WO2019210640A1 - 电机控制方法和装置 - Google Patents

电机控制方法和装置 Download PDF

Info

Publication number
WO2019210640A1
WO2019210640A1 PCT/CN2018/107672 CN2018107672W WO2019210640A1 WO 2019210640 A1 WO2019210640 A1 WO 2019210640A1 CN 2018107672 W CN2018107672 W CN 2018107672W WO 2019210640 A1 WO2019210640 A1 WO 2019210640A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
acceleration
speed
motor
preset
Prior art date
Application number
PCT/CN2018/107672
Other languages
English (en)
French (fr)
Inventor
陈毅东
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019210640A1 publication Critical patent/WO2019210640A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft

Definitions

  • the present application relates to the field of UAV control technologies, and in particular, to a motor control method and apparatus.
  • the miniaturization of drones is a major trend in the development of civilian drones.
  • the propeller on the drone is a key component of the drone.
  • the propeller of the drone In order to adapt to the miniaturization of the drone, the propeller of the drone usually adopts a foldable structure.
  • a collapsible propeller it usually includes a paddle clamp and two blades.
  • the paddle clamp is used to fix two blades on the outer shaft of the motor of the drone.
  • the blade is open during actual flight and folded up when not in use. To save the space occupied by drones.
  • the rotation of the motor drives the paddle to rotate. Due to the certain damping between the paddle and the blade, the two blades rotate together with the paddle, thereby transforming the rotation of the motor into The thrust or lift of the drone.
  • the long-term use of the drone may result in a reduction in the damping force between the paddle and the paddle, that is, the connection between the paddle and the paddle becomes loose.
  • the motor adjusts the speed of the motor according to the speed control command, and the paddle rotates normally under the driving of the outer shaft of the motor.
  • the damping force of the blade and the paddle is reduced, causing the blade and the paddle.
  • the speed of the motor is not synchronized, the motor load fluctuates greatly, and it is easy to cause the drone to crash or bomb. Therefore, there is a need for a method for effectively controlling the motor of the drone, and ensuring normal and stable operation of the motor when the damping of the blade and the paddle is reduced.
  • the present application provides a motor control method and device, which automatically adjusts the motor speed control command when the damping between the blades and the paddles of the UAV propeller is reduced, so as to prevent the blades and the paddles from being out of synchronization, resulting in the drone.
  • a first aspect of the present application provides a motor control method comprising:
  • determining the second rotational speed acceleration of the motor according to the current rotational speed and the first rotational speed acceleration including:
  • the first preset acceleration step is a step of the rotational acceleration in the preset low rotational speed range
  • determining the second rotational speed acceleration of the motor according to the current rotational speed and the first rotational speed acceleration including:
  • the second preset acceleration step length is a step size of the rotation speed acceleration in the preset high rotation speed range
  • a ratio of the second preset acceleration step to the first preset acceleration step is between 1 and 1.5.
  • a ratio of the second preset acceleration step to the first preset acceleration step is 1.2.
  • the drone includes at least two folding propellers; if the propeller of the unmanned aerial vehicle is in a low damping working state when the motor accelerates at the first rotational speed acceleration,
  • the current speed of the motor includes:
  • the first rotational speed control command further includes a first target rotational speed, and the first target rotational speed is used to indicate that the rotational speed of the motor is accelerated to the first target rotational speed;
  • the second speed control command further includes a second target speed, the second target speed is used to indicate that the speed of the motor is accelerated to the second target speed; wherein the second target speed is greater than the first Target speed.
  • a second aspect of the present application provides a motor control apparatus comprising:
  • a sending module configured to send a first speed control command to the motor that drives the propeller to rotate after the drone takes off, the first speed control command including a first speed acceleration
  • a monitoring acquisition module configured to acquire a current rotational speed of the motor if the propeller of the unmanned aerial vehicle is in a low-damping working state when the motor accelerates at the first rotational speed
  • a determining module configured to determine a second rotational speed acceleration of the motor according to the current rotational speed and the first rotational speed acceleration; wherein the second rotational speed acceleration is greater than the first rotational speed acceleration;
  • a generating module configured to generate a second rotational speed control command according to the second rotational speed acceleration
  • the sending module is further configured to send the second rotational speed control command to the motor, where the second rotational speed control command includes the second rotational speed acceleration to cause the motor to rotate at the second rotational speed acceleration accelerate.
  • the determining module is specifically configured to:
  • the first preset acceleration step is a step of the rotational acceleration in the preset low rotational speed range
  • the determining module is specifically configured to:
  • the second preset acceleration step length is a step size of the rotation speed acceleration in the preset high rotation speed range
  • a ratio of the second preset acceleration step to the first preset acceleration step is between 1 and 1.5.
  • a ratio of the second preset acceleration step to the first preset acceleration step is 1.2.
  • the drone includes at least two folding propellers; and the monitoring acquisition module is specifically configured to:
  • the first rotational speed control command further includes a first target rotational speed, and the first target rotational speed is used to indicate that the rotational speed of the motor is accelerated to the first target rotational speed;
  • the second speed control command further includes a second target speed, the second target speed is used to indicate that the speed of the motor is accelerated to the second target speed; wherein the second target speed is greater than the first Target speed.
  • a third aspect of the present application provides a drone comprising:
  • the computer program is stored in the memory and configured to perform, by the processor, the method of the first aspect of the present application and any of the alternatives to control the motor to accelerate the speed.
  • a fourth aspect of the present application provides an electronic device readable storage medium, wherein the electronic device readable storage medium can store a program that, when run on an electronic device, causes the electronic device to perform the first aspect of the present application and any An alternative method.
  • the motor control method and device provided in this embodiment sends a first speed control command to the motor that drives the propeller after the take-off of the drone, and the first speed control command includes the first speed acceleration; if the motor is at the first speed acceleration When the speed is accelerated, the propeller of the drone is monitored to be in a low damping working state, and the current speed of the motor is obtained; according to the current speed and the first speed acceleration, the second speed acceleration of the motor is determined, and the second speed acceleration is greater than the first speed acceleration. And generating a second rotational speed control command according to the second rotational speed acceleration, and transmitting a second rotational speed control command to the motor, where the second rotational speed control command includes the second rotational speed acceleration.
  • FIG. 1 is a schematic structural diagram of a quadrotor UAV according to an embodiment of the present application.
  • FIG. 2 is a schematic flow chart of a motor control method according to an embodiment of the present application.
  • FIG. 3 is a schematic flow chart of a motor control method according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a motor control apparatus according to an embodiment of the present application.
  • UAVs are used in aerial photography, geological surveys, and high-voltage transmission lines.
  • the application prospects in the civil field such as inspection, oilfield pipeline inspection, highway management, forest fire inspection, gas exploration, anti-drug and emergency rescue, and ambulance are extremely broad.
  • unmanned aerial propellers According to the number of unmanned aerial propellers, it is subdivided into two-rotor, four-rotor, six-rotor, and eight-rotor. Let's take the quadrotor UAV as an example to briefly introduce the structure and working principle of the drone.
  • FIG. 1 is a schematic structural view of a four-rotor UAV according to an embodiment of the present invention.
  • the propellers 1 are symmetrically distributed in the front, rear, and left and right directions of the body, and the four propellers 1 are in the same height plane, and four The propeller 1 has the same mechanism and radius.
  • Each propeller 1 typically includes a paddle and two blades that are mounted on the outer shaft of the motor 2 by paddles.
  • the four motors 2 are symmetrically mounted on the bracket end of the drone, and the motor control device 4 is mounted in the middle of the bracket 3.
  • Each motor 2 of the quadrotor drone adjusts the rotational speed of the propeller 1 according to the motor control command sent from the motor control device 4 to change the rotational speed of the propeller 1, thereby realizing the change of the lift, thereby controlling the posture and position of the drone.
  • the quadrotor UAV provided by this embodiment further includes four ESCs, each of which is connected to a motor 2, and each ESC is connected to the motor control device 4 of the UAV, and each ESC is connected.
  • the motor control command sent by the motor control device 4 adjusts the current of the motor connected to each ESC to control the motor speed.
  • the electrical adjustment of the embodiment may be independent or integrated with the motor 2, which is not specifically limited in this embodiment.
  • drone arms and propellers usually adopt a foldable structure.
  • the rotation of the propeller is not synchronized with the rotation of the motor, and the motor load fluctuation is easily lost. Therefore, it is necessary to adjust the motor control commands of the motor to ensure that the propeller's propeller can operate normally under low damping operation.
  • FIG. 2 is a schematic flowchart of a motor control method according to an embodiment of the present invention.
  • the motor control method provided by the embodiment is a motor control device of the drone, and the method specifically includes the following steps:
  • the first rotational speed acceleration is a rotational speed acceleration that the motor control device sends to each motor when the propellers of the motor are in a normal damping working state;
  • the motor control method provided by the present embodiment is mainly for the motor control of the acceleration process after the take-off of the drone, and according to the current flight speed of the drone, it can be determined that the drone is currently in a low-speed flight state or a high-speed flight state, then, for the unmanned
  • the acceleration process of the machine includes the following two possible situations:
  • the flying speed of the drone is related to the current speed of the motor of the drone, and the higher the rotational speed of the motor, the faster the flying speed of the drone. Therefore, for the acceleration process of the drone, the essence is to increase the rotational speed of the motor of the drone.
  • the motor control device sends a first rotational speed control command to the motor that drives the propeller to rotate, and the first rotational speed control command includes the first rotational speed acceleration.
  • the first speed control command is used to instruct the motor to increase the current speed of the motor according to the first speed acceleration.
  • the UAV of the embodiment includes at least two folding propellers. According to the number of propellers, the UAV can be subdivided into two-rotor, four-rotor, six-rotor, eight-rotor, etc. It is generally believed that the more the number of propellers, the more the flight The more stable. This embodiment does not specifically limit the number of folding propellers of the drone.
  • a folding propeller of a drone includes a paddle clamp and two blades.
  • the paddle clamp is used to fix two blades on the outer rotating shaft of the unmanned aerial motor.
  • the drone is driven by the rotation of the motor during actual flight. As the paddle rotates, due to the certain damping between the paddle and the blade, the two blades rotate together with the paddle, thereby transforming the rotation of the motor into the thrust or lift of the drone.
  • each motor of the drone accelerates the motor speed according to the first speed control command sent by the motor control device in S201, wherein the propeller in the normal damping state is in a low damping working state as the corresponding motor rotates.
  • the propeller does not rotate synchronously with the corresponding motor, which causes the unmanned aircraft to accelerate the process imbalance. Therefore, it is necessary to adjust the first rotational speed acceleration of the motor corresponding to the propeller in the low damping working state.
  • the motor control device of the embodiment needs to monitor the working state of each propeller of the drone in real time. If a propeller of the drone is monitored to be in a low damping working state, the current rotational speed of the motor corresponding to the propeller is obtained. To further adjust the first rotational speed acceleration in the first rotational speed control command, and refer to S203 for specific adjustment.
  • the second rotational speed acceleration is a rotational speed acceleration sent by the motor control device to the motor in which the propeller is in a low damping working state.
  • the motor control device determines to increase the first speed acceleration to the second speed acceleration according to the obtained current speed of the motor and the first speed acceleration, and generally the second speed acceleration is greater than the first speed acceleration, so that the propeller is in a low damping working state.
  • the target speed is reached at the second speed acceleration, and the acceleration process is synchronized with the acceleration process of the propeller in the normal damping working state, thereby avoiding the risk of unbalanced rollover of the unmanned aircraft during the acceleration process.
  • the motor control device determines that the current speed of the motor is in a low speed range or a high speed range according to the preset speed. If the current speed is in the low speed range, the first speed acceleration is determined according to a preset low speed adjustment rule. Increase to the second speed acceleration; if the current speed is within the high speed range, increase the first speed acceleration to the second speed acceleration according to a preset high speed adjustment rule.
  • the second rotational speed acceleration obtained according to the preset low speed adjustment rule is smaller than the second rotational speed acceleration obtained according to the preset high speed adjustment rule.
  • the motor control device of the embodiment After determining the second rotational speed acceleration, the motor control device of the embodiment generates a second rotational speed control command and sends a second rotational speed control command to the motor corresponding to the propeller in the low damping working state, so that the motor controls the command with the second rotational speed.
  • the second speed acceleration in the acceleration accelerates the speed. It should be noted that the motor corresponding to the propeller for the normal damping operation state is still accelerated according to the first rotational speed acceleration in the first rotational speed control command.
  • the motor control method provided by the embodiment sends a first speed control command to the motor that drives the propeller after the take-off of the drone, and the first speed control command includes the first speed acceleration; if the motor accelerates at the first speed acceleration When the propeller of the drone is monitored to be in a low damping working state, the current speed of the motor is obtained; according to the current speed and the first speed acceleration, the second speed acceleration of the motor is determined, and the second speed acceleration is greater than the first speed acceleration;
  • the second rotational speed acceleration generates a second rotational speed control command and transmits a second rotational speed control command to the motor, the second rotational speed control command including the second rotational speed acceleration.
  • the motor control device of the drone adjusts the first rotational speed acceleration of the motor according to the current rotational speed of the motor corresponding to the obtained propeller in the low damping working state and the first rotational speed acceleration in the first rotational speed control command. Specifically, it is necessary to increase the first rotational speed acceleration to the second rotational speed acceleration by using a preset low speed adjustment rule or a high speed adjustment rule according to the current speed in the low speed range or the high speed range to achieve synchronization of the propeller rotation acceleration.
  • FIG. 3 is a schematic flowchart of a motor control method according to another embodiment of the present invention. As shown in FIG. 3, the motor control method provided in this embodiment specifically includes the following steps:
  • the first target rotational speed is used to indicate that the motor accelerates to the first target rotational speed according to the first rotational speed acceleration. After the motor reaches the first target speed indicated by the first speed control command, the flight speed of the drone is maintained at the flight speed corresponding to the current first target speed, and the drone completes the acceleration process under the first speed control command.
  • S301 in this embodiment is the same as S201 in the foregoing embodiment, and its implementation principle and technical effect are similar, and details are not described herein again.
  • the UAV of the embodiment includes at least two folding propellers. According to the number of propellers, the UAV can be subdivided into two-rotor, four-rotor, six-rotor, eight-rotor, etc. It is generally believed that the more the number of propellers, the more the flight The more stable. This embodiment does not specifically limit the number of folding propellers of the drone.
  • the motor control device detects each folding propeller of the drone, and if it is detected that the damping coefficient between the blade and the paddle of the at least one folding propeller is less than a preset minimum damping coefficient, determining that the folding propeller is the first folding The propeller, the first folding propeller, is the propeller in the low damping operation state in the above embodiment.
  • the current speed of the motor therefore, it is necessary to adjust the speed control command of the motor corresponding to the propeller in the low damping working state, so as to synchronize the acceleration process of the propellers of the drone, and avoid the risk of unbalanced rollover of the unmanned aircraft during the acceleration process.
  • a preset rotational speed is stored, and the preset rotational speed is used by the motor control device to determine that the current rotational speed of the motor is in a low rotational speed range or a high rotational speed range.
  • the current speed of the motor is less than or equal to the preset speed defined as the low speed range, and the current speed of the motor is greater than the preset speed defined as the high speed range.
  • the first speed acceleration is increased to the second speed acceleration according to a preset low speed adjustment rule
  • the first speed acceleration is increased to the second speed acceleration according to a preset high speed adjustment rule.
  • preset high speed adjustment rules see S304a and S304b.
  • the first preset acceleration step is a step size of the rotational speed acceleration in the preset low rotational speed range.
  • the current rotational speed is less than or equal to the preset rotational speed, it is determined that the current rotational speed of the motor is in the preset low rotational speed range, and the step size of the rotational speed acceleration in the preset low rotational speed range is obtained.
  • the sum of the first rotational speed acceleration and the first preset acceleration step is taken as the second rotational acceleration.
  • the first rotational speed acceleration in the first rotational speed control command is ⁇ 1
  • the first predetermined acceleration step is C 1
  • the smaller the damping coefficient of the folded propeller, the larger the k value. That is to say, the smaller the damping coefficient of the folding propeller is, the looser the connection between the blade and the paddle of the folding propeller is, and the rotation speed of the motor needs to be adjusted so that the folding propeller in various working states can be accelerated synchronously. Therefore, it is necessary to that the first predefined acceleration step C 1 is based on the size of the adjustment coefficient k, thereby increasing the second speed acceleration, for example, take ⁇ 2 ⁇ 1 + 1.1C 1 .
  • the adjustment of the rotational speed acceleration of the motor corresponding to the folding propeller in different elastic states is realized, so that the folding propellers in various working states can accelerate synchronously when accelerating in the low rotational speed range.
  • the second preset acceleration step is a step size of the rotational speed acceleration in the preset high rotational speed range.
  • the current speed is greater than the preset speed, determine that the current speed of the motor is in the preset high speed range, and obtain the step size of the speed acceleration in the preset high speed range.
  • the sum of the first rotational speed acceleration and the second preset acceleration step is taken as the second rotational acceleration.
  • the first rotational speed acceleration in the first rotational speed control command is ⁇ 1
  • the second predetermined acceleration step is C 2
  • the smaller the damping coefficient of the folded propeller, the larger the k value. That is to say, the smaller the damping coefficient of the folding propeller is, the looser the connection between the blade and the paddle of the folding propeller is, and the rotation speed of the motor needs to be adjusted so that the folding propeller in various working states can be accelerated synchronously. Therefore, it is necessary to the second predetermined acceleration based on the above steps on C 2, the size of the adjustment coefficient k, thereby increasing the second speed acceleration, for example, take ⁇ 2 ⁇ 1 + 1.5C 2 .
  • the adjustment of the rotational speed acceleration of the motor corresponding to the folding propeller in different elastic states is realized, so that the folding propellers in various working states can accelerate synchronously when accelerating in the high rotational speed range.
  • the current rotational speed is the preset rotational speed
  • acquiring a third preset acceleration step length where the third preset acceleration step length is between the first preset acceleration step and the second preset acceleration step.
  • the third rotational speed acceleration is determined according to the first rotational speed acceleration and the third preset acceleration step, and the third rotational acceleration is between the first rotational acceleration and the second rotational acceleration.
  • the third rotational speed acceleration is between the first rotational speed acceleration and the second rotational speed acceleration, thereby avoiding a large switch of the preset acceleration step size when the rotational speed changes near the preset rotational speed, and introducing a new system. Stable problem.
  • the ratio of the second preset acceleration step to the first preset acceleration step is between 1 and 1.5.
  • the ratio of the second preset acceleration step to the first preset acceleration step is 1.2, the problem that the propeller in the low damping working state and the propeller in the normal damping working state are not synchronized with each other can be effectively eliminated.
  • the second target rotational speed is used to indicate that the motor accelerates to the second target rotational speed according to the second rotational speed acceleration. After the motor reaches the second target speed indicated by the second speed control command, the flight speed of the drone is maintained at the flight speed corresponding to the current second target speed, and the drone completes the acceleration process under the second speed control command.
  • the second target speed is greater than the first target speed.
  • the second target rotational speed is the target rotational speed of the motor corresponding to the propeller in the low damping working state
  • the first target rotational speed is the target rotational speed of the motor corresponding to the propeller in the normal damping working state, in order to ensure the propellers of the drone.
  • the speed is synchronized, and the second target speed is necessarily greater than the first target speed.
  • S307 in this embodiment is the same as S204 in the foregoing embodiment, and its implementation principle and technical effect are similar, and details are not described herein again.
  • the motor control method provided by the embodiment determines that the current speed of the motor is in a low speed range or a high speed range by monitoring the current speed of the motor of the unmanned machine, and adopts different preset acceleration steps to adjust the speed acceleration of the motor. Therefore, it is ensured that the propeller corresponding motor in the low damping working state accelerates the rotation speed of the propeller according to the adjusted rotational speed acceleration, realizes the synchronous rotation acceleration of the propellers of the UAV, and avoids the problem that the UAV is out of balance during the acceleration process.
  • FIG. 4 is a schematic structural diagram of a motor control apparatus according to an embodiment of the present invention. As shown in FIG. 4, the motor control apparatus provided in this embodiment includes:
  • the sending module 41 is configured to send a first speed control command to the motor that drives the propeller to rotate after the drone takes off, where the first speed control command includes a first speed acceleration;
  • the monitoring acquisition module 42 is configured to: if the propeller of the drone is in a low damping working state when the motor accelerates at the first speed acceleration, obtain the current speed of the motor;
  • a determining module 43 configured to determine a second rotational speed acceleration of the motor according to the current rotational speed and the first rotational speed acceleration; wherein the second rotational speed acceleration is greater than the first rotational speed acceleration;
  • a generating module 44 configured to generate a second rotational speed control command according to the second rotational speed acceleration
  • the determining module 43 is specifically configured to:
  • the second rotational speed acceleration is determined according to the first rotational speed acceleration and the first preset acceleration step.
  • the determining module 43 is specifically configured to:
  • the ratio of the second preset acceleration step to the first preset acceleration step is between 1 and 1.5.
  • the ratio of the second preset acceleration step to the first preset acceleration step is 1.2, the problem that the propeller in the low damping working state and the propeller in the normal damping working state are not synchronized with each other can be effectively eliminated.
  • the drone includes at least two folding propellers; the monitoring acquisition module 42 is specifically configured to:
  • the first speed control command further includes a first target speed, where the first target speed is used to indicate that the speed of the motor is accelerated to the first target speed;
  • the second rotational speed control command further includes a second target rotational speed, the second target rotational speed is used to indicate that the rotational speed of the motor is accelerated to the second target rotational speed; wherein the second target rotational speed is greater than the first target rotational speed.
  • the motor control device sends a first speed control command to the motor that drives the propeller after the take-off of the drone, and the first speed control command includes the first speed acceleration; if the motor accelerates at the first speed acceleration When the propeller of the drone is monitored to be in a low damping working state, the current speed of the motor is obtained; according to the current speed and the first speed acceleration, the second speed acceleration of the motor is determined, and the second speed acceleration is greater than the first speed acceleration;
  • the second rotational speed acceleration generates a second rotational speed control command and transmits a second rotational speed control command to the motor, the second rotational speed control command including the second rotational speed acceleration.
  • the drone provided in this embodiment includes: a folding propeller 51; a motor 52; a memory 53; a processor 54; ;
  • the motor 52, the memory 53 and the processor 54 are connected by a bus 55; the folding propeller 51 is connected to the motor 52.
  • the computer program is stored in the memory 53 and configured to execute the motor control method according to any of the above method sides by the processor 54 to control the motor 52 to accelerate the rotation speed, thereby driving the folding propeller 51 to accelerate the rotation.
  • the unmanned aerial vehicle provided by this embodiment can perform the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar, and the details are not described herein again.
  • the drone provided by the embodiment sends a first speed control command to the motor that drives the propeller after the take-off of the drone, and the first speed control command includes the first speed acceleration; if the motor accelerates at the first speed acceleration When the propeller of the drone is monitored to be in a low damping working state, the current speed of the motor is obtained; according to the current speed and the first speed acceleration, the second speed acceleration of the motor is determined, and the second speed acceleration is greater than the first speed acceleration;
  • the second rotational speed acceleration generates a second rotational speed control command and transmits a second rotational speed control command to the motor, the second rotational speed control command including the second rotational speed acceleration.
  • the embodiment of the present application further provides an electronic device readable storage medium, where the electronic device readable storage medium can store a program, when it is run on the electronic device, enabling the electronic device to perform any of the foregoing method side embodiments. All or part of the process of motor control.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), a random access memory (RAM), a flash memory, a hard disk (Hard Disk Drive). , abbreviations: HDD) or Solid-State Drive (SSD), etc.; the storage medium may also include a combination of the above types of memories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请提供的电机控制方法和装置,在无人机起飞后向驱动螺旋桨旋转的电机发送第一转速控制指令,第一转速控制指令包括第一转速加速度;若在电机以第一转速加速度进行转速加速时,监测到无人机的螺旋桨处于低阻尼工作状态,则获取电机的当前转速;根据当前转速和第一转速加速度,确定电机的第二转速加速度,第二转速加速度大于第一转速加速度;根据第二转速加速度生成第二转速控制指令,并向电机发送第二转速控制指令,第二转速控制指令包括第二转速加速度。通过调整无人机上处于低阻尼工作状态的螺旋桨对应电机的转速控制指令中的转速加速度,实现无人机各螺旋桨的同步旋转加速,避免无人机在加速过程中失衡的问题。

Description

电机控制方法和装置
本申请要求于2018年05月02日提交中国专利局、申请号为2018104110935、申请名称为“电机控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人机控制技术领域,尤其涉及一种电机控制方法和装置。
背景技术
随着科技水平以及人们生活水平的提高,人们对于无人机的各方面性能要求越来越高,无人机小型化是目前民用无人机发展的一大趋势。无人机上的螺旋桨为无人机的关键元件,为了适应无人机小型化的发展,无人机的螺旋桨通常采用可折叠结构。
对于可折叠螺旋桨,通常包括桨夹和两片桨叶,桨夹用于将两片桨叶固定在无人机电机的外转轴上,桨叶在实际飞行过程处于打开状态,不使用时折叠起来以节省无人机的占用空间。无人机在实际飞行过程中,电机的旋转带动桨夹旋转,由于桨夹与桨叶之间有一定的阻尼,两片桨叶会随着桨夹一起旋转,从而实现将电机的旋转转化为无人机的推力或者升力。
然而无人机长时间使用,可能导致桨叶与桨夹之间的阻尼力减小,即桨叶与桨夹的连接处变松。此时电机在接收到转速控制指令后,根据转速控制指令调整电机的转速,桨夹在电机外转轴的带动下正常旋转,由于桨叶与桨夹的阻尼力减小,造成桨叶与桨夹的转速不同步,电机负载波动大,极易造成无人机摔机或炸机现象。因此亟需一种有效控制无人机电机的方法,在无 人机桨叶与桨夹的阻尼减小时,确保电机正常稳定工作。
发明内容
本申请提供一种电机控制方法和装置,实现在无人机螺旋桨的桨叶与桨夹之间的阻尼减小时,自动调整电机转速控制指令,避免桨叶与桨夹转速不同步导致无人机失衡侧翻的风险。
本申请的第一方面提供一种电机控制方法,包括:
在无人机起飞后向驱动螺旋桨旋转的电机发送第一转速控制指令,所述第一转速控制指令包括第一转速加速度;
若在所述电机以所述第一转速加速度进行转速加速时,监测到所述无人机的螺旋桨处于低阻尼工作状态,则获取所述电机的当前转速;
根据所述当前转速和所述第一转速加速度,确定所述电机的第二转速加速度;其中,所述第二转速加速度大于所述第一转速加速度;
根据所述第二转速加速度生成第二转速控制指令,并向所述电机发送所述第二转速控制指令,所述第二转速控制指令包括所述第二转速加速度,以使所述电机以所述第二转速加速度进行转速加速。
可选地,所述根据所述当前转速和所述第一转速加速度,确定所述电机的第二转速加速度,包括:
若所述当前转速小于等于预设转速,则获取第一预设加速步长;所述第一预设加速步长为预设低转速范围下的转速加速度的步长;
根据所述第一转速加速度和所述第一预设加速步长,确定所述第二转速加速度。
可选地,所述根据所述当前转速和所述第一转速加速度,确定所述电机 的第二转速加速度,包括:
若所述当前转速大于所述预设转速,则获取第二预设加速步长;所述第二预设加速步长为预设高转速范围下的转速加速度的步长;
根据所述第一转速加速度和所述第二预设加速步长,确定所述第二转速加速度,其中,所述第二预设加速步长大于所述第一预设加速步长。
可选地,所述第二预设加速步长与所述第一预设加速步长的比值介于1与1.5之间。
可选地,所述第二预设加速步长与所述第一预设加速步长的比值为1.2。
可选地,所述无人机至少包括两个折叠螺旋桨;若在所述电机以所述第一转速加速度进行转速加速时,监测到所述无人机的螺旋桨处于低阻尼工作状态,则获取所述电机的当前转速,包括:
监测所述无人机的每个折叠螺旋桨,若所述至少两个折叠螺旋桨中的第一折叠螺旋桨的桨叶与桨夹之间的阻尼系数小于预设最低阻尼系数,则获取所述第一折叠螺旋桨对应的电机的当前转速。
可选地,所述第一转速控制指令还包括第一目标转速,所述第一目标转速用于指示所述电机的转速加速至所述第一目标转速;
所述第二转速控制指令还包括第二目标转速,所述第二目标转速用于指示所述电机的转速加速至所述第二目标转速;其中,所述第二目标转速大于所述第一目标转速。
本申请的第二方面提供一种电机控制装置,包括:
发送模块,用于在无人机起飞后向驱动螺旋桨旋转的电机发送第一转速 控制指令,所述第一转速控制指令包括第一转速加速度;
监测获取模块,用于若在所述电机以所述第一转速加速度进行转速加速时,监测到所述无人机的螺旋桨处于低阻尼工作状态,则获取所述电机的当前转速;
确定模块,用于根据所述当前转速和所述第一转速加速度,确定所述电机的第二转速加速度;其中,所述第二转速加速度大于所述第一转速加速度;
生成模块,用于根据所述第二转速加速度生成第二转速控制指令;
所述发送模块,还用于向所述电机发送所述第二转速控制指令,所述第二转速控制指令包括所述第二转速加速度,以使所述电机以所述第二转速加速度进行转速加速。
可选地,所述确定模块具体用于:
若所述当前转速小于等于预设转速,则获取第一预设加速步长;所述第一预设加速步长为预设低转速范围下的转速加速度的步长;
根据所述第一转速加速度和所述第一预设加速步长,确定所述第二转速加速度。
可选地,所述确定模块具体用于:
若所述当前转速大于所述预设转速,则获取第二预设加速步长;所述第二预设加速步长为预设高转速范围下的转速加速度的步长;
根据所述第一转速加速度和所述第二预设加速步长,确定所述第二转速加速度,其中,所述第二预设加速步长大于所述第一预设加速步长。
可选地,所述第二预设加速步长与所述第一预设加速步长的比值介于1 与1.5之间。
可选地,所述第二预设加速步长与所述第一预设加速步长的比值为1.2。
可选地,所述无人机至少包括两个折叠螺旋桨;所述监测获取模块具体用于:
监测所述无人机的每个折叠螺旋桨,若所述至少两个折叠螺旋桨中的第一折叠螺旋桨的桨叶与桨夹之间的阻尼系数小于预设最低阻尼系数,则获取所述第一折叠螺旋桨对应的电机的当前转速。
可选地,所述第一转速控制指令还包括第一目标转速,所述第一目标转速用于指示所述电机的转速加速至所述第一目标转速;
所述第二转速控制指令还包括第二目标转速,所述第二目标转速用于指示所述电机的转速加速至所述第二目标转速;其中,所述第二目标转速大于所述第一目标转速。
本申请的第三方面提供一种无人机,包括:
折叠螺旋桨;电机;存储器;处理器;以及计算机程序;
其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行本申请第一方面及其任一可选方案所述的方法,以控制所述电机进行转速加速。
本申请的第四方面提供一种电子设备可读存储介质,所述电子设备可读存储介质可存储有程序,当其在电子设备上运行时,使得电子设备执行本申请第一方面及其任一可选方案所述的方法。
本实施例提供的电机控制方法和装置,在无人机起飞后向驱动螺旋桨旋 转的电机发送第一转速控制指令,第一转速控制指令包括第一转速加速度;若在电机以第一转速加速度进行转速加速时,监测到无人机的螺旋桨处于低阻尼工作状态,则获取电机的当前转速;根据当前转速和第一转速加速度,确定电机的第二转速加速度,第二转速加速度大于第一转速加速度;根据第二转速加速度生成第二转速控制指令,并向电机发送第二转速控制指令,第二转速控制指令包括第二转速加速度。通过调整无人机上处于低阻尼工作状态的螺旋桨对应电机的转速控制指令中的转速加速度,实现无人机各螺旋桨的同步旋转加速,避免无人机在加速过程中失衡的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的四旋翼无人机的结构示意图;
图2为本申请一实施例提供的电机控制方法的流程示意图;
图3为本申请另一实施例提供的电机控制方法的流程示意图;
图4为本申请一实施例提供的电机控制装置的结构示意图;
图5为本申请一实施例提供的无人机的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的 所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及说明书附图中的术语“第一”、“第二”、“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
近年来无人机的发展突飞猛进,由于无人机成本相对较低、无人员伤亡风险、生存能力强、机动性能好、使用方便等优势,使得无人机在航空拍照、地质测量、高压输电线路巡视、油田管路检查、高速公路管理、森林防火巡查、毒气勘察、缉毒和应急救援、救护等民用领域应用前景极为广阔。
根据无人机螺旋桨的数量,具体细分为双旋翼、四旋翼、六旋翼、八旋翼等。下面以四旋翼无人机为例,简要介绍无人机的结构及工作原理。
图1为本申请一实施例提供的四旋翼无人机的结构示意图,如图1所示,螺旋桨1对称分布在机体的前后、左右四个方向,四个螺旋桨1处于同一高度平面,且四个螺旋桨1的机构和半径都相同。每个螺旋桨1通常包括桨夹和两片桨叶,两片桨叶通过桨夹安装在电机2的外转轴上。四个电机2则对称的安装在无人机的支架端,支架3中间安装电机控制装置4等。四旋翼无人机的各电机2根据电机控制装置4发送的电机控制指令调节每个电机2的转速来改变螺旋桨1的转速,实现升力的变化,从而控制无人机的姿态和位置。
具体地,本实施例提供的四旋翼无人机还包括4个电调,每个电调分别与一个电机2连接,同时每个电调与无人机的电机控制装置4连接,各电调通过电机控制装置4发送的电机控制指令调整与各电调连接的电机的电流,实现对电机转速的控制。
可选地,本实施例的电调既可以是独立的,也可以与电机2集成在一起,对此本实施例不作具体限定。
随着无人机小型化的发展,无人机机臂以及螺旋桨通常采用可折叠结构。对于可折叠螺旋桨,如果长时间使用螺旋桨的桨叶与桨夹的连接处阻尼系数减小,造成螺旋桨的旋转与电机的旋转不同步,容易造成电机负载波动失控。因此,有必要针对该问题对电机的电机控制指令作出调整,以确保无人机的螺旋桨处于低阻尼工作状态下能够正常运行。
下面以具体的实施例对本申请提供的电机控制方法和装置做详细说明。
图2为本申请一实施例提供的电机控制方法的流程示意图,如图2所示,本实施例提供的电机控制方法的执行主体为无人机的电机控制装置,该方法具体包括如下步骤:
S201、在无人机起飞后向驱动螺旋桨旋转的电机发送第一转速控制指令,第一转速控制指令包括第一转速加速度;
其中,第一转速加速度为各电机螺旋桨处于正常阻尼工作状态时电机控制装置向各个电机发送的转速加速度;
本实施提供的电机控制方法主要针对无人机起飞后的加速过程的电机控制,根据无人机当前的飞行速度可以确定无人机当前处于低速飞行状态或是高速飞行状态,那么,对于无人机的加速过程,具体包括以下两种可能的情 况:
一种可能的加速过程,无人机由当前低速飞行状态加速到高速飞行状态;另一种可能的加速过程,无人机由当前高速飞行状态加速到更高飞行状态。
本领域技术人员可以理解,无人机的飞行速度与无人机当前电机的转速相关,电机的转速越高,无人机的飞行速度越快。因此,对于无人机的加速过程,其实质在于提高无人机电机的转速。
为了实现无人机的加速过程,电机控制装置向驱动螺旋桨旋转的电机发送第一转速控制指令,第一转速控制指令包括第一转速加速度。其中,第一转速控制指令用于指示电机根据第一转速加速度提高电机的当前转速。
S202、若在电机以第一转速加速度进行转速加速时,监测到无人机的螺旋桨处于低阻尼工作状态,则获取电机的当前转速;
本实施例的无人机至少包括两个折叠螺旋桨,根据螺旋桨的数量,可以将无人机细分为双旋翼、四旋翼、六旋翼、八旋翼等,一般认为,螺旋桨的数量越多,飞行越平稳。本实施例对无人机的折叠螺旋桨的数量不作具体限定。
通常无人机的一个折叠螺旋桨包括桨夹和两片桨叶,桨夹用于将两片桨叶固定在无人机电机的外转轴上,无人机在实际飞行过程中,电机的旋转带动桨夹旋转,由于桨夹与桨叶之间有一定的阻尼,两片桨叶会随着桨夹一起旋转,从而实现将电机的旋转转化为无人机的推力或者升力。
然而,无人机长时间使用,可能导致桨叶与桨夹之间的阻尼力减小,即桨叶与桨夹的连接处变松,此时认为螺旋桨处于低阻尼工作状态。在上述状况下,无人机的各电机根据S201中电机控制装置发送的第一转速控制指令进 行电机转速加速,其中,处于正常阻尼状态的螺旋桨会随着对应电机旋转,而处于低阻尼工作状态的螺旋桨并不能与对应的电机同步旋转,从而造成无人机加速过程失衡,因此,需要调整处于低阻尼工作状态的螺旋桨对应的电机的第一转速加速度。
综上,本实施例的电机控制装置需实时监测无人机的各螺旋桨的工作状态,若监测到无人机的某一螺旋桨处于低阻尼工作状态,则获取该螺旋桨对应的电机的当前转速,以进一步调整第一转速控制指令中的第一转速加速度,具体调整参见S203。
S203、根据当前转速和第一转速加速度,确定电机的第二转速加速度;其中,第二转速加速度大于第一转速加速度;
其中,第二转速加速度为电机控制装置向螺旋桨处于低阻尼工作状态的电机发送的转速加速度。
电机控制装置根据获取到的电机的当前转速和第一转速加速度,确定提高第一转速加速度至第二转速加速度,通常第二转速加速度大于第一转度加速,以使处于低阻尼工作状态的螺旋桨在第二转速加速度下达到目标转速,其加速过程与处于正常阻尼工作状态的螺旋桨的加速过程同步,从而避免加速过程无人机失衡侧翻的风险。
具体地,本实施例中电机控制装置根据预设转速确定电机的当前转速处于低转速范围或高转速范围,若当前转速在低转速范围内,则根据预设的低速调整规则将第一转速加速度提高至第二转速加速度;若当前转速在高转速范围内,则根据预设的高速调整规则将第一转速加速度提高至第二转速加速度。
其中,根据预设低速调整规则得到的第二转速加速度小于根据预设高速调整规则得到的第二转速加速度。
S204、根据第二转速加速度生成第二转速控制指令,并向电机发送第二转速控制指令,第二转速控制指令包括第二转速加速度,以使电机以第二转速加速度进行转速加速。
本实施例的电机控制装置在确定第二转速加速度后,生成第二转速控制指令并向处于低阻尼工作状态的螺旋桨对应的电机发送第二转速控制指令,以使该电机以第二转速控制指令中的第二转速加速度进行转速加速。需要指出的是,对于正常阻尼工作状态的螺旋桨对应的电机仍然按照第一转速控制指令中的第一转速加速度进行转速加速。
本实施例提供的电机控制方法,在无人机起飞后向驱动螺旋桨旋转的电机发送第一转速控制指令,第一转速控制指令包括第一转速加速度;若在电机以第一转速加速度进行转速加速时,监测到无人机的螺旋桨处于低阻尼工作状态,则获取电机的当前转速;根据当前转速和第一转速加速度,确定电机的第二转速加速度,第二转速加速度大于第一转速加速度;根据第二转速加速度生成第二转速控制指令,并向电机发送第二转速控制指令,第二转速控制指令包括第二转速加速度。通过调整无人机上处于低阻尼工作状态的螺旋桨对应电机的转速控制指令中的转速加速度,实现无人机各螺旋桨的同步旋转加速,避免无人机在加速过程中失衡的问题。
无人机的电机控制装置根据获取到的处于低阻尼工作状态的螺旋桨对应的电机的当前转速和第一转速控制指令中的第一转速加速度,调整该电机的 第一转速加速度。具体地,需要根据当前转速处于低转速范围或高转速范围,采用预设的低速调整规则或高速调整规则将第一转速加速度提高至第二转速加速度,以实现各螺旋桨旋转加速的同步。
下面结合具体的实施例对第一转速加速度的调整规则做详细说明。
图3为本申请另一实施例提供的电机控制方法的流程示意图,如图3所示,本实施例提供的电机控制方法具体包括如下步骤:
S301、在无人机起飞后向驱动螺旋桨旋转的电机发送第一转速控制指令,第一转速控制指令包括第一转速加速度和第一目标转速;
其中,第一目标转速用于指示电机根据第一转速加速度加速至第一目标转速。当电机达到第一转速控制指令指示的第一目标转速后,无人机的飞行速度保持在当前第一目标转速对应的飞行速度,无人机完成该第一转速控制指令下的加速过程。
本实施例中的S301与上述实施例的S201相同,其实现原理和技术效果类似,此处不再赘述。
S302、监测无人机的每个折叠螺旋桨,若至少两个折叠螺旋桨中的第一折叠螺旋桨的桨叶与桨夹之间的阻尼系数小于预设最低阻尼系数,则获取第一折叠螺旋桨对应的电机的当前转速。
本实施例的无人机至少包括两个折叠螺旋桨,根据螺旋桨的数量,可以将无人机细分为双旋翼、四旋翼、六旋翼、八旋翼等,一般认为,螺旋桨的数量越多,飞行越平稳。本实施例对无人机的折叠螺旋桨的数量不作具体限定。
无人机的工作原理同上述实施例,此处不再赘述。
具体地,电机控制装置检测无人机的每个折叠螺旋桨,若检测到至少一个折叠螺旋桨的桨叶与桨夹之间的阻尼系数小于预设最低阻尼系数,则确定该折叠螺旋桨为第一折叠螺旋桨,第一折叠螺旋桨即为上述实施例中处于低阻尼工作状态的螺旋桨。
本领域技术人员可以理解,桨叶与桨夹之间的阻尼系数越大,说明桨叶与桨夹的连接处越紧,电机的旋转带动螺旋桨的旋转,电机的转速即为螺旋桨桨叶的转速。对应地,桨叶与桨夹之间的阻尼系数越小,说明桨叶与桨夹的连接处越松,导致电机的旋转与螺旋桨的旋转不同步,也就是说,螺旋桨桨叶的转速不能达到电机当前转速,因此需要对处于低阻尼工作状态的螺旋桨对应的电机的转速控制指令进行调整,以使无人机各螺旋桨的加速过程同步,避免加速过程无人机失衡侧翻的风险。
S303、判断当前转速是否小于等于预设转速;
本实施例中电机控制装置中保存有预设转速,预设转速用于电机控制装置确定电机的当前转速处于低转速范围或高转速范围。其中,电机当前转速小于等于预设转速定义为低转速范围,电机当前转速大于预设转速定义为高转速范围。
若当前转速在低转速范围内,则根据预设的低速调整规则将第一转速加速度提高至第二转速加速度;
若当前转速在高转速范围内,则根据预设的高速调整规则将第一转速加速度提高至第二转速加速度。具体的预设低速调整规则和高速调整规则参见S304a和S304b。
S304a、若当前转速小于等于预设转速,则获取第一预设加速步长;
其中,第一预设加速步长为预设低转速范围下的转速加速度的步长。
具体地,若当前转速小于等于预设转速,则确定电机的当前转速在预设低转速范围,获取预设低转速范围下的转速加速度的步长。
在获取第一预设加速步长后,执行S305。
S305、根据第一转速加速度和第一预设加速步长,确定第二转速加速度。
具体地,将第一转速加速度和第一预设加速步长的和作为第二转速加速度。示例性地,第一转速控制指令中的第一转速加速度为ω 1,第一预设加速步长为C 1,则第二转速加速度为ω 2,其中,ω 2=ω 1+C 1
具体地,根据S302监测的无人机折叠螺旋桨的阻尼系数,调整第一预设加速步长C 1的系数,此时第二转速加速度ω 2可表示为ω 2=ω 1+kC 1,其中,k大于等于1。
通常情况下,折叠螺旋桨的阻尼系数越小,k值越大。也就是说,折叠螺旋桨的阻尼系数越小,折叠螺旋桨的桨叶与桨夹的连接处越松,需要调整电机的转速以使处于各种工作状态下的折叠螺旋桨能同步加速,因此,需要在上述第一预设加速步长C 1的基础上,调整系数k的大小,从而增加第二转速加速度,例如取ω 2=ω 1+1.1C 1
通过对系数k的调整,实现对不同松紧状态下的折叠螺旋桨对应的电机的转速加速度的调整,以使处于各种工作状态下的折叠螺旋桨在低转速范围加速时能同步加速。
在得到第二转速加速度后,执行S307。
S304b、若当前转速大于预设转速,则获取第二预设加速步长;
其中,第二预设加速步长为预设高转速范围下的转速加速度的步长。
具体地,若当前转速大于预设转速,则确定电机的当前转速在预设高转速范围,获取预设高转速范围下的转速加速度的步长。
在获取第二预设加速步长后,执行S306。
S306、根据第一转速加速度和第二预设加速步长,确定第二转速加速度,其中,第二预设加速步长大于第一预设加速步长。
具体地,将第一转速加速度和第二预设加速步长的和作为第二转速加速度。示例性地,第一转速控制指令中的第一转速加速度为ω 1,第二预设加速步长为C 2,则第二转速加速度为ω 2,其中,ω 2=ω 1+C 2
需要指出的是,C 2>C 1
具体地,根据S302监测的无人机折叠螺旋桨的阻尼系数,调整第二预设加速步长C 2的系数,此时第二转速加速度ω 2可表示为ω 2=ω 1+kC 2,其中,k大于等于1。
通常情况下,折叠螺旋桨的阻尼系数越小,k值越大。也就是说,折叠螺旋桨的阻尼系数越小,折叠螺旋桨的桨叶与桨夹的连接处越松,需要调整电机的转速以使处于各种工作状态下的折叠螺旋桨能同步加速,因此,需要在上述第二预设加速步长C 2的基础上,调整系数k的大小,从而增加第二转速加速度,例如取ω 2=ω 1+1.5C 2
通过对系数k的调整,实现对不同松紧状态下的折叠螺旋桨对应的电机的转速加速度的调整,以使处于各种工作状态下的折叠螺旋桨在高转速范围加速时能同步加速。
可选地,若当前转速为预设转速,则获取第三预设加速步长,第三预设加速步长介于第一预设加速步长与第二预设加速步长之间。
对应地,根据第一转速加速度和第三预设加速步长,确定第三转速加速度,第三转速加速度介于第一转速加速度与第二转速加速度之间。
本实施例中第三转速加速度介于第一转速加速度与第二转速加速度之间,从而避免了转速在预设转速附近变化时,预设的加速步长有较大的切换引入新的系统不稳定的问题。
可选地,第二预设加速步长与第一预设加速步长的比值介于1与1.5之间。
具体地,第二预设加速步长与第一预设加速步长的比值为1.2时,能够有效消除处于低阻尼工作状态的螺旋桨与处于正常阻尼工作状态的螺旋桨的旋转加速不同步的问题。
在得到第二转速加速度后,执行S307。
S307、根据第二转速加速度生成第二转速控制指令,并向电机发送第二转速控制指令,第二转速控制指令包括第二转速加速度和第二目标转速,以使电机以第二转速加速度进行转速加速。
其中,第二目标转速用于指示电机根据第二转速加速度加速至第二目标转速。当电机达到第二转速控制指令指示的第二目标转速后,无人机的飞行速度保持在当前第二目标转速对应的飞行速度,无人机完成该第二转速控制 指令下的加速过程。
其中,第二目标转速大于第一目标转速。
可以理解,第二目标转速为处于低阻尼工作状态的螺旋桨对应的电机的目标转速,而第一目标转速为处于正常阻尼工作状态的螺旋桨对应的电机的目标转速,为了确保无人机各螺旋桨的转速同步,第二目标转速必然要大于第一目标转速。
本实施例中的S307与上述实施例的S204相同,其实现原理和技术效果类似,此处不再赘述。
本实施例提供的电机控制方法,通过对无人机电机的当前转速的监测,确定电机当前转速处于低转速范围或高转速范围,采用不同预设加速步长,对电机的转速加速度作出调整,从而确保处于低阻尼工作状态下的螺旋桨对应电机根据调整后的转速加速度对螺旋桨进行转速加速,实现无人机各螺旋桨的同步旋转加速,避免无人机在加速过程中失衡的问题。
图4为本申请一实施例提供的电机控制装置的结构示意图,如图4所示,本实施例提供的电机控制装置,包括:
发送模块41,用于在无人机起飞后向驱动螺旋桨旋转的电机发送第一转速控制指令,第一转速控制指令包括第一转速加速度;
监测获取模块42,用于若在电机以第一转速加速度进行转速加速时,监测到无人机的螺旋桨处于低阻尼工作状态,则获取电机的当前转速;
确定模块43,用于根据当前转速和第一转速加速度,确定电机的第二转速加速度;其中,第二转速加速度大于第一转速加速度;
生成模块44,用于根据第二转速加速度生成第二转速控制指令;
发送模块41,还用于向电机发送第二转速控制指令,第二转速控制指令包括第二转速加速度,以使电机以第二转速加速度进行转速加速。
可选地,确定模块43具体用于:
若当前转速小于等于预设转速,则获取第一预设加速步长;
根据第一转速加速度和第一预设加速步长,确定第二转速加速度。
可选地,确定模块43具体用于:
若当前转速大于预设转速,则获取第二预设加速步长;
根据第一转速加速度和第二预设加速步长,确定第二转速加速度,其中,第二预设加速步长大于第一预设加速步长。
可选地,第二预设加速步长与第一预设加速步长的比值介于1与1.5之间。
具体地,第二预设加速步长与第一预设加速步长的比值为1.2时,能够有效消除处于低阻尼工作状态的螺旋桨与处于正常阻尼工作状态的螺旋桨的旋转加速不同步的问题。
可选地,无人机至少包括两个折叠螺旋桨;监测获取模块42具体用于:
监测无人机的每个折叠螺旋桨,若至少两个折叠螺旋桨中的第一折叠螺旋桨的桨叶与桨夹之间的阻尼系数小于预设最低阻尼系数,则获取第一折叠螺旋桨对应的电机的当前转速。
可选地,第一转速控制指令还包括第一目标转速,第一目标转速用于指示电机的转速加速至第一目标转速;
第二转速控制指令还包括第二目标转速,第二目标转速用于指示电机的 转速加速至第二目标转速;其中,第二目标转速大于第一目标转速。
本实施例提供的电机控制装置,在无人机起飞后向驱动螺旋桨旋转的电机发送第一转速控制指令,第一转速控制指令包括第一转速加速度;若在电机以第一转速加速度进行转速加速时,监测到无人机的螺旋桨处于低阻尼工作状态,则获取电机的当前转速;根据当前转速和第一转速加速度,确定电机的第二转速加速度,第二转速加速度大于第一转速加速度;根据第二转速加速度生成第二转速控制指令,并向电机发送第二转速控制指令,第二转速控制指令包括第二转速加速度。通过调整无人机上处于低阻尼工作状态的螺旋桨对应电机的转速控制指令中的转速加速度,实现无人机各螺旋桨的同步旋转加速,避免无人机在加速过程中失衡的问题。
图5为本申请一实施例提供的无人机的结构示意图,如图5所示,本实施例提供的无人机包括:折叠螺旋桨51;电机52;存储器53;处理器54;以及计算机程序;
图5以一个电机为例,电机52、存储器53和处理器54通过总线55连接;折叠螺旋桨51与电机52连接。
其中,计算机程序存储在存储器53中,并被配置为由处理器54执行如上述方法侧任一实施例的电机控制方法,以控制电机52进行转速加速,从而带动折叠螺旋桨51加速旋转。
本实施例提供的无人机,可以执行上述方法实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
本实施例提供的无人机,在无人机起飞后向驱动螺旋桨旋转的电机发送 第一转速控制指令,第一转速控制指令包括第一转速加速度;若在电机以第一转速加速度进行转速加速时,监测到无人机的螺旋桨处于低阻尼工作状态,则获取电机的当前转速;根据当前转速和第一转速加速度,确定电机的第二转速加速度,第二转速加速度大于第一转速加速度;根据第二转速加速度生成第二转速控制指令,并向电机发送第二转速控制指令,第二转速控制指令包括第二转速加速度。通过调整无人机上处于低阻尼工作状态的螺旋桨对应电机的转速控制指令中的转速加速度,实现无人机各螺旋桨的同步旋转加速,避免无人机在加速过程中失衡的问题。
本申请实施例还提供了一种电子设备可读存储介质,所述电子设备可读存储介质可存储有程序,当其在电子设备上运行时,使得电子设备可执行上述方法侧任一实施例的电机控制的全部或部分流程。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;存储介质还可以包括上述种类的存储器的组合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种电机控制方法,其特征在于,包括:
    在无人机起飞后向驱动螺旋桨旋转的电机发送第一转速控制指令,所述第一转速控制指令包括第一转速加速度;
    若在所述电机以所述第一转速加速度进行转速加速时,监测到所述无人机的螺旋桨处于低阻尼工作状态,则获取所述电机的当前转速;
    根据所述当前转速和所述第一转速加速度,确定所述电机的第二转速加速度;其中,所述第二转速加速度大于所述第一转速加速度;
    根据所述第二转速加速度生成第二转速控制指令,并向所述电机发送所述第二转速控制指令,所述第二转速控制指令包括所述第二转速加速度,以使所述电机以所述第二转速加速度进行转速加速。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述当前转速和所述第一转速加速度,确定所述电机的第二转速加速度,包括:
    若所述当前转速小于等于预设转速,则获取第一预设加速步长;所述第一预设加速步长为预设低转速范围下的转速加速度的步长;
    根据所述第一转速加速度和所述第一预设加速步长,确定所述第二转速加速度。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述当前转速和所述第一转速加速度,确定所述电机的第二转速加速度,包括:
    若所述当前转速大于所述预设转速,则获取第二预设加速步长;所述第二预设加速步长为预设高转速范围下的转速加速度的步长;
    根据所述第一转速加速度和所述第二预设加速步长,确定所述第二转速 加速度,其中,所述第二预设加速步长大于所述第一预设加速步长。
  4. 根据权利要求3所述的方法,其特征在于,所述第二预设加速步长与所述第一预设加速步长的比值介于1与1.5之间。
  5. 根据权利要求4所述的方法,其特征在于,所述第二预设加速步长与所述第一预设加速步长的比值为1.2。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述无人机至少包括两个折叠螺旋桨;若在所述电机以所述第一转速加速度进行转速加速时,监测到所述无人机的螺旋桨处于低阻尼工作状态,则获取所述电机的当前转速,包括:
    监测所述无人机的每个折叠螺旋桨,若所述至少两个折叠螺旋桨中的第一折叠螺旋桨的桨叶与桨夹之间的阻尼系数小于预设最低阻尼系数,则获取所述第一折叠螺旋桨对应的电机的当前转速。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一转速控制指令还包括第一目标转速,所述第一目标转速用于指示所述电机的转速加速至所述第一目标转速;
    所述第二转速控制指令还包括第二目标转速,所述第二目标转速用于指示所述电机的转速加速至所述第二目标转速;其中,所述第二目标转速大于所述第一目标转速。
  8. 一种电机控制装置,其特征在于,包括:
    发送模块,用于在无人机起飞后向驱动螺旋桨旋转的电机发送第一转速控制指令,所述第一转速控制指令包括第一转速加速度;
    监测获取模块,用于若在所述电机以所述第一转速加速度进行转速加速 时,监测到所述无人机的螺旋桨处于低阻尼工作状态,则获取所述电机的当前转速;
    确定模块,用于根据所述当前转速和所述第一转速加速度,确定所述电机的第二转速加速度;其中,所述第二转速加速度大于所述第一转速加速度;
    生成模块,用于根据所述第二转速加速度生成第二转速控制指令;
    所述发送模块,还用于向所述电机发送所述第二转速控制指令,所述第二转速控制指令包括所述第二转速加速度,以使所述电机以所述第二转速加速度进行转速加速。
  9. 根据权利要求8所述的装置,其特征在于,所述确定模块具体用于:
    若所述当前转速小于等于预设转速,则获取第一预设加速步长;所述第一预设加速步长为预设低转速范围下的转速加速度的步长;
    根据所述第一转速加速度和所述第一预设加速步长,确定所述第二转速加速度。
  10. 根据权利要求9所述的装置,其特征在于,所述确定模块具体用于:
    若所述当前转速大于所述预设转速,则获取第二预设加速步长;所述第二预设加速步长为预设高转速范围下的转速加速度的步长;
    根据所述第一转速加速度和所述第二预设加速步长,确定所述第二转速加速度,其中,所述第二预设加速步长大于所述第一预设加速步长。
  11. 根据权利要求10所述的装置,其特征在于,所述第二预设加速步长与所述第一预设加速步长的比值介于1与1.5之间。
  12. 根据权利要求11所述的装置,其特征在于,所述第二预设加速步长与所述第一预设加速步长的比值为1.2。
  13. 根据权利要求8至12任一项所述的装置,其特征在于,所述无人机至少包括两个折叠螺旋桨;所述监测获取模块具体用于:
    监测所述无人机的每个折叠螺旋桨,若所述至少两个折叠螺旋桨中的第一折叠螺旋桨的桨叶与桨夹之间的阻尼系数小于预设最低阻尼系数,则获取所述第一折叠螺旋桨对应的电机的当前转速。
  14. 根据权利要求8至13任一项所述的装置,其特征在于,所述第一转速控制指令还包括第一目标转速,所述第一目标转速用于指示所述电机的转速加速至所述第一目标转速;
    所述第二转速控制指令还包括第二目标转速,所述第二目标转速用于指示所述电机的转速加速至所述第二目标转速;其中,所述第二目标转速大于所述第一目标转速。
  15. 一种无人机,其特征在于,包括:
    折叠螺旋桨;电机;存储器;处理器;以及计算机程序;
    其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行如权利要求1至7中任一项所述的方法,以控制所述电机进行转速加速。
  16. 一种电子设备可读存储介质,其特征在于,所述电子设备可读存储介质可存储有程序,当其在电子设备上运行时,使得电子设备执行权利要求1至7任一项所述的方法。
PCT/CN2018/107672 2018-05-02 2018-09-26 电机控制方法和装置 WO2019210640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810411093.5A CN108494292B (zh) 2018-05-02 2018-05-02 电机控制方法和装置
CN201810411093.5 2018-05-02

Publications (1)

Publication Number Publication Date
WO2019210640A1 true WO2019210640A1 (zh) 2019-11-07

Family

ID=63352657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107672 WO2019210640A1 (zh) 2018-05-02 2018-09-26 电机控制方法和装置

Country Status (2)

Country Link
CN (1) CN108494292B (zh)
WO (1) WO2019210640A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494292B (zh) * 2018-05-02 2020-10-16 深圳市道通智能航空技术有限公司 电机控制方法和装置
CN109639185B (zh) * 2018-12-05 2020-08-07 维沃移动通信有限公司 一种电机控制方法及终端设备
WO2021024591A1 (ja) * 2019-08-02 2021-02-11 パナソニックIpマネジメント株式会社 モータ制御装置、移動体、モータ制御方法及びプログラム
EP3839688A1 (en) * 2019-12-20 2021-06-23 Volocopter GmbH Motor control system, method of operating a motor control system and aircraft
WO2022183330A1 (zh) * 2021-03-01 2022-09-09 深圳市大疆创新科技有限公司 无人飞行器及其控制装置、方法、飞行控制器、电调

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105564635A (zh) * 2016-01-19 2016-05-11 深圳市大疆创新科技有限公司 折叠螺旋桨、动力组件、无人机及折叠螺旋桨制作方法
CN106347683A (zh) * 2016-10-20 2017-01-25 深圳市道通智能航空技术有限公司 飞行器的控制方法、装置及飞行器
CN207267532U (zh) * 2017-05-08 2018-04-24 莆田市双普信息科技有限公司 一种飞行器主动差速器调速机构
CN108494292A (zh) * 2018-05-02 2018-09-04 深圳市道通智能航空技术有限公司 电机控制方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2866422B1 (fr) * 2004-02-16 2007-01-05 Airbus France Procede et dispositif de calcul d'une vitesse de consigne pour un aeronef.
RU2446429C1 (ru) * 2010-10-06 2012-03-27 Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика") Способ автоматического управления полетом высокоманевренного летательного аппарата
CN104960663A (zh) * 2015-07-09 2015-10-07 杨小韬 多旋翼飞行器及其控制方法
CN105083567A (zh) * 2015-08-14 2015-11-25 深圳一电科技有限公司 无人机飞行控制方法及装置
CN107291095B (zh) * 2016-04-11 2021-06-18 河北雄安远度科技有限公司 无人机起飞控制方法、装置、系统以及无人机
CN205931245U (zh) * 2016-08-17 2017-02-08 深圳市大疆创新科技有限公司 无人机及控制无人机姿态的控制装置
CN106227234B (zh) * 2016-09-05 2019-09-17 天津远度科技有限公司 无人机、无人机起飞控制方法及装置
CN106428585A (zh) * 2016-10-28 2017-02-22 易瓦特科技股份公司 无人机飞行保护控制方法、控制器及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105564635A (zh) * 2016-01-19 2016-05-11 深圳市大疆创新科技有限公司 折叠螺旋桨、动力组件、无人机及折叠螺旋桨制作方法
CN106347683A (zh) * 2016-10-20 2017-01-25 深圳市道通智能航空技术有限公司 飞行器的控制方法、装置及飞行器
CN207267532U (zh) * 2017-05-08 2018-04-24 莆田市双普信息科技有限公司 一种飞行器主动差速器调速机构
CN108494292A (zh) * 2018-05-02 2018-09-04 深圳市道通智能航空技术有限公司 电机控制方法和装置

Also Published As

Publication number Publication date
CN108494292A (zh) 2018-09-04
CN108494292B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2019210640A1 (zh) 电机控制方法和装置
EP3246249B1 (en) Electrical assist for aircraft
US20190084684A1 (en) Hybrid aircraft
US9616994B2 (en) Asymmetric multirotor helicopter
US20180215465A1 (en) Rotatable thruster aircraft with separate lift thrusters
US11345470B2 (en) Vertical takeoff and landing light aircraft
CN108089596B (zh) 一种飞行器控制方法、装置及飞行器
US9387939B2 (en) VTOL—twin—propeller—attitude—control—air—vehicle
EP3535963B1 (en) An unmanned aerial vehicle
US8844860B2 (en) Foldable rise and stare vehicle
WO2019242197A1 (zh) 折叠螺旋桨控制方法、装置和设备
CN110979668A (zh) 无人机配置和用于无人机内燃机的电池增大,以及相关的系统和方法
US11245848B2 (en) Method of controlling gimbal, gimbal and UAV
US20190031316A1 (en) Foldable Wings for UAS having a Geared Interface
JP2005280412A (ja) リング状の翼構造を有する航空機
US20210139138A1 (en) Methods and systems for reducing rotor acoustics of an aircraft
US20200140070A1 (en) Aerial vehicle
CN207141366U (zh) 一种航拍无人机
WO2019119409A1 (zh) 无人机及无人机控制方法
CN109308064A (zh) 一种四旋翼无人机的故障容错控制方法及系统
EP3057866B1 (en) Coaxial rotor yaw control
WO2020034205A1 (zh) 多旋翼飞行器及多旋翼飞行器的控制方法
CN106347683B (zh) 飞行器的控制方法、装置及飞行器
CN108958279A (zh) 无人机地面翻滚方法、装置、无人机及存储介质
CN105346714A (zh) 一种垂直起降无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917146

Country of ref document: EP

Kind code of ref document: A1