WO2020034205A1 - 多旋翼飞行器及多旋翼飞行器的控制方法 - Google Patents

多旋翼飞行器及多旋翼飞行器的控制方法 Download PDF

Info

Publication number
WO2020034205A1
WO2020034205A1 PCT/CN2018/101110 CN2018101110W WO2020034205A1 WO 2020034205 A1 WO2020034205 A1 WO 2020034205A1 CN 2018101110 W CN2018101110 W CN 2018101110W WO 2020034205 A1 WO2020034205 A1 WO 2020034205A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
speed
aircraft
fuselage
rotation speed
Prior art date
Application number
PCT/CN2018/101110
Other languages
English (en)
French (fr)
Inventor
李阳
陶冶
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880039152.9A priority Critical patent/CN110770124A/zh
Priority to PCT/CN2018/101110 priority patent/WO2020034205A1/zh
Priority to EP18930276.3A priority patent/EP3838748A1/en
Priority to JP2021502929A priority patent/JP2021531201A/ja
Publication of WO2020034205A1 publication Critical patent/WO2020034205A1/zh
Priority to US17/175,990 priority patent/US20210188426A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/325Circulation-control rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/02Gyroplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Definitions

  • the present invention relates to the field of aircraft, and in particular, to a multi-rotor aircraft and a control method of the multi-rotor aircraft.
  • Ordinary aircraft adopts a multi-rotor flight system of equal size and equal wings.
  • the hovering frequency of each rotor is basically the same when hovering.
  • the speed of each rotor motor must be different, resulting in The change of excitation frequency of each rotor is shown.
  • the frequency band of excitation during flight is significantly wider than that of hovering, and the width of this frequency band becomes wider as the difference in motor speed increases, making the excitation frequency coupled with the natural frequency of the multi-rotor aircraft.
  • the probability increases, causing additional vibration problems. Vibration can cause poor imaging quality of imaging devices on many rotorcraft.
  • Embodiments of the present invention provide a multi-rotor aircraft and a control method of the multi-rotor aircraft.
  • a multi-rotor aircraft includes a fuselage, a first rotor, and a second rotor.
  • the fuselage includes a first side and a second side opposite to each other.
  • a first rotor is connected to the first side of the fuselage, and a second rotor is connected to the second side of the fuselage.
  • the torque coefficient of the second rotor is different from that of the first rotor.
  • the first rotor is rotated at a first rotation speed, so The second rotor rotates at a second speed, and an absolute value of a difference between the first speed and the second speed is less than a predetermined value.
  • the multi-rotor aircraft uses a first rotor and a second rotor with different torque coefficients, so that when the multi-rotor aircraft is in directional flight, the first rotor rotates at a first rotation speed, the second rotor rotates at a second rotation speed, and the first
  • the absolute value of the difference between the first speed and the second speed is small, and the excitation force band is narrow, which reduces the possibility of the fuselage resonating with the first rotor or the second rotor, and improves the imaging mounted on the fuselage. Imaging quality of the device.
  • a multi-rotor aircraft includes a fuselage, a first rotor, and a second rotor.
  • the fuselage includes a first side and a second side opposite to each other.
  • a first rotor is connected to the first side of the fuselage, and a second rotor is connected to the second side of the fuselage.
  • the torque coefficient of the second rotor is different from that of the first rotor.
  • the control method includes: controlling the first rotor Rotating at a first speed; controlling the second rotor to rotate at a second speed, wherein an absolute value of a difference between the first speed and the second speed is less than a predetermined value.
  • the torque coefficients of the first rotor and the second rotor of the multi-rotor aircraft are different.
  • the first rotor is controlled to rotate at a first speed and the second rotor is controlled. Rotate at the second speed, and the absolute value of the difference between the first speed and the second speed is small, and the excitation force band is narrow, thereby reducing the possibility of the fuselage resonating with the first rotor or the second rotor, and improving Imaging quality of the imaging device mounted on the fuselage.
  • a multi-rotor aircraft includes a fuselage, a first rotor, a second rotor, and a flight control system.
  • the fuselage includes a first side and a second side opposite to each other.
  • a first rotor is connected to the first side of the fuselage, and a second rotor is connected to the second side of the fuselage.
  • the torque coefficient of the second rotor is different from that of the first rotor.
  • the flight control system is configured to control the first A rotor rotates at a first rotation speed; and controls the second rotor to rotate at a second rotation speed, wherein an absolute value of a difference between the first rotation speed and the second rotation speed is less than a predetermined value.
  • the torque coefficients of the first rotor and the second rotor are different.
  • the flight control system controls the first rotor to rotate at a first rotation speed and controls the second rotor to rotate at a second rotation speed. Rotation, and the absolute value of the difference between the first speed and the second speed is small, and the frequency band of the excitation force is narrow, thereby reducing the possibility of the fuselage resonating with the first rotor or the second rotor, and improving the onboard aircraft.
  • the imaging quality of the imaging device on the body is a first rotation speed and controls the second rotor to rotate at a second rotation speed.
  • FIG. 1 is a schematic structural diagram of a multi-rotor aircraft according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of a multi-rotor aircraft according to an embodiment of the present invention during directional flight;
  • FIG. 3 is a schematic diagram of an excitation force band of a multi-rotor aircraft in the prior art during directional flight;
  • FIG. 4 is a schematic diagram of an excitation force band of a multi-rotor aircraft according to an embodiment of the present invention during directional flight;
  • FIG. 5 is a schematic side view of a multi-rotor aircraft according to an embodiment of the present invention when hovering;
  • FIG. 6 is a schematic flowchart of a control method of a multi-rotor aircraft according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a control method of a multi-rotor aircraft according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a control method of a multi-rotor aircraft according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a multi-rotor aircraft including a flight control system according to an embodiment of the present invention.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the technical features indicated. quantity. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present invention, the meaning of "a plurality" is two or more, unless it is specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense unless explicitly stated and limited otherwise.
  • they may be fixed connections, or Removable connection or integral connection; can be mechanical connection, electrical connection or can communicate with each other; can be directly connected, or indirectly connected through an intermediate medium, can be the internal connection of two components or two components Interaction.
  • the specific meanings of the above terms in the embodiments of the present invention can be understood according to specific situations.
  • a multi-rotor aircraft 100 includes a fuselage 10, a first rotor 20, and a second rotor 30.
  • the fuselage 10 includes a first side 11 and a second side 12 opposite to each other.
  • the first rotor 20 is connected to the first side 11 of the fuselage 10.
  • the second rotor 30 is connected to the second side 12 of the fuselage 10.
  • the torque coefficient of the second rotor 30 is different from that of the first rotor 20.
  • the first rotor 20 is rotated at a first rotation speed
  • the second rotor 30 is rotated at a second speed. The speed is rotated, and the absolute value of the difference between the first speed and the second speed is less than a predetermined value N.
  • the multi-rotor aircraft 100 may be a four-rotor aircraft, a six-rotor aircraft, an eight-rotor aircraft, etc., which is not limited herein.
  • the multi-rotor aircraft 100 in this embodiment is exemplified by a four-rotor aircraft, which can be equipped with an imaging device 200.
  • the imaging device 200 is configured to take a picture or photograph when the multi-rotor aircraft 100 is flying or hovering.
  • the imaging device 200 may be installed on the gimbal 300, and the gimbal 300 is fixedly connected to the body 10.
  • the gimbal 300 can provide a suitable shooting angle for the imaging device 200.
  • the vibration of the fuselage 10 of the multi-rotor aircraft 100 is large, the vibration of the imaging device 200 is also large, and the imaging quality of the imaging device 200 is poor.
  • a slight vibration of the body 10 will cause a large shake of the shooting picture, affecting the shooting quality of the lens.
  • Both the first rotor 20 and the second rotor 30 can be connected to the fuselage 10 through the arm 50.
  • the torque coefficient of the second rotor 30 is different from that of the first rotor 20.
  • the torque coefficient refers to the magnitude of the interaction between the rotor and the air. The smaller the torque coefficient of the rotor, the less the rotor interacts with the air.
  • the torque coefficient of the first rotor 20 is smaller than that of the second rotor 30, which indicates that the interaction between the first rotor 20 and air is smaller than the interaction between the second rotor 30 and air.
  • the multi-rotor aircraft 100 further includes a driving assembly (not shown) provided on the airframe 50.
  • the driving assembly is configured to apply an exciting force to the first rotor 20 and the second rotor 30 to drive the first rotor 20 and the second rotor 30 to rotate.
  • the drive assembly includes a plurality of drive motors. A plurality of driving motors are fixedly connected to the first rotor 20 and the second rotor 30, respectively. Driven by a driving motor, the first rotor 20 rotates at a certain speed, and the second rotor 30 rotates at a certain speed.
  • the first rotor 20 when the multi-rotor aircraft 100 is flying in a direction in which the second side 12 is directed to the first side 11, the first rotor 20 is rotated at a first rotation speed, and the second rotor 30 is rotated at a second rotation speed.
  • the absolute value of the difference of the second rotation speed is smaller than the predetermined value N.
  • the first rotor 20 rotates at a first rotation speed
  • the second rotor 30 rotates at a second rotation speed.
  • the difference between the first rotation speed and the second rotation speed The absolute value of the value is smaller than the predetermined value N.
  • the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 are respectively equal to the excitation force frequency of the corresponding driving motor.
  • the multi-rotor aircraft 100 needs to have the effect of horizontal component moments to orientate flight.
  • the torque coefficients of the multiple rotors are all equal, when the multi-rotor aircraft is flying, for example, when flying forward, the speed of the rotor on the nose side and the speed on the tail
  • the absolute value of the difference in the rotational speed of the rotor on the side is large.
  • the frequency band between the rotor frequency of the rotor on the nose side and the rotor frequency of the rotor on the tail side is wide, resulting in the excitation force band and the natural frequency of the fuselage.
  • the probability of coupling is greater, and the probability of resonance between the fuselage and the rotor is greater.
  • the torque coefficient of the second rotor 30 is different from that of the first rotor 20, for example, the torque coefficient of the second rotor 30 is greater than that of the first rotor 20 or the torque coefficient of the second rotor 30 is less than The torque coefficient of the first rotor 20.
  • FIG. 2 and FIG. 4 Please refer to FIG. 2 and FIG. 4 together.
  • the predetermined value N may be adjusted according to the parameter conditions of the rotor of the multi-rotor aircraft 100.
  • the predetermined value N may be less than or equal to 50, 100, 150 revolutions per minute (RPM), etc., then the first The absolute value of the difference between the rotation speed and the second rotation speed may be any value of [0, N].
  • N 50 rpm
  • the absolute value of the difference between the first rotation speed and the second rotation speed may be any value such as 0, 10, 30, 45, 48, 50 rotations per minute.
  • N 100 rpm
  • the absolute value of the difference between the first rotation speed and the second rotation speed may be any value such as 0, 30, 50, 70, 90, 95 rotations / minute.
  • the absolute value of the difference between the first rotation speed and the second rotation speed can be any value such as 0, 25, 50, 100, 120, 140 rotations per minute.
  • the multi-rotor aircraft 100 flies in a direction in which the first rotor 20 and the second rotor 30 are at a similar speed or the same, and is directed toward the second side 12 toward the first side 11 or toward the first side 11 toward the second side 12.
  • the vibration during flight is small, and the imaging quality of the imaging device 200 is high.
  • the predetermined value N is close to zero. It can be understood that the predetermined value N can also be set according to actual needs, such as less than or equal to 20 revolutions / second, less than or equal to 30 revolutions / second, etc., and is not limited to this embodiment.
  • the torque coefficient of the second rotor 30 is greater than that of the first rotor 20
  • the first side 11 is the nose side of the fuselage 10
  • the second side 12 is the fuselage.
  • the multi-rotor aircraft 100 is flying in the direction of the second side 12 and the first side 11 indicating that the multi-rotor aircraft 100 is in a forward flight state (shown in FIG. 2).
  • the first rotor 20 is The second rotor 30 rotates at a second rotational speed, and the absolute value of the difference between the first and second rotational speeds is less than the predetermined value N.
  • the multi-rotor aircraft 100 is hovering (shown in FIG.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed, wherein the absolute value of the difference between the first rotation speed and the second rotation speed is The value is smaller than the absolute value of the difference between the third rotation speed and the fourth rotation speed.
  • the blade frequency of the first rotor 20 and The frequency band between the paddle frequencies of the second rotor 30 is narrower than when hovering, and the chance of the fuselage 10 resonating with the rotor is smaller, thereby reducing the poor image effect caused by the resonance between the fuselage 10 and the rotor. Chance.
  • the first side 11 is the nose side of the fuselage 10
  • the second side 12 is the tail side of the fuselage 10
  • the multi-rotor aircraft 100 is flying in a direction in which the first side 11 is directed to the second side 12, the multi-rotor aircraft 100 is in a backward flight state.
  • the first rotor 20 rotates at a first rotation speed
  • the second rotor 30 rotates at a second rotation speed
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value N.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed.
  • the absolute value of the difference between the first rotation speed and the second rotation speed is smaller than the first rotation speed.
  • the first side 11 when the torque coefficient of the second rotor 30 is greater than that of the first rotor 20, the first side 11 may also be the left side of the fuselage 10, and the second side 12 may be the right side of the fuselage 10, If the multi-rotor aircraft 100 is flying in a direction in which the second side 12 is directed to the first side 11, the multi-rotor aircraft 100 is in a left-flying state. At this time, the first rotor 20 rotates at a first rotation speed, and the second rotor 30 rotates at a second rotation speed, and the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value N.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed.
  • the absolute value of the difference between the first rotation speed and the second rotation speed is smaller than the first rotation speed.
  • the first side 11 is the left side of the fuselage 10
  • the second side 12 is the right side of the fuselage 10.
  • the flight of the rotorcraft 100 in a direction in which the first side 11 is directed to the second side 12 indicates that the multi-rotor aircraft 100 is in a right-flying state.
  • the first rotor 20 rotates at a first rotation speed
  • the second rotor 30 rotates at a second rotation speed
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value N.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed.
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than the third rotation speed.
  • the first side 11 and the second side 12 of the multi-rotor aircraft 100 may also be based on the multi-rotor.
  • the flight status of the aircraft 100 is changed.
  • the multi-rotor aircraft 100 is changed from one flight state to another flight state; the multi-rotor aircraft 100 is changed from one flight state to another flight state, and then changed to another flight state.
  • the first rotor 10 and the second rotor 20 also change.
  • the original torque coefficient of the first rotor 10 and the second rotor 20 also change.
  • the multi-rotor aircraft 100 may be changed from one flight state to another flight state, for example, the multi-rotor aircraft 100 is changed from forward flight to left flight.
  • the detailed description will be made by taking the multi-rotor aircraft 100 changing from forward flight to left flight as an example.
  • the first side 11 is the nose side of the fuselage 10
  • the second side 12 is the tail side of the fuselage 10
  • the multi-rotor aircraft 100 flies forward.
  • the torque coefficient K1 of the rotor on the tail side is larger than the torque coefficient K2 of the rotor on the nose side.
  • the first rotor 20 rotates at a first speed before the fly
  • the second rotor 30 rotates at a second speed before the fly
  • the absolute value of the difference between the first speed before the fly and the second speed before the fly is less than a predetermined value. N. Therefore, when the multi-rotor aircraft 100 flies forward, the frequency band between the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 is narrow.
  • the first rotor 20 is changed from the rotor originally located on the nose side to the rotor located on the left side of the fuselage
  • the second rotor 30 is changed from the rotor originally located on the tail side of the fuselage to The rotor located on the right side of the fuselage, and the torque coefficient K3 of the rotor located on the right side of the fuselage becomes larger than the torque coefficient K4 of the rotor located on the left side of the fuselage.
  • the first rotor 20 rotates at the first speed of the left flight
  • the second rotor 30 rotates at the second speed of the left flight
  • the absolute value of the difference between the first speed of the left flight and the second speed of the left flight is less than The predetermined value N. Therefore, when the multi-rotor aircraft 100 flies to the left, the frequency band between the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 is still narrow. In this way, by changing the torque coefficients of the rotors of the first side 11 and the second side 12, the multi-rotor aircraft 100 can ensure that the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 are in the forward flight and the left flight.
  • the narrower frequency band makes the probability of resonance between the fuselage 10 and the rotor smaller, and the imaging quality of the imaging device 200 is higher.
  • the first rotation speed of the forward flight may be equal to the first rotation speed of the left flight
  • the second rotation speed of the forward flight may be equal to the second rotation speed of the left flight.
  • the multi-rotor aircraft 100 is changed from one flight state to another flight state, for example, the multi-rotor aircraft 100 is changed from forward to right flight, the multi-rotor aircraft 100 is changed from forward flight to rear flight, and more The rotorcraft 100 is changed from a left flight to a right flight, etc., all of which can be operated by referring to the foregoing embodiment in which the forward flight is changed to a left flight, and details are not described herein again.
  • the multi-rotor aircraft 100 can be changed from one flight state to another flight state, and then changed to other flight states. For example, the multi-rotor aircraft 100 is changed from forward flight to left flight, and then from left flight to rear flight.
  • the multi-rotor aircraft 100 is now described in detail by changing from a forward flight to a left flight, and then from a left flight to a rear flight. Among them, the change of the multi-rotor aircraft 100 from a forward flight to a left flight can be performed by referring to the above-mentioned embodiment, and no further description will be made here.
  • the first rotor 20 is changed from the rotor on the left side of the fuselage to the rotor on the nose side
  • the second rotor The 30 changed from the rotor on the right side of the fuselage to the rotor on the tail side, and the torque coefficient K5 of the rotor on the nose side became larger than the torque coefficient K6 of the rotor on the tail side.
  • the first rotor 20 rotates at a first speed after the flight
  • the second rotor 30 rotates at a second speed after the flight
  • the absolute value of the difference between the first speed after the flight and the second speed after the rotation is smaller than a predetermined value. N. Therefore, when the multi-rotor aircraft 100 flies backward, the frequency band between the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 is still narrow. In this way, by changing the torque coefficients of the rotors of the first side 11 and the second side 12, the multi-rotor aircraft 100 can ensure the pitch of the first rotor 20 and the propeller of the second rotor 30 when flying forward, left, and backward.
  • the frequency band between the two frequencies is narrow, so that the chances of the fuselage 10 and the rotor resonating are smaller, and the imaging quality of the imaging device 200 is higher.
  • other multi-rotor aircrafts 100 are changed from one flight state to another flight state, and then changed to other flight states.
  • the multi-rotor aircraft 100 is changed from forward flight to right flight, and then changed to After the flight, the multi-rotor aircraft 100 is changed from forward flight to backward flight, and then to left flight.
  • the multi-rotor aircraft 100 is changed from left flight to right flight, and then changed to forward flight.
  • the operation of the embodiment of flying to the left and then changing from flying to the rear is not repeated here.
  • the number of the first rotors 20 may be plural, and the number of the second rotors 30 may also be plural.
  • the first rotor 20 is two rotors provided at the front end (head side) of the fuselage 10
  • the second rotor 30 is Two rotors provided at the rear end (near side) of the fuselage 10; or, the second rotor 30 is two rotors provided at the front end (nose side) of the fuselage 10, and the first rotor 20 is provided at the fuselage 10 Two rotors at the rear (tail side).
  • the multi-rotor aircraft 100 of the present invention is a “ten” quad-rotor
  • the first rotor 20 is two rotors provided at the front end (head side) and the left side of the fuselage 10
  • the second rotor 30 is disposed at the Two rotors at the rear (tail side) and right side of the fuselage 10.
  • the number and installation methods of the first rotor 20 and the second rotor 30 are not limited to the above discussion, and can be adjusted according to actual needs, which is not limited here.
  • both the first rotation speed and the third rotation speed may be the average rotation speed of the plurality of first rotors 20, All four rotation speeds can be the average rotation speed of the plurality of second rotors 30.
  • the torque coefficient of each rotor is determined by any one or more of the size of the rotor, the airfoil parameters of the rotor, etc.
  • each of the size of the rotor and the airfoil parameters of the rotor are It will affect the torque coefficient of the rotor.
  • the torque coefficient of the first rotor 20 and the second rotor 30 are also different; or The rotor 20 and the second rotor 30 have only different wing parameters, so the torque coefficient of the first rotor 20 and the second rotor 30 also have different torque coefficients; or, if the first rotor 20 and the second rotor 30 have dimensions and airfoil parameters Are different, the torque coefficient of the first rotor 20 and the torque coefficient of the second rotor 30 may also be different.
  • the multi-rotor aircraft 100 may use different rotor sizes and / or airfoil parameters to install the first rotor 20 and the second rotor 30 with appropriate torque coefficients (for example, the aircraft 100 uses different rotor sizes and / or Airfoil parameters to realize that the torque coefficient of the second rotor 30 is different from that of the first rotor 20).
  • the size of the first rotor 20 and the second rotor 30 are different, and the size of the rotor includes the diameter of the rotor.
  • the diameter of the second rotor 30 is larger than the diameter of the first rotor 20, and the interaction between the second rotor 30 and air is greater than the interaction between the first rotor 20 and air.
  • the multi-rotor aircraft 100 is flying in the direction that the large-diameter rotor is directed toward the small-diameter rotor, that is, the multi-rotor aircraft 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second side 12
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that when hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30, which improves the The imaging quality of the imaging device 200 mounted on the body 10.
  • the first rotor is the two rotors on the left
  • the second rotor is the two rotors on the right.
  • the size of the second rotor is larger than the size of the first rotor, and the torque coefficient of the second rotor can also be greater than that of the first rotor, so that when the aircraft is flying directionally (left flight), the first speed of the first rotor and the second rotor are The absolute value of the difference of the second rotational speed of the rotor is small, and the excitation force band is narrow, thereby reducing the possibility of the fuselage resonating with the first rotor or the second rotor, and improving the imaging device mounted on the fuselage. Image quality.
  • the airfoil parameters of the first rotor 20 and the second rotor 30 are different, wherein the airfoil parameters of the rotor include one or more of an angle of attack, a pitch, and a chord length.
  • the difference in the airfoil parameters of the first rotor 20 and the second rotor 30 includes that one of the parameters is different or a plurality of parameters are different.
  • the angle of attack of the second rotor 30 is greater than the angle of attack of the first rotor 20, and the interaction between the second rotor 30 and air is greater than the interaction between the first rotor 20 and air.
  • the multi-rotor aircraft 100 is flying in the direction that the rotor with a large angle of attack is directed toward the rotor with a small angle of attack, that is, the multi-rotor aircraft 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that during hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30,
  • the imaging quality of the imaging device 200 mounted on the body 10 is improved.
  • the pitch of the second rotor 30 is greater than the pitch of the first rotor 20.
  • the multi-rotor aircraft 100 is flying in the direction of the rotor with a large pitch and the rotor with a small pitch, that is, the multi-rotor 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second side 12
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that when hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30, which improves the The imaging quality of the imaging device 200 mounted on the body 10.
  • chord length of the rotor the larger the chord length of the rotor, the larger the cross-sectional area of the rotor under the same diameter, and the greater the interaction with the air, the larger the torque coefficient of the rotor; the smaller the chord length of the rotor, the same Under the diameter of the rotor, the smaller the cross-sectional area of the rotor and the smaller the interaction with the air, the smaller the torque coefficient of the rotor.
  • the chord length of the second rotor 30 is greater than the chord length of the first rotor 20.
  • the multi-rotor aircraft 100 is flying in the direction that the chord-grown rotor is directed toward the small chord rotor, that is, the multi-rotor aircraft 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that during hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30,
  • the imaging quality of the imaging device 200 mounted on the body 10 is improved.
  • the torque coefficient of the rotor can be determined at the factory, and can also be further adjusted during use. Specifically, the torque coefficient of the first rotor 20 is adjustable, or the torque coefficient of the second rotor 30 is adjustable, or both the torque coefficient of the first rotor 20 and the torque coefficient of the second rotor 30 are adjustable. For example, if a rotor pitch changing device is provided on the rotor, the multi-rotor aircraft 100 can change the attack angle of the first rotor 20 or the second rotor 30 using the variable pitch device to change the pitch of the first rotor 20 or the second rotor 30, and the pitch can be adjusted. The torque coefficient of the first rotor 20 or the second rotor 30.
  • the original torque coefficient of the first rotor 10 and the torque coefficient of the second rotor 20 may both be changed by the variable-pitch device.
  • the torque coefficient of the two rotors (the second rotor 30) on the tail side is K1
  • the torque coefficient of the two rotors (the first rotor 20) on the nose side is K2, and K1 Greater than K2.
  • the pitch of all rotors is changed so that the torque coefficients of all rotors are changed.
  • the original pitch of the first rotor 20 on the right changes and the torque coefficient becomes K3
  • the original pitch of the second rotor 30 on the right changes and the torque coefficient becomes K3.
  • the original pitch of the first left rotor 20 on the left changes and the torque coefficient changes. It becomes K4, and the pitch of the second rotor 30 on the left is changed, and the torque coefficient becomes K4. Therefore, the torque coefficients of the two rotors located on the right side of the fuselage are K3, and the torque coefficients of the two rotors located on the left side of the fuselage are K4, and K3 is greater than K4.
  • K1 can be equal to K3 and K2 can be equal to K4.
  • the original pitch of the first rotor 20 on the left can remain unchanged, and the torque coefficient is still K1.
  • the original pitch of the first rotor 20 on the right becomes larger, and the torque coefficient It becomes K4.
  • the multi-rotor aircraft 100 uses the first rotor 20 and the second rotor 30 with different torque coefficients, so that when the multi-rotor aircraft 100 is directional flying, the first rotor 20 rotates at the first rotation speed and the second rotor 30 rotates at the second speed, and the absolute value of the difference between the first speed and the second speed is small, and the frequency band of the excitation force is narrow, thereby reducing the resonance between the fuselage 10 and the first rotor 20 or the second rotor 30.
  • the possibility improves the imaging quality of the imaging device 200 mounted on the body 10.
  • An embodiment of the present invention provides a method for controlling a multi-rotor aircraft 100.
  • the multi-rotor aircraft 100 includes a fuselage 10, a first rotor 20, and a second rotor 30.
  • the fuselage 10 includes a first side 11 and a second side 12 opposite to each other.
  • the first rotor 20 is connected to the first side 11 of the fuselage 10.
  • the second rotor 30 is connected to the second side 12 of the fuselage 10.
  • the torque coefficient of the second rotor 30 is different from that of the first rotor 20.
  • the multi-rotor aircraft 100 may be a four-rotor aircraft, a six-rotor aircraft, an eight-rotor aircraft, etc., which is not limited herein.
  • the multi-rotor aircraft 100 in this embodiment is exemplified by a four-rotor aircraft, which can be equipped with an imaging device 200.
  • the imaging device 200 is configured to take a picture or photograph when the multi-rotor aircraft 100 is flying or hovering.
  • the imaging device 200 may be installed on the gimbal 300, and the gimbal 300 is fixedly connected to the body 10.
  • the gimbal 300 can provide a suitable shooting angle for the imaging device 200.
  • the vibration of the fuselage 10 of the multi-rotor aircraft 100 is large, the vibration of the imaging device 200 is also large, and the imaging quality of the imaging device 200 is poor.
  • a slight vibration of the body 10 will cause a large shake of the shooting picture, affecting the shooting quality of the lens.
  • Both the first rotor 20 and the second rotor 30 can be connected to the fuselage 10 through the arm 50.
  • the torque coefficient of the second rotor 30 is different from that of the first rotor 20.
  • the torque coefficient refers to the magnitude of the interaction between the rotor and the air. The smaller the torque coefficient of the rotor, the less the rotor interacts with the air.
  • the torque coefficient of the first rotor 20 is smaller than that of the second rotor 30, which indicates that the interaction between the first rotor 20 and air is smaller than the interaction between the second rotor 30 and air.
  • the multi-rotor aircraft 100 further includes a driving assembly (not shown) provided on the airframe 50.
  • the driving assembly is configured to apply an exciting force to the first rotor 20 and the second rotor 30 to drive the first rotor 20 and the second rotor 30 to rotate.
  • the drive assembly includes a plurality of drive motors. A plurality of driving motors are fixedly connected to the first rotor 20 and the second rotor 30, respectively. Driven by a driving motor, the first rotor 20 rotates at a certain speed, and the second rotor 30 rotates at a certain speed.
  • the first rotor 20 when the multi-rotor aircraft 100 is flying in a direction in which the second side 12 is directed to the first side 11, the first rotor 20 is rotated at a first rotation speed, and the second rotor 30 is rotated at a second rotation speed.
  • the absolute value of the difference of the second rotation speed is smaller than the predetermined value N.
  • the first rotor 20 rotates at a first rotation speed
  • the second rotor 30 rotates at a second rotation speed.
  • the difference between the first rotation speed and the second rotation speed The absolute value of the value is smaller than the predetermined value N.
  • the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 are respectively equal to the excitation force frequency of the corresponding driving motor.
  • the multi-rotor aircraft 100 needs to have the effect of horizontal component moments to orientate flight.
  • the torque coefficients of the multiple rotors are all equal, when the multi-rotor aircraft is flying, for example, when flying forward, the speed of the rotor on the nose side and the speed on the tail
  • the absolute value of the difference in the rotational speed of the rotor on the side is large.
  • the frequency band between the rotor frequency of the rotor on the nose side and the rotor frequency of the rotor on the tail side is wide, resulting in the excitation force band and the natural frequency of the fuselage.
  • the probability of coupling is greater, and the probability of resonance between the fuselage and the rotor is greater.
  • the torque coefficient of the second rotor 30 is different from that of the first rotor 20, for example, the torque coefficient of the second rotor 30 is greater than that of the first rotor 20 or the torque coefficient of the second rotor 30 is less than The torque coefficient of the first rotor 20.
  • FIG. 2 and FIG. 4 Please refer to FIG. 2 and FIG. 4 together.
  • the predetermined value N may be adjusted according to the parameter conditions of the rotor of the multi-rotor aircraft 100.
  • the predetermined value N may be less than or equal to 50, 100, 150 revolutions per minute (RPM), etc., then the first The absolute value of the difference between the rotation speed and the second rotation speed may be any value of [0, N].
  • N 50 rpm
  • the absolute value of the difference between the first rotation speed and the second rotation speed may be any value such as 0, 10, 30, 45, 48, 50 rotations per minute.
  • N 100 rpm
  • the absolute value of the difference between the first rotation speed and the second rotation speed may be any value such as 0, 30, 50, 70, 90, 95 rotations / minute.
  • the absolute value of the difference between the first rotation speed and the second rotation speed can be any value such as 0, 25, 50, 100, 120, 140 rotations per minute.
  • the multi-rotor aircraft 100 flies in a direction in which the first rotor 20 and the second rotor 30 are at a similar speed or the same, and is directed toward the second side 12 toward the first side 11 or toward the first side 11 toward the second side 12.
  • the vibration during flight is small, and the imaging quality of the imaging device 200 is high.
  • the predetermined value N is close to zero. It can be understood that the predetermined value N can also be set according to actual needs, such as less than or equal to 20 revolutions / second, less than or equal to 30 revolutions / second, etc., and is not limited to this embodiment.
  • control method of the multi-rotor aircraft 100 further includes the following steps:
  • the first rotor 20 interacts with air less than the second rotor 30 interacts with air.
  • the second rotor 30 rotates at the fourth speed, and the third speed is greater than the fourth speed, the The pulling force is equal to the pulling force generated by the second rotor 30. In this way, the fuselage 10 maintains balance, and the multi-rotor aircraft 100 can hover.
  • the torque coefficient of the second rotor 30 is greater than that of the first rotor 20
  • the first side 11 is the nose side of the fuselage 10
  • the second side 12 is the fuselage.
  • the multi-rotor aircraft 100 is flying in the direction of the second side 12 and the first side 11 indicating that the multi-rotor aircraft 100 is in a forward flight state (shown in FIG. 2).
  • the first rotor 20 is The second rotor 30 rotates at a second rotational speed, and the absolute value of the difference between the first and second rotational speeds is less than the predetermined value N.
  • the multi-rotor aircraft 100 is hovering (shown in FIG.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed, wherein the absolute value of the difference between the first rotation speed and the second rotation speed is The value is smaller than the absolute value of the difference between the third rotation speed and the fourth rotation speed.
  • the blade frequency of the first rotor 20 and The frequency band between the paddle frequencies of the second rotor 30 is narrower than when hovering, and the chance of the fuselage 10 resonating with the rotor is smaller, thereby reducing the poor image effect caused by the resonance between the fuselage 10 and the rotor. Chance.
  • the first side 11 is the nose side of the fuselage 10
  • the second side 12 is the tail side of the fuselage 10
  • the multi-rotor aircraft 100 is flying in a direction in which the first side 11 is directed to the second side 12, the multi-rotor aircraft 100 is in a backward flight state.
  • the first rotor 20 rotates at a first rotation speed
  • the second rotor 30 rotates at a second rotation speed
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value N.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed.
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than the third rotation speed.
  • the first side 11 when the torque coefficient of the second rotor 30 is greater than that of the first rotor 20, the first side 11 may also be the left side of the fuselage 10, and the second side 12 may be the right side of the fuselage 10, If the multi-rotor aircraft 100 is flying in a direction in which the second side 12 is directed to the first side 11, the multi-rotor aircraft 100 is in a left-flying state. At this time, the first rotor 20 rotates at a first rotation speed, and the second rotor 30 rotates at a second rotation speed, and the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value N.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed.
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than the third rotation speed.
  • the first side 11 is the left side of the fuselage 10
  • the second side 12 is the right side of the fuselage 10.
  • the flight of the rotorcraft 100 in a direction in which the first side 11 is directed to the second side 12 indicates that the multi-rotor aircraft 100 is in a right-flying state.
  • the first rotor 20 rotates at a first rotation speed
  • the second rotor 30 rotates at a second rotation speed
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value N.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed.
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than the third rotation speed.
  • the first side 11 and the second side 12 of the multi-rotor aircraft 100 may also be based on the multi-rotor.
  • the flight status of the aircraft 100 is changed.
  • the multi-rotor aircraft 100 is changed from one flight state to another flight state; the multi-rotor aircraft 100 is changed from one flight state to another flight state, and then changed to another flight state.
  • the first rotor 10 and the second rotor 20 also change.
  • the original torque coefficient of the first rotor 10 and the second rotor 20 also change.
  • the multi-rotor aircraft 100 may be changed from one flight state to another flight state, for example, the multi-rotor aircraft 100 is changed from forward flight to left flight.
  • the detailed description will be made by taking the multi-rotor aircraft 100 changing from forward flight to left flight as an example.
  • the first side 11 is the nose side of the fuselage 10
  • the second side 12 is the tail side of the fuselage 10
  • the multi-rotor aircraft 100 flies forward.
  • the torque coefficient K1 of the rotor on the tail side is larger than the torque coefficient K2 of the rotor on the nose side.
  • the first rotor 20 rotates at a first speed before the fly
  • the second rotor 30 rotates at a second speed before the fly
  • the absolute value of the difference between the first speed before the fly and the second speed before the fly is less than a predetermined value. N. Therefore, when the multi-rotor aircraft 100 flies forward, the frequency band between the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 is narrow.
  • the first rotor 20 is changed from the rotor originally located on the nose side to the rotor located on the left side of the fuselage
  • the second rotor 30 is changed from the rotor originally located on the tail side of the fuselage to The rotor located on the right side of the fuselage, and the torque coefficient K3 of the rotor located on the right side of the fuselage becomes larger than the torque coefficient K4 of the rotor located on the left side of the fuselage.
  • the first rotor 20 rotates at the first speed of the left flight
  • the second rotor 30 rotates at the second speed of the left flight
  • the absolute value of the difference between the first speed of the left flight and the second speed of the left flight is less than The predetermined value N. Therefore, when the multi-rotor aircraft 100 flies to the left, the frequency band between the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 is still narrow. In this way, by changing the torque coefficients of the rotors of the first side 11 and the second side 12, the multi-rotor aircraft 100 can ensure that the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 are in the forward flight and the left flight.
  • the narrower frequency band makes the probability of resonance between the fuselage 10 and the rotor smaller, and the imaging quality of the imaging device 200 is higher.
  • the first rotation speed of the forward flight may be equal to the first rotation speed of the left flight
  • the second rotation speed of the forward flight may be equal to the second rotation speed of the left flight.
  • the multi-rotor aircraft 100 is changed from one flight state to another flight state, for example, the multi-rotor aircraft 100 is changed from forward to right flight, the multi-rotor aircraft 100 is changed from forward flight to rear flight, and more The rotorcraft 100 is changed from a left flight to a right flight, etc., all of which can be operated by referring to the foregoing embodiment in which the forward flight is changed to a left flight, and details are not described herein again.
  • the multi-rotor aircraft 100 can be changed from one flight state to another flight state, and then changed to other flight states. For example, the multi-rotor aircraft 100 is changed from forward flight to left flight, and then from left flight to rear flight.
  • the multi-rotor aircraft 100 is now described in detail by changing from a forward flight to a left flight, and then from a left flight to a rear flight. Among them, the change of the multi-rotor aircraft 100 from a forward flight to a left flight can be performed by referring to the above-mentioned embodiment, and no further description will be made here.
  • the first rotor 20 is changed from the rotor on the left side of the fuselage to the rotor on the nose side
  • the second rotor The 30 changed from the rotor on the right side of the fuselage to the rotor on the tail side, and the torque coefficient K5 of the rotor on the nose side became larger than the torque coefficient K6 of the rotor on the tail side.
  • the first rotor 20 rotates at a first speed after the flight
  • the second rotor 30 rotates at a second speed after the flight
  • the absolute value of the difference between the first speed after the flight and the second speed after the rotation is smaller than a predetermined value. N. Therefore, when the multi-rotor aircraft 100 flies backward, the frequency band between the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 is still narrow. In this way, by changing the torque coefficients of the rotors of the first side 11 and the second side 12, the multi-rotor aircraft 100 can ensure the pitch of the first rotor 20 and the propeller of the second rotor 30 when flying forward, left, and backward.
  • the frequency band between the two frequencies is narrow, so that the chances of the fuselage 10 and the rotor resonating are smaller, and the imaging quality of the imaging device 200 is higher.
  • other multi-rotor aircrafts 100 are changed from one flight state to another flight state, and then changed to other flight states.
  • the multi-rotor aircraft 100 is changed from forward flight to right flight, and then changed to After the flight, the multi-rotor aircraft 100 is changed from forward flight to backward flight, and then to left flight.
  • the multi-rotor aircraft 100 is changed from left flight to right flight, and then changed to forward flight.
  • the operation of the embodiment of flying to the left and then changing from flying to the rear is not repeated here.
  • the number of the first rotors 20 may be plural, and the number of the second rotors 30 may also be plural.
  • the first rotor 20 is two rotors provided at the front end (head side) of the fuselage 10
  • the second rotor 30 is Two rotors provided at the rear end (near side) of the fuselage 10; or, the second rotor 30 is two rotors provided at the front end (nose side) of the fuselage 10, and the first rotor 20 is provided at the fuselage 10 Two rotors at the rear (tail side).
  • the multi-rotor aircraft 100 of the present invention is a “ten” quad-rotor
  • the first rotor 20 is two rotors provided at the front end (head side) and the left side of the fuselage 10
  • the second rotor 30 is disposed at the Two rotors at the rear (tail side) and right side of the fuselage 10.
  • the number and installation methods of the first rotor 20 and the second rotor 30 are not limited to the above discussion, and can be adjusted according to actual needs, which is not limited here.
  • both the first rotation speed and the third rotation speed may be the average rotation speed of the plurality of first rotors 20, All four rotation speeds can be the average rotation speed of the plurality of second rotors 30.
  • the torque coefficient of each rotor is determined by any one or more of the size of the rotor, the airfoil parameters of the rotor, etc.
  • each of the size of the rotor and the airfoil parameters of the rotor It will affect the torque coefficient of the rotor.
  • the torque coefficient of the first rotor 20 and the second rotor 30 are also different; or The rotor 20 and the second rotor 30 have only different wing parameters, so the torque coefficient of the first rotor 20 and the second rotor 30 also have different torque coefficients; or, if the first rotor 20 and the second rotor 30 have dimensions and airfoil parameters Are different, the torque coefficient of the first rotor 20 and the torque coefficient of the second rotor 30 may also be different.
  • the multi-rotor aircraft 100 may use different rotor sizes and / or airfoil parameters to install the first rotor 20 and the second rotor 30 with appropriate torque coefficients (for example, the aircraft 100 uses different rotor sizes and / or Airfoil parameters to realize that the torque coefficient of the second rotor 30 is different from that of the first rotor 20).
  • the size of the first rotor 20 and the second rotor 30 are different, and the size of the rotor includes the diameter of the rotor.
  • the diameter of the second rotor 30 is larger than the diameter of the first rotor 20, and the interaction between the second rotor 30 and air is greater than the interaction between the first rotor 20 and air.
  • the multi-rotor aircraft 100 is flying in the direction that the large-diameter rotor is directed toward the small-diameter rotor, that is, the multi-rotor aircraft 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second side 12
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that when hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30, which improves the The imaging quality of the imaging device 200 mounted on the body 10.
  • the first rotor is the two rotors on the left
  • the second rotor is the two rotors on the right.
  • the size of the second rotor is larger than the size of the first rotor, and the torque coefficient of the second rotor can also be greater than that of the first rotor, so that when the aircraft is flying directionally (left flight), the first speed of the first rotor and the second rotor are The absolute value of the difference of the second rotational speed of the rotor is small, and the excitation force band is narrow, thereby reducing the possibility of the fuselage resonating with the first rotor or the second rotor, and improving the imaging device mounted on the fuselage. Image quality.
  • the airfoil parameters of the first rotor 20 and the second rotor 30 are different, wherein the airfoil parameters of the rotor include one or more of an angle of attack, a pitch, and a chord length.
  • the difference in the airfoil parameters of the first rotor 20 and the second rotor 30 includes that one of the parameters is different or a plurality of parameters are different.
  • the angle of attack of the second rotor 30 is greater than the angle of attack of the first rotor 20, and the interaction between the second rotor 30 and air is greater than the interaction between the first rotor 20 and air.
  • the multi-rotor aircraft 100 is flying in the direction that the rotor with a large angle of attack is directed toward the rotor with a small angle of attack, that is, the multi-rotor aircraft 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that during hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30,
  • the imaging quality of the imaging device 200 mounted on the body 10 is improved.
  • the pitch of the second rotor 30 is greater than the pitch of the first rotor 20.
  • the multi-rotor aircraft 100 is flying in the direction of the rotor with a large pitch and the rotor with a small pitch, that is, the multi-rotor 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second side 12
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that when hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30, which improves the The imaging quality of the imaging device 200 mounted on the body 10.
  • chord length of the rotor the larger the chord length of the rotor, the larger the cross-sectional area of the rotor under the same diameter, and the greater the interaction with the air, the larger the torque coefficient of the rotor; the smaller the chord length of the rotor, the same Under the diameter of the rotor, the smaller the cross-sectional area of the rotor and the smaller the interaction with the air, the smaller the torque coefficient of the rotor.
  • the chord length of the second rotor 30 is greater than the chord length of the first rotor 20.
  • the multi-rotor aircraft 100 is flying in the direction that the chord-grown rotor is directed toward the small chord rotor, that is, the multi-rotor aircraft 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that during hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30,
  • the imaging quality of the imaging device 200 mounted on the body 10 is improved.
  • the torque coefficient of the rotor can be determined at the factory, and can also be further adjusted during use. Specifically, the torque coefficient of the first rotor 20 is adjustable, or the torque coefficient of the second rotor 30 is adjustable, or both the torque coefficient of the first rotor 20 and the torque coefficient of the second rotor 30 are adjustable. For example, if a rotor pitch changing device is provided on the rotor, the multi-rotor aircraft 100 can change the attack angle of the first rotor 20 or the second rotor 30 using the variable pitch device to change the pitch of the first rotor 20 or the second rotor 30, and the pitch can be adjusted. The torque coefficient of the first rotor 20 or the second rotor 30.
  • the original torque coefficient of the first rotor 10 and the torque coefficient of the second rotor 20 may both be changed by the variable-pitch device.
  • the torque coefficient of the two rotors (the second rotor 30) on the tail side is K1
  • the torque coefficient of the two rotors (the first rotor 20) on the nose side is K2, and K1 Greater than K2.
  • the pitch of all the rotors is changed so that the torque coefficients of all the rotors are changed.
  • the original pitch of the first rotor 20 on the right changes and the torque coefficient becomes K3
  • the original pitch of the second rotor 30 on the right changes and the torque coefficient becomes K3.
  • the original pitch of the first left rotor 20 on the left changes and the torque coefficient changes. It becomes K4, and the pitch of the second rotor 30 on the left is changed, and the torque coefficient becomes K4. Therefore, the torque coefficients of the two rotors located on the right side of the fuselage are K3, and the torque coefficients of the two rotors located on the left side of the fuselage are K4, and K3 is greater than K4.
  • K1 can be equal to K3 and K2 can be equal to K4.
  • the original pitch of the first rotor 20 on the left can remain unchanged, and the torque coefficient is still K1.
  • the original pitch of the first rotor 20 on the right becomes larger, and the torque coefficient It becomes K4.
  • control method of the multi-rotor aircraft 100 further includes the following steps:
  • the fourth rotation speed of the second rotor 30 is controlled to become the second rotation speed.
  • the absolute value of the difference between the first rotation speed and the second rotation speed is smaller than the absolute value of the difference between the third rotation speed and the fourth rotation speed.
  • the multi-rotor aircraft 100 changes from hovering to flying toward the first side from the second side.
  • the rotation speed of the driving motor connected to the first rotor 20 is reduced to reduce the rotation speed of the first rotor 20, and the rotation speed of the driving motor connected to the second rotor 30 is increased to increase the rotation speed of the second rotor 30.
  • the third rotation speed of one rotor 20 becomes the first rotation speed
  • the fourth rotation speed of the second rotor 30 becomes the second rotation speed
  • the absolute value of the difference between the first rotation speed and the second rotation speed is smaller than the third rotation speed and the first rotation speed when hovering.
  • the pulling force of the first rotor 20 is similar to that of the second rotor 30.
  • the pulling force of the first rotor 20 is reduced, and the pulling force of the second rotor 30 is increased, so that the multi-rotor aircraft 100 is subjected to a horizontal component moment directed toward the second rotor 30 toward the first rotor 20 Therefore, the multi-rotor aircraft 100 flies in a direction in which the second side 12 is directed to the first side 11. In this way, the multi-rotor aircraft 100 is changed from a hovering state to a directional flight state.
  • the rotation speed of the driving motor connected to the first rotor 20 is continuously reduced to reduce the rotation speed of the first rotor 20, the control and The rotation speed of the driving motor connected to the second rotor 30 is increased to increase the rotation speed of the second rotor 30 until the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value.
  • the predetermined value may be set to a relatively small value, so that the multi-rotor aircraft 100 has a propeller frequency of the first rotor 20 and a propeller frequency of the second rotor 30 that are close to each other during the directional flight, and the frequency band of the excitation force is relatively narrow.
  • the torque coefficients of the first rotor 20 and the second rotor 30 of the multi-rotor aircraft 100 are different.
  • the first rotor 20 is controlled to Turning at the first speed
  • the second rotor 30 is controlled to rotate at the second speed
  • the absolute value of the difference between the first speed and the second speed is small, and the excitation force band is narrow, thereby reducing the fuselage 10 and the first speed.
  • the possibility of the rotor 20 or the second rotor 30 resonating improves the imaging quality of the imaging device 200 mounted on the fuselage 10.
  • An embodiment of the present invention further provides a multi-rotor aircraft 100 including a flight control system 40.
  • the multi-rotor aircraft 100 includes a fuselage 10, a first rotor 20, a second rotor 30, and a flight control system 40.
  • the fuselage 10 includes a first side 11 and a second side 12 opposite to each other.
  • the first rotor 20 is connected to the first side 11 of the fuselage 10.
  • the second rotor 30 is connected to the second side 12 of the fuselage 10.
  • the torque coefficient of the second rotor 30 is different from that of the first rotor 20.
  • the flight control system 40 is configured to control the first rotor 20 at a first rotation speed Rotate; control the second rotor 30 to rotate at a second speed, wherein the absolute value of the difference between the first speed and the second speed is less than a predetermined value N. That is, the flight control system 40 can be used to implement steps S1 and S2.
  • the multi-rotor aircraft 100 may be a four-rotor aircraft, a six-rotor aircraft, an eight-rotor aircraft, etc., which is not limited herein.
  • the multi-rotor aircraft 100 in this embodiment is exemplified by a four-rotor aircraft, which can be equipped with an imaging device 200.
  • the imaging device 200 is configured to take a picture or photograph when the multi-rotor aircraft 100 is flying or hovering.
  • the imaging device 200 may be installed on the gimbal 300, and the gimbal 300 is fixedly connected to the body 10.
  • the gimbal 300 can provide a suitable shooting angle for the imaging device 200.
  • the vibration of the fuselage 10 of the multi-rotor aircraft 100 is large, the vibration of the imaging device 200 is also large, and the imaging quality of the imaging device 200 is poor.
  • a slight vibration of the body 10 will cause a large shake of the shooting picture, affecting the shooting quality of the lens.
  • Both the first rotor 20 and the second rotor 30 can be connected to the fuselage 10 through the arm 50.
  • the torque coefficient of the second rotor 30 is different from that of the first rotor 20.
  • the torque coefficient refers to the magnitude of the interaction between the rotor and the air. The smaller the torque coefficient of the rotor, the less the rotor interacts with the air.
  • the torque coefficient of the first rotor 20 is smaller than that of the second rotor 30, which indicates that the interaction between the first rotor 20 and air is smaller than the interaction between the second rotor 30 and air.
  • the multi-rotor aircraft 100 further includes a driving assembly (not shown) provided on the airframe 50.
  • the driving assembly is configured to apply an exciting force to the first rotor 20 and the second rotor 30 to drive the first rotor 20 and the second rotor 30 to rotate.
  • the drive assembly includes a plurality of drive motors. A plurality of driving motors are fixedly connected to the first rotor 20 and the second rotor 30, respectively. Driven by a driving motor, the first rotor 20 rotates at a certain speed, and the second rotor 30 rotates at a certain speed.
  • the first rotor 20 when the multi-rotor aircraft 100 is flying in a direction in which the second side 12 is directed to the first side 11, the first rotor 20 is rotated at a first rotation speed, and the second rotor 30 is rotated at a second rotation speed.
  • the absolute value of the difference of the second rotation speed is smaller than the predetermined value N.
  • the first rotor 20 rotates at a first rotation speed
  • the second rotor 30 rotates at a second rotation speed.
  • the difference between the first rotation speed and the second rotation speed The absolute value of the value is smaller than the predetermined value N.
  • the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 are respectively equal to the excitation force frequency of the corresponding driving motor.
  • the multi-rotor aircraft 100 needs to have the effect of horizontal component moments to orientate flight.
  • the torque coefficients of the multiple rotors are all equal, when the multi-rotor aircraft is flying, for example, when flying forward, the speed of the rotor on the nose side and the speed on the tail
  • the absolute value of the difference in the rotational speed of the rotor on the side is large.
  • the frequency band between the rotor frequency of the rotor on the nose side and the rotor frequency of the rotor on the tail side is wide, resulting in the excitation force band and the natural frequency of the fuselage.
  • the probability of coupling is greater, and the probability of resonance between the fuselage and the rotor is greater.
  • the torque coefficient of the second rotor 30 is different from that of the first rotor 20, for example, the torque coefficient of the second rotor 30 is greater than that of the first rotor 20 or the torque coefficient of the second rotor 30 is less than The torque coefficient of the first rotor 20.
  • FIG. 2 and FIG. 4 Please refer to FIG. 2 and FIG. 4 together.
  • the predetermined value N may be adjusted according to the parameter conditions of the rotor of the multi-rotor aircraft 100.
  • the predetermined value N may be less than or equal to 50, 100, 150 revolutions per minute (RPM), etc., then the first The absolute value of the difference between the rotation speed and the second rotation speed may be any value of [0, N].
  • N 50 rpm
  • the absolute value of the difference between the first rotation speed and the second rotation speed may be any value such as 0, 10, 30, 45, 48, 50 rotations per minute.
  • N 100 rpm
  • the absolute value of the difference between the first rotation speed and the second rotation speed may be any value such as 0, 30, 50, 70, 90, 95 rotations / minute.
  • the absolute value of the difference between the first rotation speed and the second rotation speed can be any value such as 0, 25, 50, 100, 120, 140 rotations per minute.
  • the multi-rotor aircraft 100 flies in a direction in which the first rotor 20 and the second rotor 30 are at a similar speed or the same, and is directed toward the second side 12 toward the first side 11 or toward the first side 11 toward the second side 12.
  • the vibration during flight is small, and the imaging quality of the imaging device 200 is high.
  • the predetermined value N is close to zero. It can be understood that the predetermined value N can also be set according to actual needs, such as less than or equal to 20 revolutions / second, less than or equal to 30 revolutions / second, etc., and is not limited to this embodiment.
  • the flight control system 40 of the multi-rotor aircraft 100 is further configured to: control the first rotor 20 to rotate at a third rotation speed;
  • the second rotor 30 rotates at a fourth rotation speed, wherein the absolute value of the difference between the first rotation speed and the second rotation speed is smaller than the absolute value of the difference between the third rotation speed and the fourth rotation speed. That is, the flight control system 40 is also used to implement steps S3 and S4.
  • the first rotor 20 interacts with air less than the second rotor 30 interacts with air.
  • the second rotor 30 rotates at the fourth speed, and the third speed is greater than the fourth speed, the The pulling force is equal to the pulling force generated by the second rotor 30. In this way, the fuselage 10 maintains balance, and the multi-rotor aircraft 100 can hover.
  • the torque coefficient of the second rotor 30 is greater than that of the first rotor 20
  • the first side 11 is the nose side of the fuselage 10
  • the second side 12 is the fuselage.
  • the multi-rotor aircraft 100 is flying in the direction of the second side 12 and the first side 11 indicating that the multi-rotor aircraft 100 is in a forward flight state (shown in FIG. 2).
  • the first rotor 20 is The second rotor 30 rotates at a second rotational speed, and the absolute value of the difference between the first and second rotational speeds is less than the predetermined value N.
  • the multi-rotor aircraft 100 is hovering (shown in FIG.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed, wherein the absolute value of the difference between the first rotation speed and the second rotation speed is The value is smaller than the absolute value of the difference between the third rotation speed and the fourth rotation speed.
  • the blade frequency of the first rotor 20 and The frequency band between the paddle frequencies of the second rotor 30 is narrower than when hovering, and the chance of the fuselage 10 resonating with the rotor is smaller, thereby reducing the poor image effect caused by the resonance between the fuselage 10 and the rotor. Chance.
  • the first side 11 is the nose side of the fuselage 10
  • the second side 12 is the tail side of the fuselage 10
  • the multi-rotor aircraft 100 is flying in a direction in which the first side 11 is directed to the second side 12, the multi-rotor aircraft 100 is in a backward flight state.
  • the first rotor 20 rotates at a first rotation speed
  • the second rotor 30 rotates at a second rotation speed
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value N.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed.
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than the third rotation speed.
  • the first side 11 when the torque coefficient of the second rotor 30 is greater than that of the first rotor 20, the first side 11 may also be the left side of the fuselage 10, and the second side 12 may be the right side of the fuselage 10, If the multi-rotor aircraft 100 is flying in a direction in which the second side 12 is directed to the first side 11, the multi-rotor aircraft 100 is in a left-flying state. At this time, the first rotor 20 rotates at a first rotation speed, and the second rotor 30 rotates at a second rotation speed, and the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value N.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed.
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than the third rotation speed.
  • the first side 11 is the left side of the fuselage 10
  • the second side 12 is the right side of the fuselage 10.
  • the flight of the rotorcraft 100 in a direction in which the first side 11 is directed to the second side 12 indicates that the multi-rotor aircraft 100 is in a right-flying state.
  • the first rotor 20 rotates at a first rotation speed
  • the second rotor 30 rotates at a second rotation speed
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value N.
  • the first rotor 20 rotates at a third rotation speed
  • the second rotor 30 rotates at a fourth rotation speed.
  • the absolute value of the difference between the first rotation speed and the second rotation speed is less than the third rotation speed.
  • the first side 11 and the second side 12 of the multi-rotor aircraft 100 may also be The flight status of the aircraft 100 is changed.
  • the multi-rotor aircraft 100 is changed from one flight state to another flight state; the multi-rotor aircraft 100 is changed from one flight state to another flight state, and then changed to another flight state.
  • the first rotor 10 and the second rotor 20 also change.
  • the original torque coefficient of the first rotor 10 and the second rotor 20 also change.
  • the multi-rotor aircraft 100 may be changed from one flight state to another flight state, for example, the multi-rotor aircraft 100 is changed from forward flight to left flight.
  • the detailed description will be made by taking the multi-rotor aircraft 100 changing from forward flight to left flight as an example.
  • the first side 11 is the nose side of the fuselage 10
  • the second side 12 is the tail side of the fuselage 10
  • the multi-rotor aircraft 100 flies forward.
  • the torque coefficient K1 of the rotor on the tail side is larger than the torque coefficient K2 of the rotor on the nose side.
  • the first rotor 20 rotates at a first speed before the fly
  • the second rotor 30 rotates at a second speed before the fly
  • the absolute value of the difference between the first speed before the fly and the second speed before the fly is less than a predetermined value. N. Therefore, when the multi-rotor aircraft 100 flies forward, the frequency band between the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 is narrow.
  • the first rotor 20 is changed from the rotor originally located on the nose side to the rotor located on the left side of the fuselage
  • the second rotor 30 is changed from the rotor originally located on the tail side of the fuselage to The rotor located on the right side of the fuselage, and the torque coefficient K3 of the rotor located on the right side of the fuselage becomes larger than the torque coefficient K4 of the rotor located on the left side of the fuselage.
  • the first rotor 20 rotates at the first speed of the left flight
  • the second rotor 30 rotates at the second speed of the left flight
  • the absolute value of the difference between the first speed of the left flight and the second speed of the left flight is less than The predetermined value N. Therefore, when the multi-rotor aircraft 100 flies to the left, the frequency band between the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 is still narrow. In this way, by changing the torque coefficients of the rotors of the first side 11 and the second side 12, the multi-rotor aircraft 100 can ensure that the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 are in the forward flight and the left flight.
  • the narrower frequency band makes the probability of resonance between the fuselage 10 and the rotor smaller, and the imaging quality of the imaging device 200 is higher.
  • the first rotation speed of the forward flight may be equal to the first rotation speed of the left flight
  • the second rotation speed of the forward flight may be equal to the second rotation speed of the left flight.
  • the multi-rotor aircraft 100 is changed from one flight state to another flight state, for example, the multi-rotor aircraft 100 is changed from forward to right flight, the multi-rotor aircraft 100 is changed from forward flight to rear flight, and more The rotorcraft 100 is changed from a left flight to a right flight, etc., all of which can be operated by referring to the foregoing embodiment in which the forward flight is changed to a left flight, and details are not described herein again.
  • the multi-rotor aircraft 100 can be changed from one flight state to another flight state, and then changed to other flight states. For example, the multi-rotor aircraft 100 is changed from forward flight to left flight, and then from left flight to rear flight.
  • the multi-rotor aircraft 100 is now described in detail by changing from a forward flight to a left flight, and then from a left flight to a rear flight. Among them, the change of the multi-rotor aircraft 100 from a forward flight to a left flight can be performed by referring to the above-mentioned embodiment, and no further description will be made here.
  • the first rotor 20 is changed from the rotor on the left side of the fuselage to the rotor on the nose side
  • the second rotor The 30 changed from the rotor on the right side of the fuselage to the rotor on the tail side, and the torque coefficient K5 of the rotor on the nose side became larger than the torque coefficient K6 of the rotor on the tail side.
  • the first rotor 20 rotates at a first speed after the flight
  • the second rotor 30 rotates at a second speed after the flight
  • the absolute value of the difference between the first speed after the flight and the second speed after the rotation is smaller than a predetermined value. N. Therefore, when the multi-rotor aircraft 100 flies backward, the frequency band between the pitch frequency of the first rotor 20 and the pitch frequency of the second rotor 30 is still narrow. In this way, by changing the torque coefficients of the rotors of the first side 11 and the second side 12, the multi-rotor aircraft 100 can ensure the pitch of the first rotor 20 and the propeller of the second rotor 30 when flying forward, left, and backward.
  • the frequency band between the two frequencies is narrow, so that the chances of the fuselage 10 and the rotor resonating are smaller, and the imaging quality of the imaging device 200 is higher.
  • other multi-rotor aircrafts 100 are changed from one flight state to another flight state, and then changed to other flight states.
  • the multi-rotor aircraft 100 is changed from forward flight to right flight, and then changed to After the flight, the multi-rotor aircraft 100 is changed from forward flight to backward flight, and then to left flight.
  • the multi-rotor aircraft 100 is changed from left flight to right flight, and then changed to forward flight.
  • the operation of the embodiment of flying to the left and then changing from flying to the rear is not repeated here.
  • the number of the first rotors 20 may be plural, and the number of the second rotors 30 may also be plural.
  • the first rotor 20 is two rotors provided at the front end (head side) of the fuselage 10
  • the second rotor 30 is Two rotors provided at the rear end (near side) of the fuselage 10; or, the second rotor 30 is two rotors provided at the front end (nose side) of the fuselage 10, and the first rotor 20 is provided at the fuselage 10 Two rotors at the rear (tail side).
  • the multi-rotor aircraft 100 of the present invention is a “ten” quad-rotor
  • the first rotor 20 is two rotors provided at the front end (head side) and the left side of the fuselage 10
  • the second rotor 30 is disposed at the Two rotors at the rear (tail side) and right side of the fuselage 10.
  • the number and installation methods of the first rotor 20 and the second rotor 30 are not limited to the above discussion, and can be adjusted according to actual needs, which is not limited here.
  • both the first rotation speed and the third rotation speed may be the average rotation speed of the plurality of first rotors 20, All four rotation speeds can be the average rotation speed of the plurality of second rotors 30.
  • the torque coefficient of each rotor is determined by any one or more of the size of the rotor, the airfoil parameters of the rotor, etc.
  • each of the size of the rotor and the airfoil parameters of the rotor are It will affect the torque coefficient of the rotor.
  • the torque coefficient of the first rotor 20 and the second rotor 30 are also different; or The rotor 20 and the second rotor 30 have only different wing parameters, so the torque coefficient of the first rotor 20 and the second rotor 30 also have different torque coefficients; or, if the first rotor 20 and the second rotor 30 have dimensions and airfoil parameters Are different, the torque coefficient of the first rotor 20 and the torque coefficient of the second rotor 30 may also be different.
  • the multi-rotor aircraft 100 may use different rotor sizes and / or airfoil parameters to install the first rotor 20 and the second rotor 30 with appropriate torque coefficients (for example, the aircraft 100 uses different rotor sizes and / or Airfoil parameters to realize that the torque coefficient of the second rotor 30 is different from that of the first rotor 20).
  • the sizes of the first rotor 20 and the second rotor 30 are different.
  • the size of the rotor includes the diameter of the rotor.
  • the larger the rotor diameter the larger the torque coefficient of the rotor; the smaller the rotor diameter, the smaller the torque coefficient of the rotor.
  • the diameter of the second rotor 30 is larger than the diameter of the first rotor 20, and the interaction between the second rotor 30 and air is greater than the interaction between the first rotor 20 and air.
  • the multi-rotor aircraft 100 is flying in the direction that the large-diameter rotor is directed toward the small-diameter rotor, that is, the multi-rotor aircraft 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second side 12
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that when hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30, which improves the The imaging quality of the imaging device 200 mounted on the body 10.
  • the first rotor is the two rotors on the left
  • the second rotor is the two rotors on the right.
  • the size of the second rotor is larger than the size of the first rotor, and the torque coefficient of the second rotor can also be greater than that of the first rotor, so that when the aircraft is flying directionally (left flight), the first speed of the first rotor and the second rotor are The absolute value of the difference of the second rotational speed of the rotor is small, and the excitation force band is narrow, thereby reducing the possibility of the fuselage resonating with the first rotor or the second rotor, and improving the imaging device mounted on the fuselage. Image quality.
  • the airfoil parameters of the first rotor 20 and the second rotor 30 are different, wherein the airfoil parameters of the rotor include one or more of an angle of attack, a pitch, and a chord length.
  • the difference in the airfoil parameters of the first rotor 20 and the second rotor 30 includes that one of the parameters is different or a plurality of parameters are different.
  • the angle of attack of the second rotor 30 is greater than the angle of attack of the first rotor 20, and the interaction between the second rotor 30 and air is greater than the interaction between the first rotor 20 and air.
  • the multi-rotor aircraft 100 is flying in the direction that the rotor with a large angle of attack is directed toward the rotor with a small angle of attack, that is, the multi-rotor aircraft 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that during hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30,
  • the imaging quality of the imaging device 200 mounted on the body 10 is improved.
  • the pitch of the second rotor 30 is greater than the pitch of the first rotor 20.
  • the multi-rotor aircraft 100 is flying in the direction of the rotor with a large pitch and the rotor with a small pitch, that is, the multi-rotor 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second side 12
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that when hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30, which improves the The imaging quality of the imaging device 200 mounted on the body 10.
  • chord length of the rotor the larger the chord length of the rotor, the larger the cross-sectional area of the rotor under the same diameter, and the greater the interaction with the air, the larger the torque coefficient of the rotor; the smaller the chord length of the rotor, the same Under the diameter of the rotor, the smaller the cross-sectional area of the rotor and the smaller the interaction with the air, the smaller the torque coefficient of the rotor.
  • the chord length of the second rotor 30 is greater than the chord length of the first rotor 20.
  • the multi-rotor aircraft 100 is flying in the direction that the chord-grown rotor is directed toward the small chord rotor, that is, the multi-rotor aircraft 100 is flying toward the second side 12 toward the first side 11 or toward the first side 11 toward the second
  • the excitation force frequency band of the multi-rotor aircraft 100 is narrower than that during hovering, reducing the possibility of the fuselage 10 resonating with the first rotor 20 or the second rotor 30,
  • the imaging quality of the imaging device 200 mounted on the body 10 is improved.
  • the torque coefficient of the rotor can be determined at the factory, and can also be further adjusted during use. Specifically, the torque coefficient of the first rotor 20 is adjustable, or the torque coefficient of the second rotor 30 is adjustable, or both the torque coefficient of the first rotor 20 and the torque coefficient of the second rotor 30 are adjustable. For example, if a rotor pitch changing device is provided on the rotor, the multi-rotor aircraft 100 can change the attack angle of the first rotor 20 or the second rotor 30 using the variable pitch device to change the pitch of the first rotor 20 or the second rotor 30, and the pitch can be adjusted. The torque coefficient of the first rotor 20 or the second rotor 30.
  • the original torque coefficient of the first rotor 10 and the torque coefficient of the second rotor 20 may both be changed by the variable-pitch device.
  • the torque coefficient of the two rotors (the second rotor 30) on the tail side is K1
  • the torque coefficient of the two rotors (the first rotor 20) on the nose side is K2, and K1 Greater than K2.
  • the pitch of all the rotors is changed so that the torque coefficients of all the rotors are changed.
  • the original pitch of the first rotor 20 on the right changes and the torque coefficient becomes K3
  • the original pitch of the second rotor 30 on the right changes and the torque coefficient becomes K3.
  • the original pitch of the first left rotor 20 on the left changes and the torque coefficient changes. It becomes K4, and the pitch of the second rotor 30 on the left is changed, and the torque coefficient becomes K4. Therefore, the torque coefficients of the two rotors located on the right side of the fuselage are K3, and the torque coefficients of the two rotors located on the left side of the fuselage are K4, and K3 is greater than K4.
  • K1 can be equal to K3 and K2 can be equal to K4.
  • the original pitch of the first rotor 20 on the left can remain unchanged, and the torque coefficient is still K1.
  • the original pitch of the first rotor 20 on the right becomes larger, and the torque coefficient It becomes K4.
  • the flight control system 40 of the multi-rotor aircraft 100 is also used to control the third rotation speed of the first rotor 20 to become the first rotation speed;
  • the rotation speed becomes the second rotation speed, wherein the absolute value of the difference between the first rotation speed and the second rotation speed is smaller than the absolute value of the difference between the third rotation speed and the fourth rotation speed, so that the multi-rotor aircraft 100 changes from hovering to
  • the second side flies in the direction of the first side. That is, the flight control system 40 can be used to implement steps S5 and S6.
  • the flight control system 40 first determines the current state of the multi-rotor aircraft 100. When determining that the multi-rotor aircraft 100 is in a hovering state, since the absolute value of the difference between the third rotation speed and the fourth rotation speed is large, the flight control system 40 needs to adjust the third rotation speed and the fourth rotation speed.
  • the flight control system 40 controls the rotation speed of the driving motor connected to the first rotor 20 to decrease to reduce the rotation speed of the first rotor 20, and increases the rotation speed of the driving motor connected to the second rotor 30 to increase the speed of the second rotor 30.
  • the pulling force of the first rotor 20 is similar to that of the second rotor 30.
  • the pulling force of the first rotor 20 is reduced, and the pulling force of the second rotor 30 is increased, so that the multi-rotor aircraft 100 is exposed to the second rotor 30 pointing toward the first rotor 20.
  • the multi-rotor aircraft 100 flies in a direction in which the second side 12 is directed toward the first side 11. In this way, the multi-rotor aircraft 100 is changed from a hovering state to a directional flight state.
  • the flight control system 40 determines whether the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value. If the absolute value of the difference between the first rotation speed and the second rotation speed is still greater than the predetermined value, the flight control system 40 continues to control the rotation speed of the driving motor connected to the first rotor 20 to decrease to reduce the rotation speed of the first rotor 20, the control and The rotation speed of the driving motor connected to the second rotor 30 is increased to increase the rotation speed of the second rotor 30 until the absolute value of the difference between the first rotation speed and the second rotation speed is less than a predetermined value.
  • the predetermined value may be set to a relatively small value, so that the multi-rotor aircraft 100 has a propeller frequency of the first rotor 20 and a propeller frequency of the second rotor 30 that are close to each other during the directional flight, and the frequency band of the excitation force is relatively narrow.
  • the torque coefficients of the first rotor 20 and the second rotor 30 are different.
  • the flight control system 40 controls the first rotor 20 to rotate at the first rotation speed.
  • the second rotor 30 is controlled to rotate at the second rotation speed, and the absolute value of the difference between the first rotation speed and the second rotation speed is smaller, and the excitation force band is narrower, thereby reducing the fuselage 10 and the first rotor 20 or the first rotation rotor.
  • the possibility of the two rotors 30 resonating improves the imaging quality of the imaging device 200 mounted on the fuselage 10.
  • Any process or method description in a flowchart or otherwise described herein can be understood as a module, fragment, or portion of code that includes one or more executable instructions for implementing a particular logical function or step of a process
  • the scope of the preferred embodiments of the present invention includes additional implementations in which functions may be performed out of the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present invention pertain.
  • Logic and / or steps represented in a flowchart or otherwise described herein, for example, a sequenced list of executable instructions that may be considered to implement a logical function, may be embodied in any computer-readable medium, For use by instruction execution systems, devices, or devices (such as computer-based systems, systems that include processing modules, or other systems that can take instructions from and execute instructions) Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (control methods) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the embodiments of the present invention may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it may be implemented using any one or a combination of the following techniques known in the art: Discrete logic circuits, application-specific integrated circuits with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

一种多旋翼飞行器(100)及多旋翼飞行器(100)的控制方法。多旋翼飞行器(100)包括机身(10)、第一旋翼(20)及第二旋翼(30)。机身(10)包括相背的第一侧(11)及第二侧(12)。第一旋翼(20)连接在机身(10)的第一侧(11),第二旋翼连接在机身(10)的第二侧(12)。第二旋翼(30)的扭矩系数不同于第一旋翼(20)的扭矩系数。多旋翼飞行器(100)朝第二侧(12)指向第一侧(11)的方向飞行或朝第一侧(11)指向第二侧(12)的方向飞行时,第一旋翼(20)以第一转速转动,第二旋翼(30)以第二转速转动,第一转速与第二转速的差值的绝对值小于预定值。

Description

多旋翼飞行器及多旋翼飞行器的控制方法 技术领域
本发明涉及飞行器领域,特别涉及一种多旋翼飞行器及多旋翼飞行器的控制方法。
背景技术
普通的飞行器采用等尺寸、等翼形的多旋翼飞行系统,悬停时各旋翼激振频率基本相同,但是为了实现各向飞行,提供水平分力矩,各旋翼电机的转速必须有所差异,导致了各旋翼激振频率的改变。对于整个多旋翼飞行器而言,飞行时激振的频段较悬停大幅增宽,且该频段的宽度随电机转速差的增大而变宽,使得激振频率与多旋翼飞行器的固有频率耦合的机率增大,引发了额外的振动问题。振动会使得多旋翼飞行器上的成像装置的成像质量较差。
发明内容
本发明实施方式提供一种多旋翼飞行器及多旋翼飞行器的控制方法。
本发明实施方式的多旋翼飞行器包括机身、第一旋翼及第二旋翼。所述机身包括相背的第一侧及第二侧。第一旋翼连接在所述机身的所述第一侧,第二旋翼连接在所述机身的所述第二侧。所述第二旋翼的扭矩系数不同于所述第一旋翼的扭矩系数。所述多旋翼飞行器朝所述第二侧指向所述第一侧的方向飞行或朝所述第一侧指向所述第二侧的方向飞行时,所述第一旋翼以第一转速转动,所述第二旋翼以第二转速转动,所述第一转速与所述第二转速的差值的绝对值小于预定值。
本发明实施方式的多旋翼飞行器采用扭矩系数不同的第一旋翼和第二旋翼,使得多旋翼飞行器在定向飞行时,第一旋翼以第一转速转动,第二旋翼以第二转速转动,并且第一转速与第二转速的差值的绝对值较小,激振力频带较窄,从而减小了机身与第一旋翼或第二旋翼共振的可能性,提高了搭载在机身上的成像装置的成像质量。
本发明实施方式的控制方法可用于多旋翼飞行器。多旋翼飞行器包括机身、第一旋翼及第二旋翼。所述机身包括相背的第一侧及第二侧。第一旋翼连接在所述机身的所述第一侧,第二旋翼连接在所述机身的所述第二侧。所述第二旋翼的扭矩系数不同于所述第一旋翼的扭矩系数。所述多旋翼飞行器朝所述第二侧指向所述第一侧的方向飞行或朝所述第一侧指向所述第二侧的方向飞行时,所述控制方法包括:控制所述第一旋翼以第一转速转动;控制所述第二旋翼以第二转速转动,其中,所述第一转速与所述第二转速的差值的绝对值小于预定值。
本发明实施方式的多旋翼飞行器的控制方法中,多旋翼飞行器的第一旋翼和第二旋翼扭矩系数不同,在多旋翼飞行器定向飞行时,控制第一旋翼以第一转速转动,控制第二旋翼以第二转速转动,并且第一转速与第二转速的差值的绝对值较小,激振力频带较窄,从而减小了机身与第一旋翼或第二旋翼共振的可能性,提高了搭载在机身上的成像装置的成像质量。
本发明另一实施方式的多旋翼飞行器包括机身、第一旋翼、第二旋翼及飞行控制系统。所述机身包括相背的第一侧及第二侧。第一旋翼连接在所述机身的所述第一侧,第二旋翼连接在所述机身的所述第二侧。所述第二旋翼的扭矩系数不同于所述第一旋翼的扭矩系数。所述多旋翼飞行器朝所述第二侧指向所述第一侧的方向飞行或朝所述第一侧指向所述第二侧的方向飞行时,所述 飞行控制系统用于:控制所述第一旋翼以第一转速转动;控制所述第二旋翼以第二转速转动,其中,所述第一转速与所述第二转速的差值的绝对值小于预定值。
本发明实施方式的多旋翼飞行器中,第一旋翼和第二旋翼扭矩系数不同,在多旋翼飞行器定向飞行时,飞行控制系统控制第一旋翼以第一转速转动,控制第二旋翼以第二转速转动,并且第一转速与第二转速的差值的绝对值较小,激振力频带较窄,从而减小了机身与第一旋翼或第二旋翼共振的可能性,提高了搭载在机身上的成像装置的成像质量。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的多旋翼飞行器的结构示意图;
图2是本发明实施方式的多旋翼飞行器在定向飞行时的侧视示意图;
图3是现有技术中的多旋翼飞行器在定向飞行时激振力频带的示意图;
图4是本发明实施方式的多旋翼飞行器在定向飞行时激振力频带的示意图;
图5是本发明实施方式的多旋翼飞行器在悬停时的侧视示意图;
图6是本发明实施方式的多旋翼飞行器的控制方法的流程示意图;
图7是本发明实施方式的多旋翼飞行器的控制方法的流程示意图;
图8是本发明实施方式的多旋翼飞行器的控制方法的流程示意图;和
图9是本发明实施方式的包括飞行控制系统的多旋翼飞行器的结构示意图。
具体实施方式
下面详细描述本发明的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的实施方式的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的实施方式中的具体含义。
请参阅图1,本发明实施方式的多旋翼飞行器100包括机身10、第一旋翼20及第二旋翼30。机身10包括相背的第一侧11及第二侧12。第一旋翼20连接在机身10的第一侧11。第二旋翼30 连接在机身10的第二侧12。第二旋翼30的扭矩系数不同于第一旋翼20的扭矩系数。多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,第一转速与第二转速的差值的绝对值小于预定值N。
具体地,本发明实施方式的多旋翼飞行器100可以为四旋翼飞行器、六旋翼飞行器、八旋翼飞行器等,在此不做限定。请结合图1及图2,本实施例的多旋翼飞行器100以四旋翼飞行器为例,其可以搭载有成像装置200。成像装置200用于在多旋翼飞行器100飞行或悬停时进行拍照或者摄影。成像装置200可以安装在云台300上,云台300与机身10固定连接。云台300能够为成像装置200提供合适的拍摄角度。在多旋翼飞行器100的机身10振动较大时,成像装置200振动也较大,成像装置200的成像质量较差。尤其是对于高倍光学变焦镜头而言,机身10的轻微振动都会引起拍摄画面的大幅抖动,影响镜头拍摄的质量。
第一旋翼20及第二旋翼30均可以通过机臂50连接在机身10上。第二旋翼30的扭矩系数不同于第一旋翼20的扭矩系数。其中,扭矩系数是指旋翼与空气相互作用的大小。旋翼的扭矩系数越小表示旋翼与空气相互作用越小。例如,第一旋翼20的扭矩系数比第二旋翼30的扭矩系数小,表明第一旋翼20与空气的相互作用小于第二旋翼30与空气的相互作用。
多旋翼飞行器100还包括设置在机臂50上的驱动组件(图未示)。驱动组件用于对第一旋翼20和第二旋翼30施加激振力以驱动第一旋翼20和第二旋翼30转动。驱动组件包括多个驱动电机。多个驱动电机分别与第一旋翼20和第二旋翼30固定连接。在驱动电机的驱动下,第一旋翼20以一定的转速转动,第二旋翼30以一定的转速转动。本实施例中,在多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。在多旋翼飞行器100朝第一侧11指向第二侧12的方向飞行时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。第一旋翼20的桨频、第二旋翼30的桨频分别与对应的驱动电机的激振力频率相等。驱动电机的转速越大,对应旋翼的转速越大,旋翼的桨频越大。
由于多旋翼飞行器100需要有水平分力矩的作用才能定向飞行。请结合图3,在现有技术的多旋翼飞行器中,由于多个旋翼的扭矩系数都相等,因此在多旋翼飞行器飞行时,例如前飞时,位于机头侧的旋翼的转速与位于机尾侧的旋翼的转速的差值的绝对值很大,位于机头侧的旋翼的桨频与位于机尾侧的旋翼的桨频之间的频带较宽,导致激振力频带与机身固有频率耦合的机率较大,机身与旋翼发生共振的机率较大。因此,在本实施例中,第二旋翼30的扭矩系数与第一旋翼20的扭矩系数不同,例如第二旋翼30的扭矩系数大于第一旋翼20的扭矩系数或第二旋翼30的扭矩系数小于第一旋翼20的扭矩系数。请一并参阅图2和图4,在多旋翼飞行器100朝第二侧12指向第一侧11的方向(如图2所示的X方向)飞行时,由于第一转速与第二转速的差值的绝对值小于预定值N,因此第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄,而且预定值越小,两个桨频之间的频带越窄。此时,激振力频带与机身10固有频率耦合的机率较小,机身10与旋翼发生共振的机率较小。在本实施例中,预定值N可以根据多旋翼飞行器100的旋翼的参数条件调整,例如预定值N可以小于或等于50、100、150转/分钟(Revolutions Per Minute,RPM)等,则第一转速和第二转速的差值的绝对值可以为[0,N]中的任意一个数值。例如当N=50转/分钟时, 第一转速和第二转速的差值的绝对值可以为0、10、30、45、48、50转/分钟等任意一个数值。再例如当N=100转/分钟时,第一转速和第二转速的差值的绝对值可以为0、30、50、70、90、95转/分钟等任意一个数值。又例如当N=150转/分钟时,第一转速和第二转速的差值的绝对值可以为0、25、50、100、120、140转/分钟等任意一个数值。如此,多旋翼飞行器100在第一旋翼20和第二旋翼30以相近或相同的转速、且朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时振动较小,成像装置200的成像质量较高。优选地,所述预定值N接近零。可以理解的是,所述预定值N也可以根据实际需求而设置,如小于或等于20转/秒、小于或等于30转/秒等,并不限于本实施例。
请继续参阅图1,在本实施例中,当第二旋翼30的扭矩系数大于第一旋翼20的扭矩系数时,第一侧11为机身10的机头侧,第二侧12为机身10的机尾侧,则多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行表示多旋翼飞行器100处于前飞状态(图2所示),此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于所述预定值N。而在多旋翼飞行器100悬停时(图5所示),第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与所述第四转速的差值的绝对值。因此,在多旋翼飞行器100前飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小,从而减小了机身10与旋翼发生共振而导致图像效果不佳的机率。
在其他实施例中,当第二旋翼30的扭矩系数小于第一旋翼20的扭矩系数时,第一侧11为机身10的机头侧,第二侧12为机身10的机尾侧,则多旋翼飞行器100朝第一侧11指向第二侧12的方向飞行表示多旋翼飞行器100处于后飞状态。此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。而在多旋翼飞行器100悬停时,第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与所述第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。因此,在多旋翼飞行器100后飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小。
在其他实施例中,当第二旋翼30的扭矩系数大于第一旋翼20的扭矩系数时,第一侧11也可以为机身10的左侧,第二侧12为机身10的右侧,则多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行表示多旋翼飞行器100处于左飞状态。此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。而在多旋翼飞行器100悬停时,第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与所述第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。因此,在多旋翼飞行器100左飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小。
在其他实施例中,当第二旋翼30的扭矩系数小于第一旋翼20的扭矩系数时,第一侧11为机 身10的左侧,第二侧12为机身10的右侧,则多旋翼飞行器100朝第一侧11指向第二侧12的方向飞行表示多旋翼飞行器100处于右飞状态。此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。而在多旋翼飞行器100悬停时,第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。因此,在多旋翼飞行器100右飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小。
当然,多旋翼飞行器100的第一侧11及第二侧12除了为机身10固定的某一侧,在多旋翼飞行器100飞行过程中,第一侧11及第二侧12还可以根据多旋翼飞行器100的飞行状态进行变换。例如,多旋翼飞行器100由一种飞行状态改变为另一种飞行状态;多旋翼飞行器100由一种飞行状态改变为另一种飞行状态,然后再改变为其他的飞行状态。无论哪一种飞行状态的变换,第一旋翼10和第二旋翼20也发生改变,对应的,原先的第一旋翼10的扭矩系数和第二旋翼20的扭矩系数也都发生改变。
多旋翼飞行器100可以由一种飞行状态改变为另一种飞行状态,例如多旋翼飞行器100由前飞改变为左飞。现以多旋翼飞行器100由前飞改变为左飞为例进行详细的说明。在初始时刻,第一侧11为机身10的机头侧,第二侧12为机身10的机尾侧,多旋翼飞行器100前飞。位于机尾侧的旋翼的扭矩系数K1大于位于机头侧的旋翼的扭矩系数K2。此时,第一旋翼20以前飞的第一转速转动,第二旋翼30以前飞的第二转速转动,而且前飞的第一转速与前飞的第二转速的差值的绝对值小于预定值N。因此,在多旋翼飞行器100前飞时,第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄。当多旋翼飞行器100由前飞改变为左飞时,第一旋翼20由原先位于机头侧的旋翼改变为位于机身左侧的旋翼,第二旋翼30由原先位于机尾侧的旋翼改变为位于机身右侧的旋翼,而且位于机身右侧的旋翼的扭矩系数K3变为大于位于机身左侧的旋翼的扭矩系数K4。此时,第一旋翼20以左飞的第一转速转动,第二旋翼30以左飞的第二转速转动,且左飞的第一转速与左飞的第二转速的差值的绝对值小于预定值N。因此,在多旋翼飞行器100左飞时,第一旋翼20的桨频与第二旋翼30的桨频之间的频带仍较窄。如此,通过改变第一侧11和第二侧12的旋翼的扭矩系数,多旋翼飞行器100在前飞和左飞时均能保证第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄,使得机身10与旋翼发生共振的机率均较小,成像装置200的成像质量均较高。在一个例子中,前飞的第一转速大小可以等于左飞的第一转速大小,前飞的第二转速大小可以等于左飞的第二转速大小。另外,其他的多旋翼飞行器100由一种飞行状态改变为另一种飞行状态的实施例,例如多旋翼飞行器100由前飞改变为右飞、多旋翼飞行器100由前飞改变为后飞、多旋翼飞行器100由左飞改变为右飞等,均可以参照上述前飞改变为左飞的实施例操作,在此不再赘述。
多旋翼飞行器100可以由一种飞行状态改变为另一种飞行状态,然后再改变为其他的飞行状态,例如多旋翼飞行器100由前飞改变为左飞,然后再由左飞改变为后飞。现以多旋翼飞行器100由前飞改变为左飞,然后再由左飞改变为后飞为例进行详细的说明。其中,多旋翼飞行器100由前飞改变为左飞可以参照上述的实施例操作,在此不作更多的叙述。当多旋翼飞行器100已经由 前飞改变为左飞,需要再由左飞改变为后飞时,第一旋翼20由原先位于机身左侧的旋翼改变为位于机头侧的旋翼,第二旋翼30由原先位于机身右侧的旋翼改变为位于机尾侧的旋翼,而且位于机头侧的旋翼的扭矩系数K5变为大于位于机尾侧的旋翼的扭矩系数K6。此时,第一旋翼20以后飞的第一转速转动,第二旋翼30以后飞的第二转速转动,且后飞的第一转速与后飞的第二转速的差值的绝对值小于预定值N。因此,在多旋翼飞行器100后飞时,第一旋翼20的桨频与第二旋翼30的桨频之间的频带仍较窄。如此,通过改变第一侧11和第二侧12的旋翼的扭矩系数,多旋翼飞行器100在前飞、左飞和后飞时均能保证第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄,使得机身10与旋翼发生共振的机率均较小,成像装置200的成像质量均较高。另外,其他的多旋翼飞行器100由一种飞行状态改变为另一种飞行状态,然后再改变为其他的飞行状态的实施例,例如多旋翼飞行器100由前飞改变为右飞、然后再改变为后飞,多旋翼飞行器100由前飞改变为后飞、然后再改变为左飞,多旋翼飞行器100由左飞改变为右飞、然后再改变为前飞等,均可以参照上述前飞改变为左飞、然后再由左飞改变为后飞的实施例操作,在此不再赘述。
在本实施例中,第一旋翼20的数量可以为多个,第二旋翼30的数量也为多个。如图1所示的实施例中,当多旋翼飞行器100为“X”字形四旋翼时,第一旋翼20为设置在机身10前端(机头侧)的两个旋翼,第二旋翼30为设置在机身10后端(机尾侧)的两个旋翼;或者,第二旋翼30为设置在机身10前端(机头侧)的两个旋翼,第一旋翼20为设置在机身10后端(机尾侧)的两个旋翼。再例如当本发明的多旋翼飞行器100为“十”字形四旋翼时,第一旋翼20为设置在机身10前端(机头侧)及左侧的两个旋翼,第二旋翼30为设置在机身10后端(机尾侧)及右侧的两个旋翼。当然,第一旋翼20及第二旋翼30的数量及安装方式不限于上述讨论,可以依据实际需求进行调整,在此不作限制。另外,当第一旋翼20的数量为多个,第二旋翼30的数量也为多个时,第一转速、第三转速都可以为多个第一旋翼20的平均转速,第二转速、第四转速都可以为多个第二旋翼30的平均转速。
在本实施例中,每个旋翼的扭矩系数均由旋翼的尺寸、旋翼的翼形参数等中的任意一个或多个参数决定,换言之,旋翼的尺寸、旋翼的翼形参数中的每一个均会对旋翼的扭矩系数产生影响。具体地,在其他参数条件相同的条件下,若第一旋翼20与第二旋翼30仅为尺寸不同,则第一旋翼20的扭矩系数与第二旋翼30扭矩系数也不同;或者,若第一旋翼20与第二旋翼30仅为翼形参数不同,则第一旋翼20的扭矩系数与第二旋翼30扭矩系数也不同;或者,若第一旋翼20与第二旋翼30的尺寸与翼形参数均不同,则第一旋翼20的扭矩系数与第二旋翼30扭矩系数也可能不同。如此,多旋翼飞行器100可以采用不同的旋翼的尺寸和/或翼形参数,来安装扭矩系数合适的第一旋翼20和第二旋翼30(例如,飞行器100通过采用不同的旋翼的尺寸和/或翼形参数,来实现第二旋翼30的扭矩系数不同于第一旋翼20的扭矩系数)。
在图1所示的实施例中,第一旋翼20与第二旋翼30的尺寸不同,其中,旋翼的尺寸包括旋翼的直径。旋翼的直径越大,旋翼的扭矩系数越大;旋翼的直径越小,旋翼的扭矩系数越小。第二旋翼30的直径大于第一旋翼20的直径,第二旋翼30与空气的相互作用大于第一旋翼20与空气的相互作用。因此,在多旋翼飞行器100朝直径大的旋翼指向直径小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20 或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。在其他实施例中,当第一侧指机身的左侧,第二侧指机身的右侧,第一旋翼为左侧的两个旋翼,第二旋翼为右侧的两个旋翼,第二旋翼的尺寸大于第一旋翼的尺寸,也可以实现第二旋翼的扭矩系数大于第一旋翼的扭矩系数,使得该飞行器在定向飞行(左飞)时,第一旋翼的第一转速与第二旋翼的第二转速的差值的绝对值较小,激振力频带较窄,从而减小了机身与第一旋翼或第二旋翼共振的可能性,提高了搭载在机身上的成像装置的成像质量。
在其他实施例中,第一旋翼20与第二旋翼30的翼形参数不同,其中,旋翼的翼形参数包括攻角、螺距、弦长中的一个或多个。第一旋翼20与第二旋翼30的翼形参数不同包括其中一个参数不同或多个参数不同。以攻角为例,旋翼的攻角越大,旋翼的迎风面积增大,与空气的相互作用越大,则旋翼的扭矩系数越大;旋翼的攻角越小,旋翼的迎风面积减小,与空气的相互作用越小,则旋翼的扭矩系数越小。在一个例子中,第二旋翼30的攻角大于第一旋翼20的攻角,第二旋翼30与空气的相互作用大于第一旋翼20与空气的相互作用。因此,在多旋翼飞行器100朝攻角大的旋翼指向攻角小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。再以螺距为例,旋翼的螺距越大,旋翼的扭矩系数越大;旋翼的螺距越小,旋翼的扭矩系数越小。在另一个例子中,第二旋翼30的螺距大于第一旋翼20的螺距。因此,在多旋翼飞行器100朝螺距大的旋翼指向螺距小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。又以弦长为例,旋翼的弦长越大,相同的直径下,旋翼的截面面积越大,与空气的相互作用越大,则旋翼的扭矩系数越大;旋翼的弦长越小,相同的直径下,旋翼的截面面积越小,与空气的相互作用越小,则旋翼的扭矩系数越小。在又一个例子中,第二旋翼30的弦长大于第一旋翼20的弦长。因此,在多旋翼飞行器100朝弦长大的旋翼指向弦长小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。
在本实施例中,旋翼的扭矩系数在出厂时就可以确定,也可以在使用过程中进一步调节。具体地,第一旋翼20的扭矩系数可调,或者第二旋翼30的扭矩系数可调,或者,第一旋翼20的扭矩系数和第二旋翼30的扭矩系数均可调。例如,在旋翼上设置旋翼变距装置,多旋翼飞行器100利用变距装置改变第一旋翼20或第二旋翼30的攻角,以改变第一旋翼20或第二旋翼30的螺距,就能调节第一旋翼20或第二旋翼30的扭矩系数。在前述实施例中,在多旋翼飞行器100改变飞行状态时,原先的第一旋翼10的扭矩系数和第二旋翼20的扭矩系数均可以通过变距装置进行改变。现以四旋翼飞行器由前飞改变为左飞为例,对如何调节旋翼的扭矩系数进行详细的说明。在四旋翼飞行器前飞时,位于机尾侧的两个旋翼(第二旋翼30)的扭矩系数为K1,位于机头侧的两个旋翼(第一旋翼20)的扭矩系数为K2,且K1大于K2。在四旋翼飞行器改变为左飞时,所有旋 翼的螺距改变以使所有旋翼的扭矩系数发生改变。具体地,原先右边的第一旋翼20的螺距改变,扭矩系数变为K3,原先右边的第二旋翼30的螺距改变,扭矩系数变为K3;原来左边的第一旋翼20的螺距改变,扭矩系数变为K4,原来左边的第二旋翼30的螺距改变,扭矩系数变为K4。因此,位于机身右侧的两个旋翼的扭矩系数均为K3,位于机身左侧的两个旋翼的扭矩系数均为K4,且K3大于K4。在一个例子中,K1可以等于K3,K2可以等于K4,则原来左边的第一旋翼20的螺距可以保持不变,扭矩系数仍为K1,原先右边的第一旋翼20的螺距变大,扭矩系数变为K4。
综上,本发明实施方式的多旋翼飞行器100采用扭矩系数不同的第一旋翼20和第二旋翼30,使得多旋翼飞行器100在定向飞行时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,并且第一转速与第二转速的差值的绝对值较小,激振力频带较窄,从而减小了机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。
请一并参阅图1和图6,本发明实施方式提供一种多旋翼飞行器100的控制方法。多旋翼飞行器100包括机身10、第一旋翼20及第二旋翼30。机身10包括相背的第一侧11及第二侧12。第一旋翼20连接在机身10的第一侧11。第二旋翼30连接在机身10的第二侧12。第二旋翼30的扭矩系数不同于第一旋翼20的扭矩系数。在多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,本发明实施方式的控制方法包括以下步骤:
S1,控制第一旋翼20以第一转速转动;
S2,控制第二旋翼30以第二转速转动,其中,第一转速与第二转速的差值的绝对值小于预定值N。
具体地,本发明实施方式的多旋翼飞行器100可以为四旋翼飞行器、六旋翼飞行器、八旋翼飞行器等,在此不做限定。请结合图1及图2,本实施例的多旋翼飞行器100以四旋翼飞行器为例,其可以搭载有成像装置200。成像装置200用于在多旋翼飞行器100飞行或悬停时进行拍照或者摄影。成像装置200可以安装在云台300上,云台300与机身10固定连接。云台300能够为成像装置200提供合适的拍摄角度。在多旋翼飞行器100的机身10振动较大时,成像装置200振动也较大,成像装置200的成像质量较差。尤其是对于高倍光学变焦镜头而言,机身10的轻微振动都会引起拍摄画面的大幅抖动,影响镜头拍摄的质量。
第一旋翼20及第二旋翼30均可以通过机臂50连接在机身10上。第二旋翼30的扭矩系数不同于第一旋翼20的扭矩系数。其中,扭矩系数是指旋翼与空气相互作用的大小。旋翼的扭矩系数越小表示旋翼与空气相互作用越小。例如,第一旋翼20的扭矩系数比第二旋翼30的扭矩系数小,表明第一旋翼20与空气的相互作用小于第二旋翼30与空气的相互作用。
多旋翼飞行器100还包括设置在机臂50上的驱动组件(图未示)。驱动组件用于对第一旋翼20和第二旋翼30施加激振力以驱动第一旋翼20和第二旋翼30转动。驱动组件包括多个驱动电机。多个驱动电机分别与第一旋翼20和第二旋翼30固定连接。在驱动电机的驱动下,第一旋翼20以一定的转速转动,第二旋翼30以一定的转速转动。本实施例中,在多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。在多旋翼飞行器100朝第一侧11指向第二侧12的方向飞行时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。第一旋翼20的桨频、第二旋翼30的桨频分别与对应的驱动 电机的激振力频率相等。驱动电机的转速越大,对应旋翼的转速越大,旋翼的桨频越大。
由于多旋翼飞行器100需要有水平分力矩的作用才能定向飞行。请结合图3,在现有技术的多旋翼飞行器中,由于多个旋翼的扭矩系数都相等,因此在多旋翼飞行器飞行时,例如前飞时,位于机头侧的旋翼的转速与位于机尾侧的旋翼的转速的差值的绝对值很大,位于机头侧的旋翼的桨频与位于机尾侧的旋翼的桨频之间的频带较宽,导致激振力频带与机身固有频率耦合的机率较大,机身与旋翼发生共振的机率较大。因此,在本实施例中,第二旋翼30的扭矩系数与第一旋翼20的扭矩系数不同,例如第二旋翼30的扭矩系数大于第一旋翼20的扭矩系数或第二旋翼30的扭矩系数小于第一旋翼20的扭矩系数。请一并参阅图2和图4,在多旋翼飞行器100朝第二侧12指向第一侧11的方向(如图2所示的X方向)飞行时,由于第一转速与第二转速的差值的绝对值小于预定值N,因此第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄,而且预定值越小,两个桨频之间的频带越窄。此时,激振力频带与机身10固有频率耦合的机率较小,机身10与旋翼发生共振的机率较小。在本实施例中,预定值N可以根据多旋翼飞行器100的旋翼的参数条件调整,例如预定值N可以小于或等于50、100、150转/分钟(Revolutions Per Minute,RPM)等,则第一转速和第二转速的差值的绝对值可以为[0,N]中的任意一个数值。例如当N=50转/分钟时,第一转速和第二转速的差值的绝对值可以为0、10、30、45、48、50转/分钟等任意一个数值。再例如当N=100转/分钟时,第一转速和第二转速的差值的绝对值可以为0、30、50、70、90、95转/分钟等任意一个数值。又例如当N=150转/分钟时,第一转速和第二转速的差值的绝对值可以为0、25、50、100、120、140转/分钟等任意一个数值。如此,多旋翼飞行器100在第一旋翼20和第二旋翼30以相近或相同的转速、且朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时振动较小,成像装置200的成像质量较高。优选地,所述预定值N接近零。可以理解的是,所述预定值N也可以根据实际需求而设置,如小于或等于20转/秒、小于或等于30转/秒等,并不限于本实施例。
请一并参阅图5和图7,在本实施例中,在多旋翼飞行器100悬停时,多旋翼飞行器100的控制方法还包括以下步骤:
S3,控制第一旋翼20以第三转速转动;
S4,控制第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。
由于第一旋翼20的扭矩系数小于第二旋翼30的扭矩系数,因此第一旋翼20与空气相互作用小于第二旋翼30与空气相互作用。在驱动电机的同样大小功率的驱动下,当第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,且第三转速大于第四转速时,才能保证第一旋翼20产生的拉力等于第二旋翼30产生的拉力,如此,机身10保持平衡,多旋翼飞行器100才能悬停。
请继续参阅图1,在本实施例中,当第二旋翼30的扭矩系数大于第一旋翼20的扭矩系数时,第一侧11为机身10的机头侧,第二侧12为机身10的机尾侧,则多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行表示多旋翼飞行器100处于前飞状态(图2所示),此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于所述预定值N。而在多旋翼飞行器100悬停时(图5所示),第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与所述第四转速 的差值的绝对值。因此,在多旋翼飞行器100前飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小,从而减小了机身10与旋翼发生共振而导致图像效果不佳的机率。
在其他实施例中,当第二旋翼30的扭矩系数小于第一旋翼20的扭矩系数时,第一侧11为机身10的机头侧,第二侧12为机身10的机尾侧,则多旋翼飞行器100朝第一侧11指向第二侧12的方向飞行表示多旋翼飞行器100处于后飞状态。此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。而在多旋翼飞行器100悬停时,第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。因此,在多旋翼飞行器100后飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小。
在其他实施例中,当第二旋翼30的扭矩系数大于第一旋翼20的扭矩系数时,第一侧11也可以为机身10的左侧,第二侧12为机身10的右侧,则多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行表示多旋翼飞行器100处于左飞状态。此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。而在多旋翼飞行器100悬停时,第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。因此,在多旋翼飞行器100左飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小。
在其他实施例中,当第二旋翼30的扭矩系数小于第一旋翼20的扭矩系数时,第一侧11为机身10的左侧,第二侧12为机身10的右侧,则多旋翼飞行器100朝第一侧11指向第二侧12的方向飞行表示多旋翼飞行器100处于右飞状态。此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。而在多旋翼飞行器100悬停时,第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。因此,在多旋翼飞行器100右飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小。
当然,多旋翼飞行器100的第一侧11及第二侧12除了为机身10固定的某一侧,在多旋翼飞行器100飞行过程中,第一侧11及第二侧12还可以根据多旋翼飞行器100的飞行状态进行变换。例如,多旋翼飞行器100由一种飞行状态改变为另一种飞行状态;多旋翼飞行器100由一种飞行状态改变为另一种飞行状态,然后再改变为其他的飞行状态。无论哪一种飞行状态的变换,第一旋翼10和第二旋翼20也发生改变,对应的,原先的第一旋翼10的扭矩系数和第二旋翼20的扭矩系数也都发生改变。
多旋翼飞行器100可以由一种飞行状态改变为另一种飞行状态,例如多旋翼飞行器100由前飞改变为左飞。现以多旋翼飞行器100由前飞改变为左飞为例进行详细的说明。在初始时刻,第一侧11为机身10的机头侧,第二侧12为机身10的机尾侧,多旋翼飞行器100前飞。位于机尾侧的旋翼的扭矩系数K1大于位于机头侧的旋翼的扭矩系数K2。此时,第一旋翼20以前飞的第一转速转动,第二旋翼30以前飞的第二转速转动,而且前飞的第一转速与前飞的第二转速的差值的绝对值小于预定值N。因此,在多旋翼飞行器100前飞时,第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄。当多旋翼飞行器100由前飞改变为左飞时,第一旋翼20由原先位于机头侧的旋翼改变为位于机身左侧的旋翼,第二旋翼30由原先位于机尾侧的旋翼改变为位于机身右侧的旋翼,而且位于机身右侧的旋翼的扭矩系数K3变为大于位于机身左侧的旋翼的扭矩系数K4。此时,第一旋翼20以左飞的第一转速转动,第二旋翼30以左飞的第二转速转动,且左飞的第一转速与左飞的第二转速的差值的绝对值小于预定值N。因此,在多旋翼飞行器100左飞时,第一旋翼20的桨频与第二旋翼30的桨频之间的频带仍较窄。如此,通过改变第一侧11和第二侧12的旋翼的扭矩系数,多旋翼飞行器100在前飞和左飞时均能保证第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄,使得机身10与旋翼发生共振的机率均较小,成像装置200的成像质量均较高。在一个例子中,前飞的第一转速大小可以等于左飞的第一转速大小,前飞的第二转速大小可以等于左飞的第二转速大小。另外,其他的多旋翼飞行器100由一种飞行状态改变为另一种飞行状态的实施例,例如多旋翼飞行器100由前飞改变为右飞、多旋翼飞行器100由前飞改变为后飞、多旋翼飞行器100由左飞改变为右飞等,均可以参照上述前飞改变为左飞的实施例操作,在此不再赘述。
多旋翼飞行器100可以由一种飞行状态改变为另一种飞行状态,然后再改变为其他的飞行状态,例如多旋翼飞行器100由前飞改变为左飞,然后再由左飞改变为后飞。现以多旋翼飞行器100由前飞改变为左飞,然后再由左飞改变为后飞为例进行详细的说明。其中,多旋翼飞行器100由前飞改变为左飞可以参照上述的实施例操作,在此不作更多的叙述。当多旋翼飞行器100已经由前飞改变为左飞,需要再由左飞改变为后飞时,第一旋翼20由原先位于机身左侧的旋翼改变为位于机头侧的旋翼,第二旋翼30由原先位于机身右侧的旋翼改变为位于机尾侧的旋翼,而且位于机头侧的旋翼的扭矩系数K5变为大于位于机尾侧的旋翼的扭矩系数K6。此时,第一旋翼20以后飞的第一转速转动,第二旋翼30以后飞的第二转速转动,且后飞的第一转速与后飞的第二转速的差值的绝对值小于预定值N。因此,在多旋翼飞行器100后飞时,第一旋翼20的桨频与第二旋翼30的桨频之间的频带仍较窄。如此,通过改变第一侧11和第二侧12的旋翼的扭矩系数,多旋翼飞行器100在前飞、左飞和后飞时均能保证第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄,使得机身10与旋翼发生共振的机率均较小,成像装置200的成像质量均较高。另外,其他的多旋翼飞行器100由一种飞行状态改变为另一种飞行状态,然后再改变为其他的飞行状态的实施例,例如多旋翼飞行器100由前飞改变为右飞、然后再改变为后飞,多旋翼飞行器100由前飞改变为后飞、然后再改变为左飞,多旋翼飞行器100由左飞改变为右飞、然后再改变为前飞等,均可以参照上述前飞改变为左飞、然后再由左飞改变为后飞的实施例操作,在此不再赘述。
在本实施例中,第一旋翼20的数量可以为多个,第二旋翼30的数量也为多个。如图1所示的实施例中,当多旋翼飞行器100为“X”字形四旋翼时,第一旋翼20为设置在机身10前端(机 头侧)的两个旋翼,第二旋翼30为设置在机身10后端(机尾侧)的两个旋翼;或者,第二旋翼30为设置在机身10前端(机头侧)的两个旋翼,第一旋翼20为设置在机身10后端(机尾侧)的两个旋翼。再例如当本发明的多旋翼飞行器100为“十”字形四旋翼时,第一旋翼20为设置在机身10前端(机头侧)及左侧的两个旋翼,第二旋翼30为设置在机身10后端(机尾侧)及右侧的两个旋翼。当然,第一旋翼20及第二旋翼30的数量及安装方式不限于上述讨论,可以依据实际需求进行调整,在此不作限制。另外,当第一旋翼20的数量为多个,第二旋翼30的数量也为多个时,第一转速、第三转速都可以为多个第一旋翼20的平均转速,第二转速、第四转速都可以为多个第二旋翼30的平均转速。
在本实施例中,每个旋翼的扭矩系数均由旋翼的尺寸、旋翼的翼形参数等中的任意一个或多个参数决定,换言之,旋翼的尺寸、旋翼的翼形参数中的每一个均会对旋翼的扭矩系数产生影响。具体地,在其他参数条件相同的条件下,若第一旋翼20与第二旋翼30仅为尺寸不同,则第一旋翼20的扭矩系数与第二旋翼30扭矩系数也不同;或者,若第一旋翼20与第二旋翼30仅为翼形参数不同,则第一旋翼20的扭矩系数与第二旋翼30扭矩系数也不同;或者,若第一旋翼20与第二旋翼30的尺寸与翼形参数均不同,则第一旋翼20的扭矩系数与第二旋翼30扭矩系数也可能不同。如此,多旋翼飞行器100可以采用不同的旋翼的尺寸和/或翼形参数,来安装扭矩系数合适的第一旋翼20和第二旋翼30(例如,飞行器100通过采用不同的旋翼的尺寸和/或翼形参数,来实现第二旋翼30的扭矩系数不同于第一旋翼20的扭矩系数)。
在图1所示的实施例中,第一旋翼20与第二旋翼30的尺寸不同,其中,旋翼的尺寸包括旋翼的直径。旋翼的直径越大,旋翼的扭矩系数越大;旋翼的直径越小,旋翼的扭矩系数越小。第二旋翼30的直径大于第一旋翼20的直径,第二旋翼30与空气的相互作用大于第一旋翼20与空气的相互作用。因此,在多旋翼飞行器100朝直径大的旋翼指向直径小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。在其他实施例中,当第一侧指机身的左侧,第二侧指机身的右侧,第一旋翼为左侧的两个旋翼,第二旋翼为右侧的两个旋翼,第二旋翼的尺寸大于第一旋翼的尺寸,也可以实现第二旋翼的扭矩系数大于第一旋翼的扭矩系数,使得该飞行器在定向飞行(左飞)时,第一旋翼的第一转速与第二旋翼的第二转速的差值的绝对值较小,激振力频带较窄,从而减小了机身与第一旋翼或第二旋翼共振的可能性,提高了搭载在机身上的成像装置的成像质量。
在其他实施例中,第一旋翼20与第二旋翼30的翼形参数不同,其中,旋翼的翼形参数包括攻角、螺距、弦长中的一个或多个。第一旋翼20与第二旋翼30的翼形参数不同包括其中一个参数不同或多个参数不同。以攻角为例,旋翼的攻角越大,旋翼的迎风面积增大,与空气的相互作用越大,则旋翼的扭矩系数越大;旋翼的攻角越小,旋翼的迎风面积减小,与空气的相互作用越小,则旋翼的扭矩系数越小。在一个例子中,第二旋翼30的攻角大于第一旋翼20的攻角,第二旋翼30与空气的相互作用大于第一旋翼20与空气的相互作用。因此,在多旋翼飞行器100朝攻角大的旋翼指向攻角小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停 时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。再以螺距为例,旋翼的螺距越大,旋翼的扭矩系数越大;旋翼的螺距越小,旋翼的扭矩系数越小。在另一个例子中,第二旋翼30的螺距大于第一旋翼20的螺距。因此,在多旋翼飞行器100朝螺距大的旋翼指向螺距小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。又以弦长为例,旋翼的弦长越大,相同的直径下,旋翼的截面面积越大,与空气的相互作用越大,则旋翼的扭矩系数越大;旋翼的弦长越小,相同的直径下,旋翼的截面面积越小,与空气的相互作用越小,则旋翼的扭矩系数越小。在又一个例子中,第二旋翼30的弦长大于第一旋翼20的弦长。因此,在多旋翼飞行器100朝弦长大的旋翼指向弦长小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。
在本实施例中,旋翼的扭矩系数在出厂时就可以确定,也可以在使用过程中进一步调节。具体地,第一旋翼20的扭矩系数可调,或者第二旋翼30的扭矩系数可调,或者,第一旋翼20的扭矩系数和第二旋翼30的扭矩系数均可调。例如,在旋翼上设置旋翼变距装置,多旋翼飞行器100利用变距装置改变第一旋翼20或第二旋翼30的攻角,以改变第一旋翼20或第二旋翼30的螺距,就能调节第一旋翼20或第二旋翼30的扭矩系数。在前述实施例中,在多旋翼飞行器100改变飞行状态时,原先的第一旋翼10的扭矩系数和第二旋翼20的扭矩系数均可以通过变距装置进行改变。现以四旋翼飞行器由前飞改变为左飞为例,对如何调节旋翼的扭矩系数进行详细的说明。在四旋翼飞行器前飞时,位于机尾侧的两个旋翼(第二旋翼30)的扭矩系数为K1,位于机头侧的两个旋翼(第一旋翼20)的扭矩系数为K2,且K1大于K2。在四旋翼飞行器改变为左飞时,所有旋翼的螺距改变以使所有旋翼的扭矩系数发生改变。具体地,原先右边的第一旋翼20的螺距改变,扭矩系数变为K3,原先右边的第二旋翼30的螺距改变,扭矩系数变为K3;原来左边的第一旋翼20的螺距改变,扭矩系数变为K4,原来左边的第二旋翼30的螺距改变,扭矩系数变为K4。因此,位于机身右侧的两个旋翼的扭矩系数均为K3,位于机身左侧的两个旋翼的扭矩系数均为K4,且K3大于K4。在一个例子中,K1可以等于K3,K2可以等于K4,则原来左边的第一旋翼20的螺距可以保持不变,扭矩系数仍为K1,原先右边的第一旋翼20的螺距变大,扭矩系数变为K4。
请参阅图1和图8,本发明实施方式的多旋翼飞行器100的控制方法还包括以下步骤:
S5,控制第一旋翼20的第三转速变为第一转速;
S6,控制第二旋翼30的第四转速变为第二转速,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,以使多旋翼飞行器100由悬停变为朝第二侧指向第一侧的方向飞行。
具体地,在多旋翼飞行器100悬停时,由于第三转速与第四转速的差值的绝对值较大,因此,需要调节第三转速和第四转速。通过控制与第一旋翼20连接的驱动电机的转速减小以减小第一旋翼20的转速、控制与第二旋翼30连接的驱动电机的转速增大以增大第二旋翼30的转速,第一旋 翼20的第三转速变为第一转速,第二旋翼30第四转速变为第二转速,且第一转速与第二转速的差值的绝对值小于悬停时的第三转速与第四转速的差值的绝对值。另外,在悬停状态时,第一旋翼20的拉力与第二旋翼30的拉力相近。在调节第三转速和第四转速后,第一旋翼20的拉力减小,第二旋翼30的拉力增大,使得多旋翼飞行器100受到朝第二旋翼30指向第一旋翼20的水平分力矩的作用,因此多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行。如此,实现多旋翼飞行器100由悬停状态改为定向飞行状态。
进一步地,在第一转速与第二转速的差值的绝对值仍大于预定值时,继续控制与第一旋翼20连接的驱动电机的转速减小以减小第一旋翼20的转速、控制与第二旋翼30连接的驱动电机的转速增大以增大第二旋翼30的转速,直至第一转速与第二转速的差值的绝对值小于预定值。本实施例中,可以将预定值设定为比较小的数值,以使多旋翼飞行器100在定向飞行时第一旋翼20的桨频与第二旋翼30的桨频相近,激振力频带较窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,优化成像装置200的拍摄质量。
综上,本发明实施方式的多旋翼飞行器100的控制方法中,多旋翼飞行器100的第一旋翼20和第二旋翼30扭矩系数不同,在多旋翼飞行器100定向飞行时,控制第一旋翼20以第一转速转动,控制第二旋翼30以第二转速转动,并且第一转速与第二转速的差值的绝对值较小,激振力频带较窄,从而减小了机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。
请一并参阅图6和图9,本发明实施方式还提供一种包括飞行控制系统40的多旋翼飞行器100。多旋翼飞行器100包括机身10、第一旋翼20、第二旋翼30及飞行控制系统40。机身10包括相背的第一侧11及第二侧12。第一旋翼20连接在机身10的第一侧11。第二旋翼30连接在机身10的第二侧12。第二旋翼30的扭矩系数不同于第一旋翼20的扭矩系数。在多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,飞行控制系统40用于:控制第一旋翼20以第一转速转动;控制第二旋翼30以第二转速转动,其中,第一转速与第二转速的差值的绝对值小于预定值N。也即是说,飞行控制系统40可以用于实现步骤S1及S2。
具体地,本发明实施方式的多旋翼飞行器100可以为四旋翼飞行器、六旋翼飞行器、八旋翼飞行器等,在此不做限定。请结合图1及图2,本实施例的多旋翼飞行器100以四旋翼飞行器为例,其可以搭载有成像装置200。成像装置200用于在多旋翼飞行器100飞行或悬停时进行拍照或者摄影。成像装置200可以安装在云台300上,云台300与机身10固定连接。云台300能够为成像装置200提供合适的拍摄角度。在多旋翼飞行器100的机身10振动较大时,成像装置200振动也较大,成像装置200的成像质量较差。尤其是对于高倍光学变焦镜头而言,机身10的轻微振动都会引起拍摄画面的大幅抖动,影响镜头拍摄的质量。
第一旋翼20及第二旋翼30均可以通过机臂50连接在机身10上。第二旋翼30的扭矩系数不同于第一旋翼20的扭矩系数。其中,扭矩系数是指旋翼与空气相互作用的大小。旋翼的扭矩系数越小表示旋翼与空气相互作用越小。例如,第一旋翼20的扭矩系数比第二旋翼30的扭矩系数小,表明第一旋翼20与空气的相互作用小于第二旋翼30与空气的相互作用。
多旋翼飞行器100还包括设置在机臂50上的驱动组件(图未示)。驱动组件用于对第一旋翼20和第二旋翼30施加激振力以驱动第一旋翼20和第二旋翼30转动。驱动组件包括多个驱动电机。 多个驱动电机分别与第一旋翼20和第二旋翼30固定连接。在驱动电机的驱动下,第一旋翼20以一定的转速转动,第二旋翼30以一定的转速转动。本实施例中,在多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。在多旋翼飞行器100朝第一侧11指向第二侧12的方向飞行时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。第一旋翼20的桨频、第二旋翼30的桨频分别与对应的驱动电机的激振力频率相等。驱动电机的转速越大,对应旋翼的转速越大,旋翼的桨频越大。
由于多旋翼飞行器100需要有水平分力矩的作用才能定向飞行。请结合图3,在现有技术的多旋翼飞行器中,由于多个旋翼的扭矩系数都相等,因此在多旋翼飞行器飞行时,例如前飞时,位于机头侧的旋翼的转速与位于机尾侧的旋翼的转速的差值的绝对值很大,位于机头侧的旋翼的桨频与位于机尾侧的旋翼的桨频之间的频带较宽,导致激振力频带与机身固有频率耦合的机率较大,机身与旋翼发生共振的机率较大。因此,在本实施例中,第二旋翼30的扭矩系数与第一旋翼20的扭矩系数不同,例如第二旋翼30的扭矩系数大于第一旋翼20的扭矩系数或第二旋翼30的扭矩系数小于第一旋翼20的扭矩系数。请一并参阅图2和图4,在多旋翼飞行器100朝第二侧12指向第一侧11的方向(如图2所示的X方向)飞行时,由于第一转速与第二转速的差值的绝对值小于预定值N,因此第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄,而且预定值越小,两个桨频之间的频带越窄。此时,激振力频带与机身10固有频率耦合的机率较小,机身10与旋翼发生共振的机率较小。在本实施例中,预定值N可以根据多旋翼飞行器100的旋翼的参数条件调整,例如预定值N可以小于或等于50、100、150转/分钟(Revolutions Per Minute,RPM)等,则第一转速和第二转速的差值的绝对值可以为[0,N]中的任意一个数值。例如当N=50转/分钟时,第一转速和第二转速的差值的绝对值可以为0、10、30、45、48、50转/分钟等任意一个数值。再例如当N=100转/分钟时,第一转速和第二转速的差值的绝对值可以为0、30、50、70、90、95转/分钟等任意一个数值。又例如当N=150转/分钟时,第一转速和第二转速的差值的绝对值可以为0、25、50、100、120、140转/分钟等任意一个数值。如此,多旋翼飞行器100在第一旋翼20和第二旋翼30以相近或相同的转速、且朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时振动较小,成像装置200的成像质量较高。优选地,所述预定值N接近零。可以理解的是,所述预定值N也可以根据实际需求而设置,如小于或等于20转/秒、小于或等于30转/秒等,并不限于本实施例。
请一并参阅图7和图9,在本实施例中,在多旋翼飞行器100悬停时,多旋翼飞行器100的飞行控制系统40还用于:控制第一旋翼20以第三转速转动;控制第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。也即是说,飞行控制系统40还用于实施步骤S3及S4。
由于第一旋翼20的扭矩系数小于第二旋翼30的扭矩系数,因此第一旋翼20与空气相互作用小于第二旋翼30与空气相互作用。在驱动电机的同样大小功率的驱动下,当第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,且第三转速大于第四转速时,才能保证第一旋翼20产生的拉力等于第二旋翼30产生的拉力,如此,机身10保持平衡,多旋翼飞行器100才能悬停。
请继续参阅图9,在本实施例中,当第二旋翼30的扭矩系数大于第一旋翼20的扭矩系数时, 第一侧11为机身10的机头侧,第二侧12为机身10的机尾侧,则多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行表示多旋翼飞行器100处于前飞状态(图2所示),此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于所述预定值N。而在多旋翼飞行器100悬停时(图5所示),第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与所述第四转速的差值的绝对值。因此,在多旋翼飞行器100前飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小,从而减小了机身10与旋翼发生共振而导致图像效果不佳的机率。
在其他实施例中,当第二旋翼30的扭矩系数小于第一旋翼20的扭矩系数时,第一侧11为机身10的机头侧,第二侧12为机身10的机尾侧,则多旋翼飞行器100朝第一侧11指向第二侧12的方向飞行表示多旋翼飞行器100处于后飞状态。此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。而在多旋翼飞行器100悬停时,第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。因此,在多旋翼飞行器100后飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小。
在其他实施例中,当第二旋翼30的扭矩系数大于第一旋翼20的扭矩系数时,第一侧11也可以为机身10的左侧,第二侧12为机身10的右侧,则多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行表示多旋翼飞行器100处于左飞状态。此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。而在多旋翼飞行器100悬停时,第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。因此,在多旋翼飞行器100左飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小。
在其他实施例中,当第二旋翼30的扭矩系数小于第一旋翼20的扭矩系数时,第一侧11为机身10的左侧,第二侧12为机身10的右侧,则多旋翼飞行器100朝第一侧11指向第二侧12的方向飞行表示多旋翼飞行器100处于右飞状态。此时,第一旋翼20以第一转速转动,第二旋翼30以第二转速转动,且第一转速与第二转速的差值的绝对值小于预定值N。而在多旋翼飞行器100悬停时,第一旋翼20以第三转速转动,第二旋翼30以第四转速转动,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值。因此,在多旋翼飞行器100右飞时,由于第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,则第一旋翼20的桨频与第二旋翼30的桨频之间的频带相较于悬停时更窄,机身10与旋翼发生共振的机率更小。
当然,多旋翼飞行器100的第一侧11及第二侧12除了为机身10固定的某一侧,在多旋翼飞 行器100飞行过程中,第一侧11及第二侧12还可以根据多旋翼飞行器100的飞行状态进行变换。例如,多旋翼飞行器100由一种飞行状态改变为另一种飞行状态;多旋翼飞行器100由一种飞行状态改变为另一种飞行状态,然后再改变为其他的飞行状态。无论哪一种飞行状态的变换,第一旋翼10和第二旋翼20也发生改变,对应的,原先的第一旋翼10的扭矩系数和第二旋翼20的扭矩系数也都发生改变。
多旋翼飞行器100可以由一种飞行状态改变为另一种飞行状态,例如多旋翼飞行器100由前飞改变为左飞。现以多旋翼飞行器100由前飞改变为左飞为例进行详细的说明。在初始时刻,第一侧11为机身10的机头侧,第二侧12为机身10的机尾侧,多旋翼飞行器100前飞。位于机尾侧的旋翼的扭矩系数K1大于位于机头侧的旋翼的扭矩系数K2。此时,第一旋翼20以前飞的第一转速转动,第二旋翼30以前飞的第二转速转动,而且前飞的第一转速与前飞的第二转速的差值的绝对值小于预定值N。因此,在多旋翼飞行器100前飞时,第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄。当多旋翼飞行器100由前飞改变为左飞时,第一旋翼20由原先位于机头侧的旋翼改变为位于机身左侧的旋翼,第二旋翼30由原先位于机尾侧的旋翼改变为位于机身右侧的旋翼,而且位于机身右侧的旋翼的扭矩系数K3变为大于位于机身左侧的旋翼的扭矩系数K4。此时,第一旋翼20以左飞的第一转速转动,第二旋翼30以左飞的第二转速转动,且左飞的第一转速与左飞的第二转速的差值的绝对值小于预定值N。因此,在多旋翼飞行器100左飞时,第一旋翼20的桨频与第二旋翼30的桨频之间的频带仍较窄。如此,通过改变第一侧11和第二侧12的旋翼的扭矩系数,多旋翼飞行器100在前飞和左飞时均能保证第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄,使得机身10与旋翼发生共振的机率均较小,成像装置200的成像质量均较高。在一个例子中,前飞的第一转速大小可以等于左飞的第一转速大小,前飞的第二转速大小可以等于左飞的第二转速大小。另外,其他的多旋翼飞行器100由一种飞行状态改变为另一种飞行状态的实施例,例如多旋翼飞行器100由前飞改变为右飞、多旋翼飞行器100由前飞改变为后飞、多旋翼飞行器100由左飞改变为右飞等,均可以参照上述前飞改变为左飞的实施例操作,在此不再赘述。
多旋翼飞行器100可以由一种飞行状态改变为另一种飞行状态,然后再改变为其他的飞行状态,例如多旋翼飞行器100由前飞改变为左飞,然后再由左飞改变为后飞。现以多旋翼飞行器100由前飞改变为左飞,然后再由左飞改变为后飞为例进行详细的说明。其中,多旋翼飞行器100由前飞改变为左飞可以参照上述的实施例操作,在此不作更多的叙述。当多旋翼飞行器100已经由前飞改变为左飞,需要再由左飞改变为后飞时,第一旋翼20由原先位于机身左侧的旋翼改变为位于机头侧的旋翼,第二旋翼30由原先位于机身右侧的旋翼改变为位于机尾侧的旋翼,而且位于机头侧的旋翼的扭矩系数K5变为大于位于机尾侧的旋翼的扭矩系数K6。此时,第一旋翼20以后飞的第一转速转动,第二旋翼30以后飞的第二转速转动,且后飞的第一转速与后飞的第二转速的差值的绝对值小于预定值N。因此,在多旋翼飞行器100后飞时,第一旋翼20的桨频与第二旋翼30的桨频之间的频带仍较窄。如此,通过改变第一侧11和第二侧12的旋翼的扭矩系数,多旋翼飞行器100在前飞、左飞和后飞时均能保证第一旋翼20的桨频与第二旋翼30的桨频之间的频带较窄,使得机身10与旋翼发生共振的机率均较小,成像装置200的成像质量均较高。另外,其他的多旋翼飞行器100由一种飞行状态改变为另一种飞行状态,然后再改变为其他的飞行状态的实施 例,例如多旋翼飞行器100由前飞改变为右飞、然后再改变为后飞,多旋翼飞行器100由前飞改变为后飞、然后再改变为左飞,多旋翼飞行器100由左飞改变为右飞、然后再改变为前飞等,均可以参照上述前飞改变为左飞、然后再由左飞改变为后飞的实施例操作,在此不再赘述。
在本实施例中,第一旋翼20的数量可以为多个,第二旋翼30的数量也为多个。如图9所示的实施例中,当多旋翼飞行器100为“X”字形四旋翼时,第一旋翼20为设置在机身10前端(机头侧)的两个旋翼,第二旋翼30为设置在机身10后端(机尾侧)的两个旋翼;或者,第二旋翼30为设置在机身10前端(机头侧)的两个旋翼,第一旋翼20为设置在机身10后端(机尾侧)的两个旋翼。再例如当本发明的多旋翼飞行器100为“十”字形四旋翼时,第一旋翼20为设置在机身10前端(机头侧)及左侧的两个旋翼,第二旋翼30为设置在机身10后端(机尾侧)及右侧的两个旋翼。当然,第一旋翼20及第二旋翼30的数量及安装方式不限于上述讨论,可以依据实际需求进行调整,在此不作限制。另外,当第一旋翼20的数量为多个,第二旋翼30的数量也为多个时,第一转速、第三转速都可以为多个第一旋翼20的平均转速,第二转速、第四转速都可以为多个第二旋翼30的平均转速。
在本实施例中,每个旋翼的扭矩系数均由旋翼的尺寸、旋翼的翼形参数等中的任意一个或多个参数决定,换言之,旋翼的尺寸、旋翼的翼形参数中的每一个均会对旋翼的扭矩系数产生影响。具体地,在其他参数条件相同的条件下,若第一旋翼20与第二旋翼30仅为尺寸不同,则第一旋翼20的扭矩系数与第二旋翼30扭矩系数也不同;或者,若第一旋翼20与第二旋翼30仅为翼形参数不同,则第一旋翼20的扭矩系数与第二旋翼30扭矩系数也不同;或者,若第一旋翼20与第二旋翼30的尺寸与翼形参数均不同,则第一旋翼20的扭矩系数与第二旋翼30扭矩系数也可能不同。如此,多旋翼飞行器100可以采用不同的旋翼的尺寸和/或翼形参数,来安装扭矩系数合适的第一旋翼20和第二旋翼30(例如,飞行器100通过采用不同的旋翼的尺寸和/或翼形参数,来实现第二旋翼30的扭矩系数不同于第一旋翼20的扭矩系数)。
在图9所示的实施例中,第一旋翼20与第二旋翼30的尺寸不同,其中,旋翼的尺寸包括旋翼的直径。旋翼的直径越大,旋翼的扭矩系数越大;旋翼的直径越小,旋翼的扭矩系数越小。第二旋翼30的直径大于第一旋翼20的直径,第二旋翼30与空气的相互作用大于第一旋翼20与空气的相互作用。因此,在多旋翼飞行器100朝直径大的旋翼指向直径小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。在其他实施例中,当第一侧指机身的左侧,第二侧指机身的右侧,第一旋翼为左侧的两个旋翼,第二旋翼为右侧的两个旋翼,第二旋翼的尺寸大于第一旋翼的尺寸,也可以实现第二旋翼的扭矩系数大于第一旋翼的扭矩系数,使得该飞行器在定向飞行(左飞)时,第一旋翼的第一转速与第二旋翼的第二转速的差值的绝对值较小,激振力频带较窄,从而减小了机身与第一旋翼或第二旋翼共振的可能性,提高了搭载在机身上的成像装置的成像质量。
在其他实施例中,第一旋翼20与第二旋翼30的翼形参数不同,其中,旋翼的翼形参数包括攻角、螺距、弦长中的一个或多个。第一旋翼20与第二旋翼30的翼形参数不同包括其中一个参数不同或多个参数不同。以攻角为例,旋翼的攻角越大,旋翼的迎风面积增大,与空气的相互作 用越大,则旋翼的扭矩系数越大;旋翼的攻角越小,旋翼的迎风面积减小,与空气的相互作用越小,则旋翼的扭矩系数越小。在一个例子中,第二旋翼30的攻角大于第一旋翼20的攻角,第二旋翼30与空气的相互作用大于第一旋翼20与空气的相互作用。因此,在多旋翼飞行器100朝攻角大的旋翼指向攻角小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。再以螺距为例,旋翼的螺距越大,旋翼的扭矩系数越大;旋翼的螺距越小,旋翼的扭矩系数越小。在另一个例子中,第二旋翼30的螺距大于第一旋翼20的螺距。因此,在多旋翼飞行器100朝螺距大的旋翼指向螺距小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。又以弦长为例,旋翼的弦长越大,相同的直径下,旋翼的截面面积越大,与空气的相互作用越大,则旋翼的扭矩系数越大;旋翼的弦长越小,相同的直径下,旋翼的截面面积越小,与空气的相互作用越小,则旋翼的扭矩系数越小。在又一个例子中,第二旋翼30的弦长大于第一旋翼20的弦长。因此,在多旋翼飞行器100朝弦长大的旋翼指向弦长小的旋翼的方向飞行,即多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行或朝第一侧11指向第二侧12的方向飞行时,多旋翼飞行器100的激振力频带相较于悬停时的激振力频带更窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。
在本实施例中,旋翼的扭矩系数在出厂时就可以确定,也可以在使用过程中进一步调节。具体地,第一旋翼20的扭矩系数可调,或者第二旋翼30的扭矩系数可调,或者,第一旋翼20的扭矩系数和第二旋翼30的扭矩系数均可调。例如,在旋翼上设置旋翼变距装置,多旋翼飞行器100利用变距装置改变第一旋翼20或第二旋翼30的攻角,以改变第一旋翼20或第二旋翼30的螺距,就能调节第一旋翼20或第二旋翼30的扭矩系数。在前述实施例中,在多旋翼飞行器100改变飞行状态时,原先的第一旋翼10的扭矩系数和第二旋翼20的扭矩系数均可以通过变距装置进行改变。现以四旋翼飞行器由前飞改变为左飞为例,对如何调节旋翼的扭矩系数进行详细的说明。在四旋翼飞行器前飞时,位于机尾侧的两个旋翼(第二旋翼30)的扭矩系数为K1,位于机头侧的两个旋翼(第一旋翼20)的扭矩系数为K2,且K1大于K2。在四旋翼飞行器改变为左飞时,所有旋翼的螺距改变以使所有旋翼的扭矩系数发生改变。具体地,原先右边的第一旋翼20的螺距改变,扭矩系数变为K3,原先右边的第二旋翼30的螺距改变,扭矩系数变为K3;原来左边的第一旋翼20的螺距改变,扭矩系数变为K4,原来左边的第二旋翼30的螺距改变,扭矩系数变为K4。因此,位于机身右侧的两个旋翼的扭矩系数均为K3,位于机身左侧的两个旋翼的扭矩系数均为K4,且K3大于K4。在一个例子中,K1可以等于K3,K2可以等于K4,则原来左边的第一旋翼20的螺距可以保持不变,扭矩系数仍为K1,原先右边的第一旋翼20的螺距变大,扭矩系数变为K4。
请一并参阅图8和图9,本发明实施方式的多旋翼飞行器100的飞行控制系统40还用于控制第一旋翼20的第三转速变为第一转速;控制第二旋翼30的第四转速变为第二转速,其中,第一转速与第二转速的差值的绝对值,小于第三转速与第四转速的差值的绝对值,以使多旋翼飞行器 100由悬停变为朝第二侧指向第一侧的方向飞行。也即是说,飞行控制系统40可以用于实现步骤S5及S6。
具体地,飞行控制系统40先判断多旋翼飞行器100当前状态。在判断多旋翼飞行器100为悬停状态时,由于第三转速与第四转速的差值的绝对值较大,因此,飞行控制系统40需要调节第三转速和第四转速。飞行控制系统40控制与第一旋翼20连接的驱动电机的转速减小以减小第一旋翼20的转速、控制与第二旋翼30连接的驱动电机的转速增大以增大第二旋翼30的转速,从而使得第一旋翼20的第三转速变为第一转速,使得第二旋翼30第四转速变为第二转速,且第一转速与第二转速的差值的绝对值小于悬停时的第三转速与第四转速的差值的绝对值。另外,在悬停状态时,第一旋翼20的拉力与第二旋翼30的拉力相近。在飞行控制系统40调节第三转速和第四转速后,第一旋翼20的拉力减小,第二旋翼30的拉力增大,使得多旋翼飞行器100受到朝第二旋翼30指向第一旋翼20的水平分力矩的作用,因此多旋翼飞行器100朝第二侧12指向第一侧11的方向飞行。如此,实现多旋翼飞行器100由悬停状态改为定向飞行状态。
进一步地,飞行控制系统40再判断第一转速与第二转速的差值的绝对值是否小于预定值。如果第一转速与第二转速的差值的绝对值仍大于预定值,飞行控制系统40继续控制与第一旋翼20连接的驱动电机的转速减小以减小第一旋翼20的转速、控制与第二旋翼30连接的驱动电机的转速增大以增大第二旋翼30的转速,直至第一转速与第二转速的差值的绝对值小于预定值。本实施例中,可以将预定值设定为比较小的数值,以使多旋翼飞行器100在定向飞行时第一旋翼20的桨频与第二旋翼30的桨频相近,激振力频带较窄,减小机身10与第一旋翼20或第二旋翼30共振的可能性,优化成像装置200的拍摄质量。
综上,本发明实施方式的多旋翼飞行器100中,第一旋翼20和第二旋翼30扭矩系数不同,在多旋翼飞行器100定向飞行时,飞行控制系统40控制第一旋翼20以第一转速转动,控制第二旋翼30以第二转速转动,并且第一转速与第二转速的差值的绝对值较小,激振力频带较窄,从而减小了机身10与第一旋翼20或第二旋翼30共振的可能性,提高了搭载在机身10上的成像装置200的成像质量。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理模块的系统或其他可以从指令执行系统、装置或设备取 指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(控制方法),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的实施方式的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。此外,在本发明的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施实施进行变化、修改、替换和变型。

Claims (23)

  1. 一种多旋翼飞行器,其特征在于,包括:
    机身,所述机身包括相背的第一侧及第二侧;
    连接在所述机身的所述第一侧的第一旋翼;及
    连接在所述机身的所述第二侧的第二旋翼,所述第二旋翼的扭矩系数不同于所述第一旋翼的扭矩系数;
    所述多旋翼飞行器朝所述第二侧指向所述第一侧的方向飞行或朝所述第一侧指向所述第二侧的方向飞行时,所述第一旋翼以第一转速转动,所述第二旋翼以第二转速转动,所述第一转速与所述第二转速的差值的绝对值小于预定值。
  2. 根据权利要求1所述的多旋翼飞行器,其特征在于,
    所述第二旋翼的扭矩系数大于所述第一旋翼的扭矩系数,所述第一侧为机头侧,所述第二侧为机尾侧;或/和
    所述第二旋翼的扭矩系数小于所述第一旋翼的扭矩系数,所述第一侧为机头侧,所述第二侧为机尾侧;或/和
    所述第二旋翼的扭矩系数大于所述第一旋翼的扭矩系数,所述第一侧为机身左侧,所述第二侧为机身右侧;或/和
    所述第二旋翼的扭矩系数小于所述第一旋翼的扭矩系数,所述第一侧为机身左侧,所述第二侧为机身右侧。
  3. 根据权利要求1或2所述的多旋翼飞行器,其特征在于,
    在所述多旋翼飞行器悬停时,所述第一旋翼以第三转速转动,所述第二旋翼以第四转速转动,所述第一转速与所述第二转速的差值的绝对值,小于所述第三转速与所述第四转速的差值的绝对值。
  4. 根据权利要求1所述的多旋翼飞行器,其特征在于,所述第一旋翼的数量为多个,所述第二旋翼的数量为多个。
  5. 根据权利要求1所述的多旋翼飞行器,其特征在于,所述第一旋翼与所述第二旋翼的直径不同。
  6. 根据权利要求1至5任意一项所述的多旋翼飞行器,其特征在于,所述第一旋翼与所述第二旋翼的翼形参数不同,所述翼形参数包括攻角、螺距、弦长中的一个或多个。
  7. 根据权利要求1所述的多旋翼飞行器,其特征在于,所述第一旋翼的扭矩系数可调;及/或,所述第二旋翼的扭矩系数可调。
  8. 一种多旋翼飞行器的控制方法,其特征在于,所述多旋翼飞行器包括机身,所述机身包括相背的第一侧及第二侧,所述多旋翼飞行器还包括连接在所述机身的所述第一侧的第一旋翼及连接在所述机身的所述第二侧的第二旋翼,所述第二旋翼的扭矩系数不同于所述第一旋翼的扭矩系数;所述多旋翼飞行器朝所述第二侧指向所述第一侧的方向飞行或朝所述第一侧指向所述第二侧的方向飞行时,所述控制方法包括:
    控制所述第一旋翼以第一转速转动;
    控制所述第二旋翼以第二转速转动,其中,所述第一转速与所述第二转速的差值的绝对值小于预定值。
  9. 根据权利要求8所述的控制方法,其特征在于,
    所述第二旋翼的扭矩系数大于所述第一旋翼的扭矩系数,所述第一侧为机头侧,所述第二侧为机尾侧;或/和
    所述第二旋翼的扭矩系数小于所述第一旋翼的扭矩系数,所述第一侧为机头侧,所述第二侧为机尾侧;或/和
    所述第二旋翼的扭矩系数大于所述第一旋翼的扭矩系数,所述第一侧为机身左侧,所述第二侧为机身右侧;或/和
    所述第二旋翼的扭矩系数小于所述第一旋翼的扭矩系数,所述第一侧为机身左侧,所述第二侧为机身右侧。
  10. 根据权利要求8或9所述的控制方法,其特征在于,在所述多旋翼飞行器悬停时,所述控制方法还包括:
    控制所述第一旋翼以第三转速转动;
    控制所述第二旋翼以第四转速转动,其中,所述第一转速与所述第二转速的差值的绝对值,小于所述第三转速与所述第四转速的差值的绝对值。
  11. 根据权利要求8所述的控制方法,其特征在于,所述第一旋翼的数量为多个,所述第二旋翼的数量为多个。
  12. 根据权利要求8所述的控制方法,其特征在于,所述第一旋翼与所述第二旋翼的直径不同。
  13. 根据权利要求8至12任意一项所述的控制方法,其特征在于,所述第一旋翼与所述第二旋翼的翼形参数不同,所述翼形参数包括攻角、螺距、弦长中的一个或多个。
  14. 根据权利要求8所述的控制方法,其特征在于,所述第一旋翼的扭矩系数可调;及/或,所述第二旋翼的扭矩系数可调。
  15. 根据权利要求10所述的控制方法,其特征在于,所述控制方法还包括:
    控制所述第一旋翼的所述第三转速变为所述第一转速;
    控制所述第二旋翼的所述第四转速变为所述第二转速,其中,所述第一转速与所述第二转速的差值的绝对值,小于所述第三转速与所述第四转速的差值的绝对值,以使所述多旋翼飞行器由悬停变为朝所述第二侧指向所述第一侧的方向飞行或朝所述第一侧指向所述第二侧的方向飞行。
  16. 一种多旋翼飞行器,其特征在于,所述多旋翼飞行器包括机身,所述机身包括相背的第一侧及第二侧,所述多旋翼飞行器还包括连接在所述机身的所述第一侧的第一旋翼及连接在所述机身的所述第二侧的第二旋翼,所述第二旋翼的扭矩系数不同于所述第一旋翼的扭矩系数,所述多旋翼飞行器还包括飞行控制系统,所述多旋翼飞行器朝所述第二侧指向所述第一侧的方向飞行或朝所述第一侧指向所述第二侧的方向飞行时,所述飞行控制系统用于:
    控制所述第一旋翼以第一转速转动;
    控制所述第二旋翼以第二转速转动,其中,所述第一转速与所述第二转速的差值的绝对值小于预定值。
  17. 根据权利要求16所述的多旋翼飞行器,其特征在于,
    所述第二旋翼的扭矩系数大于所述第一旋翼的扭矩系数,所述第一侧为机头侧,所述第二侧为机尾侧;或/和
    所述第二旋翼的扭矩系数小于所述第一旋翼的扭矩系数,所述第一侧为机头侧,所述第二侧为机尾侧;或/和
    所述第二旋翼的扭矩系数大于所述第一旋翼的扭矩系数,所述第一侧为机身左侧,所述第二侧为机身右侧;或/和
    所述第二旋翼的扭矩系数小于所述第一旋翼的扭矩系数,所述第一侧为机身左侧,所述第二侧为机身右侧。
  18. 根据权利要求16或17所述的多旋翼飞行器,其特征在于,在所述多旋翼飞行器悬停时,所述飞行控制系统还用于:
    控制所述第一旋翼以第三转速转动;
    控制所述第二旋翼以第四转速转动,其中,所述第一转速与所述第二转速的差值的绝对值,小于所述第三转速与所述第四转速的差值的绝对值。
  19. 根据权利要求16所述的多旋翼飞行器,其特征在于,所述第一旋翼的数量为多个,所述第二旋翼的数量为多个。
  20. 根据权利要求16所述的多旋翼飞行器,其特征在于,所述第一旋翼与所述第二旋翼的直径不同。
  21. 根据权利要求16至20任意一项所述的多旋翼飞行器,其特征在于,所述第一旋翼与所述第二旋翼的翼形参数不同,所述翼形参数包括攻角、螺距、弦长中的一个或多个。
  22. 根据权利要求16所述的多旋翼飞行器,其特征在于,所述第一旋翼的扭矩系数可调;及/或,所述第二旋翼的扭矩系数可调。
  23. 根据权利要求18所述的多旋翼飞行器,其特征在于,所述飞行控制系统还用于:
    控制所述第一旋翼的所述第三转速变为所述第一转速;
    控制所述第二旋翼的所述第四转速变为所述第二转速,其中,所述第一转速与所述第二转速的差值的绝对值,小于所述第三转速与所述第四转速的差值的绝对值,以使所述多旋翼飞行器由悬停变为朝所述第二侧指向所述第一侧的方向飞行或朝所述第一侧指向所述第二侧的方向飞行。
PCT/CN2018/101110 2018-08-17 2018-08-17 多旋翼飞行器及多旋翼飞行器的控制方法 WO2020034205A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880039152.9A CN110770124A (zh) 2018-08-17 2018-08-17 多旋翼飞行器及多旋翼飞行器的控制方法
PCT/CN2018/101110 WO2020034205A1 (zh) 2018-08-17 2018-08-17 多旋翼飞行器及多旋翼飞行器的控制方法
EP18930276.3A EP3838748A1 (en) 2018-08-17 2018-08-17 Multi-rotary blade aerial vehicle and control method thereof
JP2021502929A JP2021531201A (ja) 2018-08-17 2018-08-17 多重回転翼式航空機及び多重回転翼式航空機の制御方法
US17/175,990 US20210188426A1 (en) 2018-08-17 2021-02-15 Multi-rotor aerial vehicle and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/101110 WO2020034205A1 (zh) 2018-08-17 2018-08-17 多旋翼飞行器及多旋翼飞行器的控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/175,990 Continuation US20210188426A1 (en) 2018-08-17 2021-02-15 Multi-rotor aerial vehicle and control method thereof

Publications (1)

Publication Number Publication Date
WO2020034205A1 true WO2020034205A1 (zh) 2020-02-20

Family

ID=69328805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101110 WO2020034205A1 (zh) 2018-08-17 2018-08-17 多旋翼飞行器及多旋翼飞行器的控制方法

Country Status (5)

Country Link
US (1) US20210188426A1 (zh)
EP (1) EP3838748A1 (zh)
JP (1) JP2021531201A (zh)
CN (1) CN110770124A (zh)
WO (1) WO2020034205A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110869277B (zh) * 2017-10-10 2024-01-23 盐城辉空科技有限公司 旋翼机
US11884413B2 (en) * 2021-12-15 2024-01-30 The Boeing Company Operating a vehicle with rotors while avoiding a band of rotor rotational speed

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484356A (zh) * 2006-06-26 2009-07-15 布克哈德·维格里奇 飞行器
CN104760696A (zh) * 2015-04-22 2015-07-08 深圳市艾特航空科技股份有限公司 一种多旋翼飞行器
CN204623835U (zh) * 2015-04-30 2015-09-09 何春旺 多轴飞行器
NO20150105A1 (en) * 2015-01-21 2016-07-18 FLIR Unmanned Aerial Systems AS Thrust-generating rotor assembly
CN106314788A (zh) * 2016-09-08 2017-01-11 锐合防务技术(北京)有限公司 飞行器的飞行控制方法及系统
CN107291095A (zh) * 2016-04-11 2017-10-24 零度智控(北京)智能科技有限公司 无人机起飞控制方法、装置、系统以及无人机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950537B (zh) * 2014-05-13 2016-04-20 江苏艾锐泰克无人飞行器科技有限公司 变距飞行器的控制方法和控制装置
WO2016185572A1 (ja) * 2015-05-19 2016-11-24 株式会社0 回転翼機
CN110869277B (zh) * 2017-10-10 2024-01-23 盐城辉空科技有限公司 旋翼机
CN107697279A (zh) * 2017-10-16 2018-02-16 江富余 倾转尾部高速直升机
JP7006930B2 (ja) * 2018-07-10 2022-01-24 株式会社エアロネクスト 回転翼機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484356A (zh) * 2006-06-26 2009-07-15 布克哈德·维格里奇 飞行器
NO20150105A1 (en) * 2015-01-21 2016-07-18 FLIR Unmanned Aerial Systems AS Thrust-generating rotor assembly
CN104760696A (zh) * 2015-04-22 2015-07-08 深圳市艾特航空科技股份有限公司 一种多旋翼飞行器
CN204623835U (zh) * 2015-04-30 2015-09-09 何春旺 多轴飞行器
CN107291095A (zh) * 2016-04-11 2017-10-24 零度智控(北京)智能科技有限公司 无人机起飞控制方法、装置、系统以及无人机
CN106314788A (zh) * 2016-09-08 2017-01-11 锐合防务技术(北京)有限公司 飞行器的飞行控制方法及系统

Also Published As

Publication number Publication date
EP3838748A1 (en) 2021-06-23
CN110770124A (zh) 2020-02-07
JP2021531201A (ja) 2021-11-18
US20210188426A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
CN107458599B (zh) 电分布式推进反扭矩冗余电力及控制系统
US8336808B2 (en) Aircraft having helicopter rotor and front mounted propeller
JP4727724B2 (ja) 高速回転翼航空機用のロータ駆動装置および制御システム
US8424798B2 (en) Aircraft with helicopter rotor, thrust generator and assymetric wing configuration
US7264199B2 (en) Unloaded lift offset rotor system for a helicopter
US11279477B2 (en) Rotating electric distributed anti-torque fin
CN110155320B (zh) 用于旋翼飞行器的抗扭矩系统
US11332240B2 (en) Anti-torque systems for rotorcraft
WO2020034205A1 (zh) 多旋翼飞行器及多旋翼飞行器的控制方法
EP3708499B1 (en) Electric distributed propulsion with different rotor rotational speeds
US20200391858A1 (en) Multi-rotor noise control by automated distribution propulsion
CN109263932A (zh) 一种可垂直升降的多旋翼飞行器
CN112660368A (zh) 垂直起降无人机的飞行阻力的控制方法及系统
WO2013155402A1 (en) Electric motor powered rotor drive for slowed rotor winged aircraft
EP3878739B1 (en) Bidirectional aircraft rotor
US11613353B2 (en) Expedited design and qualification of unmanned aerial vehicles
WO2020024488A1 (zh) 螺旋桨、动力组件及无人飞行器
US20070095973A1 (en) Aircraft having a helicopter rotor and an inclined front mounted propeller
WO2020006953A1 (zh) 螺旋桨、动力组件及无人机
US20230312089A1 (en) Multiple flight mode aircraft architectures and controls
US11753154B2 (en) Tilt rotor aircraft noise reduction
CN107554784A (zh) 一种横流扇以及在横流扇上随意调节扇翼倾斜角度的方法
WO2023188269A1 (ja) 回転翼機
WO2023188268A1 (ja) 回転翼機
CN117262279A (zh) 一种工字变体旋翼飞行器及动态重构控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018930276

Country of ref document: EP

Effective date: 20210317