WO2022183330A1 - 无人飞行器及其控制装置、方法、飞行控制器、电调 - Google Patents

无人飞行器及其控制装置、方法、飞行控制器、电调 Download PDF

Info

Publication number
WO2022183330A1
WO2022183330A1 PCT/CN2021/078500 CN2021078500W WO2022183330A1 WO 2022183330 A1 WO2022183330 A1 WO 2022183330A1 CN 2021078500 W CN2021078500 W CN 2021078500W WO 2022183330 A1 WO2022183330 A1 WO 2022183330A1
Authority
WO
WIPO (PCT)
Prior art keywords
esc
motor
control
peripheral interface
flight controller
Prior art date
Application number
PCT/CN2021/078500
Other languages
English (en)
French (fr)
Inventor
薛田
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/078500 priority Critical patent/WO2022183330A1/zh
Publication of WO2022183330A1 publication Critical patent/WO2022183330A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, and in particular, to an unmanned aerial vehicle and its control device, method, flight controller, and electric regulator.
  • flight controller refers to the controller of unmanned aerial vehicle, which is mainly composed of gyroscope (flight attitude perception), accelerometer, geomagnetic induction, air pressure sensor (hover control) and control circuit.
  • the power components include a motor and an ESC.
  • the ESC is an electronic governor that controls the speed of the motor and stabilizes the voltage.
  • the unmanned aerial vehicle communicates with the ESC through the flight controller.
  • the ESC controls the speed of the motor, and the rotation of the motor causes the blades to rotate, thereby realizing flight.
  • the flight controller sends analog signals such as Pulse Width Modulation (PWM) signals, Pulse Position Modulation (PPM) signals to the ESC, or sends digital signals to the ESC, but the ESC receives and transmits digital signals to the ESC.
  • PWM Pulse Width Modulation
  • PPM Pulse Position Modulation
  • the speed of the motor controlled by the signal occupies a relatively high computing resource of the ESC.
  • the present application provides an unmanned aerial vehicle and its control device, method, flight controller, ESC, and storage medium, aiming at reducing the resource occupation of the unmanned aerial vehicle to control the rotational speed of the motor.
  • an embodiment of the present application provides a control device for an unmanned aerial vehicle, including:
  • a flight controller for controlling the ESC to adjust the rotational speed of the motor
  • the flight controller and the ESC are connected through a serial peripheral interface.
  • an unmanned aerial vehicle including:
  • a power assembly arranged on the frame, including a motor and a propeller;
  • a flight controller for controlling the ESC to adjust the rotational speed of the motor
  • the flight controller and the ESC are connected through a serial peripheral interface.
  • an embodiment of the present application provides a control method for an unmanned aerial vehicle, which is used for a flight controller, including:
  • the ESC control data being used to control the ESC of the unmanned aerial vehicle to adjust the rotational speed of the motor and the blades of the unmanned aerial vehicle;
  • an embodiment of the present application provides a control method for an unmanned aerial vehicle, which is used for an ESC, including:
  • the motor of the UAV is driven according to the ESC control data to drive the blades of the UAV to rotate.
  • an embodiment of the present application provides a flight controller, including one or more processors, which work individually or together, and are configured to perform the following steps:
  • ESC control data is used to control the ESC to adjust the rotational speed of the motor and the blades of the unmanned aerial vehicle
  • an embodiment of the present application provides an ESC, including one or more processors, which work individually or together, and are configured to perform the following steps:
  • the motor of the UAV is driven according to the ESC control data to drive the blades of the UAV to rotate.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the foregoing method.
  • the embodiments of the present application provide an unmanned aerial vehicle and its control device, method, flight controller, ESC, and storage medium.
  • the flight controller of the unmanned aerial vehicle is connected to the ESC through a serial peripheral interface, which can reduce flight
  • the computing resources of the controller and the ESC are occupied, the data transmission delay is reduced, the response speed of the ESC is faster, and the position and attitude of the UAV can be adjusted more timely and accurately.
  • FIG. 1 is a schematic block diagram of a control device for an unmanned aerial vehicle provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the connection between the flight controller and the ESC through the serial peripheral interface
  • Fig. 4 is the time sequence schematic diagram when the serial peripheral interface transmits data
  • FIG. 5 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a control method for an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a control method for an unmanned aerial vehicle provided by another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a flight controller provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an ESC provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a control device 10 of an unmanned aerial vehicle 100 according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of the unmanned aerial vehicle 100 in an embodiment.
  • the UAV 100 may be a rotary-wing UAV, such as a quad-rotor UAV, a hexa-rotor UAV, an octa-rotor UAV, or a fixed-wing UAV.
  • the UAV 100 includes a frame 111 , a power assembly 112 and a control device 10 , wherein the power assembly 112 is arranged on the frame 111 .
  • power assembly 112 includes motor 1121 and blades 1122 .
  • the motor 1121 may be any type of motor 1121 used in the unmanned aerial vehicle 100, which is not specifically limited herein.
  • the control device 10 of the UAV 100 includes an ESC 11 and a flight controller 12 , wherein the ESC 11 is used to drive the motor 1121 to drive the blades 1122 to rotate, and the flight controller 12 is used to control the ESC 11 to adjust The rotational speed of the motor 1121.
  • the ESC 11 is connected in communication with the motor 1121 for controlling the working state of the motor 1121 .
  • the motor 1121 may be any type of motor 1121 used in existing drones, which is not specifically limited herein.
  • the ESC 11 may also be called an electronic speed controller (ESC, Electronic Speed Control).
  • the flight controller 12 is connected in communication with the ESC 11 .
  • the flight controller 12 can send a throttle signal to the ESC 11 , and the ESC 11 controls the rotation speed of the motor 1121 according to the throttle signal to provide the UAV 100 with flight power.
  • all the ESCs 11 of the multi-rotor UAV may be integrated on one circuit board, or multiple circuit boards of the ESCs 11 may be distributed in different positions of the rack 111 .
  • the plurality of ESCs 11 of the multi-rotor UAV are in one-to-one correspondence with the plurality of motors 1121 , for example, the ESCs 11 and the motors 1121 may be integrally provided.
  • the circuit boards of the four ESCs 11 that control the work of the four rotors respectively can be scattered in the four positions of the front left, front right, rear left, and rear right of the rack 111, or they can all be integrated in the rack 111.
  • a printed circuit board This printed circuit board can be specially used to integrate the ESC 11 of the multi-rotor drone, or it can be the flight control board of the multi-rotor drone.
  • the control device 10 of the unmanned aerial vehicle 100 includes: an ESC 11 for driving a motor 1121 to drive the blades 1122 to rotate, and a flight controller 12 for controlling the ESC 11 to adjust the rotational speed of the motor 1121 .
  • the flight controller 12 is connected with the ESC 11 through a serial peripheral interface.
  • Serial Peripheral Interface is a high-speed, full-duplex, synchronous communication bus, and can only occupy four lines, saving the pins of the chip and saving space for the layout of the PCB .
  • the flight controller 12 includes a first serial peripheral interface 102
  • the ESC 11 includes a second serial peripheral interface 101
  • the first serial peripheral of the flight controller 12 The interface 102 is connected to the respective second serial peripheral interfaces 101 of one or more ESCs 11 .
  • FIG. 4 it is a schematic diagram of a timing sequence when the serial peripheral interface communicates.
  • nCS represents the chip select signal sent by the first serial peripheral interface 102 of the flight controller 12 to the ESC 11
  • CLK represents the first serial peripheral interface 102 of the flight controller 12 to the ESC 11
  • the clock signal sent MOSI represents the data sent by the first serial peripheral interface 102 of the flight controller 12 to the ESC 11
  • MISO represents the data sent by the first serial peripheral interface 102 of the ESC 11 received by the flight controller 12 .
  • the flight controller 12 determines the ESC control data, and the ESC control data is used to control the ESC 11 to adjust the rotational speed of the motor 1121 and the propeller 1122 of the UAV 100 , and is sent through the first serial peripheral interface 102 .
  • the ESC control data is sent to the ESC 11 of the UAV 100 .
  • the flight controller 12 sends the ESC control data to the ESC 11 , the second serial peripheral interface 101 of the ESC 11 buffers the ESC control data, and the ESC 11 adjusts the motor 1121 according to the ESC control data speed.
  • the chip select signal is output to the chip select terminal of the second serial peripheral interface 101 of each ESC 11 through the chip select terminal of the first serial peripheral interface 102,
  • Each ESC 11 can obtain the chip select signal output by the chip select terminal of the first serial peripheral interface 102 of the flight controller 12 through the chip select terminal of the second serial peripheral interface 101, so that the flight controller 12 All connected ESCs 11 can simultaneously receive ESC control data sent to the ESC 11 by the first serial peripheral interface 102 of the flight controller 12 .
  • the flight controller 12 outputs the clock signal to the clock terminal of the second serial peripheral interface 101 through the clock terminal of the first serial peripheral interface 102 , and obtains the clock signal through the clock terminal of the second serial peripheral interface 101 .
  • the clock signal output by the clock terminal of the first serial peripheral interface 102 of the flight controller 12 .
  • the clock synchronization between the flight controller 12 and each ESC 11 can be realized.
  • the ESC 11 obtains ESC control data from the flight controller 12 of the UAV 100 through the second serial peripheral interface 101, and drives the motor 1121 of the UAV 100 to drive the UAV according to the ESC control data.
  • the paddle 1122 of 100 rotates.
  • the second serial peripheral interface 101 of the ESC 11 buffers the ESC control data sent by the flight controller 12 , and the controller of the ESC 11 obtains the ESC control data buffered by the second serial peripheral interface 101 .
  • the ESC 11 has a serial shift register, which can register the ESC control data sent by the flight controller 12 .
  • the controller of the ESC 11 can read the ESC control data registered in the serial shift register.
  • the second serial peripheral interface 101 (which may be referred to as an SPI peripheral) converts the level signal into numerical ESC control data, and converts the ESC control
  • the data is put into the first-in-first-out serial shift register, and the controller of the ESC 11 reads the ESC control data from the serial shift register to drive the motor 1121 of the UAV 100 according to the ESC control data.
  • the computing resources of the controller of the ESC 11 are saved. For example, compared to the controller of the ESC 11 obtaining the ESC control data sent by the flight controller 12 through a timer (timer) and a direct memory access (Direct Memory Access, DMA) controller, the controller of the ESC 11 can be saved. Therefore, the computing resources of the controller of the ESC 11 are prevented from being insufficient, the delay of data transmission between the flight controller 12 and the ESC 11 is low, and the response speed of the ESC 11 is fast.
  • timer timer
  • DMA direct memory access
  • the ESC control data includes a control field corresponding to the ESC 11 , and the control field is used to control the ESC 11 to adjust the rotational speed of the motor 1121 .
  • control field is determined according to the target rotational speed of the motor 1121 corresponding to the ESC 11 . It can be understood that the flight controller 12 can determine the control field according to the target rotational speed of the motor 1121 corresponding to the ESC 11 .
  • control field corresponding to the ESC 11 may include a signed number, the symbol may be used to indicate that the ESC 11 controls the motor 1121 to rotate forward or reverse, and the numerical value may be used to indicate the rotational speed of the motor 1121, for example,
  • the length of the signed number is 12 bits (bits), of course, other lengths are also possible. The longer the control field corresponding to the ESC 11, the higher the resolution of the speed adjustment and the more accurate the speed control.
  • control field corresponding to the ESC 11 may further include a command bit, where the command bit is used to indicate whether the ESC 11 adjusts the rotational speed of the motor 1121 according to the control field.
  • the command bit is used to indicate whether the ESC 11 adjusts the rotational speed of the motor 1121 according to the control field.
  • the command bit is 1, the ESC 11 adjusts the speed of the motor 1121 according to the control field; when the command bit is 0, the ESC 11 may not adjust the speed of the motor 1121 according to the control field, for example, it can control the motor 1121 to maintain the current speed.
  • the flight controller 12 is further configured to acquire control instructions of the terminal device and/or sensor data of the UAV 100, and determine the target rotational speed of each motor 1121 according to the control instructions and/or sensor data.
  • the flight controller 12 can acquire the data of the sensors of the drone, for example, the sensors include at least one of an attitude sensor, a photographing device, a radar, an altimeter, etc.; the flight controller 12 can also acquire remote control instructions sent by the terminal device. , the flight controller 12 determines the target rotation speed of the motor 1121 according to the sensor data and/or remote control instructions, and determines the ESC control data of each ESC 11 according to the target rotation speed to control the position and/or attitude of the UAV.
  • the sensors include at least one of an attitude sensor, a photographing device, a radar, an altimeter, etc.
  • the flight controller 12 can also acquire remote control instructions sent by the terminal device.
  • the flight controller 12 determines the target rotation speed of the motor 1121 according to the sensor data and/or remote control instructions, and determines the ESC control data of each ESC 11 according to the target rotation speed to control the position and/or attitude of the UAV.
  • the number of the ESCs 11 includes multiple, the ESC control data includes multiple control fields, and the multiple control fields are in one-to-one correspondence with the multiple ESCs 11 . It can be understood that for any ESC 11 , there is a control field in the ESC control data corresponding to the ESC 11 .
  • the ESC 11 includes an ESC 11A, an ESC 11B, an ESC 11C, and an ESC 11D.
  • Bits 0 to 12 of the ESC control data are the control fields corresponding to ESC 11A
  • bits 13 to 25 of the ESC control data are the control fields corresponding to ESC 11B
  • bits 26 to 38 of the ESC control data are the corresponding control fields of ESC 11C.
  • the control field of the ESC, bits 39 to 51 of the ESC control data are the control fields corresponding to the ESC 11D.
  • the ESC 11 adjusts the rotational speed of the motor 1121 according to a target field in the ESC control data, where the target field is a control field corresponding to the ESC 11 .
  • control field in the ESC control data the ESC 11 corresponds to, for example, the control field corresponding to the ESC 11C is specified to be bits 26 to 38 of the ESC control data, so that the ESC 11 can determine the ESC control data.
  • the target field in the data, and the speed of the motor 1121 is adjusted according to the target field.
  • the ESC 11 includes one or more driving circuits, and the driving circuits are used for one-to-one connection with the motor 1121 .
  • the controller of the ESC 11 is connected to one or more driving circuits for controlling the on-off of switching elements in the driving circuit, so that the driving circuit outputs a corresponding driving signal to drive the motor 1121 to rotate.
  • the flight controller 12 is configured to control the ESC 11 to adjust the current rotation speed of the motor 1121 so that the current rotation speed of the motor 1121 reaches the target rotation speed.
  • the ESC 11 can determine the motor parameters of the connected motor 1121 .
  • the motor parameters of the motor 1121 include at least one of current rotational speed, current, voltage, and temperature.
  • the ESC 11 is connected to one or more motors 1121, and the motor parameters corresponding to the motors 1121 can be determined through the detection circuit.
  • the motor parameters can be used to indicate the working state of the motor 1121 to determine the relationship between the current speed of the motor 1121 and the target speed, whether it is over-current, over-voltage or over-temperature.
  • the ESC 11 determines the motor parameters of the motor 1121 connected to the ESC 11, and when acquiring the ESC control data from the flight controller 12 of the UAV 100 through the second serial peripheral interface 101, the second The serial peripheral interface 101 sends the motor parameters to the flight controller 12 . Therefore, the flight controller 12 can obtain the feedback amount of the ESC 11 in time, such as the current rotation speed of the motor 1121, so as to better realize the closed-loop control and improve the control experience.
  • the flight controller 12 can determine that the motor 1121 is abnormal according to the motor parameters sent by the ESC 11 when the motor 1121 is over-current, over-voltage or over-temperature, and can determine that the motor 1121 is abnormal, and can control the unmanned aerial vehicle 100 to land to prevent the unmanned aerial vehicle 100 from blowing up. machine.
  • the data transmission and reception of the SPI protocol is performed simultaneously.
  • the flight controller 12 Based on the clock signal sent by the flight controller 12, the flight controller 12 sends data through MOSI; at the same time, the ESC 11 sends the data according to the received clock Signal, synchronously sends data to flight controller 12 through MISO.
  • the ESC 11 may register the motor parameters in the serial shift register of the ESC 11, and when the flight controller 12 sends the ESC control data to the ESC 11, the motor parameters in the serial shift register are sent. to flight controller 12.
  • the motor parameters are converted into level signals by the second serial peripheral interface 101 (which may be referred to as SPI peripherals) and then sent to the flight controller 12 , which can effectively save the computing resources of the controller of the ESC 11 .
  • the flight controller 12 sends ESC control data and receives motor parameters through the first serial peripheral interface 102 , the computing resources of the flight controller 12 can also be saved.
  • the flight controller 12 outputs a chip selection signal to the plurality of ESCs 11 through the chip selection terminal, and the ESC control data sent by the flight controller 12 can be received by the plurality of ESCs 11, thereby improving the resistance to Interference ability.
  • the ESC control data includes a plurality of control fields.
  • the ESC 11 adjusts the speed of the motor 1121 according to the target field in the ESC control data, and the target field is the control field corresponding to the ESC 11 .
  • the flight controller 12 when the flight controller 12 sends the ESC control data, it obtains the motor parameters of the motor 1121 corresponding to the ESC 11 from one ESC 11, and controls the ESC 11 to adjust the rotational speed of the motor 1121 according to the motor parameters.
  • the flight controller 12 when sending the ESC control data through the first serial peripheral interface 102, the flight controller 12 obtains the motor parameters of the motor 1121 corresponding to the ESC 11 from an ESC 11 through the first serial peripheral interface 102, And control the ESC 11 to adjust the speed of the motor 1121 according to the motor parameters.
  • the flight controller 12 may acquire the motor parameters of each ESC 11 one by one according to a preset sequence, so as to determine the state of the motor 1121 corresponding to each ESC 11 .
  • the flight controller 12 sends instruction data to the ESC 11, and the instruction data is used to indicate whether the ESC 11 sends the motor parameters corresponding to the motor 1121.
  • the ESC 11 acquires the instruction data sent by the flight controller 12 , and determines whether to send the motor parameters corresponding to the motor 1121 to the flight controller 12 according to the instruction data sent by the flight controller 12 .
  • the indication data is used to indicate the ESC 11 that needs to send motor parameters, or used to indicate whether each of the plurality of ESCs 11 needs to send motor parameters.
  • the instruction data includes fields corresponding to a plurality of ESCs 11, and each ESC 11 determines whether to send motor parameters according to the corresponding fields. For example, if the instruction data is 0001, the instruction data is used to instruct the ESC 11A to send the motor parameters corresponding to the motor 1121 to the flight controller 12, and other ESCs 11 do not send them; if the instruction data is 0100, the instruction data is used In order to instruct the ESC 11C to send the motor parameters corresponding to the motor 1121 to the flight controller 12, other ESCs 11 do not send it.
  • the indication data includes an identifier (eg, ID) of the ESC 11 that needs to send the motor parameters, and the ESC 11 can determine whether to send the motor parameters according to the identifier.
  • ID an identifier of the ESC 11 that needs to send the motor parameters
  • the indication data is a preset field in the ESC control data sent by the flight controller 12 to the ESC 11 .
  • bits 52 to 55 of the ESC control data are indication data, which are used to indicate the ESC 11 that needs to send motor parameters.
  • the ESC control data further includes a check field, and the ESC 11 determines whether the ESC control data is accurate according to the check field. Inaccurate speed adjustment caused by interference can be prevented.
  • bits 56 to 63 of the ESC control data are check fields.
  • the data packet when the ESC 11 sends the motor parameters includes the identifier of the ESC 11 and the motor parameters of the motor 1121 corresponding to the ESC 11, so that the flight controller 12 can determine the corresponding ESC according to the received data packet 11.
  • the ESC 11A is connected to two drive circuits, such as the drive circuit A connected to the motor 1121A and the drive circuit B connected to the motor 1121B, then the first field ( For example, the 0th to 7th bits are the identification of the ESC 11A, the second field (such as the 8th to 23rd bits) is the motor parameters of the motor 1121A, and the third field (such as the 24th to 31st bits) is the ESC 11A. ID, the fourth field (such as bits 32 to 47) is the motor parameters of the motor 1121B.
  • the data packet when the ESC 11 sends the motor parameters also includes a check field, and the flight controller 12 can determine whether the data packet is accurate according to the check field.
  • the flight controller and the ESC are connected through a serial peripheral interface, which can reduce the occupation of computing resources of the flight controller and the ESC, reduce the data transmission delay, and reduce the ESC.
  • the response speed is faster, and the pose of the UAV can be adjusted more timely and accurately.
  • FIG. 5 is a schematic structural diagram of an unmanned aerial vehicle 100 provided by an embodiment of the present application.
  • the UAV 100 includes:
  • the power assembly 112 disposed on the frame 111, includes a motor 1121 and a paddle 1122;
  • the ESC 11 is used to drive the motor 1121 to drive the blade 1122 to rotate;
  • the flight controller 12 is used to control the ESC 11 to adjust the rotational speed of the motor 1121;
  • the flight controller 12 is connected with the ESC 11 through a serial peripheral interface.
  • the flight controller 12 sends the ESC control data to the ESC 11 , the serial peripheral interface of the ESC 11 buffers the ESC control data, and the ESC 11 adjusts the rotational speed of the motor 1121 according to the ESC control data.
  • the ESC 11 adjusts the rotational speed of the motor 1121 according to a target field in the ESC control data, where the target field is a control field corresponding to the ESC 11 .
  • the number of the ESCs 11 includes multiple
  • the ESC control data includes multiple control fields
  • the multiple control fields are in one-to-one correspondence with the multiple ESCs 11 .
  • control field is determined according to the target rotational speed of the motor 1121 corresponding to the ESC 11 .
  • the ESC 11 can determine the motor parameters of the connected motor 1121.
  • the flight controller 12 sends the ESC control data, it obtains the motor parameters of the motor 1121 corresponding to the ESC 11 from one ESC 11, and according to the motor parameters The ESC 11 is controlled to adjust the speed of the motor 1121 .
  • the motor parameters of the motor 1121 include at least one of current rotational speed, current, voltage, and temperature.
  • the flight controller 12 is configured to control the ESC 11 to adjust the current rotational speed of the motor 1121 so that the current rotational speed of the motor 1121 reaches the target rotational speed.
  • the ESC 11 determines whether to send the motor parameters of the corresponding motor 1121 to the flight controller 12 according to the instruction data sent by the flight controller 12 .
  • the indication data is a preset field in the ESC control data sent by the flight controller 12 to the ESC 11 .
  • the indication data is used to indicate the ESC 11 that needs to send motor parameters, or used to indicate whether each of the plurality of ESCs 11 needs to send motor parameters.
  • the ESC control data further includes a check field, and the ESC 11 determines whether the ESC control data is accurate according to the check field.
  • the flight controller 12 includes a first serial peripheral interface 102
  • the ESC 11 includes a second serial peripheral interface 101
  • the first serial peripheral of the flight controller 12 The interface 102 is connected to the respective second serial peripheral interfaces 101 of one or more ESCs 11 .
  • the chip select terminal of the first serial peripheral interface 102 outputs a chip select signal to the chip select terminal of the second serial peripheral interface 101 of each ESC 11, and the first The clock terminal of one serial peripheral interface 102 outputs a clock signal to the clock terminal of the second serial peripheral interface 101 .
  • FIG. 6 is a schematic flowchart of a control method for an unmanned aerial vehicle provided by an embodiment of the present application.
  • the control method of the unmanned aerial vehicle is used in a flight controller to control the rotational speed of the motor and the propeller of the unmanned aerial vehicle.
  • the control method of the unmanned aerial vehicle includes steps S110 to S120.
  • the ESC control data includes a control field corresponding to the ESC, where the control field is used to control the ESC to adjust the rotational speed of the motor.
  • the ESC control data includes multiple control fields, and the multiple control fields are in one-to-one correspondence with multiple ESCs of the UAV.
  • the method further includes: determining the control field according to a target rotational speed of the motor corresponding to the ESC.
  • the method further includes: when sending the ESC control data through the first serial peripheral interface, acquiring the corresponding ESC from an ESC through the first serial peripheral interface. Motor parameters of the motor.
  • the determining the ESC control data includes: determining the ESC control data according to the motor parameters.
  • the motor parameters of the motor include at least one of current rotational speed, current, voltage, and temperature.
  • the method further includes: sending indication data to the ESC, where the indication data is used to indicate whether the ESC sends the motor parameters of the corresponding motor.
  • the indication data is a preset field in the ESC control data.
  • the indication data is used to indicate an ESC that needs to send the motor parameter, or used to indicate whether each of the plurality of ESCs needs to send the motor parameter.
  • the method further includes:
  • a clock signal is output to the clock terminal of the second serial peripheral interface through the clock terminal of the first serial peripheral interface.
  • control method for the unmanned aerial vehicle provided by the embodiment of the present application are similar to the control device of the unmanned aerial vehicle in the foregoing embodiments, and are not repeated here.
  • FIG. 7 is a schematic flowchart of a control method for an unmanned aerial vehicle provided by an embodiment of the present application.
  • the control method of the unmanned aerial vehicle is used for the electric adjustment of the unmanned aerial vehicle, and is used for controlling the rotational speed of the motor and the propeller of the unmanned aerial vehicle.
  • control method for an unmanned aerial vehicle includes steps S210 to S220.
  • the obtaining the ESC control data from the flight controller of the unmanned aerial vehicle through the second serial peripheral interface includes:
  • the second serial peripheral interface buffers the ESC control data sent by the flight controller
  • the driving the motor of the unmanned aerial vehicle to drive the blades of the unmanned aerial vehicle to rotate according to the ESC control data includes:
  • the speed of the motor is adjusted according to a target field in the ESC control data, where the target field is a control field corresponding to the ESC.
  • the ESC control data includes a plurality of control fields, and one of the control fields corresponds to the ESC.
  • control field is determined according to the target speed of the motor corresponding to the ESC.
  • the method further includes:
  • the motor parameters of the motor include at least one of current rotational speed, current, voltage, and temperature.
  • the method further includes:
  • Whether to send the motor parameters of the corresponding motor is determined according to the indication data.
  • the indication data is a preset field in the ESC control data.
  • the indication data is used to indicate an ESC that needs to send the motor parameter, or used to indicate whether each of the plurality of ESCs needs to send the motor parameter.
  • the method further includes:
  • the clock signal output by the clock terminal of the first serial peripheral interface of the flight controller is acquired through the clock terminal of the second serial peripheral interface.
  • control method for the unmanned aerial vehicle provided by the embodiment of the present application are similar to the control device of the unmanned aerial vehicle in the foregoing embodiments, and are not repeated here.
  • FIG. 8 is a schematic block diagram of a flight controller 600 provided by an embodiment of the present application.
  • the flight controller includes one or more processors 601 that work individually or collectively to perform the aforementioned control method for the UAV of the flight controller.
  • the terminal device 600 further includes a memory 602 .
  • the processor 601 and the memory 602 are connected through a bus 603, and the bus 603 is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 601 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 602 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 602 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the processor 601 is configured to run the computer program stored in the memory 602, and implement the aforementioned control method for the unmanned aerial vehicle for the flight controller when the computer program is executed.
  • the processor 601 is configured to run a computer program stored in the memory 602, and implement the following steps when executing the computer program:
  • the ESC control data being used to control the ESC of the unmanned aerial vehicle to adjust the rotational speed of the motor and the blades of the unmanned aerial vehicle;
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor enables the processor to implement the flight control method provided in the foregoing embodiments.
  • the steps of the control method of the unmanned aerial vehicle are not limited to:
  • FIG. 9 is a schematic block diagram of an ESC provided by an embodiment of the present application.
  • the ESC includes one or more processors 701, and the one or more processors 701 work individually or collectively to execute the aforementioned control method of the UAV for the ESC.
  • the ESC further includes a memory 702 .
  • the processor 701 and the memory 702 are connected through a bus 703, and the bus 703 is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 701 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 702 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 702 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the processor 701 is configured to run the computer program stored in the memory 702, and implement the aforementioned control method of the unmanned aerial vehicle for ESC when executing the computer program.
  • the processor 701 is configured to run a computer program stored in the memory 702, and implement the following steps when executing the computer program:
  • the motor of the UAV is driven according to the ESC control data to drive the blades of the UAV to rotate.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, the computer program includes program instructions, and when the computer program is executed by a processor, the processor implements the The steps of the control method of the unmanned aerial vehicle for ESC provided by the above embodiments.

Abstract

一种无人飞行器的控制装置、控制方法、飞行控制器、电调和存储介质,其中控制装置(10)包括:电调(11),用于驱动电机(1121)带动桨叶(1122)转动;以及飞行控制器(12),用于控制电调(11)调节电机(1121)的转速;其中,飞行控制器(12)与电调(11)通过串行外设接口连接。能够降低无人飞行器控制电机转速的资源占用。

Description

无人飞行器及其控制装置、方法、飞行控制器、电调 技术领域
本申请涉及无人飞行器技术领域,尤其涉及无人飞行器及其控制装置、方法、飞行控制器、电调。
背景技术
在无人飞行器技术中,飞行控制器指的是无人飞行器的控制器,主要由陀螺仪(飞行姿态感知)、加速计、地磁感应、气压传感器(悬停控制)及控制电路组成。动力组件包括电机和电调,电调是控制电机转速及稳定电压的电子调速器。
无人飞行器是通过飞行控制器与电调之间通信,电调控制电机的转速,电机转动使得桨叶旋转,从而实现飞行。通常飞行控制器发送脉冲宽度调制(Pulse Width Modulation,PWM)信号、脉冲位置调制(Pulse Position Modulation,PPM)信号等模拟信号给电调,或者发送数字信号给电调,但是电调接收和根据数字信号控制电机的转速对电调的运算资源占用较高。
发明内容
本申请提供了一种无人飞行器及其控制装置、方法、飞行控制器、电调和存储介质,旨在降低无人飞行器控制电机转速的资源占用。
第一方面,本申请实施例提供了一种无人飞行器的控制装置,包括:
电调,用于驱动电机带动桨叶转动;以及
飞行控制器,用于控制所述电调调节所述电机的转速;
其中,所述飞行控制器与所述电调通过串行外设接口连接。
第二方面,本申请实施例提供了一种无人飞行器,包括:
机架;
动力组件,设置在所述机架上,包括电机和桨叶;
电调,用于驱动所述电机带动所述桨叶转动;以及
飞行控制器,用于控制所述电调调节所述电机的转速;
其中,所述飞行控制器与所述电调通过串行外设接口连接。
第三方面,本申请实施例提供了一种无人飞行器的控制方法,用于飞行控制器,包括:
确定电调控制数据,所述电调控制数据用于控制所述无人飞行器的电调调节所述无人飞行器的电机和桨叶的转速;
通过第一串行外设接口发送所述电调控制数据给所述无人飞行器的电调。
第四方面,本申请实施例提供了一种无人飞行器的控制方法,用于电调,包括:
通过第二串行外设接口从所述无人飞行器的飞行控制器获取电调控制数据;
根据所述电调控制数据驱动所述无人飞行器的电机带动所述无人飞行器的桨叶转动。
第五方面,本申请实施例提供了一种飞行控制器,包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
确定电调控制数据,所述电调控制数据用于控制所述电调调节无人飞行器的电机和桨叶的转速;
通过第一串行外设接口发送电调控制数据给所述无人飞行器的电调。
第六方面,本申请实施例提供了一种电调,包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
通过第二串行外设接口从无人飞行器的飞行控制器获取电调控制数据;
根据所述电调控制数据驱动所述无人飞行器的电机带动所述无人飞行器的桨叶转动。
第七方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的方法。
本申请实施例提供了一种无人飞行器及其控制装置、方法、飞行控制器、电调和存储介质,无人飞行器的飞行控制器与所述电调通过串行外设接口连接,可以降低飞行控制器和电调的运算资源占用,降低数据传输时延,电调的响应 速度较快,可以更及时准确的调整无人飞行器的位姿。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种无人飞行器的控制装置的示意性框图;
图2是本申请实施例提供的一种无人飞行器的结构示意图;
图3是飞行控制器和电调通过串行外设接口连接的示意图;
图4是串行外设接口传输数据时的时序示意图;
图5是本申请实施例提供的一种无人飞行器的结构示意图;
图6是本申请实施例提供的一种无人飞行器的控制方法的流程示意图;
图7是本申请另一实施例提供的一种无人飞行器的控制方法的流程示意图;
图8是本申请实施例提供的一种飞行控制器的示意性框图;
图9是本申请实施例提供的一种电调的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1和图2,图1是本申请实施例提供的一种无人飞行器100的控制装置10的示意图,图2是一实施方式中无人飞行器100的结构示意图。举例而言,无人飞行器100可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。
示例性的,如图2所示,无人飞行器100包括机架111、动力组件112以及控制装置10,其中动力组件112设置在机架111上。
示例性的,动力组件112包括电机1121和桨叶1122。具体的,电机1121可以是无人飞行器100中使用的任意类型的电机1121,在此不作具体限制。
如图1所示,无人飞行器100的控制装置10包括电调11和飞行控制器12,其中电调11用于驱动电机1121带动桨叶1122转动,飞行控制器12用于控制电调11调节电机1121的转速。其中电调11与电机1121通信连接,用于控制电机1121的工作状态。具体的,电机1121可以是现有无人机中使用的任意类型的电机1121,在此不作具体限制。电调11又可称为电子速度控制器(ESC,Electronic Speed Control)。
示例性的,飞行控制器12与电调11通讯连接。例如,飞行控制器12可以发送油门信号给电调11,电调11根据油门信号控制电机1121的转速,为无人飞行器100提供飞行动力。
示例性的,多旋翼无人机的所有电调11可以集成在一块电路板上,也可以是多块电调11电路板并分散在机架111的不同位置。举例而言,多旋翼无人机的多个电调11与多个电机1121一一对应,例如电调11可以与电机1121一体化设置。以四旋翼无人机为例,分别控制四个旋翼工作的四个电调11的电路板可以分散在机架111的左前方、右前方、左后方、右后方四个位置,或者全部集成在一块印刷电路板,这个印刷电路板可以是专门用于集成多旋翼无人机电调11的,也可以是多旋翼无人机的飞行控制板。
如图1所示,无人飞行器100的控制装置10包括:用于驱动电机1121带动桨叶1122转动的电调11,以及用于控制电调11调节电机1121的转速的飞行控制器12。
其中,飞行控制器12与电调11通过串行外设接口连接。
串行外设接口(Serial Peripheral interface,SPI)是一种高速的,全双工,同步的通信总线,并且可以只占用四根线,节约了芯片的管脚,同时可 以为PCB的布局节省空间。
在一些实施方式中,如图3所示,飞行控制器12包括第一串行外设接口102,电调11包括第二串行外设接口101,飞行控制器12的第一串行外设接口102连接一个或多个电调11各自的第二串行外设接口101。
示例性的,如图4所示为串行外设接口通信时的时序示意图。请结合图3,其中nCS表示飞行控制器12的第一串行外设接口102向电调11发送的片选信号,CLK表示飞行控制器12的第一串行外设接口102向电调11发送的时钟信号,MOSI表示飞行控制器12的第一串行外设接口102向电调11发送的数据,MISO表示飞行控制器12接收电调11的第一串行外设接口102发送的数据。
示例性的,飞行控制器12确定电调控制数据,电调控制数据用于控制电调11调节无人飞行器100的电机1121和桨叶1122的转速,以及通过第一串行外设接口102发送电调控制数据给无人飞行器100的电调11。
在一些实施方式中,飞行控制器12发送电调控制数据给电调11,电调11的第二串行外设接口101缓存电调控制数据,以及电调11根据电调控制数据调节电机1121的转速。
示例性的,飞行控制器12控制电调11时,通过第一串行外设接口102的片选端子向各电调11的第二串行外设接口101的片选端子输出片选信号,各电调11通过各自的第二串行外设接口101的片选端子均能获取飞行控制器12的第一串行外设接口102的片选端子输出的片选信号,使得飞行控制器12连接的电调11均可以同时接收到飞行控制器12的第一串行外设接口102向电调11发送的电调控制数据。
示例性的,飞行控制器12通过第一串行外设接口102的时钟端子向第二串行外设接口101的时钟端子输出时钟信号,以及通过第二串行外设接口101的时钟端子获取飞行控制器12的第一串行外设接口102的时钟端子输出的时钟信号。可以实现飞行控制器12和各电调11之间的时钟同步。
示例性的,电调11通过第二串行外设接口101从无人飞行器100的飞行控制器12获取电调控制数据,以及根据电调控制数据驱动无人飞行器100的电机1121带动无人飞行器100的桨叶1122转动。
示例性的,电调11的第二串行外设接口101缓存飞行控制器12发送的电调控制数据,电调11的控制器获取第二串行外设接口101缓存的电调控制数据。
示例性的,电调11具有一个串行移位寄存器,可以寄存飞行控制器12发送的电调控制数据。电调11的控制器可以读取该串行移位寄存器寄存的电调控制数据。
示例性的,电调11在接收电调控制数据时,由第二串行外设接口101(可以称为SPI外设)将电平信号转换成数值的电调控制数据,以及将电调控制数据放入先入先出的串行移位寄存器,电调11的控制器从串行移位寄存器读取电调控制数据即可根据电调控制数据驱动无人飞行器100的电机1121,可与有效节省电调11的控制器的运算资源。例如,相较于电调11的控制器通过计时器(timer)和直接存储器访问(Direct Memory Access,DMA)控制器获取飞行控制器12发送的电调控制数据,可以节省电调11的控制器的运算资源,防止电调11的控制器的运算资源不足,飞行控制器12和电调11之间数据传输的时延较低,电调11的响应速度较快。
在一些实施方式中,电调控制数据包括与电调11对应的控制字段,控制字段用于控制电调11调节电机1121的转速。
示例性的,控制字段根据电调11对应的电机1121的目标转速确定。可以理解的,飞行控制器12可以根据电调11对应的电机1121的目标转速确定控制字段。
示例性的,电调11对应的控制字段可以包括有符号数,符号可以用于指示电调11控制电机1121正转或反转,数值大小可以用于指示电机1121的转速大小,举例而言,该有符号数的长度为12bit(位),当然也可以为其他长度,电调11对应的控制字段越长,则速度调整的分辨率越高,速度控制可以更准确。
示例性的,电调11对应的控制字段还可以包括命令位,命令位用于指示电调11是否根据控制字段调节电机1121的转速。例如命令位为1时,电调11根据控制字段调节电机1121的转速;命令位为0时,电调11可以不根据控制字段调节电机1121的转速,例如可以控制电机1121维持当前转速。
举例而言,飞行控制器12还用于获取终端设备的控制指令和/或无人飞行器100的传感器数据,根据控制指令和/或传感器数据确定各电机1121的目标转速。
示例性的,飞行控制器12能够获取无人机的传感器的数据,传感器例如包括姿态传感器、拍摄装置、雷达、高度计等中的至少一种;飞行控制器12还可 以获取终端设备发送的遥控指令,飞行控制器12根据传感器的数据和/或遥控指令确定电机1121的目标转速,根据目标转速确定各电调11的电调控制数据,以控制无人机的位置和/或姿态。
示例性的,电调11的数目包括多个,电调控制数据包括多个控制字段,多个控制字段与多个电调11一一对应。可以理解的,对于任一电调11,电调控制数据中均有一个控制字段与该电调11对应。
示例性的,电调11包括电调11A、电调11B、电调11C、电调11D。电调控制数据的0至12位为电调11A对应的控制字段,电调控制数据的13至25位为电调11B对应的控制字段,电调控制数据的26至38位为电调11C对应的控制字段,电调控制数据的39至51位为电调11D对应的控制字段。
示例性的,电调11根据电调控制数据中的目标字段调节电机1121的转速,目标字段为与电调11对应的控制字段。
示例性的,预先指定电调11对应于电调控制数据中的哪个控制字段,如指定电调11C对应的控制字段为电调控制数据的26至38位,从而电调11可以确定电调控制数据中的目标字段,以及根据该目标字段调节电机1121的转速。
示例性的,电调11包括一个或多个驱动电路,驱动电路用于与电机1121一一对应连接。举例而言,电调11的控制器连接一个或多个驱动电路,用于控制驱动电路中开关元件的通断,以使驱动电路输出对应的驱动信号驱动电机1121转动。
示例性的,飞行控制器12用于控制电调11调节电机1121的当前转速,以使电机1121的当前转速达到目标转速。
在一些实施方式中,电调11能够确定连接的电机1121的电机参数。示例性的,电机1121的电机参数包括当前转速、电流、电压、温度中的至少一项。
示例性的,电调11连接一个或多个电机1121,可以通过检测电路确定对应电机1121的电机参数。电机参数可以用于指示电机1121的工作状态,以确定电机1121的当前转速与目标转速的关系、是否过流、过电压或者温度过高。
示例性的,电调11确定电调11连接的电机1121的电机参数,以及在通过第二串行外设接口101从无人飞行器100的飞行控制器12获取电调控制数据时,通过第二串行外设接口101将电机参数发送给飞行控制器12。从而飞行控制器12可以及时获取电调11的反馈量,如电机1121的当前转速,更好的实现闭环 控制,提高操控体验。
示例性的,飞行控制器12根据电调11发送的电机参数确定电机1121过流、过电压或者温度过高时可以确定电机1121异常时,可以控制无人飞行器100降落以防止无人飞行器100炸机。
示例性的,如图4所示,SPI协议的数据收发是同时进行的,基于飞行控制器12发出的时钟信号,飞行控制器12通过MOSI将数据发出;同时,电调11根据接收到的时钟信号,同步的将数据通过MISO发送给飞行控制器12。
示例性的,电调11可以将电机参数寄存在电调11的串行移位寄存器中,飞行控制器12在向电调11发送电调控制数据时,串行移位寄存器中的电机参数发送至飞行控制器12。由第二串行外设接口101(可以称为SPI外设)将电机参数转换成电平信号后发送给飞行控制器12,可与有效节省电调11的控制器的运算资源。
可以理解的,飞行控制器12通过第一串行外设接口102发送电调控制数据和接收电机参数时,也可以节省飞行控制器12的运算资源。
在一些实施方式中,飞行控制器12通过片选端子向多个电调11输出片选信号,飞行控制器12发出的电调控制数据,多个电调11均可以接收到,从而可以提高抗干扰能力。电调控制数据包括多个控制字段,电调11根据电调控制数据中的目标字段调节电机1121的转速,目标字段为与电调11对应的控制字段。
示例性的,飞行控制器12发送电调控制数据时,从一个电调11获取电调11对应电机1121的电机参数,以及根据电机参数控制电调11调节电机1121的转速。
示例性的,飞行控制器12在通过第一串行外设接口102发送电调控制数据时,通过第一串行外设接口102从一个电调11获取电调11对应电机1121的电机参数,以及根据电机参数控制电调11调节电机1121的转速。
示例性的,飞行控制器12和多个电调11通信时,每次只有一个电调11通过MISO向飞行控制器12发送电机参数。
示例性的,飞行控制器12可以根据预设顺序逐一获取各电调11的电机参数,以确定各电调11对应的电机1121的状态。
在一些实施方式中,飞行控制器12向电调11发送指示数据,指示数据用 于指示电调11是否发送对应电机1121的电机参数。电调11获取飞行控制器12发送的指示数据,以及根据飞行控制器12发送的指示数据,确定是否将对应电机1121的电机参数发送给飞行控制器12。
示例性的,指示数据用于指示需要发送电机参数的电调11,或者用于指示多个电调11各自是否需要发送电机参数。
举例而言,指示数据包括多个电调11对应的字段,各电调11根据对应的字段确定是否需要发送电机参数。例如,若指示数据为0001,则该指示数据用于指示电调11A将对应电机1121的电机参数发送给飞行控制器12,其他电调11不发送;若指示数据为0100,则该指示数据用于指示电调11C将对应电机1121的电机参数发送给飞行控制器12,其他电调11不发送。
举例而言,指示数据包括需要发送电机参数的电调11的标识(如ID),电调11根据标识可以确定是否发送电机参数。
示例性的,指示数据为飞行控制器12发送给电调11的电调控制数据中的预设字段。举例而言,电调控制数据的52至55位为指示数据,用于指示需要发送电机参数的电调11。
在一些实施方式中,电调控制数据还包括校验字段,电调11根据校验字段确定电调控制数据是否准确。可以防止干扰导致的速度调节不准确。
示例性的,电调控制数据的56至63位为校验字段。
在一些实施方式中,电调11发送电机参数时的数据包包括电调11的标识和电调11对应的电机1121的电机参数,以便飞行控制器12根据接收到的数据包确定对应的电调11。
示例性的,电调11A连接两个驱动电路,如连接电机1121A的驱动电路A和连接电机1121B的驱动电路B,则该电调11A向飞行控制器12发送的数据包的第一个字段(如第0至7位)为电调11A的标识,第二个字段(如第8至23位)为电机1121A的电机参数,第三个字段(如第24至31位)为电调11A的标识,第四个字段(如第32至47位)为电机1121B的电机参数。示例性的,电调11发送电机参数时的数据包也包括校验字段,飞行控制器12可以根据校验字段确定数据包是否准确。
本申请实施例提供的无人飞行器的控制装置,飞行控制器与所述电调通过串行外设接口连接,可以降低飞行控制器和电调的运算资源占用,降低数据传 输时延,电调的响应速度较快,可以更及时准确的调整无人飞行器的位姿。
请结合上述实施例参阅图5,图5是本申请实施例提供的无人飞行器100的结构示意图。
如图5所示,无人飞行器100包括:
机架111;
动力组件112,设置在机架111上,包括电机1121和桨叶1122;
电调11,用于驱动电机1121带动桨叶1122转动;以及
飞行控制器12,用于控制电调11调节电机1121的转速;
其中,飞行控制器12与电调11通过串行外设接口连接。
在一些实施方式中,飞行控制器12发送电调控制数据给电调11,电调11的串行外设接口缓存电调控制数据,以及电调11根据电调控制数据调节电机1121的转速。
示例性的,电调11根据电调控制数据中的目标字段调节电机1121的转速,目标字段为与电调11对应的控制字段。
示例性的,电调11的数目包括多个,电调控制数据包括多个控制字段,多个控制字段与多个电调11一一对应。
示例性的,控制字段根据电调11对应的电机1121的目标转速确定。
在一些实施方式中,电调11能够确定连接的电机1121的电机参数,飞行控制器12发送电调控制数据时,从一个电调11获取电调11对应电机1121的电机参数,以及根据电机参数控制电调11调节电机1121的转速。
示例性的,电机1121的电机参数包括当前转速、电流、电压、温度中的至少一项。
在一些实施方式中,飞行控制器12用于控制电调11调节电机1121的当前转速,以使电机1121的当前转速达到目标转速。
示例性的,电调11根据飞行控制器12发送的指示数据,确定是否将对应电机1121的电机参数发送给飞行控制器12。
示例性的,指示数据为飞行控制器12发送给电调11的电调控制数据中的预设字段。
示例性的,指示数据用于指示需要发送电机参数的电调11,或者用于指示多个电调11各自是否需要发送电机参数。
示例性的,电调控制数据还包括校验字段,电调11根据校验字段确定电调控制数据是否准确。
在一些实施方式中,如图3所示,飞行控制器12包括第一串行外设接口102,电调11包括第二串行外设接口101,飞行控制器12的第一串行外设接口102连接一个或多个电调11各自的第二串行外设接口101。
示例性的,飞行控制器12控制电调11时,第一串行外设接口102的片选端子向各电调11的第二串行外设接口101的片选端子输出片选信号,第一串行外设接口102的时钟端子向第二串行外设接口101的时钟端子输出时钟信号。
本申请实施例提供的无人飞行器的具体原理和实现方式均与前述实施例的无人飞行器的控制装置类似,此处不再赘述。
请结合上述实施例参阅图6,图6是本申请实施例提供的一种无人飞行器的控制方法的流程示意图。该无人飞行器的控制方法用于飞行控制器,用于控制无人飞行器的电机和桨叶的转速。
如图6所示,本申请实施例的无人飞行器的控制方法包括步骤S110至步骤S120。
S110、确定电调控制数据,所述电调控制数据用于控制所述无人飞行器的电调调节所述无人飞行器的电机和桨叶的转速;
S120、通过第一串行外设接口发送所述电调控制数据给所述无人飞行器的电调。
示例性的,所述电调控制数据包括与所述电调对应的控制字段,所述控制字段用于控制所述电调调节所述电机的转速。
示例性的,所述电调控制数据包括多个控制字段,所述多个控制字段与所述无人飞行器的多个电调一一对应。
示例性的,所述方法还包括:根据所述电调对应的电机的目标转速确定所述控制字段。
示例性的,所述方法还包括:在通过所述第一串行外设接口发送所述电调控制数据时,通过所述第一串行外设接口从一个电调获取所述电调对应电机的电机参数。
示例性的,所述确定电调控制数据,包括:根据所述电机参数确定电调控制数据。
示例性的,所述电机的电机参数包括当前转速、电流、电压、温度中的至少一项。
示例性的,所述方法还包括:向所述电调发送指示数据,所述指示数据用于指示所述电调是否发送对应电机的电机参数。
示例性的,所述指示数据为所述电调控制数据中的预设字段。
示例性的,所述指示数据用于指示需要发送所述电机参数的电调,或者用于指示多个所述电调各自是否需要发送所述电机参数。
示例性的,所述方法还包括:
通过所述第一串行外设接口的片选端子向各所述电调的第二串行外设接口的片选端子输出片选信号;
通过所述第一串行外设接口的时钟端子向所述第二串行外设接口的时钟端子输出时钟信号。
本申请实施例提供的无人飞行器的控制方法的具体原理和实现方式均与前述实施例的无人飞行器的控制装置类似,此处不再赘述。
请结合上述实施例参阅图7,图7是本申请实施例提供的一种无人飞行器的控制方法的流程示意图。该无人飞行器的控制方法用于无人飞行器的电调,用于控制无人飞行器的电机和桨叶的转速。
如图7所示,本申请实施例的无人飞行器的控制方法包括步骤S210至步骤S220。
S210、通过第二串行外设接口从所述无人飞行器的飞行控制器获取电调控制数据;
S220、根据所述电调控制数据驱动所述无人飞行器的电机带动所述无人飞行器的桨叶转动。
示例性的,所述通过第二串行外设接口从所述无人飞行器的飞行控制器获取电调控制数据,包括:
所述第二串行外设接口缓存所述飞行控制器发送的电调控制数据;
获取所述第二串行外设接口缓存的所述电调控制数据。
示例性的,所述根据所述电调控制数据驱动所述无人飞行器的电机带动所述无人飞行器的桨叶转动,包括:
根据所述电调控制数据中的目标字段调节所述电机的转速,所述目标字段 为与所述电调对应的控制字段。
示例性的,所述电调控制数据包括多个控制字段,且其中一个控制字段与所述电调对应。
示例性的,所述控制字段根据所述电调对应的电机的目标转速确定。
示例性的,所述方法还包括:
确定所述电调连接的电机的电机参数;
在通过所述第二串行外设接口从所述无人飞行器的飞行控制器获取电调控制数据时,通过所述第二串行外设接口将所述电机参数发送给所述飞行控制器。
示例性的,所述电机的电机参数包括当前转速、电流、电压、温度中的至少一项。
示例性的,所述方法还包括:
获取所述飞行控制器发送的指示数据;
根据所述指示数据确定是否发送对应电机的电机参数。
示例性的,所述指示数据为所述电调控制数据中的预设字段。
示例性的,所述指示数据用于指示需要发送所述电机参数的电调,或者用于指示多个所述电调各自是否需要发送所述电机参数。
示例性的,所述方法还包括:
通过所述第二串行外设接口的片选端子获取所述飞行控制器的第一串行外设接口的片选端子输出的片选信号;
通过所述第二串行外设接口的时钟端子获取所述飞行控制器的第一串行外设接口的时钟端子输出的时钟信号。
本申请实施例提供的无人飞行器的控制方法的具体原理和实现方式均与前述实施例的无人飞行器的控制装置类似,此处不再赘述。
请结合上述实施例参阅图8,图8是本申请实施例提供的飞行控制器600的示意性框图。
该飞行控制器包括一个或多个处理器601,一个或多个处理器601单独地或共同地工作,用于执行前述的用于飞行控制器的无人飞行器的控制方法。
示例性的,终端设备600还包括存储器602。
示例性的,处理器601和存储器602通过总线603连接,该总线603比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器601可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器602可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器601用于运行存储在存储器602中的计算机程序,并在执行所述计算机程序时实现前述的用于飞行控制器的无人飞行器的控制方法。
示例性的,所述处理器601用于运行存储在存储器602中的计算机程序,并在执行所述计算机程序时实现如下步骤:
确定电调控制数据,所述电调控制数据用于控制所述无人飞行器的电调调节无人飞行器的电机和桨叶的转速;
通过第一串行外设接口发送所述电调控制数据给所述无人飞行器的电调。
本申请实施例提供的飞行控制器的具体原理和实现方式均与前述实施例的用于飞行控制器的无人飞行器的控制方法类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述实施例提供的用于飞行控制器的无人飞行器的控制方法的步骤。
请参阅图9,图9是本申请实施例提供的电调的示意性框图。
该电调包括一个或多个处理器701,一个或多个处理器701单独地或共同地工作,用于执行前述的用于电调的无人飞行器的控制方法。
示例性的,电调还包括存储器702。
示例性的,处理器701和存储器702通过总线703连接,该总线703比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器701可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器702可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器701用于运行存储在存储器702中的计算机程序,并在执行所述计算机程序时实现前述的用于电调的无人飞行器的控制方法。
示例性的,所述处理器701用于运行存储在存储器702中的计算机程序,并在执行所述计算机程序时实现如下步骤:
通过第二串行外设接口从无人飞行器的飞行控制器获取电调控制数据;
根据所述电调控制数据驱动所述无人飞行器的电机带动所述无人飞行器的桨叶转动。
本申请实施例提供的电调的具体原理和实现方式均与前述实施例的用于电调的无人飞行器的控制方法类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述计算机程序被处理器执行时使所述处理器实现上述实施例提供的用于电调的无人飞行器的控制方法的步骤。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (52)

  1. 一种无人飞行器的控制装置,其特征在于,包括:
    电调,用于驱动电机带动桨叶转动;以及
    飞行控制器,用于控制所述电调调节所述电机的转速;
    其中,所述飞行控制器与所述电调通过串行外设接口连接。
  2. 根据权利要求1所述的控制装置,其特征在于,所述飞行控制器发送电调控制数据给所述电调,所述电调的串行外设接口缓存所述电调控制数据,以及所述电调根据所述电调控制数据调节所述电机的转速。
  3. 根据权利要求2所述的控制装置,其特征在于,所述电调根据所述电调控制数据中的目标字段调节所述电机的转速,所述目标字段为与所述电调对应的控制字段。
  4. 根据权利要求3所述的控制装置,其特征在于,所述电调的数目包括多个,所述电调控制数据包括多个控制字段,所述多个控制字段与多个所述电调一一对应。
  5. 根据权利要求3或4所述的控制装置,其特征在于,所述控制字段根据所述电调对应的电机的目标转速确定。
  6. 根据权利要求1-5中任一项所述的控制装置,其特征在于,所述电调能够确定连接的电机的电机参数,所述飞行控制器发送电调控制数据时,从一个电调获取所述电调对应电机的电机参数,以及根据所述电机参数控制所述电调调节所述电机的转速。
  7. 根据权利要求6所述的控制装置,其特征在于,所述电机的电机参数包括当前转速、电流、电压、温度中的至少一项。
  8. 根据权利要求1-7中任一项所述的控制装置,其特征在于,所述飞行控制器用于控制所述电调调节所述电机的当前转速,以使所述电机的当前转速达到目标转速。
  9. 根据权利要求6-8中任一项所述的控制装置,其特征在于,所述电调根据所述飞行控制器发送的指示数据,确定是否将对应电机的电机参数发送给所述飞行控制器。
  10. 根据权利要求9所述的控制装置,其特征在于,所述指示数据为所述飞行控制器发送给所述电调的电调控制数据中的预设字段。
  11. 根据权利要求9或10所述的控制装置,其特征在于,所述指示数据用于指示需要发送所述电机参数的电调,或者用于指示多个所述电调各自是否需要发送所述电机参数。
  12. 根据权利要求2-5、10-11中任一项所述的控制装置,其特征在于,所述电调控制数据还包括校验字段,所述电调根据所述校验字段确定所述电调控制数据是否准确。
  13. 根据权利要求1-12中任一项所述的控制装置,其特征在于,所述飞行控制器包括第一串行外设接口,所述电调包括第二串行外设接口,所述飞行控制器的第一串行外设接口连接一个或多个电调各自的第二串行外设接口。
  14. 根据权利要求13所述的控制装置,其特征在于,所述飞行控制器控制所述电调时,所述第一串行外设接口的片选端子向各所述电调的第二串行外设接口的片选端子输出片选信号,所述第一串行外设接口的时钟端子向所述第二串行外设接口的时钟端子输出时钟信号。
  15. 一种无人飞行器,其特征在于,包括:
    机架;
    动力组件,设置在所述机架上,包括电机和桨叶;
    电调,用于驱动所述电机带动所述桨叶转动;以及
    飞行控制器,用于控制所述电调调节所述电机的转速;
    其中,所述飞行控制器与所述电调通过串行外设接口连接。
  16. 根据权利要求15所述的无人飞行器,其特征在于,所述飞行控制器发送电调控制数据给所述电调,所述电调的串行外设接口缓存所述电调控制数据,以及所述电调根据所述电调控制数据调节所述电机的转速。
  17. 根据权利要求16所述的无人飞行器,其特征在于,所述电调根据所述电调控制数据中的目标字段调节所述电机的转速,所述目标字段为与所述电调对应的控制字段。
  18. 根据权利要求17所述的无人飞行器,其特征在于,所述电调的数目包括多个,所述电调控制数据包括多个控制字段,所述多个控制字段与多个所述电调一一对应。
  19. 根据权利要求17或18所述的无人飞行器,其特征在于,所述控制字段根据所述电调对应的电机的目标转速确定。
  20. 根据权利要求15-19中任一项所述的无人飞行器,其特征在于,所述电调能够确定连接的电机的电机参数,所述飞行控制器发送电调控制数据时,从一个电调获取所述电调对应电机的电机参数,以及根据所述电机参数控制所述电调调节所述电机的转速。
  21. 根据权利要求20所述的无人飞行器,其特征在于,所述电机的电机参数包括当前转速、电流、电压、温度中的至少一项。
  22. 根据权利要求15-21中任一项所述的无人飞行器,其特征在于,所述飞行控制器用于控制所述电调调节所述电机的当前转速,以使所述电机的当前转速达到目标转速。
  23. 根据权利要求20-22中任一项所述的无人飞行器,其特征在于,所述电调根据所述飞行控制器发送的指示数据,确定是否将对应电机的电机参数发送给所述飞行控制器。
  24. 根据权利要求23所述的无人飞行器,其特征在于,所述指示数据为所述飞行控制器发送给所述电调的电调控制数据中的预设字段。
  25. 根据权利要求23或24所述的无人飞行器,其特征在于,所述指示数据用于指示需要发送所述电机参数的电调,或者用于指示多个所述电调各自是否需要发送所述电机参数。
  26. 根据权利要求16-19、24-25中任一项所述的无人飞行器,其特征在于,所述电调控制数据还包括校验字段,所述电调根据所述校验字段确定所述电调控制数据是否准确。
  27. 根据权利要求15-26中任一项所述的无人飞行器,其特征在于,所述飞行控制器包括第一串行外设接口,所述电调包括第二串行外设接口,所述飞行控制器的第一串行外设接口连接一个或多个电调各自的第二串行外设接口。
  28. 根据权利要求27所述的无人飞行器,其特征在于,所述飞行控制器控制所述电调时,所述第一串行外设接口的片选端子向各所述电调的第二串行外设接口的片选端子输出片选信号,所述第一串行外设接口的时钟端子向所述第二串行外设接口的时钟端子输出时钟信号。
  29. 一种无人飞行器的控制方法,其特征在于,用于飞行控制器,包括:
    确定电调控制数据,所述电调控制数据用于控制所述无人飞行器的电调调节所述无人飞行器的电机和桨叶的转速;
    通过第一串行外设接口发送所述电调控制数据给所述无人飞行器的电调。
  30. 根据权利要求29所述的控制方法,其特征在于,所述电调控制数据包括与所述电调对应的控制字段,所述控制字段用于控制所述电调调节所述电机的转速。
  31. 根据权利要求30所述的控制方法,其特征在于,所述电调控制数据包括多个控制字段,所述多个控制字段与所述无人飞行器的多个电调一一对应。
  32. 根据权利要求30或31所述的控制方法,其特征在于,所述方法还包括:
    根据所述电调对应的电机的目标转速确定所述控制字段。
  33. 根据权利要求29-32中任一项所述的控制方法,其特征在于,所述方法还包括:
    在通过所述第一串行外设接口发送所述电调控制数据时,通过所述第一串行外设接口从一个电调获取所述电调对应电机的电机参数;
    所述确定电调控制数据,包括:
    根据所述电机参数确定电调控制数据。
  34. 根据权利要求33所述的控制方法,其特征在于,所述电机的电机参数包括当前转速、电流、电压、温度中的至少一项。
  35. 根据权利要求33所述的控制方法,其特征在于,所述方法还包括:
    向所述电调发送指示数据,所述指示数据用于指示所述电调是否发送对应电机的电机参数。
  36. 根据权利要求35所述的控制方法,其特征在于,所述指示数据为所述电调控制数据中的预设字段。
  37. 根据权利要求35或36所述的控制方法,其特征在于,所述指示数据用于指示需要发送所述电机参数的电调,或者用于指示多个所述电调各自是否需要发送所述电机参数。
  38. 根据权利要求29-37中任一项所述的控制方法,其特征在于,所述方法还包括:
    通过所述第一串行外设接口的片选端子向各所述电调的第二串行外设接口的片选端子输出片选信号;
    通过所述第一串行外设接口的时钟端子向所述第二串行外设接口的时钟端子输出时钟信号。
  39. 一种无人飞行器的控制方法,其特征在于,用于电调,包括:
    通过第二串行外设接口从所述无人飞行器的飞行控制器获取电调控制数据;
    根据所述电调控制数据驱动所述无人飞行器的电机带动所述无人飞行器的桨叶转动。
  40. 根据权利要求39所述的控制方法,其特征在于,所述通过第二串行外设接口从所述无人飞行器的飞行控制器获取电调控制数据,包括:
    所述第二串行外设接口缓存所述飞行控制器发送的电调控制数据;
    获取所述第二串行外设接口缓存的所述电调控制数据。
  41. 根据权利要求39所述的控制方法,其特征在于,所述根据所述电调控制数据驱动所述无人飞行器的电机带动所述无人飞行器的桨叶转动,包括:
    根据所述电调控制数据中的目标字段调节所述电机的转速,所述目标字段为与所述电调对应的控制字段。
  42. 根据权利要求41所述的控制方法,其特征在于,所述电调控制数据包括多个控制字段,且其中一个控制字段与所述电调对应。
  43. 根据权利要求41或42所述的控制方法,其特征在于,所述控制字段根据所述电调对应的电机的目标转速确定。
  44. 根据权利要求39-43中任一项所述的控制方法,其特征在于,所述方法还包括:
    确定所述电调连接的电机的电机参数;
    在通过所述第二串行外设接口从所述无人飞行器的飞行控制器获取电调控制数据时,通过所述第二串行外设接口将所述电机参数发送给所述飞行控制器。
  45. 根据权利要求44所述的控制方法,其特征在于,所述电机的电机参数包括当前转速、电流、电压、温度中的至少一项。
  46. 根据权利要求44所述的控制方法,其特征在于,所述方法还包括:
    获取所述飞行控制器发送的指示数据;
    根据所述指示数据确定是否发送对应电机的电机参数。
  47. 根据权利要求46所述的控制方法,其特征在于,所述指示数据为所述电调控制数据中的预设字段。
  48. 根据权利要求46或47所述的控制方法,其特征在于,所述指示数据用于指示需要发送所述电机参数的电调,或者用于指示多个所述电调各自是否需要发送所述电机参数。
  49. 根据权利要求39-48中任一项所述的控制方法,其特征在于,所述方法还包括:
    通过所述第二串行外设接口的片选端子获取所述飞行控制器的第一串行外设接口的片选端子输出的片选信号;
    通过所述第二串行外设接口的时钟端子获取所述飞行控制器的第一串行外设接口的时钟端子输出的时钟信号。
  50. 一种飞行控制器,其特征在于,包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
    确定电调控制数据,所述电调控制数据用于控制所述无人飞行器的电调调节无人飞行器的电机和桨叶的转速;
    通过第一串行外设接口发送所述电调控制数据给所述无人飞行器的电调。
  51. 一种电调,其特征在于,包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
    通过第二串行外设接口从无人飞行器的飞行控制器获取电调控制数据;
    根据所述电调控制数据驱动所述无人飞行器的电机带动所述无人飞行器的桨叶转动。
  52. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现:
    如权利要求29-38中任一项所述的无人飞行器的控制方法;或者
    如权利要求39-49中任一项所述的无人飞行器的控制方法。
PCT/CN2021/078500 2021-03-01 2021-03-01 无人飞行器及其控制装置、方法、飞行控制器、电调 WO2022183330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078500 WO2022183330A1 (zh) 2021-03-01 2021-03-01 无人飞行器及其控制装置、方法、飞行控制器、电调

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078500 WO2022183330A1 (zh) 2021-03-01 2021-03-01 无人飞行器及其控制装置、方法、飞行控制器、电调

Publications (1)

Publication Number Publication Date
WO2022183330A1 true WO2022183330A1 (zh) 2022-09-09

Family

ID=83153742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078500 WO2022183330A1 (zh) 2021-03-01 2021-03-01 无人飞行器及其控制装置、方法、飞行控制器、电调

Country Status (1)

Country Link
WO (1) WO2022183330A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7778744B2 (en) * 2006-04-20 2010-08-17 Honeywell International Inc. Avionics framework
WO2013000035A1 (en) * 2011-06-29 2013-01-03 Orbital Australia Pty Limited Method of controlling operation of an unmanned aerial vehicle
CN103744812A (zh) * 2013-12-30 2014-04-23 深圳市广和通实业发展有限公司 Gps模块控制系统和方法
CN107111320A (zh) * 2016-12-28 2017-08-29 深圳市大疆创新科技有限公司 无人机及其控制系统与控制方法、电调及其控制方法
CN108494292A (zh) * 2018-05-02 2018-09-04 深圳市道通智能航空技术有限公司 电机控制方法和装置
CN108664036A (zh) * 2018-07-03 2018-10-16 安徽太通信科技有限公司 一种无人机控制系统及无人机控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7778744B2 (en) * 2006-04-20 2010-08-17 Honeywell International Inc. Avionics framework
WO2013000035A1 (en) * 2011-06-29 2013-01-03 Orbital Australia Pty Limited Method of controlling operation of an unmanned aerial vehicle
CN103744812A (zh) * 2013-12-30 2014-04-23 深圳市广和通实业发展有限公司 Gps模块控制系统和方法
CN107111320A (zh) * 2016-12-28 2017-08-29 深圳市大疆创新科技有限公司 无人机及其控制系统与控制方法、电调及其控制方法
CN108494292A (zh) * 2018-05-02 2018-09-04 深圳市道通智能航空技术有限公司 电机控制方法和装置
CN108664036A (zh) * 2018-07-03 2018-10-16 安徽太通信科技有限公司 一种无人机控制系统及无人机控制方法

Similar Documents

Publication Publication Date Title
US10732601B2 (en) Integrated controller for motion control and motor control
EP2000007B1 (en) Pulse width modulation based led dimmer control
US20060106962A1 (en) USB On-The-Go implementation
US7992019B2 (en) System device including NIC and power-saving controlling method of the same
EP2645262A1 (en) Usb device and detection method therefor
US11110607B2 (en) Servo output shaft rotational angle calibration method and system and robot using the same
CN106878613B (zh) 数据通信装置、方法及无人机
CN104950902A (zh) 多旋翼飞行器的控制方法及多旋翼飞行器
US20050060587A1 (en) Method and system for providing power management for an integrated gigabit Ethernet controller
WO2019024570A1 (zh) 一种数字舵机及其控制方法
WO2018195771A1 (zh) 用于驱动电机转动的控制方法、电子调速器、动力套装和无人飞行器
CN110254696B (zh) 无人机模式切换控制方法、装置,存储介质及电子设备
WO2022183330A1 (zh) 无人飞行器及其控制装置、方法、飞行控制器、电调
WO2018095159A1 (zh) 一种无人机及其控制方法
US8639851B2 (en) Serial bit processor
KR20160015014A (ko) 모터 드라이브 시스템
WO2018059326A1 (zh) 飞行器电机控制方法、装置及系统
WO2020187092A1 (zh) 一种无人机控制装置和无人机
WO2022094894A1 (zh) 电机的检测方法、控制、电调、动力装置和可移动平台
CN210742712U (zh) 三轴运动控制器及医疗设备
CN108972566B (zh) 一种机器人手爪模组运动控制系统
CN107294430A (zh) 一种新型电机控制系统
WO2021212520A1 (zh) 电机的控制方法、装置、设备及存储介质
WO2017124432A1 (zh) 信号线复用处理方法、无人飞行器、电子调速器及其mcu
CN109887259B (zh) 一种单线传输装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928421

Country of ref document: EP

Kind code of ref document: A1