 상기 접착제는, 우레탄 수지, 아크릴 수지, 에폭시 수지, 에폭시 실란, 및 스틸렌 수지 중 적어도 어느 하나를 포함할 수 있다.
상술된 기술적 과제들을 해결하기 위해 본 발명은 광소결 방법을 제공한다.
일 실시 예에 따르면, 상기 광소결 방법은 전도성 나노입자, 및 상기 전도성 나노입자를 둘러싸는 산화막을 포함하는 광소결 전구체, 고분자 바인더 수지, 및 접착제를 포함하는 광소결 나노잉크를 준비하는 단계, 상기 광소결 나노잉크를 기판 상에 코팅하는 광소결 잉크 코팅 단계, 및 상기 기판 상에 코팅된 상기 광소결 나노잉크를 백색광을 이용하여 광소결하는 광소결 단계를 포함할 수 있다.
일 실시 예에 따르면, 상기 광소결 단계에서, 상기 기판 상에 코팅된 상기 광소결 나노잉크가 상기 백색광에 의하여 가열된 온도는, 상기 기판이 상기 백색광에 의하여 가열된 온도 보다 높은 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 광소결 나노잉크를 준비하는 단계는, 전도성 나노입자를 준비하는 단계, 상기 전도성 나노입자 상에 산소를 제공하여, 상기 산화막을 형성시키는 단계, 및 상기 산화막이 형성된 상기 전도성 나노입자를, 상기 고분자 바인더 수지, 및 상기 접착제를 포함하는 베이스 용액과 혼합하는 단계를 포함할 수 있다.
일 실시 예에 따르면, 상기 산화막을 형성시키는 단계에서, 상기 전도성 나노입자 상에 제공되는 산소의 농도는 8000 ppm이상 17000ppm 미만인 것을 포함할 수 있다.
본 발명의 실시 예에 따른 광소결 방법은, 전도성 나노입자, 및 상기 전도성 나노입자를 둘러싸는 산화물을 포함하는 광소결 전구체, 고분자 바인더 수지, 및 접착제를 포함하는 광소결 나노잉크를 준비하는 단계, 상기 광소결 나노잉크를 기판 상에 코팅하는 광소결 잉크 코팅 단계, 및 상기 기판 상에 코팅된 상기 광소결 나노잉크를 백색광을 이용하여 광소결하는 광소결 단계를 포함할 수 있다. 상기 광소결 나노잉크를 준비하는 단계에서, 상기 전도성 나노입자는 구리 나노입자를 포함하고, 상기 산화막은 Cu2O를 포함할 수 있다. 이에 따라, 플렉서블 기판과 같이 저내열성 특성을 갖는 기판에서도 용이하게 적용 가능한 광소결 방법이 제공될 수 있다.
도 1은 본 발명의 실시 예에 따른 광소결 방법을 설명하는 순서도이다.
도 2는 본 발명의 실시 예에 따른 전도성 나노 구조체를 나타내는 도면이다.
도 3은 본 발명의 실시 예에 따라 Cu2O를 포함하는 산화막을 갖는 전도성 나노 구조체 및 CuO를 포함하는 산화막을 갖는 전도성 나노 구조체를 비교하는 도면이다.
도 4는 본 발명의 실시 예에 따른 광소결 공정을 나타내는 도면이다.
도 5는 본 발명의 실시 예에 따른 광소결 방법에 사용되는 펄스 백색광에 대한 그래프이다.
도 6은 본 발명의 실시 예 1에 따른 광소결 나노잉크가 포함하는 구리나노입자를 촬영한 사진이다.
도 7은 본 발명의 실시 예 1 및 2에 따른 광소결 나노잉크가 포함하는 구리나노입자를 비교한 사진이다.
도 8은 본 발명의 실시 예 1 및 실시 예 2에 따른 광소결 나노잉크가 광소결된 상태를 비교한 사진이다.
도 9는 본 발명의 실시 예에 따른 광소결 나노잉크에 가해지는 백색광의 시간에 따른 특성을 비교하는 사진이다.
도 10 및 도 11은 본 발명의 실시 예 및 비교 예에 따른 광소결 나노잉크의 접착력을 테스트한 사진이다.
도 12는 본 발명의 실시 예들에 따른 광소결 나노잉크의 전기적 특성을 비교한 그래프이다.
도 13은 본 발명의 실시 예 1에 따른 광소결 나노잉크가 포함하는 산화막 처리가된 구리나노입자의 XRD 분석 그래프이다.
도 14는 본 발명의 실시 예에 따른 광소결 나노잉크에 가해지는 백색광의 시간에 따른 특성을 비교하는 그래프이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 형상 및 크기는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
도 1은 본 발명의 실시 예에 따른 광소결 방법을 설명하는 순서도이고, 도 2는 본 발명의 실시 예에 따른 전도성 나노 구조체를 나타내는 도면이다.
도 1 및 도 2를 참조하면, 광소결 나노잉크가 준비된다(S100). 일 실시 예에 따르면, 상기 광소결 나노잉크를 준비하는 단계(S100)는, 전도성 나노입자(10)를 준비하는 단계, 상기 전도성 나노입자(10)에 산소를 제공하여 산화막(20)을 형성시키는 단계, 및 상기 산화막(20)이 형성된 상기 전도성 나노입자(10)를, 베이스 용액과 혼합하는 단계를 포함할 수 있다.
일 실시 예에 따르면, 상기 전도성 나노입자(10)에 산소가 제공되어, 상기 산화막(20)이 형성되는 경우, 상기 산화막(20)은 상기 전도성 나노입자(10)를 둘러쌀 수 있다. 이에 따라, 전도성 나노 구조체(100)가 형성될 수 있다. 즉, 상기 광소결 나노잉크는 상기 베이스 용액과 상기 실시 예에 따른 전도성 나노 구조체(100)가 혼합되어 형성될 수 있다. 다시 말해, 상기 전도성 나노 구조체(100)는 상기 광소결 나노잉크가 제조되기 위한 광소결 전구체로서 사용될 수 있다.
일 실시 예에 따르면, 상기 산화막(20)은 후술되는 광소결 단계에서, 저내열성 기판의 손상을 최소화하면서도 광소결 나노입자의 소결은 극대화하는 기능을 수행할 수 있다.
종래 기술에 따르면, 광소결 나노입자의 소결을 위하여 가해지는 광소결 에너지에 의하여, 저내열성 기판에 손상이 발생하였다. 즉 광소결 나노입자의 소결을 위하여 필요한 정도의 광소결 에너지는 저내열성 기판에 손상을 유발할 수 있는 것이다.
또한 종래 기술에 따르면, 저내열성 기판의 손상을 피하기 위하여 낮은 강도의 광소결 에너지를 가하는 경우 원활한 소결이 이루어지기 어려웠다. 소결이 이루어질 정도로 나노입자의 온도가 상승하지 못하기 때문이다.
즉 종래 기술에 따르면 소결의 품질과 저내열성 기판의 손상 방지는 트레이드 오프(trade off) 관계에 있기 때문에, 저내열성 기판에 광소결 공정을 접목하는데 어려움이 있었다.
그러나 본 발명의 일 실시 예에 따르면, 낮은 강도의 광소결 에너지를 가하더라도, 광소결 나노입자 주위를 산화막(20)이 둘러싸고 있는 경우, 산화막(20)이 광소결 나노입자의 온도를 상승시키는 기능을 할 수 있다. 이에 따라 나노입자의 소결 품질이 향상될 수 있다. 또한 저내열성 기판에 가해지는 광소결 에너지는 낮은 레벨이기 때문에 기판의 손상도 최소화할 수 있다. 저내열성 기판의 손상을 방지하면서도, 소결의 품질을 향상시킬 수 있다.
이 때, 저내열성 기판이라 함은 PES, PC, PET, PEN과 같이 유리전이온도(Tg)가 200도 이하인 물질 예를 들어, 폴리머로 이루어지는 기판을 의미할 수 있다.
일 실시 예에 따르면, 상기 산화막(20)의 두께(t) 및 상기 전도성 나노입자(10)의 반지름(R) 길이에 대한 상기 산화막(20)의 두께(t) 비율(t/R, %)은 제어될 수 있다. 구체적으로, 상기 산화막(20)의 두께는 0.1 nm 이상 7.8 nm 이하로 제어될 수 있다. 또한, 상기 전도성 나노입자(10)의 반지름(R) 길이에 대한 상기 산화막(20)의 두께(t) 비율(t/R)은 0.1 % 이상 8% 이하로 제어될 수 있다. 이에 따라, 상기 광소결 나노잉크는 낮은 에너지의 백색광에서도 용이하게 광소결될 수 있다.
이와 달리, 상기 산화막(20)의 두께가 0.1 nm 미만이거나 상기 전도성 나노입자(10)의 반지름(R) 길이에 대한 상기 산화막(20)의 두께(t) 비율(t/R)이 0.1 % 미만인 경우, 상기 산화막(20)의 두께가 너무 얇아져서, 상기 백색광으로부터 상기 기판의 손상을 방지하지 못하는 문제가 발생할 수 있다. 즉 나노입자(10)의 소결에 필요한 백색광의 에너지가 충분히 낮아지지 못하기 때문에 기판(10)에 손상이 가해질 우려가 있는 것이다. 또한, 상기 산화막(20)의 두께가 7.8 nm 초과이거나 상기 전도성 나노입자(10)의 반지름(R) 길이에 대한 상기 산화막(20)의 두께(t) 비율(t/R)이 8% 초과인 경우, 상기 산화막(20)의 두께가 너무 두꺼워져서, 광소결이 용이하게 수행되지 못하는 문제가 발생할 수 있다.
일 실시 예에 따르면, 상기 산화막(20)의 두께(t) 및 상기 전도성 나노입자(10)의 반지름(R) 길이에 대한 상기 산화막(20)의 두께(t) 비율(t/R, %)을 제어하기 위해, 상기 전도성 나노입자(10)에 제공되는 산소의 농도가 제어될 수 있다. 예를 들어, 상기 전도성 나노입자(10)에 제공되는 산소의 농도는 8000 ppm 이상 17000ppm 미만일 수 있다. 이 경우, 상기 산화막(20)의 두께(t) 및 상기 전도성 나노입자(10)의 반지름(R) 길이에 대한 상기 산화막(20)의 두께(t) 비율(t/R)은 상술된 범위로 제어될 수 있다.
또한, 상술된 바와 달리 상기 전도성 나노입자(10)에 제공되는 산소의 농도가 17000ppm 이상인 경우, 상기 산화막(20)의 두께가 너무 두꺼워져, 후술되는 광소결 단계에서 상기 광소결 나노잉크 내에 많은 수의 기공(pore)이 형성될 수 있다. 상기 광소결 나노잉크 내에 많은 수의 기공(pore)이 형성되는 경우, 전도성이 저하되는 문제가 발생할 수 있다.
일 실시 예에 따르면, 상기 전도성 나노입자는 구리 나노입자일 수 있다. 상기 전도성 나노입자로서 구리 나노입자가 사용됨에 따라, 상기 실시 예에 따른 광소결 방법은 경제적인 이점이 있을 수 있다.
상기 구리 나노입자에 산소가 제공되어 형성된 상기 산화막은, Cu2O를 포함할 수 있다. 이와 달리, 상기 산화막이 CuO를 포함하는 경우 상기 전도성 나노입자는 나노크기를 초과할 수 있다. 상술된 설명에 대한 보다 구체적인 내용이 도 3을 참조하여 설명된다.
도 3은 본 발명의 실시 예에 따라 Cu2O를 포함하는 산화막을 갖는 전도성 나노 구조체 및 CuO를 포함하는 산화막을 갖는 전도성 나노 구조체를 비교하는 도면이다.
도 3의 (a)를 참조하면, 상기 전도성 나노입자(10) 및 Cu2O를 포함하는 상기 산화막(20)이 복수개인 경우, 상기 실시 예에 따른 전도성 나노 구조체(100)는 복수의 상기 산화막(20)이 복수의 상기 전도성 나노입자(10) 각각을 둘러쌀 수 있다. 이에 따라, 상기 전도성 나노입자(10)와 같은 수의 상기 전도성 나노 구조체(100)가 형성될 수 있다. 또한, 형성된 복수의 전도성 나노 구조체(100)는 서로 이격되어 배치될 수 있다. 결과적으로, 상기 실시 예에 따른 전도성 나노 구조체(100)는 나노(nano)의 크기를 가질 수 있다.
이와 달리, 도 3의 (b)를 참조하면, 전도성 나노입자(50) 및 CuO를 포함하는 산화막(60)이 복수개인 경우, CuO를 포함하는 산화막(60)은 복수의 전도성 나노입자(50)를 동시에 둘러쌀 수 있다. 이에 따라, 상기 전도성 나노입자(50)의 개수가 많이지는 경우, CuO를 포함하는 상기 산화막(60)이 많은 수의 상기 전도성 나노입자(50)를 모두 둘러쌈에 따라, 크기가 증가하는 문제가 발생할 수 있다. 결과적으로, 전도성 나노 구조체의 산화막이 CuO를 포함하는 경우, 나노(nano)의 크기보다 커지는 문제점이 발생할 수 있다.
일 실시 예에 따르면, 상기 베이스 용액은 분산제, 용매, 고분자 바인더 수지, 및 접착제를 포함할 수 있다. 예를 들어, 상기 분산제는, Disperbyk 180, Disperbyk 111, 스틸렌말레익언하이드 라이드 코폴리머(SMA 1440flake) 등의 이온 그룹을 포함하는 코폴리머, 2-부톡시에틸 아세테이트, 프로필렌 글리콜 모노메틸 에테르 아세테이트, 디에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 부틸 에테르, 시클로헥사논, 시클로헥사놀, 2-에톡시에틸 아세테이트, 에틸렌 글리콜 디아세테이트, A-테르피네올(terpineol), 이소부틸 알코올, 및 DEGBE(diethyllene glycol butyl ether) 중 적어도 어느 하나를 포함할 수 있다.
예를 들어, 상기 용매는 에틸렌글리콜(ethylene glycol), 디에틸렌글리콜(diethylene glycol), 트리에틸렌글리콜 (triethylene glycol), 폴리에틸렌 글리콜 (poly-ethylene glycol), 프로필렌 글리콜(propylene glycol), 디프로필렌 글리콜(dipropylene glycol), 헥실렌 글리콜(hexylene glycol), 글리세린(glycerine), 이소프로필 알코올(iso-propyl alcohol), 2-메톡시 에탄올(2-methoxy ethanol), 펜틸 알코올(pentyl alcohol), 헥실 알코올(hexyl alcohol), 부틸 알코올(butyl alcohol), 옥틸 알코올(octyl alcohol), 포름 아미드(Form amide), 메틸에틸케톤(methyl ethyl ketone), 에틸알코올(ethyl alcohol), 메틸알코올(methyl alcohol), 및 아세톤(acetone) 중 적어도 어느 하나를 포함할 수 있다.
예를 들어, 상기 고분자 바인더 수지는 에틸셀룰로오스 (EC), 폴리비닐필롤리돈 (PVP), 폴리비닐알콜 (PVA), 폴리비닐부티랄, 폴리에틸렌글리콜, 폴리메틸메타크릴레이트, 덱스트란, 아조비스 및 도데실벤젠황산나트륨 중 적어도 어느 하나를 포함할 수 있다.
이 때, 고분자 바인더 수지는 환원제로서 기능할 수 있다. 특히 고분자 바인더 수지는 산화막을 환원시키는 기능을 수행할 수 있다. 보다 구체적으로 고분자 바인더 수지 예를 들어, 에틸셀룰로오스 (EC)에 광소결 에너지가 가해지는 경우, 에틸셀룰로오스 (EC)가 분해되면서 알코올계 가스를 생성할 수 있다. 생성된 알코올계 가스는 산화막을 환원시킬 수 있다. 이에 따라 산화막이 환원된 나노입자가 소결될 수 있는 것이다. 다른 관점에서, 나노입자에 광소결 에너지가 가해지는 경우, 산화막이 나노입자에 가해진 광소결 에너지를 가두는 역할을 수행함으로써, 나노입자의 온도가 소결에 요구되는 온도까지 이르는데 도움을 줄 수 있고, 이후 산화막은 환원제에 의하여 제거될 수 있다.
일 실시 예에 따르면, 상기 고분자 바인더 수지는 상기 광소결 나노잉크 전체 중량 대비 0.5 내지 5 wt%일 수 있다. 또한, 상기 고분자 바인더 수지는 10,000 내지 500,000의 중량평균분자량을 가질 수 있다. 이와 달리, 상기 고분자 바인더 수지가 상기 광소결 나노잉크 전체 중량 대비 0.5 wt% 미만이거나 10,000 미만의 중량평균분자량을 갖는 경우, 상기 고분자 바인더 수지가 상기 베이스 용액 내에 용이하게 분산되지 않을 수 있다. 반면, 상기 고분자 바인더 수지가 상기 광소결 나노잉크 전체 중량 대비 5 wt% 초과이거나 500,000 초과의 중량평균분자량을 갖는 경우, 상기 고분자 바인더 수지가 상기 베이스 용액 내에서 응집되는 문제가 발생할 수 있다.
예를 들어, 상기 접착제는 우레탄 수지, 아크릴 수지, 에폭시 수지, 에폭시 실란, 및 스틸렌 수지 중 적어도 어느 하나를 포함할 수 있다. 구체적으로, 상기 접착제는 폴리우레탄다이올(polyurethane diol, PUD)일 수 있다.
일 실시 예에 따르면, 상기 접착제는 후술되는 광소결 단계에서 상기 광소결 나노잉크에서 발생하는 열이, 기판으로 전달되는 것을 방지할 수 있다. 이에 따라, 상기 접착제는, 상기 기판의 열적 변형을 방지할 수 있다. 또한, 상기 접착제는 상기 광소결 나노잉크와, 상기 기판 사이의 접착력이 향상되 우수한 강도 및 강성이 제공될 수 있다. 결과적으로, 상기 실시 예에 따른 광소결 나노잉크가 상기 접착제를 포함하는 경우, 광소결 단계에서, 저내열성 특성을 갖는 폴리머 기판이 사용될 수 있다.
이 때 저내열성 기판이라 함은 상술된 바와 같이, PES, PC, PET, PEN과 같이 유리전이온도(Tg)가 200도 이하인 물질 예를 들어, 폴리머로 이루어지는 기판을 의미할 수 있다.
차세대 기판인 플렉서블 기판은 저내열성 특성을 갖는데, 이러한 저내열성 기판의 경우, 광소결 단계에서 발생하는 고온의 열에 의하여 변형되는 문제점이 발생할 수 있다. 하지만, 상기 접착제는 상술된 바와 같이 광소결 단계에서 발생되는 열이 상기 기판으로 전달되는 것을 방지할 수 있다. 이에 따라, 상기 실시 예에 따른 광소결 나노잉크가 상기 접착제를 포함하는 경우, 광소결 공정에서 저내열성 특성을 갖는 기판들이 사용될 수 있다.
도 4는 본 발명의 실시 예에 따른 광소결 공정을 나타내는 도면이다.
도 1 및 도 4를 참조하면, 상기 광소결 나노잉크(200)가 기판(300) 상에 코팅될 수 있다(S200). 예를 들어, 상기 기판(300)은 포토페이퍼, PET, 종이, 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에틸렌나프탈레이트 (PEN), 아크릴 수지, 내열성 에폭시 (Epoxy), BT 에폭시/유리 섬유, 초산비닐수지 (EVA), 부틸 고무수지, 폴리아릴레이트, 및 폴리이미드 중 어느 하나일 수 있다.
일 실시 예에 따르면, 상기 광소결 나노잉크(200)는 상기 기판(300) 상에 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing), 미세 접촉 프린팅 (micro-contact printing), 임프린팅 (imprinting), 그라비아 프린팅 (gravure printing), 그라비아-옵셋 프린팅(gravure-offset printing), 플렉소 프린팅 (Flexography printing) 및 스핀 코팅(spin coating)등의 방법으로 코팅될 수 있다.
상기 광소결 나노잉크(200)가 상기 기판(300) 상에 코팅된 이후, 상기 광소결 나노잉크(200)는 건조(drying)될 수 있다. 예를 들어, 상기 광소결 나노잉크(200)는 NIR 조사, 열풍기, 오븐(heat chamber), 핫플레이트(hot plate), 적외선 조사 중 어느 하나의 방법으로 건조될 수 있다.
일 실시 예에 따르면, 상기 광소결 나노잉크(200)가 건조되는 단계에서, 건조 온도는 60℃ 내지 150℃로 유지될 수 있다. 이와 달리, 건조 온도가 60℃ 미만인 경우 상기 광소결 나노잉크(200)가 충분히 건조되지 않을 수 있다. 반면, 건조 온도가 150℃ 초과인 경우 상기 기판(300)이 손상될 수 있다. 상술된 바와 같이, 상기 광소결 나노잉크(200)가 충분히 건조되지 않거나 상기 기판(300)이 손상되는 경우, 후술되는 광소결이 용이하게 이루어지지 않는 문제점이 발생할 수 있다.
계속해서, 상기 광소결 나노잉크(200)는 극단파 백색광이 조사되어 광소결 될 수 있다(S300). 상기 극단파 백색광은 광원(400)으로부터 조사될 수 있다. 예를 들어, 상기 광원(400)은 제논 플래쉬 램프일 수 있다. 단계 S300의 구체적인 설명을 위하여 도 5를 참조하기로 한다.
도 5는 본 발명의 실시 예에 따른 광소결 방법에 사용되는 펄스 백색광에 대한 그래프이다.
도 5를 참조하면, 상기 광소결 단계(S300)에서 상기 광원(400)의 펄스 폭(Pulse width)는 0.01~100 ms 일 수 있다. 상기 광원(400)의 펄스 갭(Pulse gap)은 0.01 ~ 10 ms 일 수 있다. 상기 광원(400)의 펄스 수(Pulse number)는 1~100 번 일 수 있다. 상기 광원(400)의 강도(intensity)는 0.1 J/cm2 ~ 100 J/cm2일 수 있다. 상기 광원(400)의 강도는 상기 기판(300)의 종류에 따라 다를 수 있다. 예를 들어, 상기 기판(300)이 PET 기판인 경우 상기 광원(400)의 강도는 1~ J/cm2 ~ 5 J/cm2일 수 있다. 이와 달리, 상기 기판(300)이 PI 기판인 경우 상기 광원(400)의 강도는 5 J/cm2 ~ 20 J/cm2일 수 있다.
상기 광원(400)의 펄스 폭이 100 ms보다 클 경우에는 단위 시간당 입사 에너지가 줄어들어 소결의 효율이 저하될 수 있으므로 비경제적이다. 펄스 갭이 10 ms 보다 크거나 펄스 수가 100번 보다 큰 경우, 및 강도가 0.1 J/cm2 보다 작은 경우에도 너무 낮은 에너지로 인해 상기 광소결 잉크(300)가 소결될 수 없으며, 펄스 갭이 0.01 ms 보다 작거나 강도가 100 J/cm2 보다 클 경우에는 장비와 램프에 무리가 가해지기 때문에 장비와 램프의 수명이 급속하게 줄어드는 문제점이 있다.
본 발명의 실시 예에 따른 광소결 방법은, 상기 전도성 나노입자(10), 및 상기 전도성 나노입자를 둘러싸는 상기 산화물(20)을 포함하는 광소결 전구체, 상기 고분자 바인더 수지, 및 상기 접착제를 포함하는 상기 광소결 나노잉크(200)를 준비하는 단계, 상기 광소결 나노잉크(200)를 상기 기판(300) 상에 코팅하는 상기 광소결 잉크 코팅 단계, 및 상기 기판(300) 상에 코팅된 상기 광소결 나노잉크를 백색광을 이용하여 광소결하는 광소결 단계를 포함할 수 있다. 상기 광소결 나노잉크를 준비하는 단계에서, 상기 전도성 나노입자(10)는 구리 나노입자를 포함하고, 상기 산화막(20)은 Cu2O를 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 광소결 방법은, 상기 광소결 나노잉크가 포함하는 상기 전도성 나노입자(10)가 상기 산화물(20)에 의하여 둘러싸임에 따라, 낮은 에너지의 백색광으로도, 광소결이 용이하게 이루어질 수 있다. 결과적으로, 플렉서블 기판과 같이 저내열성 특성을 갖는 기판에서도 용이하게 적용 가능한 광소결 방법이 제공될 수 있다.
이상, 본 발명의 실시 예에 따른 광소결 방법, 광소결 나노잉크, 및 전도성 나노 구조체가 설명되었다. 이하, 본 발명의 실시 예에 따른 광소결 방법, 광소결 나노잉크, 및 전도성 나노 구조체의 구체적인 실험 예 및 특성 평가 결과가 설명된다.
실시 예 1에 따른 광소결 나노잉크 및 광소결
1.85g 용량의 DEGBE(Diethylene glycol butyl ether), 1g 용량의 EG(Ethylene glycol), 1g 용량의 A-terienol, 0.15g 용량의 EC(Ethylcellulose), 및 0.3g 용량의 PUD(Polyurethane diol)을 혼합 시킨 후, 소니케이터를 이용하여 분산시켜 베이스 용액을 제조하였다.
산소 농도가 8000 ppm으로 산화막 처리가된 구리나노입자(Ning-guangbo, diameter: 180nm) 16g을 상기 베이스 용액에 첨가한 후 3-roll mill을 이용하여 1시간 동안 분산시켜, 실시 예 1에 따른 광소결 나노잉크를 제조하였다.
제조된 실시 예 1에 따른 광소결 나노잉크를 50μm의 두께를 갖는 PET 기판 상에 스크린 프린터를 이용하여 100 mm/s의 속도로 인쇄하고, 100℃의 온도를 갖는 적외선을 이용하여 건조시킨 후, 극단파 백색광을 조사하여 실시 예 1에 따른 광소결 나노잉크를 광소결시켰다. 이때, 극단파 백색광의 펄스 수는 1개이고, 펄스 폭은 2 ms이며, 광소결 에너지는 3 J/cm2이다.
실시 예 2에 따른 광소결 나노잉크 및 광소결
상기 실시 예 1에 따른 광소결 나노잉크의 제조 방법에서 설명된 베이스 용액이 준비된다.
산소 농도가 17000 ppm으로 산화막 처리가된 구리나노입자(Poongsan, diameter: 100nm) 16g을 상기 베이스 용액에 첨가한 후 3-roll mill을 이용하여 1시간 동안 분산시켜, 실시 예 2에 따른 광소결 나노잉크를 제조하였다.
제조된 실시 예 2에 따른 광소결 나노잉크를 50μm의 두께를 갖는 PET 기판 상에 스크린 프린터를 이용하여 100 mm/s의 속도로 인쇄하고, 100℃의 온도를 갖는 적외선을 이용하여 건조시킨 후, 극단파 백색광을 조사하여 실시 예 2에 따른 광소결 나노잉크를 광소결시켰다. 이때, 극단파 백색광의 펄스 수는 1개이고, 펄스 폭은 2 ms이며, 광소결 에너지는 3 J/cm2이다.
실시 예 3에 따른 광소결 나노잉크 및 광소결
상기 실시 예 1에 따른 광소결 나노잉크의 제조 방법에서 설명된 베이스 용액이 준비된다.
산소 농도가 8000 ppm으로 산화막 처리가된 구리나노입자(Ning-guangbo, diameter: 180nm) 16g을 상기 베이스 용액에 첨가한 후 3-roll mill을 이용하여 1시간 동안 분산시켜, 실시 예 3에 따른 광소결 나노잉크를 제조하였다.
제조된 실시 예 3에 따른 광소결 나노잉크를 25μm의 두께를 갖는 PI 기판 상에 스크린 프린터를 이용하여 100 mm/s의 속도로 인쇄하고, 100℃의 온도를 갖는 적외선을 이용하여 건조시킨 후, 극단파 백색광을 조사하여 실시 예 3에 따른 광소결 나노잉크를 광소결시켰다. 이때, 극단파 백색광의 펄스 수는 1개이고, 펄스 폭은 5 ms이며, 광소결 에너지는 6 J/cm2이다.
실시 예 4에 따른 광소결 나노잉크 및 광소결
상기 실시 예 1에 따른 광소결 나노잉크의 제조 방법에서 설명된 베이스 용액이 준비된다.
산소 농도가 17000 ppm으로 산화막 처리가된 구리나노입자(Poongsan, diameter: 100nm) 16g을 상기 베이스 용액에 첨가한 후 3-roll mill을 이용하여 1시간 동안 분산시켜, 실시 예 4에 따른 광소결 나노잉크를 제조하였다.
제조된 실시 예 4에 따른 광소결 나노잉크를 25μm의 두께를 갖는 PI 기판 상에 스크린 프린터를 이용하여 100 mm/s의 속도로 인쇄하고, 100℃의 온도를 갖는 적외선을 이용하여 건조시킨 후, 극단파 백색광을 조사하여 실시 예 4에 따른 광소결 나노잉크를 광소결시켰다. 이때, 극단파 백색광의 펄스 수는 1개이고, 펄스 폭은 5 ms이며, 광소결 에너지는 6 J/cm2이다.
실시 예 5에 따른 광소결 나노잉크 및 광소결
상기 실시 예 1에 따른 광소결 나노잉크의 제조 방법에서 설명된 베이스 용액이 준비된다.
산소 농도가 8000 ppm으로 산화막 처리가된 구리나노입자(Ning-guangbo, diameter: 180nm) 16g을 상기 베이스 용액에 첨가한 후 3-roll mill을 이용하여 1시간 동안 분산시켜, 실시 예 5에 따른 광소결 나노잉크를 제조하였다.
제조된 실시 예 4에 따른 광소결 나노잉크를 50μm의 두께를 갖는 PET 기판 상에 스크린 프린터를 이용하여 100 mm/s의 속도로 인쇄하고, 100℃의 온도를 갖는 적외선을 이용하여 건조시킨 후, 극단파 백색광을 조사하여 실시 예 4에 따른 광소결 나노잉크를 광소결시켰다. 이때, 극단파 백색광의 펄스 수는 1개이고, 펄스 폭은 5 ms이며, 광소결 에너지는 3 J/cm2이다.
비교 예 1에 따른 광소결 나노잉크 및 광소결
1.85g 용량의 DEGBE(Diethylene glycol butyl ether), 1g 용량의 EG(Ethylene glycol), 1g 용량의 A-terienol, 및 0.15g 용량의 EC(Ethylcellulose)를 혼합 시킨 후, 소니케이터를 이용하여 분산시켜 베이스 용액을 제조하였다.
산소 농도가 8000 ppm으로 산화막 처리가된 구리나노입자(Ning-guangbo, diameter: 180nm) 16g을 상기 베이스 용액에 첨가한 후 3-roll mill을 이용하여 1시간 동안 분산시켜, 비교 예 1에 따른 광소결 나노잉크를 제조하였다.
제조된 비교 예 1에 따른 광소결 나노잉크를 50μm의 두께를 갖는 PET 기판 상에 스크린 프린터를 이용하여 100 mm/s의 속도로 인쇄하고, 100℃의 온도를 갖는 적외선을 이용하여 건조시킨 후, 극단파 백색광을 조사하여 비교 예 1에 따른 광소결 나노잉크를 광소결시켰다. 이때, 극단파 백색광의 펄스 수는 1개이고, 펄스 폭은 2 ms이며, 광소결 에너지는 3 J/cm2이다.
상술된 실시 예 1 내지 5 및 비교 예 1에 따른 광소결 나노잉크 및 광소결 조건이 아래 <표 1>을 통하여 정리된다.
구분 PUD 포함 산소 농도 기판 종류 광소결 조건
실시 예 1 O 8000 ppm PET 펄스 수 1개, 펄스 폭 2 ms, 에너지 3 J/cm2
실시 예 2 O 17000 ppm PET 펄스 수 1개, 펄스 폭 2 ms, 에너지 3 J/cm2
실시 예 3 O 8000 ppm PI 펄스 수 1개, 펄스 폭 5 ms, 에너지 6 J/cm2
실시 예 4 O 17000 ppm PI 펄스 수 1개, 펄스 폭 5 ms, 에너지 6 J/cm2
실시 예 5 O 8000 ppm PET 펄스 수 1개, 펄스 폭 5 ms, 에너지 3 J/cm2
비교 예 1 X 8000 ppm PET 펄스 수 1개, 펄스 폭 2 ms, 에너지 3 J/cm2
도 6은 본 발명의 실시 예 1에 따른 광소결 나노잉크가 포함하는 구리나노입자를 촬영한 사진이다.
도 6을 참조하면, 상기 실시 예 1에 따른 광소결 나노잉크가 포함하는 구리나노입자를 TEM(Transmission Electron Microscope) 촬영하였다. 도 6에서 확인할 수 있듯이, 8000 ppm의 산소 농도로 산화막 처리가된 구리나노입자의 경우 평균 산화막의 두께가 7.8 nm 내지 8.1 nm 로서, 구리나노입자의 반지름 길이에 대한 산화막의 두께 비율이 8% 이하인 것을 확인할 수 있었다.
도 7은 본 발명의 실시 예 1 및 2에 따른 광소결 나노잉크가 포함하는 구리나노입자를 비교한 사진이다.
도 7의 (a) 및 (b) 참조하면, 상기 실시 예 1 및 실시 예 2에 따른 광소결 나노잉크가 포함하는 구리나노입자를 HR-TEM 촬영하였다. 도 7의 (a)에서 알 수 있듯이, 상기 실시 예 1에 따른 광소결 나노잉크가 포함하는 구리나노입자는, 산화막의 두께가 약 3.1 nm로 나타나는 것을 확인할 수 있었다. 또한, 도 7의 (b)에서 알 수 있듯이, 상기 실시 예 2에 따른 광소결 나노잉크가 포함하는 구리나노입자는, 산화막의 두께가 약 5.1 nm로 나타나는 것을 확인할 수 있었다.
도 8은 본 발명의 실시 예 1 및 실시 예 2에 따른 광소결 나노잉크가 광소결된 상태를 비교한 사진이다.
도 8의 (a) 및 (b)를 참조하면, 상기 실시 예 1 및 실시 예 2에 따른 광소결 나노잉크가 광소결된 상태를 SEM(Scanning Electron Microscope) 촬영하였다. 도 8의 (a)에서 알 수 있듯이, 상기 실시 예 1에 따른 광소결 나노잉크가 광소결된 경우, 소결 후 기공(pore)이 거의 없는 것을 확인할 수 있었다. 반면, 도 8의 (b)에서 알 수 있듯이, 상기 실시 예 2에 따른 광소결 나노잉크가 광소결된 경우, 소결 후 기공(proe)이 형성된 것을 확인할 수 있었다. 이에 따라, 본 발명의 실시 예에 따른 광소결 나노잉크를 제조하는 경우, 구리나노입자의 산화막을 형성하기 위해 처리되는 산소의 농도가 8000 ppm 이상 17000 ppm 미만으로 제어되어야 하는 것을 알 수 있다.
도 9는 본 발명의 실시 예에 따른 광소결 나노잉크에 가해지는 백색광의 시간에 따른 특성을 비교하는 사진이다.
도 9의 (a) 및 (b)를 참조하면, 상기 실시 예 1 및 실시 예 5에 따른 광소결 나노잉크가 광소결된 상태를 사진 촬영하였다. 도 9의 (a)에서 알 수 있듯이, 광소결 나노잉크에 백색광이 가해지는 시간이 2ms인 경우, 분홍빛으로 잘 소결된 것을 확인할 수 있었다. 반면, 도 9의 (b)에서 알 수 있듯이, 광소결 나노잉크에 백색광이 가해지는 시간이 5ms인 경우, 기판 상에 warpage가 많이 발생하여 소결이 잘되지 않은 것을 확인할 수 있었다. 이에 따라, 상기 실시 예에 따른 광소결 나노잉크를 사용하여 PET 기판 상에 광소결 하는 경우, 광소결 나노잉크에 가해지는 백색광의 시간이 0.01 ms 이상 5 ms 미만으로 제어되는 것이, 광소결에 용이한 것으로 알 수 있다.
도 10 및 도 11은 본 발명의 실시 예 및 비교 예에 따른 광소결 나노잉크의 접착력을 테스트한 사진이다.
도 10의 (a) 및 (b)를 참조하면, 상기 비교 예 1에 따른 광소결 나노잉크가 광소결된 후, 0B의 접착력을 갖는 접착 테이프를 사용하여, 상기 비교 예 1에 따른 광소결 나노잉크의 접착력을 테스트 하였다. 도 10의 (a)는 광소결된 비교 예 1에 따른 광소결 나노잉크를 촬영한 사진이고, 도 10의 (b)는 광소결된 비교 예 1에 따른 광소결 나노잉크를, 0B의 접착력을 갖는 접착 테이프를 사용하여 접착력 테스트를 수행한 결과를 촬영한 사진이다.
도 10의 (b)에서 확인할 수 있듯이, 상기 비교 예 1에 따른 광소결 나노잉크의 경우, 0B의 접착력을 갖는 접착 테이프에 상기 비교 예 1에 따른 광소결 나노잉크가 대부분 묻어 나오는 것을 확인할 수 있었다. 즉, 상기 비교 예 1에 따른 광소결 나노잉크의 경우, 접착력이 약하다는 것을 알 수 있다.
도 11의 (a) 및 (b)를 참조하면, 상기 실시 예 1에 따른 광소결 나노잉크가 광소결된 후, 5B의 접착력을 갖는 접착 테이프를 사용하여, 상기 실시 예 1에 따른 광소결 나노잉크의 접착력을 테스트 하였다. 도 11의 (a)는 광소결된 실시 예 1에 따른 광소결 나노잉크를 촬영한 사진이고, 도 11의 (b)는 광소결된 실시 예 1에 따른 광소결 나노잉크를, 5B의 접착력을 갖는 접착 테이프를 사용하여 접착력 테스트를 수행한 결과를 촬영한 사진이다.
도 11의 (b)에서 확인할 수 있듯이, 상기 실시 예 1에 따른 광소결 나노잉크의 경우, 5B의 접착력을 갖는 접착 테이프에 상기 실시 예 1에 따른 광소결 나노잉크가 묻어 나오지 않는 것을 확인할 수 있었다. 즉, 상기 비교 예 1에 따른 광소결 나노잉크의 접착력 테스트에 사용된 접착 테이프보다 높은 접착력을 갖는 접착 테이프로 접착력 테스트를 수행하였음에도 불구하고, 잉크가 묻어 나오지 않는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 1에 따른 광소결 나노잉크의 경우, 우수한 접착력을 갖는 것을 알 수 있다.
결과적으로 도 10 및 도 11을 통하여, 본 발명의 실시 예에 따른 광소결 나노잉크를 제조하는 경우, PUD와 같은 접착제를 포함시키는 것이, 기판과 광소결 나오잉크 사이의 접착력을 향상시킬 수 있는 방법임을 알 수 있다.
도 12는 본 발명의 실시 예들에 따른 광소결 나노잉크의 전기적 특성을 비교한 그래프이다.
도 12를 참조하면, 상기 실시 예 1 내지 실시 예 4에 따른 광소결 나노잉크의 저항(Resistivity, μΩcm)을 측정하여 나타내었다. 도 12에서 확인할 수 있듯이, 상기 실시 예 3 및 실시 예 4에 따른 광소결 나노잉크의 저항은 비슷하지만, 상기 실시 예 1 및 실시 예 2에 따른 광소결 나노잉크는 현저한 저항의 차이가 나타나는 것을 확인할 수 있었다.
즉, 광소결 나노잉크가 포함하는 구리나노입자의 산화막이 형성되는 산소의 농도가 8000 ppm과 17000 ppm으로 다른 경우, PI 기판에서는 저항의 차이가 크지 않지만, PET 기판에서는 현저한 차이를 나타내는 것을 알 수 있다.
이에 따라, 본 발명의 실시 예에 따른 광소결 나노잉크를 제조하는 경우, 구리나노입자의 산화막을 형성하기 위해 처리되는 산소의 농도가 8000 ppm 이상 17000 ppm 미만으로 제어되어야 하는 것을 알 수 있다. 또한 산소의 농도는 대상 기판의 유리 전이 온도에 따라 제어될 수 있다는 점을 확인할 수 있다.
도 13은 본 발명의 실시 예 1에 따른 광소결 나노잉크가 포함하는 산화막 처리가된 구리나노입자의 XRD 분석 그래프이다.
도 13을 참조하면, 상기 실시 예 1에 따른 광소결 나노잉크가 포함하는 산화막 처리가된 구리나노입자의 2theta(°)에 따른 Intensity(a.u.)를 측정하였다. 도 13에서 확인할 수 있듯이, 상기 실시 예 1에 따른 광소결 나노잉크가 포함하는 산화막 처리가된 구리나노입자는, 산화막에 Cu2O만 포함하는 것을 알 수 있다.
도 14는 본 발명의 실시 예에 따른 광소결 나노잉크에 가해지는 백색광의 시간에 따른 특성을 비교하는 그래프이다.
도 14를 참조하면, 상기 실시 예 1 및 실시 예 5에 따른 광소결 나노잉크가 광소결 된 경우, 기판의 warpage를 측정하여 도시하였다. 도 14에서 확인할 수 있듯이, 상기 실시 예 5에 따른 광소결 나노잉크의 경우, 상기 실시 예 1에 따른 광소결 나노잉크와 비교하여, 기판의 warpage를 현저히 많이 발생시키는 것을 확인할 수 있었다. 즉, 광소결 나노잉크에 백색광이 가해지는 시간이 5ms인 경우, 2ms인 경우와 비교하여 기판의 warpage가 현저히 많이 발생되는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예에 따른 광소결 나노잉크를 사용하여 PET 기판 상에 광소결 하는 경우, 광소결 나노잉크에 가해지는 백색광의 시간이 0.01 ms 이상 5 ms 미만으로 제어되는 것이, 광소결에 용이한 것으로 알 수 있다.
이상 설명한 본 발명의 실시 예에 따르면 저내열성 기판에 광소결 공정을 가능케할 수 있다. 즉, 나노입자의 표면에 산화피막이 형성됨으로써, 광소결 에너지 강도를 낮추더라도 나노입자의 온도가 소결에 필요한 정도로 향상될 수 있다. 이 때, 구리 나노입자의 산화피막으로는 구리 산화막으로 이루어질 수 있다. 즉 산화피막은 나노입자의 구성성분과 동일한 구성성분으로 기반으로 이루어질 수 있다.
특히 본 발명의 일 실시 예에 따르면 산화막은 Cu2O으로 이루어질 수 있다. 앞서 설명한 바와 같이 산화피막으로 CuO가 사용되는 경우, 화학적으로는 안정하지만 광소결 나노입자가 덩어리를 이루게 되어 광소결 품질을 열화시킬 수 있다. 그러나 본 발명에서는 Cu2O를 산화피막으로 적용함으로써 저내열성 기판에서 저 저항의 광소결된 전극을 제조할 수 있음을 실험적으로 증명하였다.
한편 나노잉크가 접착제를 포함함으로써, 기판에 가해지는 광소결 에너지를 차단(blocking)하는 역할을 수행할 수 있다. 이에 따라 저내열성 기판의 손상을 최소화할 수 있다. 다른 관점에서 저내열성 기판이 접착제에 의하여 보호될 수 있으므로 광소결 에너지의 강도를 증가시킬 수 있다는 점에서의 의의가 있다. 나아가 접착제에 의하여 광소결된 나노입자 즉, 전극과 기판과의 접착력이 크게 향상될 수 있다. 이에 따라 플렉서블 환경에서도 기계적으로 강인한 특성이 제공될 수 있다.
한편, 산화피막의 두께가 기판의 특성에 따라 제어될 수 있으며 산소 유량의 조절을 통하여 간이하게 제어될 수 있다.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.

Claims (15)

  1. 전도성 나노입자; 및
    상기 전도성 나노입자를 둘러싸는 산화막을 포함하는 전도성 나노 구조체.
  2. 제1 항에 있어서,
    상기 전도성 나노입자는 구리 나노입자를 포함하고,
    상기 산화막은 Cu2O를 포함하는 전도성 나노 구조체.
  3. 제1 항에 있어서,
    상기 전도성 나노입자 및 상기 산화막이 복수개인 경우,
    복수의 상기 산화막은 각각 상기 전도성 나노입자를 둘러싸는 것을 포함하는 전도성 나노 구조체.
  4. 제1 항에 있어서,
    상기 전도성 나노입자의 반지름 길이에 대한 상기 산화막의 두께의 비율은, 0.1 % 이상 8 % 이하인 것을 포함하는 전도성 나노 구조체.
  5. 제1 항에 있어서,
    상기 산화막의 두께는 0.1 nm 이상 7.8 nm 이하인 것을 포함하는 전도성 나노 구조체.
  6. 전도성 나노입자, 및 상기 전도성 나노입자를 둘러싸는 산화막을 포함하는 광소결 전구체;
    고분자 바인더 수지; 및
    접착제를 포함하는 광소결 나노잉크.
  7. 제6 항에 있어서,
    상기 전도성 나노입자는 구리 나노입자를 포함하고,
    상기 산화막은 Cu2O를 포함하는 광소결 나노잉크.
  8. 제6 항에 있어서,
    상기 고분자 바인더 수지는 상기 광소결 나노잉크 전체 중량 대비 0.5 내지 5 wt%인 것을 포함하는 광소결 나노잉크.
  9. 제6 항에 있어서,
    상기 고분자 바인더 수지는 10,000 내지 500,000의 중량평균분자량을 갖는 광소결 나노잉크.
  10. 제6 항에 있어서,
    상기 고분자 바인더 수지는, 폴리비닐필롤리돈 (PVP), 폴리비닐알콜 (PVA), 에틸셀룰로오스(EC), 폴리비닐부티랄, 폴리에틸렌글리콜, 폴리메틸메타크릴레이트, 덱스트란, 아조비스 및 도데실벤젠황산나트륨 중 적어도 어느 하나를 포함하는 광소결 나노잉크.
  11. 제6 항에 있어서,
    상기 접착제는, 우레탄 수지, 아크릴 수지, 에폭시 수지, 에폭시 실란, 및 스틸렌 수지 중 적어도 어느 하나를 포함하는 광소결 나노잉크.
  12. 전도성 나노입자, 및 상기 전도성 나노입자를 둘러싸는 산화막을 포함하는 광소결 전구체, 고분자 바인더 수지, 및 접착제를 포함하는 광소결 나노잉크를 준비하는 단계;
    상기 광소결 나노잉크를 기판 상에 코팅하는 광소결 잉크 코팅 단계; 및
    상기 기판 상에 코팅된 상기 광소결 나노잉크를 백색광을 이용하여 광소결하는 광소결 단계를 포함하는 광소결 방법.
  13. 제12 항에 있어서,
    상기 광소결 단계에서,
    상기 기판 상에 코팅된 상기 광소결 나노잉크가 상기 백색광에 의하여 가열된 온도는, 상기 기판이 상기 백색광에 의하여 가열된 온도 보다 높은 것을 포함하는 광소결 방법.
  14. 제12 항에 있어서,
    상기 광소결 나노잉크를 준비하는 단계는,
    상기 전도성 나노입자를 준비하는 단계;
    상기 전도성 나노입자 상에 산소를 제공하여, 상기 산화막을 형성시키는 단계; 및
    상기 산화막이 형성된 상기 전도성 나노입자를, 상기 고분자 바인더 수지, 및 상기 접착제를 포함하는 베이스 용액과 혼합하는 단계를 포함하는 광소결 방법.
  15. 제14 항에 있어서,
    상기 산화막을 형성시키는 단계에서,
    상기 전도성 나노입자 상에 제공되는 산소의 농도는 8000 ppm이상 17000ppm 미만인 것을 포함하는 광소결 방법.
PCT/KR2019/005168 2018-05-02 2019-04-30 광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체 WO2019212218A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19796171.7A EP3783626A4 (en) 2018-05-02 2019-04-30 PHOTONIC SINTERED NANO INK, PHOTONIC SINTERING PROCESS AND CONDUCTIVE NANOSTRUCTURE
US17/085,502 US20210047533A1 (en) 2018-05-02 2020-10-30 Photonic sintered nanoink, photonic sintering method, and conductive nanostructure
US17/874,993 US20220356365A1 (en) 2018-05-02 2022-07-27 Photonic sintered nanoink, photonic sintering method, and conductive nanostructure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0050696 2018-05-02
KR20180050696 2018-05-02
KR1020180058780A KR102088100B1 (ko) 2018-05-02 2018-05-24 광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체
KR10-2018-0058780 2018-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/085,502 Continuation US20210047533A1 (en) 2018-05-02 2020-10-30 Photonic sintered nanoink, photonic sintering method, and conductive nanostructure

Publications (1)

Publication Number Publication Date
WO2019212218A1 true WO2019212218A1 (ko) 2019-11-07

Family

ID=68386100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005168 WO2019212218A1 (ko) 2018-05-02 2019-04-30 광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체

Country Status (3)

Country Link
US (1) US20220356365A1 (ko)
EP (1) EP3783626A4 (ko)
WO (1) WO2019212218A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090311440A1 (en) * 2008-05-15 2009-12-17 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
JP2014116315A (ja) * 2007-05-18 2014-06-26 Applied Nanotech Holdings Inc 金属インク
KR20160116076A (ko) * 2015-03-25 2016-10-07 한화첨단소재 주식회사 구리 인쇄회로기판 제조방법
KR101785350B1 (ko) * 2014-07-18 2017-10-17 한국화학연구원 광소결을 이용한 전도성 금속박막의 제조방법
KR101799147B1 (ko) * 2015-02-17 2017-11-20 한양대학교 산학협력단 구리 나노잉크의 다중 광소결방법 및 이를 이용하여 패턴화된 구리 나노잉크

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008137572A2 (en) * 2007-05-03 2008-11-13 Shell Oil Company A dehydrogenation catalyst comprising indium, its preparation and use
US8404160B2 (en) * 2007-05-18 2013-03-26 Applied Nanotech Holdings, Inc. Metallic ink
KR20140044743A (ko) * 2012-10-04 2014-04-15 한양대학교 산학협력단 전도성 하이브리드 구리잉크 및 이를 이용한 광소결 방법
JP6090810B2 (ja) * 2013-05-16 2017-03-08 島根県 二酸化炭素濃縮装置及び二酸化炭素供給方法
DE202013102908U1 (de) * 2013-07-03 2013-07-16 Sartorius Stedim Biotech Gmbh Stabilisiertes Ventil mit Führung
EP3127969B1 (en) * 2014-04-01 2018-06-20 Korea Electronics Technology Institute Ink composition for light sintering, wiring board using same and manufacturing method therefor
KR101715756B1 (ko) * 2015-05-07 2017-03-15 전자부품연구원 광 소결용 잉크 조성물, 그를 이용한 배선기판 및 그의 제조 방법
JP6686567B2 (ja) * 2016-03-14 2020-04-22 株式会社リコー 銅ナノ粒子インクとその製造方法
CN106201141B (zh) * 2016-07-15 2019-03-12 上海中航光电子有限公司 一种触控面板及触控显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116315A (ja) * 2007-05-18 2014-06-26 Applied Nanotech Holdings Inc 金属インク
US20090311440A1 (en) * 2008-05-15 2009-12-17 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
KR101785350B1 (ko) * 2014-07-18 2017-10-17 한국화학연구원 광소결을 이용한 전도성 금속박막의 제조방법
KR101799147B1 (ko) * 2015-02-17 2017-11-20 한양대학교 산학협력단 구리 나노잉크의 다중 광소결방법 및 이를 이용하여 패턴화된 구리 나노잉크
KR20160116076A (ko) * 2015-03-25 2016-10-07 한화첨단소재 주식회사 구리 인쇄회로기판 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3783626A4 *

Also Published As

Publication number Publication date
US20220356365A1 (en) 2022-11-10
EP3783626A4 (en) 2022-03-30
EP3783626A1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
WO2015016598A1 (ko) 투명 전도성 적층체, 투명 전도성 적층체를 포함하는 투명 전극, 및 투명 전도성 적층체의 제조방법
WO2016006787A1 (ko) 극단파 백색광, 근적외선 및 원자외선을 이용한 반도체 산화물의 복합 광 어닐링 및 소결 방법
WO2013122365A1 (ko) 레이저 에칭을 이용한 패턴 형성 방법
WO2013094887A1 (ko) 멀티 터치용 터치 스크린 패널 및 그 제조 방법
WO2012124979A2 (ko) 도전성 잉크 조성물, 이를 이용한 인쇄 방법 및 이에 의하여 제조된 도전성 패턴
WO2013094840A1 (ko) 전기분무 공정을 이용한 대면적 그래핀 3차원 투명 전극 제조방법 및 이로부터 제조된 대면적 그래핀 3차원 투명 전극
WO2013141425A1 (ko) 태양전지용 전극 페이스트 조성물
WO2011013927A2 (ko) 저온소성용 열경화성 전극 페이스트
WO2015080385A1 (ko) 투과율 가변필름 및 이의 제조 방법
US20210047533A1 (en) Photonic sintered nanoink, photonic sintering method, and conductive nanostructure
WO2015142077A1 (ko) 투명 도전체, 이의 제조방법 및 이를 포함하는 광학표시장치
US9486996B2 (en) Gravure printing process using silver nanoparticle inks for high quality conductive features
WO2022270704A1 (ko) 항균 코팅 조성 및 항균 나노입자를 포함하는 광학 필름 제조방법
WO2013157900A1 (ko) 도전성 패턴 형성용 기재 및 이를 이용하여 형성된 도전성 패턴
WO2019212218A1 (ko) 광소결 나노잉크, 광소결 방법 그리고 전도성 나노 구조체
WO2016159609A1 (ko) 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극
WO2018004092A1 (ko) 나노 구조체 네트워크 및 그 제조 방법
WO2014175544A1 (ko) 투명 전극 및 그 제조 방법
WO2017074049A1 (ko) 투광성 기판의 제조방법 및 이를 통해 제조된 투광성 기판
WO2018194389A1 (ko) 광 소결 입자 제조방법, 광 소결 타겟 제조방법 및 광 소결 방법
WO2010143794A1 (ko) 도핑 기능을 갖는 에칭 페이스트 및 이를 이용한 태양전지의 선택적 에미터 형성방법
WO2015016532A1 (ko) 열 융착 전사를 이용한 유연 매립형 전극 필름의 제조 방법
WO2014030867A1 (ko) 인쇄회로기판의 솔더 레지스트 형성 방법 및 그 방법으로 제조된 인쇄회로기판
WO2023075348A1 (ko) 다층의 박막 fpcb 및 히터 제작방법
WO2019160296A1 (ko) 컬러필터 일체형 유연성 터치센서 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019796171

Country of ref document: EP

Effective date: 20201119