WO2019210731A1 - 灰阶补偿方法及装置、显示装置、计算机存储介质 - Google Patents

灰阶补偿方法及装置、显示装置、计算机存储介质 Download PDF

Info

Publication number
WO2019210731A1
WO2019210731A1 PCT/CN2019/075907 CN2019075907W WO2019210731A1 WO 2019210731 A1 WO2019210731 A1 WO 2019210731A1 CN 2019075907 W CN2019075907 W CN 2019075907W WO 2019210731 A1 WO2019210731 A1 WO 2019210731A1
Authority
WO
WIPO (PCT)
Prior art keywords
grayscale value
initial
grayscale
target pixel
determining
Prior art date
Application number
PCT/CN2019/075907
Other languages
English (en)
French (fr)
Inventor
张昌
金泰荣
姜善福
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/611,874 priority Critical patent/US11217146B2/en
Publication of WO2019210731A1 publication Critical patent/WO2019210731A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a gray scale compensation method and apparatus, a display apparatus, and a computer storage medium.
  • OLED Organic Light Emitting Diode
  • a gray scale compensation method based on demura adjustment technology is provided in the related art, and the gray scale compensation method is implemented based on a pixel compensation algorithm and an analog to digital converter (DAC).
  • the pixel compensation algorithm is used to perform gray scale compensation on each pixel in the display panel through the DAC.
  • Embodiments of the present disclosure provide a grayscale compensation method and apparatus, a display apparatus, and a computer storage medium.
  • a grayscale compensation method comprising:
  • Gray scale compensation is performed on the target pixel according to the actual luminance offset.
  • determining, according to the initial grayscale value, an actual luminance offset of the target pixel including:
  • the product of the interpolation coefficient and the set luminance offset is determined as the actual luminance offset.
  • the determining the interpolation coefficient based on the initial grayscale value includes:
  • the determining the interpolation coefficient based on the initial grayscale value includes:
  • the determining the interpolation coefficient based on the initial grayscale value includes:
  • performing grayscale compensation on the target pixel according to the actual luminance offset including:
  • the actual loading voltage is used to drive the target pixel to emit light, and the actual loading voltage is positively correlated with a display grayscale value of the target pixel;
  • the first gray level threshold is 20.
  • the second gray level threshold is 235.
  • the actual luminance offset is 0.
  • a grayscale compensation device comprising:
  • An obtaining module configured to obtain an initial grayscale value of the target pixel
  • a determining module configured to determine an actual luminance offset of the target pixel based on the initial grayscale value, wherein an actual luminance offset corresponding to different initial grayscale values within a specified threshold range is different;
  • a compensation module configured to perform grayscale compensation on the target pixel according to the actual luminance offset.
  • the determining module includes:
  • a first determining submodule configured to determine an interpolation coefficient based on the initial grayscale value
  • a second determining submodule configured to determine a product of the interpolation coefficient and the set brightness offset as the actual brightness offset.
  • the first determining submodule is configured to:
  • the first determining submodule is configured to:
  • the first determining submodule is configured to:
  • the compensation module is configured to:
  • the actual loading voltage is used to drive the target pixel to emit light, and the actual loading voltage is positively correlated with a display grayscale value of the target pixel;
  • the first gray level threshold is 20.
  • the second gray level threshold is 235.
  • the actual luminance offset is 0.
  • a display device comprising: a gray scale compensation device according to any of the preceding aspects.
  • the display device is an organic light emitting diode OLED display device.
  • a grayscale compensation apparatus including: a processor and a memory,
  • the memory for storing a computer program
  • the processor is configured to execute a program stored on the memory, and implement the gray scale compensation method according to any one of the foregoing aspects.
  • a computer storage medium which is capable of implementing a grayscale compensation method as described in any of the preceding aspects when the program in the storage medium is executed by a processor.
  • FIG. 1 is a flowchart of a gray scale compensation method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for determining an actual luminance offset according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of relationship between an interpolation coefficient and an initial grayscale value according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing another relationship between interpolation coefficients and initial grayscale values according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of still another relationship between interpolation coefficients and initial grayscale values according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing gray scale display of a display panel before compensation according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing gray scale display of a compensated display panel according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing gray scale display of another display panel before compensation according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram showing gray scale display of another compensated display panel according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a gray scale compensation device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a determining module according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a gray scale compensation apparatus according to an embodiment of the present disclosure.
  • the voltage gain a and the luminance offset b are constants greater than 0 in the pixel compensation algorithm provided by the related art, the flexibility of gray scale compensation for pixels in the display panel based on the pixel compensation algorithm is low.
  • FIG. 1 is a flowchart of a gray scale compensation method according to an embodiment of the present disclosure. As shown in Figure 1, the method can include the following work processes:
  • step 101 an initial grayscale value of the target pixel is obtained.
  • the target pixel is a pixel on the display panel, and the display panel includes a plurality of pixel units, and each pixel unit includes at least one pixel.
  • the brightness information of each pixel in the to-be-displayed image is obtained by a charge-coupled device (CCD), and the brightness information of each pixel is converted into gray-scale information.
  • CCD charge-coupled device
  • step 102 an actual luminance offset of the target pixel is determined based on the initial grayscale value, wherein the actual luminance offset corresponding to the different initial grayscale values within the specified threshold range is different.
  • step 103 grayscale compensation is performed on the target pixel according to the actual luminance offset.
  • the gray scale compensation method determines the actual luminance offset according to the initial grayscale value after acquiring the initial grayscale value of the target pixel, and performs the target pixel according to the actual luminance offset.
  • Gray scale compensation Since the actual luminance offset is determined according to the initial grayscale value of the target pixel, and the actual luminance offset corresponding to the different initial grayscale values within the specified threshold range is different, that is, when the initial grayscale values of the pixels are different, Then, the actual luminance offset corresponding to the pixel can be different, so the flexibility of grayscale compensation for the pixel is improved compared with the related art.
  • the display panel comprises a plurality of pixel units, each pixel unit comprising at least one pixel.
  • each pixel unit may include a red pixel, a green pixel, and a blue pixel.
  • each of the pixels includes a Thin Film Transistor (TFT), an anode, a light emitting unit, and a cathode.
  • the first pole of the TFT is connected to the anode, and the second pole of the TFT is connected to the pixel driving circuit through the signal line.
  • the pixel driving circuit supplies a loading voltage to the second electrode through the signal line to drive the corresponding light emitting unit to emit light.
  • the first pole and the second pole are respectively one of a source and a drain, and the embodiment of the present disclosure is described by taking the first extreme drain and the second extreme source as an example.
  • the pixel drive circuit can include an integrated circuit (IC) chip for providing a data signal.
  • IC integrated circuit
  • the TFT in each pixel can be connected to the IC chip through a signal line, which can also be referred to as a source driver IC.
  • multi-gray display of the pixel can be realized by controlling different source voltages to be applied to the TFT through the IC chip.
  • the larger the source voltage applied to the TFT the higher the gray scale of the corresponding pixel.
  • the gray scale indicates the brightness of the pixel, and the higher the gray scale of the display, the greater the display brightness of the pixel.
  • an 8-bit (bit: DAC) DAC is generally used in an IC chip.
  • the 8-bit DAC includes a 256-bit representation, and each bit representation corresponds to a voltage value, that is, an 8-bit DAC can provide 256 different voltage values. Since any one of the 256 voltage values can be loaded on the TFT, a 0 to 255 gray scale display of the pixel can be realized.
  • a flowchart for implementing an implementation method for determining an actual luminance offset of the target pixel based on the initial grayscale value, as shown in FIG. 2, may include the following work process:
  • step 1021 a set luminance offset amount of the target pixel is acquired.
  • the luminance offset represents a grayscale value that compensates for a pixel. For example, if a pixel has a grayscale value of 15, assuming that the luminance offset is 5, and the grayscale compensation is performed on the pixel by using the luminance offset, the grayscale value of the pixel is 20.
  • the set brightness offsets of all the pixels on the display panel may be the same; or the set brightness offsets of different pixels on the display panel may be different, for example, according to the display of the pixels on the display panel.
  • the position of the set brightness offset corresponding to the pixel is set, which is not limited by the embodiment of the present disclosure.
  • the target pixel may be any pixel on the display panel, or the target pixel may be a specified pixel on the display panel, which is not limited by the embodiment of the present disclosure.
  • step 1022 an interpolation coefficient is determined based on the initial grayscale value.
  • the interpolation coefficient ranges from 0 to 1.
  • the pixel compensation algorithm is used to perform grayscale compensation on low grayscale (0-20 grayscale) pixels, which is easy to cause low grayscale pixels. Over compensated. For example, the initial input voltage of the 0 gray scale pixel is 0, and the compensation load voltage actually loaded on the pixel after the pixel compensation algorithm is greater than 0, resulting in the actual gray scale value of the 0 gray scale pixel after the gray scale compensation is greater than 0. Therefore, the gray scale compensation method provided by the related art has a poor compensation effect.
  • the interpolation coefficient may be determined based on an initial grayscale value of the target pixel. For example, when the initial grayscale value of the target pixel is 0, it may be determined that the interpolation coefficient of the set pixel offset value corresponding to the target pixel is 0. After the grayscale compensation is performed on the target pixel, the grayscale value of the target pixel is still 0. Therefore, the grayscale compensation method provided by the embodiment of the present disclosure can ensure the grayscale compensation effect on different pixels on the display panel. .
  • the initial grayscale value when the initial grayscale value is less than the first grayscale threshold, a positive correlation between the initial grayscale value and the interpolation coefficient is obtained; and based on the positive correlation, the initial grayscale value corresponding is determined. Interpolation coefficient.
  • the first gray level threshold may be 20. Since the gray scale compensation is performed on the pixels with the grayscale value less than 20 by using the fixed luminance offset in the related art, overcompensation may occur, which may affect the display effect of the display panel, so the first grayscale threshold may be set to 20 .
  • the interpolation coefficient when the initial grayscale value is 0, the interpolation coefficient is also 0.
  • the initial grayscale value and the interpolation coefficient may satisfy a linear positive correlation relationship.
  • the value of the interpolation coefficient may continuously change as the initial grayscale value changes. As the initial grayscale value increases from 0 to the first grayscale threshold, the value of the interpolation coefficient also increases from 0 to a maximum.
  • the initial grayscale value when the initial grayscale value is greater than the second grayscale threshold, a negative correlation between the initial grayscale value and the interpolation coefficient is obtained; and based on the negative correlation, the initial grayscale value is determined. Corresponding interpolation coefficient.
  • the second grayscale threshold may be 235.
  • the interpolation coefficient when the initial grayscale value is 255, the interpolation coefficient may be zero. Wherein, when the initial grayscale value is greater than the second grayscale threshold, the initial grayscale value and the interpolation coefficient may satisfy a linear negative correlation relationship. Optionally, the value of the interpolation coefficient may continuously change as the initial grayscale value changes. When the initial grayscale value increases from the second grayscale threshold to 255 (the maximum grayscale value), the interpolation coefficient decreases from the maximum value to zero.
  • the maximum display gray scale of the 8-bit DAC can be 255
  • the gray scale of the compensated pixels may be caused.
  • the value is 255.
  • the grayscale value of the obtained pixel is 255, which causes the grayscale level to decrease, which affects the delicateness of the display image. .
  • the more levels of gray scale the higher the degree of detail of the display.
  • the method for determining the interpolation coefficient by using the method provided by the embodiment of the present disclosure can ensure that the gray level compensation is performed on the pixels of the high gray level, and the level of the gray level of the pixel is not reduced, thereby improving the delicateness of the display image.
  • the first gray level threshold may be 20; when the display gray level value of the target pixel ranges from 0 to 255, the second gray level threshold may be 235.
  • the interpolation coefficient is a fixed coefficient, that is, when the initial grayscale value is not less than the first grayscale threshold.
  • the value of the interpolation coefficient is the same regardless of the initial grayscale value, and the fixed coefficient is equal to the maximum value of the interpolation coefficient.
  • the working process of determining the interpolation coefficient based on the initial grayscale value includes:
  • the initial grayscale value is smaller than the first grayscale threshold.
  • a positive correlation between the initial grayscale value and the interpolation coefficient is obtained; and based on the positive correlation, the interpolation coefficient corresponding to the initial grayscale value is determined.
  • the initial grayscale value is not less than the first grayscale threshold, it is determined that the interpolation coefficient is a fixed coefficient.
  • the positive correlation between the initial grayscale value and the interpolation coefficient can be expressed by a formula.
  • the maximum value of the interpolation coefficient (ie, the fixed coefficient) is one.
  • the relationship between the interpolation coefficient and the initial grayscale value can be as shown in FIG. 3, wherein the abscissa represents the initial grayscale value m and the ordinate represents the interpolation coefficient ⁇ .
  • the interpolation coefficient ⁇ and the initial gray scale value m satisfy the first formula:
  • the working process of determining the interpolation coefficient based on the initial grayscale value includes:
  • the initial grayscale value is greater than the second grayscale threshold.
  • a negative correlation between the initial grayscale value and the interpolation coefficient is obtained; and based on the negative correlation, the interpolation coefficient corresponding to the initial grayscale value is determined.
  • the interpolation coefficient is determined to be a fixed coefficient.
  • the negative correlation between the initial grayscale value and the interpolation coefficient can be expressed by a formula.
  • the second grayscale threshold is 235 and the maximum value of the interpolation coefficient (ie, the fixed coefficient) is one.
  • the relationship between the interpolation coefficient and the initial grayscale value can be as shown in FIG. 4, wherein the abscissa represents the initial grayscale value m and the ordinate represents the interpolation coefficient ⁇ .
  • the interpolation coefficient ⁇ and the initial gray scale value m satisfy the first formula:
  • the working process of determining the interpolation coefficient based on the initial grayscale value includes:
  • the initial grayscale value is smaller than the first grayscale threshold.
  • the initial grayscale value is less than the first grayscale threshold, determining that the initial grayscale value and the interpolation coefficient satisfy a positive correlation relationship; and based on the positive correlation, determining an interpolation coefficient corresponding to the initial grayscale value.
  • the initial grayscale value is not less than the first grayscale threshold, detecting whether the initial grayscale value is greater than a second grayscale threshold, the second grayscale threshold being greater than the first grayscale threshold.
  • the initial grayscale value is greater than the second grayscale threshold, determining that the initial grayscale value and the interpolation coefficient satisfy a negative correlation relationship; and based on the negative correlation, determining an interpolation coefficient corresponding to the initial grayscale value.
  • the interpolation coefficient is determined to be a fixed coefficient.
  • the positive correlation and the negative correlation between the initial grayscale value and the interpolation coefficient can be expressed by a formula.
  • whether the initial grayscale value is greater than the second grayscale threshold may be detected first, and when the initial grayscale value is not greater than the second grayscale threshold, whether the initial grayscale value is less than the first grayscale is detected.
  • the threshold value is not limited in the order of execution of the detecting step in the embodiment of the present disclosure.
  • the first grayscale threshold is 20
  • the second grayscale threshold is 235
  • the maximum value of the interpolation coefficient is one.
  • the relationship between the interpolation coefficient and the initial grayscale value can be as shown in FIG. 5, wherein the abscissa represents the initial grayscale value m and the ordinate represents the interpolation coefficient ⁇ .
  • the interpolation coefficient ⁇ and the initial gray scale value m satisfy the second formula:
  • step 1023 the product of the interpolation coefficient and the set luminance offset is determined as the actual luminance offset.
  • the interpolation coefficient is 0, and the actual luminance offset is also 0, that is, when the initial grayscale value is 0, by shifting the target pixel.
  • the masking is such that the gray scale of the pixels of the 0 gray scale is still 0 after the gray scale compensation, thereby improving the gray scale compensation effect of the pixel.
  • step 103 may include:
  • the actual loading voltage of the target pixel is determined by using a voltage compensation formula for driving the target pixel to emit light, and the actual loading voltage is positively correlated with the display grayscale value of the target pixel.
  • the displayed grayscale value is equal to the initial grayscale value
  • Y represents the actual loading voltage
  • a represents the voltage gain
  • b represents the set luminance offset
  • represents the interpolation coefficient
  • ⁇ *b represents the actual luminance offset
  • a and b is a constant greater than 0, 0 ⁇ ⁇ ⁇ 1.
  • the actual loading voltage can be the source loading voltage of the TFT. Since the display gray scale of the pixel is linearly positively correlated with the source loading voltage, the above voltage compensation formula can actually be regarded as a gray scale compensation formula, where X represents the initial gray scale value, a represents the gray scale gain, and Y represents the actual gray scale. Order value.
  • FIG. 7 are schematic diagrams showing gray scale display of a display panel before compensation and gray scale display of a compensated display panel according to an embodiment of the present disclosure. In the figure, the darker the color, the smaller the gray scale value is ( That is, the lower the brightness). Assuming that the target pixel is a pixel in the specified area M on the display panel, referring to FIG.
  • the grayscale value of the pixel in the specified area M is smaller than the grayscale value of the pixel outside the specified area M, assuming that the pixel in the specified area M is The initial grayscale value is 10, and the grayscale values of the pixels other than the designated area M on the display panel are all 16.
  • the actual grayscale value of the pixels in the designated area M can be made 16, that is, the display grayscale value of the other pixels on the display panel is the same, thereby ensuring display brightness uniformity of the display panel.
  • FIG. 8 and FIG. 9 are schematic diagrams showing gray scale display of another display panel before compensation and gray scale display of the compensated display panel according to an embodiment of the present disclosure, and assuming that the target pixel is a pixel in the designated area N, see 8 and FIG.
  • the actual gray scale value of the pixels in the specified region N is still 0, thereby avoiding the occurrence of low gray scale pixels. Overcompensation phenomenon.
  • the gray scale compensation method provided by the embodiment of the present disclosure can determine the actual luminance offset according to the initial gray scale value of the target pixel, and improve the flexibility of gray scale compensation for the pixel while ensuring the flexibility. Gray scale compensation effect on pixels.
  • the implementation process of the foregoing step 102 may further include: acquiring the target pixel from the set correspondence according to the initial grayscale value of the target pixel based on the setting correspondence between the initial grayscale value and the actual luminance offset.
  • the actual brightness offset is stored in the correspondence relationship, for example, the actual brightness corresponding to each of the grayscale values in the 0 to 255 grayscales may be stored in the correspondence relationship.
  • the setting correspondence may be stored by using an index table.
  • step 1022 may also be performed before step 1021, and the steps may also be correspondingly increased or decreased according to the situation, and any familiar technology.
  • steps 1021 may also be performed before step 1021, and the steps may also be correspondingly increased or decreased according to the situation, and any familiar technology.
  • Those skilled in the art can easily conceive changes in the scope of the present disclosure, and are not included in the scope of the present disclosure.
  • the gray scale compensation method determines the actual luminance offset according to the initial grayscale value after acquiring the initial grayscale value of the target pixel, and performs the target pixel according to the actual luminance offset.
  • Gray scale compensation Since the actual luminance offset is determined according to the initial grayscale value of the target pixel, when the initial grayscale value of the pixel is different, the luminance offset corresponding to the pixel may be different, and the grayscale of the pixel is improved compared with the related art.
  • the actual luminance offset when the initial grayscale value is smaller than the first grayscale threshold, the actual luminance offset is positively correlated with the initial grayscale value, for example, when the initial grayscale value is 0,
  • the actual luminance offset can also be 0, which can avoid overcompensation for low grayscale pixels;
  • the initial grayscale value is greater than the second grayscale threshold, the actual luminance offset is negatively correlated with the initial grayscale value, which can guarantee
  • the gray scale compensation method provided by the embodiment of the present disclosure improves the gray scale compensation effect on pixels.
  • FIG. 10 is a schematic structural diagram of a gray-scale compensation device according to an embodiment of the present disclosure. As shown in FIG. 10, the device 40 may include:
  • the obtaining module 401 is configured to obtain an initial grayscale value of the target pixel.
  • the target pixel is a pixel on the display panel, the display panel includes a plurality of pixel units, and each pixel unit includes at least one pixel.
  • the determining module 402 is configured to determine an actual luminance offset of the target pixel based on the initial grayscale value, wherein the actual luminance offset corresponding to the different initial grayscale values within the specified threshold range is different.
  • the compensation module 403 is configured to perform grayscale compensation on the target pixel according to the actual luminance offset.
  • the gray scale compensation device determines the actual luminance offset according to the initial grayscale value after obtaining the initial grayscale value of the target pixel by the acquiring module, and determines, according to the initial grayscale value, The actual luminance offset is grayscale compensated for the target pixel. Since the actual luminance offset is determined according to the initial grayscale value of the target pixel, and the actual luminance offset corresponding to the different initial grayscale values within the specified threshold range is different, that is, when the initial grayscale values of the pixels are different, Then, the actual luminance offset corresponding to the pixel can be different, so the flexibility of grayscale compensation for the pixel is improved compared with the related art.
  • the determining module 402 may include:
  • a first determining submodule 4021 configured to determine an interpolation coefficient based on an initial grayscale value
  • the obtaining sub-module 4022 is configured to obtain a set brightness offset of the target pixel
  • the second determining sub-module 4023 is configured to determine a product of the interpolation coefficient and the set brightness offset as the actual brightness offset.
  • the first determining submodule can be used to:
  • the first determining submodule can be used to:
  • the first determining submodule can be used to:
  • the compensation module can be used to:
  • the actual loading voltage of the target pixel is determined by using a voltage compensation formula, and the actual loading voltage is used to drive the target pixel to emit light, and the actual loading voltage is positively correlated with the display grayscale value of the target pixel;
  • the luminance shift amount, ⁇ represents an interpolation coefficient, and ⁇ *b represents the actual luminance shift amount, and both a and b are constants greater than 0, and 0 ⁇ ⁇ ⁇ 1.
  • the first gray level threshold is 20.
  • the second gray level threshold is 235.
  • the actual luminance offset is 0.
  • the gray scale compensation device determines the actual luminance offset according to the initial grayscale value after obtaining the initial grayscale value of the target pixel by the acquiring module, and determines, according to the initial grayscale value, The actual luminance offset is grayscale compensated for the target pixel. Since the actual luminance offset is determined according to the initial grayscale value of the target pixel, when the initial grayscale value of the pixel is different, the luminance offset corresponding to the pixel may be different, and the grayscale of the pixel is improved compared with the related art.
  • the actual luminance offset when the initial grayscale value is smaller than the first grayscale threshold, the actual luminance offset is positively correlated with the initial grayscale value, for example, when the initial grayscale value is 0,
  • the actual luminance offset can also be 0, which can avoid overcompensation for low grayscale pixels;
  • the initial grayscale value is greater than the second grayscale threshold, the actual luminance offset is negatively correlated with the initial grayscale value, which can guarantee
  • the gray scale compensation method provided by the embodiment of the present disclosure improves the gray scale compensation effect on pixels.
  • Embodiments of the present disclosure provide a display device, which may include: a grayscale compensation device as shown in FIG.
  • the display device may be an OLED display device.
  • the display device can be any product or component having display function such as electronic paper, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator and the like.
  • the display device includes a grayscale compensation device.
  • the determining module determines an actual luminance offset according to the initial grayscale value, and The grayscale compensation is performed on the target pixel by the compensation module according to the actual luminance offset. Since the actual luminance offset is determined according to the initial grayscale value of the target pixel, when the initial grayscale value of the pixel is different, the luminance offset corresponding to the pixel may be different, and the grayscale of the pixel is improved compared with the related art.
  • the actual luminance offset when the initial grayscale value is smaller than the first grayscale threshold, the actual luminance offset is positively correlated with the initial grayscale value, for example, when the initial grayscale value is 0,
  • the actual luminance offset can also be 0, which can avoid overcompensation for low grayscale pixels;
  • the initial grayscale value is greater than the second grayscale threshold, the actual luminance offset is negatively correlated with the initial grayscale value, which can guarantee
  • the gray scale compensation method provided by the embodiment of the present disclosure improves the gray scale compensation effect on pixels.
  • the embodiment of the present disclosure provides a grayscale compensation device, which can be integrated on an IC chip, including: a processor and a memory,
  • the memory for storing a computer program
  • the processor is configured to execute a program stored on the memory, and implement a gray scale compensation method according to any one of the method side embodiments.
  • FIG. 12 is a block diagram of a gray scale compensation apparatus according to an embodiment of the present disclosure, which may be applied to a display terminal.
  • the display terminal 500 can be a portable mobile terminal, such as a smart phone, a tablet computer, an MP3 player (Moving Picture Experts Group Audio Layer III), and a MP4 (Moving Picture Experts Group Audio Layer IV). Image experts compress standard audio layers 4) players, laptops or desktops.
  • Display terminal 500 may also be referred to as a user device, a portable terminal, a laptop terminal, a desktop terminal, and the like.
  • the display terminal 500 includes a processor 501 and a memory 502.
  • Processor 501 can include one or more processing cores, such as a 4-core processor, an 8-core processor, and the like.
  • the processor 501 may be configured by at least one of a DSP (Digital Signal Processing), an FPGA (Field-Programmable Gate Array), and a PLA (Programmable Logic Array). achieve.
  • the processor 501 may also include a main processor and a coprocessor.
  • the main processor is a processor for processing data in an awake state, which is also called a CPU (Central Processing Unit); the coprocessor is A low-power processor for processing data in standby.
  • the processor 501 can be integrated with a GPU (Graphics Processing Unit), which is responsible for rendering and rendering of the content that the display needs to display.
  • the processor 501 may also include an AI (Artificial Intelligence) processor for processing computational operations related to machine learning.
  • AI Artificial Intelligence
  • Memory 502 can include one or more computer readable storage media, which can be non-transitory. Memory 502 can also include high speed random access memory, as well as non-volatile memory, such as one or more disk storage devices, flash storage devices. In some embodiments, the non-transitory computer readable storage medium in the memory 502 is configured to store at least one instruction for execution by the processor 501 to implement the data query provided by the method embodiment of the present application. method.
  • the display terminal 500 also optionally includes a peripheral device interface 503 and at least one peripheral device.
  • the processor 501, the memory 502, and the peripheral device interface 503 can be connected by a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface 503 via a bus, signal line or circuit board.
  • the peripheral device includes at least one of a radio frequency circuit 504, a display screen 505, a camera 506, an audio circuit 507, a positioning component 508, and a power source 509.
  • Peripheral device interface 503 can be used to connect at least one peripheral device associated with an I/O (Input/Output) to processor 501 and memory 502.
  • processor 501, memory 502, and peripheral interface 503 are integrated on the same chip or circuit board; in some other embodiments, any of processor 501, memory 502, and peripheral interface 503 or The two can be implemented on a separate chip or circuit board, which is not limited in this embodiment.
  • the RF circuit 504 is configured to receive and transmit an RF (Radio Frequency) signal, also referred to as an electromagnetic signal.
  • Radio frequency circuit 504 communicates with the communication network and other communication devices via electromagnetic signals.
  • the RF circuit 504 converts the electrical signal into an electromagnetic signal for transmission, or converts the received electromagnetic signal into an electrical signal.
  • the radio frequency circuit 504 includes an antenna system, an RF transceiver, one or more amplifiers, a tuner, an oscillator, a digital signal processor, a codec chipset, a subscriber identity module card, and the like.
  • Radio frequency circuit 504 can communicate with other terminals via at least one wireless communication protocol.
  • the wireless communication protocols include, but are not limited to, the World Wide Web, a metropolitan area network, an intranet, generations of mobile communication networks (2G, 3G, 4G, and 5G), wireless local area networks, and/or WiFi (Wireless Fidelity) networks.
  • the RF circuit 504 may also include NFC (Near Field Communication) related circuitry, which is not limited in this application.
  • the display screen 505 is used to display a UI (User Interface).
  • the UI can include graphics, text, icons, video, and any combination thereof.
  • display 505 is a touch display
  • display 505 also has the ability to acquire touch signals over the surface or surface of display 505.
  • the touch signal can be input to the processor 501 as a control signal for processing.
  • display 505 can also be used to provide virtual buttons and/or virtual keyboards, also referred to as soft buttons and/or soft keyboards.
  • the display screen 505 may be one, and the front panel of the display terminal 500 is disposed; in other embodiments, the display screen 505 may be at least two, respectively disposed on different surfaces of the display terminal 500 or in a folded design.
  • the display screen 505 can be a flexible display screen disposed on a curved surface or a folded surface of the display terminal 500. Even the display screen 505 can be set to a non-rectangular irregular pattern, that is, a profiled screen.
  • the display 505 can be an OLED (Organic Light-Emitting Diode) display.
  • Camera component 506 is used to capture images or video.
  • camera assembly 506 includes a front camera and a rear camera.
  • the front camera is disposed on the front panel of the display terminal, and the rear camera is disposed on the back of the display terminal.
  • the rear camera is at least two, which are respectively a main camera, a depth camera, a wide-angle camera, and a telephoto camera, so as to realize the background blur function of the main camera and the depth camera, and the main camera Combine with a wide-angle camera for panoramic shooting and VR (Virtual Reality) shooting or other integrated shooting functions.
  • camera assembly 506 can also include a flash.
  • the flash can be a monochrome temperature flash or a two-color temperature flash.
  • the two-color temperature flash is a combination of a warm flash and a cool flash that can be used for light compensation at different color temperatures.
  • the audio circuit 507 can include a microphone and a speaker.
  • the microphone is used to collect sound waves of the user and the environment, and convert the sound waves into electrical signals for processing to the processor 501 for processing, or input to the RF circuit 504 for voice communication.
  • the microphones may be plural, and are respectively disposed at different parts of the display terminal 500.
  • the microphone can also be an array microphone or an omnidirectional acquisition microphone.
  • the speaker is then used to convert electrical signals from processor 501 or radio frequency circuit 504 into sound waves.
  • the speaker can be a conventional film speaker or a piezoelectric ceramic speaker.
  • the audio circuit 507 can also include a headphone jack.
  • the positioning component 508 is configured to locate the current geographic location of the display terminal 500 to implement navigation or LBS (Location Based Service).
  • the positioning component 508 can be a positioning component based on a US-based GPS (Global Positioning System), a Chinese Beidou system, or a Russian Galileo system.
  • the power source 509 is used to supply power to various components in the display terminal 500.
  • the power source 509 can be an alternating current, a direct current, a disposable battery, or a rechargeable battery.
  • the rechargeable battery may be a wired rechargeable battery or a wireless rechargeable battery.
  • a wired rechargeable battery is a battery that is charged by a wired line
  • a wireless rechargeable battery is a battery that is charged by a wireless coil.
  • the rechargeable battery can also be used to support fast charging technology.
  • display terminal 500 also includes one or more sensors 510.
  • the one or more sensors 510 include, but are not limited to, an acceleration sensor 511, a gyro sensor 512, a pressure sensor 513, a fingerprint sensor 514, an optical sensor 515, and a proximity sensor 516.
  • the acceleration sensor 511 can detect the magnitude of the acceleration on the three coordinate axes of the coordinate system established by the display terminal 500.
  • the acceleration sensor 511 can be used to detect components of gravity acceleration on three coordinate axes.
  • the processor 501 can control the touch display screen 505 to display the user interface in a landscape view or a portrait view according to the gravity acceleration signal collected by the acceleration sensor 511.
  • the acceleration sensor 511 can also be used for the acquisition of game or user motion data.
  • the gyro sensor 512 can detect the body direction and the rotation angle of the display terminal 500, and the gyro sensor 512 can cooperate with the acceleration sensor 511 to collect the 3D motion of the user on the display terminal 500. Based on the data collected by the gyro sensor 512, the processor 501 can implement functions such as motion sensing (such as changing the UI according to the user's tilting operation), image stabilization at the time of shooting, game control, and inertial navigation.
  • functions such as motion sensing (such as changing the UI according to the user's tilting operation), image stabilization at the time of shooting, game control, and inertial navigation.
  • the pressure sensor 513 may be disposed on a side border of the display terminal 500 and/or a lower layer of the touch display screen 505.
  • the pressure sensor 513 When the pressure sensor 513 is disposed on the side frame of the display terminal 500, the user's holding signal to the display terminal 500 can be detected, and the processor 501 performs left and right hand recognition or shortcut operation according to the holding signal collected by the pressure sensor 513.
  • the operability control on the UI interface is controlled by the processor 501 according to the user's pressure on the touch display screen 505.
  • the operability control includes at least one of a button control, a scroll bar control, an icon control, and a menu control.
  • the fingerprint sensor 514 is used to collect the fingerprint of the user.
  • the processor 501 identifies the identity of the user according to the fingerprint collected by the fingerprint sensor 514, or the fingerprint sensor 514 identifies the identity of the user according to the collected fingerprint. Upon identifying that the identity of the user is a trusted identity, the processor 501 authorizes the user to perform related sensitive operations including unlocking the screen, viewing encrypted information, downloading software, paying and changing settings, and the like.
  • the fingerprint sensor 514 can be disposed to display the front, back, or side of the terminal 500. When the display terminal 500 is provided with a physical button or a manufacturer logo, the fingerprint sensor 514 can be integrated with a physical button or a manufacturer logo.
  • Optical sensor 515 is used to collect ambient light intensity.
  • the processor 501 can control the display brightness of the touch display 505 based on the ambient light intensity acquired by the optical sensor 515. Specifically, when the ambient light intensity is high, the display brightness of the touch display screen 505 is raised; when the ambient light intensity is low, the display brightness of the touch display screen 505 is lowered.
  • the processor 501 can also dynamically adjust the shooting parameters of the camera assembly 506 based on the ambient light intensity acquired by the optical sensor 515.
  • Proximity sensor 516 also referred to as a distance sensor, is typically disposed on the front panel of display terminal 500.
  • the proximity sensor 516 is used to collect the distance between the user and the front side of the display terminal 500.
  • the processor 501 controls the touch display screen 505 to switch from the bright screen state to the screen state; when the proximity sensor 516 When it is detected that the distance between the user and the front side of the display terminal 500 is gradually increased, the processor 501 controls the touch display screen 505 to switch from the screen state to the bright screen state.
  • FIG. 12 does not constitute a limitation of the display terminal 500, and may include more or less components than those illustrated, or may combine some components or adopt different component arrangements.
  • Embodiments of the present disclosure provide a computer storage medium capable of performing a grayscale compensation method as described in any of the method side embodiments when a program in the storage medium is executed by a processor.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供了一种灰阶补偿方法及装置、显示装置、计算机存储介质,属于显示技术领域。该方法包括:获取目标像素的初始灰阶值;基于初始灰阶值,确定目标像素的实际亮度偏移量,其中,处于指定阈值范围内的不同初始灰阶值所对应的实际亮度偏移量不同;根据实际亮度偏移量,对目标像素进行灰阶补偿。本公开根据目标像素的初始灰阶值确定实际亮度偏移量,由于处于指定阈值范围内的不同初始灰阶值所对应的实际亮度偏移量不同,因此提高了对像素进行灰阶补偿的灵活性。摘要附图为图1。

Description

灰阶补偿方法及装置、显示装置、计算机存储介质
本公开要求于2018年05月02日提交的申请号为201810409629.X、发明名称为“灰阶补偿方法及装置、显示装置、计算机存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,特别涉及一种灰阶补偿方法及装置、显示装置、计算机存储介质。
背景技术
随着显示技术的发展,有机发光二极管(Organic Light Emitting Diode,OLED)作为一种电流型发光器件,因其所具有的自发光、快速响应和宽视角等特点而越来越多地被应用于高性能显示产品中。OLED产品因其自身的特性,需要进行灰阶补偿以保证画面的显示亮度均匀性。
相关技术中提供了一种基于demura调节技术的灰阶补偿方法,该灰阶补偿方法基于像素补偿算法和模拟数字转换器(Digital to Analog Converter,DAC)实现。采用像素补偿算法通过DAC对显示面板中的各个像素分别进行灰阶补偿。
发明内容
本公开实施例提供了一种灰阶补偿方法及装置、显示装置、计算机存储介质。
一方面,提供了一种灰阶补偿方法,所述方法包括:
获取目标像素的初始灰阶值;
基于所述初始灰阶值,确定所述目标像素的实际亮度偏移量,其中,处于指定阈值范围内的不同初始灰阶值所对应的实际亮度偏移量不同;
根据所述实际亮度偏移量,对所述目标像素进行灰阶补偿。
可选的,所述基于所述初始灰阶值,确定所述目标像素的实际亮度偏移量,包括:
基于所述初始灰阶值确定插值系数;
获取所述目标像素的设定亮度偏移量;
将所述插值系数与所述设定亮度偏移量的乘积确定为所述实际亮度偏移量。
可选的,所述基于所述初始灰阶值确定插值系数,包括:
当所述初始灰阶值小于第一灰阶阈值时,获取初始灰阶值与插值系数之间的正相关关系;
基于所述正相关关系,确定所述初始灰阶值对应的插值系数。
可选的,所述基于所述初始灰阶值确定插值系数,包括:
当所述初始灰阶值大于第二灰阶阈值时,获取初始灰阶值与插值系数之间的负相关关系;
基于所述负相关关系,确定所述初始灰阶值对应的插值系数。
可选的,所述基于所述初始灰阶值确定插值系数,包括:
当所述初始灰阶值不小于第一灰阶阈值且不大于第二灰阶阈值时,确定所述插值系数为固定系数,所述第二灰阶阈值大于所述第一灰阶阈值。
可选的,所述根据所述实际亮度偏移量,对所述目标像素进行灰阶补偿,包括:
采用电压补偿公式确定所述目标像素的实际加载电压,所述实际加载电压用于驱动所述目标像素发光,且所述实际加载电压与所述目标像素的显示灰阶值正相关;
其中,所述电压补偿公式为:Y=a*X+η*b,X表示初始输入电压,所述初始输入电压为所述初始灰阶值对应的电压,Y表示所述实际加载电压,a表示电压增益,b表示所述设定亮度偏移量,η表示所述插值系数,η*b表示所述实际亮度偏移量,a和b均为大于0的常数,0≤η≤1。
可选的,所述第一灰阶阈值为20。
可选的,所述第二灰阶阈值为235。
可选的,当所述初始灰阶值为0时,所述实际亮度偏移量为0。
另一方面,提供了一种灰阶补偿装置,所述装置包括:
获取模块,用于获取目标像素的初始灰阶值;
确定模块,用于基于所述初始灰阶值,确定所述目标像素的实际亮度偏移量,其中,处于指定阈值范围内的不同初始灰阶值所对应的实际亮度偏移量不 同;
补偿模块,用于根据所述实际亮度偏移量,对所述目标像素进行灰阶补偿。
可选的,所述确定模块,包括:
第一确定子模块,用于基于所述初始灰阶值确定插值系数;
获取子模块,用于获取所述目标像素的设定亮度偏移量;
第二确定子模块,用于将所述插值系数与所述设定亮度偏移量的乘积确定为所述实际亮度偏移量。
可选的,所述第一确定子模块,用于:
当所述初始灰阶值小于第一灰阶阈值时,获取初始灰阶值与插值系数之间的正相关关系;
基于所述正相关关系,确定所述初始灰阶值对应的插值系数。
可选的,所述第一确定子模块,用于:
当所述初始灰阶值大于第二灰阶阈值时,获取初始灰阶值与插值系数之间的负相关关系;
基于所述负相关关系,确定所述初始灰阶值对应的插值系数。
可选的,所述第一确定子模块,用于:
当所述初始灰阶值不小于第一灰阶阈值且不大于第二灰阶阈值时,确定所述插值系数为固定系数,所述第二灰阶阈值大于所述第一灰阶阈值。
可选的,所述补偿模块,用于:
采用电压补偿公式确定所述目标像素的实际加载电压,所述实际加载电压用于驱动所述目标像素发光,且所述实际加载电压与所述目标像素的显示灰阶值正相关;
其中,所述电压补偿公式为:Y=a*X+η*b,X表示初始输入电压,所述初始输入电压为所述初始灰阶值对应的电压,Y表示所述实际加载电压,a表示电压增益,b表示所述设定亮度偏移量,η表示所述插值系数,a和b均为大于0的常数,0≤η≤1。
可选的,所述第一灰阶阈值为20。
可选的,所述第二灰阶阈值为235。
可选的,当所述初始灰阶值为0时,所述实际亮度偏移量为0。
又一方面,提供了一种显示装置,所述显示装置包括:如前述方面任一所述的灰阶补偿装置。
可选的,所述显示装置为有机发光二极管OLED显示装置。
再一方面,提供了一种灰阶补偿装置,包括:包括处理器和存储器,
其中,
所述存储器,用于存储计算机程序;
所述处理器,用于执行所述存储器上所存储的程序,实现前述方面任一所述的灰阶补偿方法。
还一方面,提供了一种计算机存储介质,当所述存储介质中的程序由处理器执行时,能够实现如前述方面任一所述的灰阶补偿方法。
附图说明
图1是本公开实施例提供的一种灰阶补偿方法的流程图;
图2是本公开实施例提供的一种确定实际亮度偏移量的方法流程图;
图3是本公开实施例提供的一种插值系数与初始灰阶值的关系示意图;
图4是本公开实施例提供的另一种插值系数与初始灰阶值的关系示意图;
图5是本公开实施例提供的又一种插值系数与初始灰阶值的关系示意图;
图6是本公开实施例提供的一种补偿前的显示面板的灰阶显示示意图;
图7是本公开实施例提供的一种补偿后的显示面板的灰阶显示示意图;
图8是本公开实施例提供的另一种补偿前的显示面板的灰阶显示示意图;
图9是本公开实施例提供的另一种补偿后的显示面板的灰阶显示示意图;
图10是本公开实施例提供的一种灰阶补偿装置的结构示意图;
图11是本公开实施例提供的一种确定模块的结构示意图;
图12是本公开实施例提供的一种灰阶补偿装置的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
相关技术中提供的像素补偿算法为:Y=a*X+b,X表示向像素输入的初始输入电压,a表示电压增益,b表示亮度偏移量,a和b均为大于0的常数,Y表示加载在像素上的实际加载电压。
由于相关技术提供的像素补偿算法中,电压增益a和亮度偏移量b均为大于0的常数,因此基于该像素补偿算法对显示面板中的像素进行灰阶补偿的灵 活性较低。
本公开实施例提供了一种灰阶补偿方法,可以解决相关技术中的问题。图1是本公开实施例提供的一种灰阶补偿方法的流程图。如图1所示,该方法可以包括以下工作过程:
在步骤101中,获取目标像素的初始灰阶值。
其中,该目标像素为显示面板上的像素,显示面板包括多个像素单元,每个像素单元包括至少一个像素。
可选的,显示终端获取待显示图片后,通过电荷耦合元件(Charge-coupled Device,CCD)获取该待显示图片中各个像素的亮度信息,并将每个像素的亮度信息转换为灰阶信息,以得到目标像素的初始灰阶值。
在步骤102中,基于初始灰阶值,确定目标像素的实际亮度偏移量,其中,处于指定阈值范围内的不同初始灰阶值所对应的实际亮度偏移量不同。
在步骤103中,根据实际亮度偏移量,对目标像素进行灰阶补偿。
综上所述,本公开实施例提供的灰阶补偿方法,在获取目标像素的初始灰阶值后,根据初始灰阶值确定实际亮度偏移量,并根据实际亮度偏移量对目标像素进行灰阶补偿。由于实际亮度偏移量根据目标像素的初始灰阶值确定,且处于指定阈值范围内的不同初始灰阶值所对应的实际亮度偏移量不同,也即是当像素的初始灰阶值不同,则像素对应的实际亮度偏移量可以不同,因此与相关技术相比,提高了对像素进行灰阶补偿的灵活性。
可选的,显示面板包括多个像素单元,每个像素单元包括至少一个像素。例如,每个像素单元可以包括红色像素、绿色像素和蓝色像素。在OLED显示面板中,每个像素包括:薄膜晶体管(Thin Film Transistor,TFT)、阳极、发光单元和阴极。其中,TFT中的第一极与阳极连接,TFT中的第二极通过信号线与像素驱动电路连接。像素驱动电路通过信号线向第二极提供加载电压,以驱动对应的发光单元发光。第一极和第二极分别为源极和漏极中的一个,本公开实施例以第一极为漏极,第二极为源极为例进行说明。该像素驱动电路可以包括用于提供数据信号的集成电路(Integrated Circuit,IC)芯片。每个像素中的TFT可以通过信号线与该IC芯片连接,该IC芯片也可以称为源极驱动IC。
可选的,通过IC芯片控制向TFT加载不同的源极电压,可以实现像素的多灰阶显示。TFT上加载的源极电压越大,对应的像素的显示灰阶越高。其中, 灰阶表示像素的亮暗程度,像素的显示灰阶越高,表示像素的显示亮度越大。目前IC芯片中一般采用8比特(英文:bit)的DAC,8bit的DAC包括256位表现形式,每位表现形式对应一个电压值,即8bit的DAC可以提供256个不同的电压值。由于TFT上可以加载有该256个电压值中的任意一个电压值,因此能够实现像素的0~255灰阶显示。
可选的,步骤102中,基于初始灰阶值,确定目标像素的实际亮度偏移量的实现方法流程图,如图2所示,可以包括以下工作过程:
在步骤1021中,获取目标像素的设定亮度偏移量。
其中,亮度偏移量表示对像素进行补偿的灰阶值。例如某一像素的灰阶值为15,假设亮度偏移量为5,采用该亮度偏移量对该像素进行灰阶补偿后,该像素的灰阶值为20。在本公开实施例中,显示面板上所有像素的设定亮度偏移量均可以相同;或者,显示面板上不同像素的设定亮度偏移量可以不同,例如可以根据像素在显示面板上的显示位置设置该像素对应的设定亮度偏移量,本公开实施例对此不做限定。
可选的,目标像素可以是显示面板上的任一像素,或者,目标像素可以是显示面板上的指定像素,本公开实施例对此不做限定。
在步骤1022中,基于初始灰阶值确定插值系数。
可选的,插值系数的取值范围为0至1。
由于相关技术提供的像素补偿算法中的亮度偏移量为大于0的常数,采用该像素补偿算法对低灰阶(0~20灰阶)像素进行灰度补偿时,易造成低灰阶像素的过补偿。例如0灰阶像素的初始输入电压为0,采用该像素补偿算法后实际加载在该像素上的补偿加载电压大于0,导致0灰阶像素在经过灰阶补偿后的实际灰阶值大于0,因此相关技术提供的灰阶补偿方法的补偿效果较差。
在本公开实施例中,可以基于目标像素的初始灰阶值确定插值系数。示例的,当目标像素的初始灰阶值为0时,可以确定该目标像素对应的设定像素偏移值的插值系数为0。则对该目标像素进行灰阶补偿后,能够保证该目标像素的灰阶值仍为0,因此本公开实施例提供的灰阶补偿方法,可以保证对显示面板上的不同像素的灰阶补偿效果。
在本公开的一个实施例中,当初始灰阶值小于第一灰阶阈值时,获取初始灰阶值与插值系数之间的正相关关系;并基于该正相关关系,确定初始灰阶值对应的插值系数。
可选的,第一灰阶阈值可以为20。由于相关技术中采用固定的亮度偏移量对灰阶值小于20的像素进行灰阶补偿时,可能会出现过补偿的现象,影响显示面板的显示效果,因此可以设置第一灰阶阈值为20。
在本公开实施例中,当初始灰阶值为0时,插值系数也为0。其中,当初始灰阶值小于第一灰阶阈值时,初始灰阶值与插值系数可以满足线性正相关关系。可选的,插值系数的取值可以随初始灰阶值的变化而连续变化。当初始灰阶值从0增长至第一灰阶阈值,插值系数的值也从0增长至最大值。
在本公开的另一个实施例中,当初始灰阶值大于第二灰阶阈值时,获取初始灰阶值与插值系数之间的负相关关系;并基于该负相关关系,确定初始灰阶值对应的插值系数。
可选的,当目标像素的显示灰阶值范围为0~255时,第二灰阶阈值可以为235。
示例的,当初始灰阶值为255时,插值系数可以为0。其中,当初始灰阶值大于第二灰阶阈值时,初始灰阶值与插值系数可以满足线性负相关关系。可选的,插值系数的取值可以随初始灰阶值的变化而连续变化。当初始灰阶值从第二灰阶阈值增长至255(最大灰阶值),插值系数从最大值减小为0。
需要说明的是,由于8bit的DAC能够实现的最大显示灰阶为255,当采用固定的亮度偏移量对灰阶值较大的像素进行灰阶补偿时,可能导致补偿后的像素的灰阶值均为255。例如,采用固定的亮度偏移量10对灰阶值处于245~255的像素进行灰阶补偿后,得到的像素的灰阶值均为255,导致灰阶的层级减少,影响显示画面的细腻程度。其中,灰阶的层级越多,显示画面的细腻程度越高。而采用本公开实施例提供的方法确定插值系数,可以保证对高灰阶的像素进行灰阶补偿后,不减少像素灰阶的层级,从而可以提高显示画面的细腻程度。
在本公开的又一个实施例中,当初始灰阶值不小于第一灰阶阈值且不大于第二灰阶阈值时,确定插值系数为固定系数,第二灰阶阈值大于第一灰阶阈值。
可选的,第一灰阶阈值可以为20;当目标像素的显示灰阶值范围为0~255时,第二灰阶阈值可以为235。
需要说明的是,当初始灰阶值不小于第一灰阶阈值且不大于第二灰阶阈值时,插值系数为固定系数,也即是,当初始灰阶值不小于第一灰阶阈值时,无论初始灰阶值是多少,插值系数的值都是相同的,且该固定系数等于插值系数的最大值。
在本公开的一个示例性实施例中,基于初始灰阶值确定插值系数的的工作过程包括:
检测初始灰阶值是否小于第一灰阶阈值。当初始灰阶值小于第一灰阶阈值时,获取初始灰阶值与插值系数之间的正相关关系;并基于该正相关关系,确定初始灰阶值对应的插值系数。当初始灰阶值不小于第一灰阶阈值时,确定插值系数为固定系数。其中,初始灰阶值与插值系数之间的正相关关系可以采用公式表示。
示例的,假设第一灰阶阈值为20,插值系数的最大值(即固定系数)为1。插值系数与初始灰阶值的关系可以如图3所示,其中,横坐标表示初始灰阶值m,纵坐标表示插值系数η。插值系数η与初始灰阶值m满足第一公式:
Figure PCTCN2019075907-appb-000001
在本公开的另一个示例性实施例中,基于初始灰阶值确定插值系数的的工作过程包括:
检测初始灰阶值是否大于第二灰阶阈值。当初始灰阶值大于第二灰阶阈值时,获取初始灰阶值与插值系数之间的负相关关系;并基于该负相关关系,确定初始灰阶值对应的插值系数。当初始灰阶值不大于第二灰阶阈值时,确定插值系数为固定系数。其中,初始灰阶值与插值系数之间的负相关关系可以采用公式表示。
示例的,假设第二灰阶阈值为235,插值系数的最大值(即固定系数)为1。插值系数与初始灰阶值的关系可以如图4所示,其中,横坐标表示初始灰阶值m,纵坐标表示插值系数η。插值系数η与初始灰阶值m满足第一公式:
Figure PCTCN2019075907-appb-000002
在本公开的又一个示例性实施例中,基于初始灰阶值确定插值系数的的工作过程包括:
检测初始灰阶值是否小于第一灰阶阈值。当初始灰阶值小于第一灰阶阈值时,确定初始灰阶值与插值系数满足正相关关系;并基于该正相关关系,确定初始灰阶值对应的插值系数。当初始灰阶值不小于第一灰阶阈值时,检测初始 灰阶值是否大于第二灰阶阈值,该第二灰阶阈值大于第一灰阶阈值。当初始灰阶值大于第二灰阶阈值时,确定初始灰阶值与插值系数满足负相关关系;并基于该负相关关系,确定初始灰阶值对应的插值系数。当初始灰阶值不大于第二灰阶阈值且不小于第一灰阶阈值时,确定插值系数为固定系数。其中,初始灰阶值与插值系数之间的正相关关系和负相关关系均可以采用公式表示。
在本示例性实施例中,也可以先检测初始灰阶值是否大于第二灰阶阈值,当初始灰阶值不大于第二灰阶阈值时,再检测初始灰阶值是否小于第一灰阶阈值,本公开实施例对检测步骤的执行先后顺序不做限定。
示例的,假设第一灰阶阈值为20,第二灰阶阈值为235,插值系数的最大值(即固定系数)为1。插值系数与初始灰阶值的关系可以如图5所示,其中,横坐标表示初始灰阶值m,纵坐标表示插值系数η。插值系数η与初始灰阶值m满足第二公式:
Figure PCTCN2019075907-appb-000003
在步骤1023中,将插值系数与设定亮度偏移量的乘积确定为实际亮度偏移量。
参考步骤1022中的解释,当初始灰阶值为0时,插值系数为0,实际亮度偏移量也为0,也即是,当初始灰阶值为0时,通过对目标像素进行偏移掩蔽,以使得0灰阶的像素在灰阶补偿后的显示灰阶仍为0,从而提高了像素的灰阶补偿效果。
相应的,步骤103的实现过程可以包括:
采用电压补偿公式确定目标像素的实际加载电压,该实际加载电压用于驱动目标像素发光,且该实际加载电压与目标像素的显示灰阶值正相关。其中,电压补偿公式为:Y=a*X+η*b,X表示初始输入电压,该初始输入电压为初始灰阶值对应的电压,即当向目标像素加载初始输入电压时,该目标像素的显示灰阶值等于初始灰阶值,Y表示实际加载电压,a表示电压增益,b表示设定亮度偏移量,η表示插值系数,η*b表示所述实际亮度偏移量,a和b均为大于0的常数,0≤η≤1。
可选的,实际加载电压可以为TFT的源极加载电压。由于像素的显示灰阶与源极加载电压是线性正相关的,上述电压补偿公式实际也可以看作是灰阶补偿公式,则X表示初始灰阶值,a表示灰阶增益,Y表示实际灰阶值。
示例的,假设初始灰阶值为10,灰阶增益为1,设定亮度偏移量为12,参考上述第一公式或第二公式,确定插值系数为0.5,则对目标像素进行灰阶补偿后,实际灰阶值Y=1*10+0.5*12=16。图6和图7分别是本公开实施例提供的一种补偿前的显示面板的灰阶显示示意图以及补偿后的显示面板的灰阶显示示意图,图中,颜色越深代表灰阶值越小(即亮度越低)。假设目标像素为显示面板上的指定区域M内的像素,参见图6,指定区域M内的像素的灰阶值小于指定区域M外的像素的灰阶值,假设该指定区域M内的像素的初始灰阶值为10,该显示面板上除指定区域M以外的像素的灰阶值均为16,采用本公开实施例的灰阶补偿方法对指定区域M内的像素进行灰阶补偿后,参见图7,可以使指定区域M内的像素的实际灰阶值为16,即与显示面板上的其他像素的显示灰阶值相同,从而保证了显示面板的显示亮度均匀性。
又示例的,假设初始灰阶值为0,灰阶增益为1,设定亮度偏移量为12,参考上述第一公式或第二公式,确定插值系数为0,则对目标像素进行灰阶补偿后,实际灰阶值Y=1*0+0*12=0。图8和图9分别是本公开实施例提供的另一种补偿前的显示面板的灰阶显示示意图以及补偿后的显示面板的灰阶显示示意图,假设目标像素为指定区域N内的像素,参见图8和图9,采用本公开实施例的灰阶补偿方法对0灰阶的像素进行灰阶补偿后,指定区域N内的像素的实际灰阶值仍为0,避免出现对低灰阶像素的过补偿现象。
结合上述两个例子可知,本公开实施例提供的灰阶补偿方法,可以根据目标像素的初始灰阶值确定实际亮度偏移量,在提高对像素进行灰阶补偿的灵活性的同时,保证了对像素的灰阶补偿效果。
可选地,上述步骤102的实现过程还可以包括:基于初始灰阶值与实际亮度偏移量的设定对应关系,根据目标像素的初始灰阶值从该设定对应关系中获取该目标像素的实际亮度偏移量。其中,设定对应关系中存储有多组初始灰阶值与实际亮度偏移量的对应关系,例如设定对应关系中可以存储有0至255灰阶中每个灰阶值分别对应的实际亮度偏移量。可选地,该设定对应关系可以采用索引表存储。
需要说明的是,本公开实施例提供的灰阶补偿方法步骤的先后顺序可以进 行适当调整,例如上述步骤1022也可以在步骤1021之前执行,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供的灰阶补偿方法,在获取目标像素的初始灰阶值后,根据初始灰阶值确定实际亮度偏移量,并根据实际亮度偏移量对目标像素进行灰阶补偿。由于实际亮度偏移量根据目标像素的初始灰阶值确定,当像素的初始灰阶值不同,该像素对应的亮度偏移量也可以不同,与相关技术相比,提高了对像素进行灰阶补偿的灵活性;另外,在本公开实施例中,当初始灰阶值小于第一灰阶阈值时,实际亮度偏移量与初始灰阶值正相关,例如当初始灰阶值为0时,实际亮度偏移量也可以为0,可以避免对低灰阶像素造成过补偿;当初始灰阶值大于第二灰阶阈值时,实际亮度偏移量与初始灰阶值负相关,可以保证对高灰阶像素进行灰阶补偿后,不减少像素灰阶的层级,从而可以提高显示画面的细腻程度。因此本公开实施例提供的灰阶补偿方法,提高了对像素的灰阶补偿效果。
图10是本公开实施例提供的一种灰阶补偿装置的结构示意图,如图10所示,该装置40可以包括:
获取模块401,用于获取目标像素的初始灰阶值。
其中,目标像素为显示面板上的像素,显示面板包括多个像素单元,每个像素单元包括至少一个像素。
确定模块402,用于基于初始灰阶值,确定目标像素的实际亮度偏移量,其中,处于指定阈值范围内的不同初始灰阶值所对应的实际亮度偏移量不同。
补偿模块403,用于根据实际亮度偏移量,对目标像素进行灰阶补偿。
综上所述,本公开实施例提供的灰阶补偿装置,在通过获取模块获取目标像素的初始灰阶值后,通过确定模块根据初始灰阶值确定实际亮度偏移量,并通过补偿模块根据实际亮度偏移量对目标像素进行灰阶补偿。由于实际亮度偏移量根据目标像素的初始灰阶值确定,且处于指定阈值范围内的不同初始灰阶值所对应的实际亮度偏移量不同,也即是当像素的初始灰阶值不同,则像素对应的实际亮度偏移量可以不同,因此与相关技术相比,提高了对像素进行灰阶补偿的灵活性。
可选的,如图11所示,确定模块402,可以包括:
第一确定子模块4021,用于基于初始灰阶值确定插值系数;
获取子模块4022,用于获取目标像素的设定亮度偏移量;
第二确定子模块4023,用于将插值系数与设定亮度偏移量的乘积确定为实际亮度偏移量。
可选的,第一确定子模块,可以用于:
当所述初始灰阶值小于第一灰阶阈值时,获取初始灰阶值与插值系数之间的正相关关系;
基于所述正相关关系,确定所述初始灰阶值对应的插值系数。
可选的,第一确定子模块,可以用于:
当所述初始灰阶值大于第二灰阶阈值时,获取初始灰阶值与插值系数之间的负相关关系;
基于所述负相关关系,确定所述初始灰阶值对应的插值系数。
可选的,第一确定子模块,可以用于:
当所述初始灰阶值不小于第一灰阶阈值且不大于第二灰阶阈值时,确定所述插值系数为固定系数,所述第二灰阶阈值大于所述第一灰阶阈值。
可选的,补偿模块,可以用于:
采用电压补偿公式确定目标像素的实际加载电压,实际加载电压用于驱动目标像素发光,且实际加载电压与目标像素的显示灰阶值正相关;
其中,电压补偿公式为:Y=a*X+η*b,X表示初始输入电压,初始输入电压为初始灰阶值对应的电压,Y表示实际加载电压,a表示电压增益,b表示设定亮度偏移量,η表示插值系数,η*b表示所述实际亮度偏移量,a和b均为大于0的常数,0≤η≤1。
可选的,第一灰阶阈值为20。
可选的,第二灰阶阈值为235。
可选的,当初始灰阶值为0时,实际亮度偏移量为0。
综上所述,本公开实施例提供的灰阶补偿装置,在通过获取模块获取目标像素的初始灰阶值后,通过确定模块根据初始灰阶值确定实际亮度偏移量,并通过补偿模块根据实际亮度偏移量对目标像素进行灰阶补偿。由于实际亮度偏移量根据目标像素的初始灰阶值确定,当像素的初始灰阶值不同,该像素对应的亮度偏移量也可以不同,与相关技术相比,提高了对像素进行灰阶补偿的灵 活性;另外,在本公开实施例中,当初始灰阶值小于第一灰阶阈值时,实际亮度偏移量与初始灰阶值正相关,例如当初始灰阶值为0时,实际亮度偏移量也可以为0,可以避免对低灰阶像素造成过补偿;当初始灰阶值大于第二灰阶阈值时,实际亮度偏移量与初始灰阶值负相关,可以保证对高灰阶像素进行灰阶补偿后,不减少像素灰阶的层级,从而可以提高显示画面的细腻程度。因此本公开实施例提供的灰阶补偿方法,提高了对像素的灰阶补偿效果。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供了一种显示装置,该显示装置可以包括:如图10所示的灰阶补偿装置。
可选的,该显示装置可以为OLED显示装置。
该显示装置可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
综上所述,本公开实施例提供的显示装置,包括灰阶补偿装置,在通过获取模块获取目标像素的初始灰阶值后,通过确定模块根据初始灰阶值确定实际亮度偏移量,并通过补偿模块根据实际亮度偏移量对目标像素进行灰阶补偿。由于实际亮度偏移量根据目标像素的初始灰阶值确定,当像素的初始灰阶值不同,该像素对应的亮度偏移量也可以不同,与相关技术相比,提高了对像素进行灰阶补偿的灵活性;另外,在本公开实施例中,当初始灰阶值小于第一灰阶阈值时,实际亮度偏移量与初始灰阶值正相关,例如当初始灰阶值为0时,实际亮度偏移量也可以为0,可以避免对低灰阶像素造成过补偿;当初始灰阶值大于第二灰阶阈值时,实际亮度偏移量与初始灰阶值负相关,可以保证对高灰阶像素进行灰阶补偿后,不减少像素灰阶的层级,从而可以提高显示画面的细腻程度。因此本公开实施例提供的灰阶补偿方法,提高了对像素的灰阶补偿效果。
本公开实施例提供了一种灰阶补偿装置,该灰阶补偿装置可以集成在IC芯片上,包括:包括处理器和存储器,
其中,
所述存储器,用于存储计算机程序;
所述处理器,用于执行所述存储器上所存储的程序,实现如方法侧实施例任一所述的灰阶补偿方法。
图12是本公开实施例提供的一种灰阶补偿装置的框图,该灰阶补偿装置可以应用于显示终端。显示终端500可以是便携式移动终端,比如:智能手机、平板电脑、MP3播放器(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、笔记本电脑或台式电脑。显示终端500还可能被称为用户设备、便携式终端、膝上型终端、台式终端等其他名称。
通常,显示终端500包括有:处理器501和存储器502。
处理器501可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器501可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器501也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器501可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器501还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器502可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器502还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器502中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器501所执行以实现本申请中方法实施例提供的数据查询方法。
在一些实施例中,显示终端500还可选包括有:外围设备接口503和至少一个外围设备。处理器501、存储器502和外围设备接口503之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口503相连。具体地,外围设备包括:射频电路504、显示屏505、摄像头506、 音频电路507、定位组件508和电源509中的至少一种。
外围设备接口503可被用于将I/O(Input/Output,输入/输出)相关的至少一个外围设备连接到处理器501和存储器502。在一些实施例中,处理器501、存储器502和外围设备接口503被集成在同一芯片或电路板上;在一些其他实施例中,处理器501、存储器502和外围设备接口503中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。
射频电路504用于接收和发射RF(Radio Frequency,射频)信号,也称电磁信号。射频电路504通过电磁信号与通信网络以及其他通信设备进行通信。射频电路504将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。可选地,射频电路504包括:天线系统、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等等。射频电路504可以通过至少一种无线通信协议来与其它终端进行通信。该无线通信协议包括但不限于:万维网、城域网、内联网、各代移动通信网络(2G、3G、4G及5G)、无线局域网和/或WiFi(Wireless Fidelity,无线保真)网络。在一些实施例中,射频电路504还可以包括NFC(Near Field Communication,近距离无线通信)有关的电路,本申请对此不加以限定。
显示屏505用于显示UI(User Interface,用户界面)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏505是触摸显示屏时,显示屏505还具有采集在显示屏505的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器501进行处理。此时,显示屏505还可以用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,显示屏505可以为一个,设置显示终端500的前面板;在另一些实施例中,显示屏505可以为至少两个,分别设置在显示终端500的不同表面或呈折叠设计;在再一些实施例中,显示屏505可以是柔性显示屏,设置在显示终端500的弯曲表面上或折叠面上。甚至,显示屏505还可以设置成非矩形的不规则图形,也即异形屏。显示屏505可以为OLED(Organic Light-Emitting Diode,有机发光二极管)显示屏。
摄像头组件506用于采集图像或视频。可选地,摄像头组件506包括前置摄像头和后置摄像头。通常,前置摄像头设置在显示终端的前面板,后置摄像头设置在显示终端的背面。在一些实施例中,后置摄像头为至少两个,分别为主摄像头、景深摄像头、广角摄像头、长焦摄像头中的任意一种,以实现主摄 像头和景深摄像头融合实现背景虚化功能、主摄像头和广角摄像头融合实现全景拍摄以及VR(Virtual Reality,虚拟现实)拍摄功能或者其它融合拍摄功能。在一些实施例中,摄像头组件506还可以包括闪光灯。闪光灯可以是单色温闪光灯,也可以是双色温闪光灯。双色温闪光灯是指暖光闪光灯和冷光闪光灯的组合,可以用于不同色温下的光线补偿。
音频电路507可以包括麦克风和扬声器。麦克风用于采集用户及环境的声波,并将声波转换为电信号输入至处理器501进行处理,或者输入至射频电路504以实现语音通信。出于立体声采集或降噪的目的,麦克风可以为多个,分别设置在显示终端500的不同部位。麦克风还可以是阵列麦克风或全向采集型麦克风。扬声器则用于将来自处理器501或射频电路504的电信号转换为声波。扬声器可以是传统的薄膜扬声器,也可以是压电陶瓷扬声器。当扬声器是压电陶瓷扬声器时,不仅可以将电信号转换为人类可听见的声波,也可以将电信号转换为人类听不见的声波以进行测距等用途。在一些实施例中,音频电路507还可以包括耳机插孔。
定位组件508用于定位显示终端500的当前地理位置,以实现导航或LBS(Location Based Service,基于位置的服务)。定位组件508可以是基于美国的GPS(Global Positioning System,全球定位系统)、中国的北斗系统或俄罗斯的伽利略系统的定位组件。
电源509用于为显示终端500中的各个组件进行供电。电源509可以是交流电、直流电、一次性电池或可充电电池。当电源509包括可充电电池时,该可充电电池可以是有线充电电池或无线充电电池。有线充电电池是通过有线线路充电的电池,无线充电电池是通过无线线圈充电的电池。该可充电电池还可以用于支持快充技术。
在一些实施例中,显示终端500还包括有一个或多个传感器510。该一个或多个传感器510包括但不限于:加速度传感器511、陀螺仪传感器512、压力传感器513、指纹传感器514、光学传感器515以及接近传感器516。
加速度传感器511可以检测以显示终端500建立的坐标系的三个坐标轴上的加速度大小。比如,加速度传感器511可以用于检测重力加速度在三个坐标轴上的分量。处理器501可以根据加速度传感器511采集的重力加速度信号,控制触摸显示屏505以横向视图或纵向视图进行用户界面的显示。加速度传感器511还可以用于游戏或者用户的运动数据的采集。
陀螺仪传感器512可以检测显示终端500的机体方向及转动角度,陀螺仪传感器512可以与加速度传感器511协同采集用户对显示终端500的3D动作。处理器501根据陀螺仪传感器512采集的数据,可以实现如下功能:动作感应(比如根据用户的倾斜操作来改变UI)、拍摄时的图像稳定、游戏控制以及惯性导航。
压力传感器513可以设置在显示终端500的侧边框和/或触摸显示屏505的下层。当压力传感器513设置在显示终端500的侧边框时,可以检测用户对显示终端500的握持信号,由处理器501根据压力传感器513采集的握持信号进行左右手识别或快捷操作。当压力传感器513设置在触摸显示屏505的下层时,由处理器501根据用户对触摸显示屏505的压力操作,实现对UI界面上的可操作性控件进行控制。可操作性控件包括按钮控件、滚动条控件、图标控件、菜单控件中的至少一种。
指纹传感器514用于采集用户的指纹,由处理器501根据指纹传感器514采集到的指纹识别用户的身份,或者,由指纹传感器514根据采集到的指纹识别用户的身份。在识别出用户的身份为可信身份时,由处理器501授权该用户执行相关的敏感操作,该敏感操作包括解锁屏幕、查看加密信息、下载软件、支付及更改设置等。指纹传感器514可以被设置显示终端500的正面、背面或侧面。当显示终端500上设置有物理按键或厂商Logo时,指纹传感器514可以与物理按键或厂商Logo集成在一起。
光学传感器515用于采集环境光强度。在一个实施例中,处理器501可以根据光学传感器515采集的环境光强度,控制触摸显示屏505的显示亮度。具体地,当环境光强度较高时,调高触摸显示屏505的显示亮度;当环境光强度较低时,调低触摸显示屏505的显示亮度。在另一个实施例中,处理器501还可以根据光学传感器515采集的环境光强度,动态调整摄像头组件506的拍摄参数。
接近传感器516,也称距离传感器,通常设置在显示终端500的前面板。接近传感器516用于采集用户与显示终端500的正面之间的距离。在一个实施例中,当接近传感器516检测到用户与显示终端500的正面之间的距离逐渐变小时,由处理器501控制触摸显示屏505从亮屏状态切换为息屏状态;当接近传感器516检测到用户与显示终端500的正面之间的距离逐渐变大时,由处理器501控制触摸显示屏505从息屏状态切换为亮屏状态。
本领域技术人员可以理解,图12中示出的结构并不构成对显示终端500的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
本公开实施例提供了一种计算机存储介质,当所述存储介质中的程序由处理器执行时,能够执行如方法侧实施例任一所述的灰阶补偿方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的实施例,并不用以限制本公开,凡在本公开的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (22)

  1. 一种灰阶补偿方法,所述方法包括:
    获取目标像素的初始灰阶值;
    基于所述初始灰阶值,确定所述目标像素的实际亮度偏移量,其中,处于指定阈值范围内的不同初始灰阶值所对应的实际亮度偏移量不同;
    根据所述实际亮度偏移量,对所述目标像素进行灰阶补偿。
  2. 根据权利要求1所述的方法,其中,所述基于所述初始灰阶值,确定所述目标像素的实际亮度偏移量,包括:
    基于所述初始灰阶值确定插值系数;
    获取所述目标像素的设定亮度偏移量;
    将所述插值系数与所述设定亮度偏移量的乘积确定为所述实际亮度偏移量。
  3. 根据权利要求2所述的方法,其中,所述基于所述初始灰阶值确定插值系数,包括:
    当所述初始灰阶值小于第一灰阶阈值时,获取初始灰阶值与插值系数之间的正相关关系;
    基于所述正相关关系,确定所述初始灰阶值对应的插值系数。
  4. 根据权利要求2所述的方法,其中,所述基于所述初始灰阶值确定插值系数,包括:
    当所述初始灰阶值大于第二灰阶阈值时,获取初始灰阶值与插值系数之间的负相关关系;
    基于所述负相关关系,确定所述初始灰阶值对应的插值系数。
  5. 根据权利要求2所述的方法,其中,所述基于所述初始灰阶值确定插值系数,包括:
    当所述初始灰阶值不小于第一灰阶阈值且不大于第二灰阶阈值时,确定所述插值系数为固定系数,所述第二灰阶阈值大于所述第一灰阶阈值。
  6. 根据权利要求2至5任一所述的方法,其中,所述根据所述实际亮度偏移量,对所述目标像素进行灰阶补偿,包括:
    采用电压补偿公式确定所述目标像素的实际加载电压,所述实际加载电压用于驱动所述目标像素发光,且所述实际加载电压与所述目标像素的显示灰阶值正相关;
    其中,所述电压补偿公式为:Y=a*X+η*b,X表示初始输入电压,所述初始输入电压为所述初始灰阶值对应的电压,Y表示所述实际加载电压,a表示电压增益,b表示所述设定亮度偏移量,η表示所述插值系数,η*b表示所述实际亮度偏移量,a和b均为大于0的常数,0≤η≤1。
  7. 根据权利要求3或5所述的方法,其中,所述第一灰阶阈值为20。
  8. 根据权利要求4或5所述的方法,其中,所述第二灰阶阈值为235。
  9. 根据权利要求1所述的方法,其中,当所述初始灰阶值为0时,所述实际亮度偏移量为0。
  10. 一种灰阶补偿装置,所述装置包括:
    获取模块,用于获取目标像素的初始灰阶值;
    确定模块,用于基于所述初始灰阶值,确定所述目标像素的实际亮度偏移量,其中,处于指定阈值范围内的不同初始灰阶值所对应的实际亮度偏移量不同;
    补偿模块,用于根据所述实际亮度偏移量,对所述目标像素进行灰阶补偿。
  11. 根据权利要求10所述的装置,其中,所述确定模块,包括:
    第一确定子模块,用于基于所述初始灰阶值确定插值系数;
    获取子模块,用于获取所述目标像素的设定亮度偏移量;
    第二确定子模块,用于将所述插值系数与所述设定亮度偏移量的乘积确定为所述实际亮度偏移量。
  12. 根据权利要求11所述的装置,其中,所述第一确定子模块,用于:
    当所述初始灰阶值小于第一灰阶阈值时,获取初始灰阶值与插值系数之间的正相关关系;
    基于所述正相关关系,确定所述初始灰阶值对应的插值系数。
  13. 根据权利要求11所述的装置,其中,所述第一确定子模块,用于:
    当所述初始灰阶值大于第二灰阶阈值时,获取初始灰阶值与插值系数之间的负相关关系;
    基于所述负相关关系,确定所述初始灰阶值对应的插值系数。
  14. 根据权利要求11所述的装置,其中,所述第一确定子模块,用于:
    当所述初始灰阶值不小于第一灰阶阈值且不大于第二灰阶阈值时,确定所述插值系数为固定系数,所述第二灰阶阈值大于所述第一灰阶阈值。
  15. 根据权利要求11至14任一所述的装置,其中,所述补偿模块,用于:
    采用电压补偿公式确定所述目标像素的实际加载电压,所述实际加载电压用于驱动所述目标像素发光,且所述实际加载电压与所述目标像素的显示灰阶值正相关;
    其中,所述电压补偿公式为:Y=a*X+η*b,X表示初始输入电压,所述初始输入电压为所述初始灰阶值对应的电压,Y表示所述实际加载电压,a表示电压增益,b表示所述设定亮度偏移量,η表示所述插值系数,η*b表示所述实际亮度偏移量,a和b均为大于0的常数,0≤η≤1。
  16. 根据权利要求12或14所述的装置,其中,所述第一灰阶阈值为20。
  17. 根据权利要求13或14所述的装置,其中,所述第二灰阶阈值为235。
  18. 根据权利要求10所述的装置,其中,当所述初始灰阶值为0时,所述实际亮度偏移量为0。
  19. 一种显示装置,所述显示装置包括:如权利要求10至18任一所述的 灰阶补偿装置。
  20. 根据权利要求19所述的显示装置,其中,所述显示装置为有机发光二极管OLED显示装置。
  21. 一种灰阶补偿装置,包括:包括处理器和存储器,
    其中,
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器上所存储的程序,实现权利要求1至9任一所述的灰阶补偿方法。
  22. 一种计算机存储介质,当所述存储介质中的程序由处理器执行时,能够实现如权利要求1至9任一所述的灰阶补偿方法。
PCT/CN2019/075907 2018-05-02 2019-02-22 灰阶补偿方法及装置、显示装置、计算机存储介质 WO2019210731A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/611,874 US11217146B2 (en) 2018-05-02 2019-02-22 Gray-level compensation method and apparatus, display device and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810409629.X 2018-05-02
CN201810409629.XA CN110444151B (zh) 2018-05-02 2018-05-02 灰阶补偿方法及装置、显示装置、计算机存储介质

Publications (1)

Publication Number Publication Date
WO2019210731A1 true WO2019210731A1 (zh) 2019-11-07

Family

ID=68387029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075907 WO2019210731A1 (zh) 2018-05-02 2019-02-22 灰阶补偿方法及装置、显示装置、计算机存储介质

Country Status (3)

Country Link
US (1) US11217146B2 (zh)
CN (1) CN110444151B (zh)
WO (1) WO2019210731A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210082855A (ko) * 2019-12-26 2021-07-06 주식회사 실리콘웍스 무라 보상 회로 및 그를 채용한 디스플레이를 위한 구동 장치
KR20210082856A (ko) * 2019-12-26 2021-07-06 주식회사 실리콘웍스 무라 보상 회로 및 그를 채용한 디스플레이를 위한 구동 장치
JP2021117360A (ja) * 2020-01-27 2021-08-10 深▲セン▼通鋭微電子技術有限公司 駆動回路及び表示装置
CN113257162B (zh) * 2020-02-12 2022-12-27 北京小米移动软件有限公司 屏幕的亮度调节方法、装置和存储介质
CN113674712B (zh) * 2021-08-11 2022-09-27 Tcl华星光电技术有限公司 显示屏背光矫正方法、装置、系统及存储介质及显示系统
CN114038368A (zh) * 2021-10-29 2022-02-11 云谷(固安)科技有限公司 一种显示装置的校准方法和显示装置
CN114999416B (zh) * 2022-06-07 2023-05-30 Tcl华星光电技术有限公司 显示面板画面优化方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531069A (zh) * 2016-12-29 2017-03-22 上海天马有机发光显示技术有限公司 一种控制芯片、控制方法、显示装置及控制主机
CN107342064A (zh) * 2017-08-31 2017-11-10 深圳市华星光电技术有限公司 显示面板的灰阶值补偿方法,系统及显示面板
KR20180014333A (ko) * 2016-07-29 2018-02-08 엘지디스플레이 주식회사 표시 패널의 휘도 보상 방법 및 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103528B2 (ja) * 2002-10-08 2008-06-18 セイコーエプソン株式会社 階調特性テーブルの生成方法、生成プログラム、生成装置、及び画像表示装置
US7605785B2 (en) * 2005-07-12 2009-10-20 Eastman Kodak Company Black level uniformity correction method
JP2014102642A (ja) * 2012-11-19 2014-06-05 Samsung Display Co Ltd 画像処理回路、画像処理方法及びそれを用いた表示装置
KR102046429B1 (ko) * 2012-11-30 2019-11-20 삼성디스플레이 주식회사 픽셀 휘도 보상 유닛, 이를 구비하는 평판 표시 장치 및 픽셀 휘도 커브 조절 방법
KR102076042B1 (ko) * 2013-01-17 2020-02-12 삼성디스플레이 주식회사 영상 표시 방법, 이를 수행하는 표시 장치, 이에 적용되는 보정값 산출 방법 및 장치
KR102151262B1 (ko) * 2013-09-11 2020-09-03 삼성디스플레이 주식회사 표시 패널의 구동 방법, 이를 수행하는 표시 장치, 이에 적용되는 보정값 산출 방법 및 계조 데이터의 보정 방법
US9530343B2 (en) * 2014-06-23 2016-12-27 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for correcting gray-scale of display panel
KR102251686B1 (ko) * 2014-10-14 2021-05-14 삼성디스플레이 주식회사 표시 패널의 구동 방법 및 이를 수행하는 표시 장치
CN104318900B (zh) * 2014-11-18 2016-08-24 京东方科技集团股份有限公司 一种有机电致发光显示装置及方法
CN105304052B (zh) * 2015-11-25 2017-11-17 深圳市华星光电技术有限公司 液晶显示驱动系统及液晶显示驱动方法
KR102650046B1 (ko) * 2016-01-19 2024-03-22 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 광학 보상 방법
CN106991982B (zh) * 2017-05-03 2018-09-14 深圳市华星光电技术有限公司 一种显示面板的mura现象补偿方法及显示面板
CN107799080B (zh) * 2017-11-03 2019-09-27 天津大学 一种基于分段式曲线的液晶像素补偿方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180014333A (ko) * 2016-07-29 2018-02-08 엘지디스플레이 주식회사 표시 패널의 휘도 보상 방법 및 장치
CN106531069A (zh) * 2016-12-29 2017-03-22 上海天马有机发光显示技术有限公司 一种控制芯片、控制方法、显示装置及控制主机
CN107342064A (zh) * 2017-08-31 2017-11-10 深圳市华星光电技术有限公司 显示面板的灰阶值补偿方法,系统及显示面板

Also Published As

Publication number Publication date
CN110444151B (zh) 2021-03-09
CN110444151A (zh) 2019-11-12
US11217146B2 (en) 2022-01-04
US20210150965A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
WO2019210731A1 (zh) 灰阶补偿方法及装置、显示装置、计算机存储介质
WO2020011169A1 (zh) 伽马校正方法及装置、显示装置、计算机存储介质
CN107945163B (zh) 图像增强方法及装置
US11631275B2 (en) Image processing method and apparatus, terminal, and computer-readable storage medium
CN109461406B (zh) 显示方法、装置、电子设备及介质
CN110459180B (zh) 驱动控制方法、装置及显示装置
CN109558837B (zh) 人脸关键点检测方法、装置及存储介质
CN107248137B (zh) 一种实现图像处理的方法及移动终端
CN111028144B (zh) 视频换脸方法及装置、存储介质
WO2020253295A1 (zh) 控制方法、装置及终端设备
US20190356831A1 (en) Mobile terminal-based screen light-supplementing photographing method and system, and mobile terminal
US20210335291A1 (en) Method, device and system for data transmission, and display device
CN110619614B (zh) 图像处理的方法、装置、计算机设备以及存储介质
CN115909972A (zh) 显示控制方法、显示驱动芯片、设备及存储介质
CN113888447A (zh) 一种图像处理方法、终端及存储介质
CN108196701B (zh) 确定姿态的方法、装置及vr设备
CN115798417A (zh) 背光亮度的确定方法、装置、设备及计算机可读存储介质
CN115798418A (zh) 图像显示方法、装置、终端及存储介质
CN112383719B (zh) 图像亮度的调整方法、装置、设备及可读存储介质
KR20190033407A (ko) 픽셀의 열화를 방지하기 위한 전자 장치 및 방법
CN107992230B (zh) 图像处理方法、装置及存储介质
CN112184802A (zh) 标定框的调整方法、装置及存储介质
CN110660031B (zh) 图像锐化方法及装置、存储介质
CN111091512B (zh) 图像处理方法及装置、计算机可读存储介质
CN111163262B (zh) 控制移动终端的方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19795798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19795798

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19795798

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19795798

Country of ref document: EP

Kind code of ref document: A1