WO2019210479A1 - 剪切波弹性成像方法及超声成像设备 - Google Patents

剪切波弹性成像方法及超声成像设备 Download PDF

Info

Publication number
WO2019210479A1
WO2019210479A1 PCT/CN2018/085461 CN2018085461W WO2019210479A1 WO 2019210479 A1 WO2019210479 A1 WO 2019210479A1 CN 2018085461 W CN2018085461 W CN 2018085461W WO 2019210479 A1 WO2019210479 A1 WO 2019210479A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
motion
motion parameter
processor
ultrasonic
Prior art date
Application number
PCT/CN2018/085461
Other languages
English (en)
French (fr)
Inventor
李双双
许梦玲
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201880060622.XA priority Critical patent/CN111093522B/zh
Priority to PCT/CN2018/085461 priority patent/WO2019210479A1/zh
Priority to CN202310259141.4A priority patent/CN116269499A/zh
Publication of WO2019210479A1 publication Critical patent/WO2019210479A1/zh
Priority to US17/087,496 priority patent/US11925503B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data

Definitions

  • the present application relates to the field of medical ultrasound imaging, and in particular to a shear wave elastic imaging method and an ultrasound imaging apparatus.
  • Ultrasound elastography is one of the hotspots of clinical research in recent years. It mainly reflects the elasticity and softness of tissues. It has been applied more and more in the auxiliary detection of cancerous lesions, benign and malignant discrimination and prognosis evaluation. According to different imaging principles, ultrasound elastography is mainly divided into two categories: one is strain-type elastic imaging technology, and the other is shear wave elastic imaging technology.
  • the strain-type elastography method mainly produces a certain deformation by pressing the tissue by the probe, and then calculates and images the parameters related to the tissue elasticity such as strain and strain rate, and indirectly reflects the elasticity difference between different tissues. Since the strain parameters are sensitive to pressure, the pressure applied by the probe in this method needs to be as uniform as possible, which places high demands on the operator's technique.
  • the shear wave elastography method mainly reflects the difference in hardness between tissues by generating a shear wave propagation inside the tissue and detecting its propagation parameters (such as propagation speed) for imaging. This type of elastography has improved stability and repeatability because it no longer relies on the operator's specific pressure on the tissue, and quantitative measurements make the diagnosis of the doctor more convenient and objective.
  • the amplitude of the vibration of the shear wave generated in the human tissue is usually small (for example, several um-hundreds of um) and the attenuation is fast, the interference of the motion during the imaging process It is very likely to cause artifacts, resulting in measurement failure or inaccurate measurement values.
  • the embodiment of the present application provides a shear wave elastic imaging method and an ultrasonic imaging device, which provide parameters or images related to tissue motion while providing parameters or images related to tissue elasticity, so that the user can obtain more accurate elastic results. .
  • a first aspect of the embodiments of the present application provides a shear wave elastography method, the method comprising:
  • the elastic parameter and the motion parameter are displayed.
  • a second aspect of the embodiments of the present application provides a shear wave elastic imaging method, the method comprising:
  • the shear wave elastography process includes:
  • a third aspect of the embodiments of the present application provides a shear wave elastic imaging method, the method comprising:
  • Performing a shear wave elastography process wherein the shear wave elastography process includes transmitting a first ultrasonic wave to a target area of the object to be tracked to track a shear wave propagating within the target area, and receiving the first return from the target area An ultrasonic echo of the ultrasonic wave to obtain first echo data and determine an elastic parameter of the target region based on the first echo data;
  • the motion parameter and the second preset condition are compared, and when the motion parameter satisfies the second preset condition, the shear wave elastography process is stopped.
  • a fourth aspect of the embodiments of the present application provides an ultrasound imaging apparatus, the ultrasound imaging apparatus comprising:
  • a transmit/receive sequence controller that activates the ultrasonic probe to transmit a first ultrasonic wave to a target area of the object to be tracked to track a shear wave propagating within the target area; and receive a return from the target area The ultrasonic echo of the first ultrasonic wave to obtain first echo data;
  • a processor that determines an elasticity parameter of the target region according to the first echo data; and acquires a motion parameter that characterizes motion of the target region;
  • a display that displays the elasticity parameter and the motion parameter.
  • a fifth aspect of the embodiments of the present application provides an ultrasound imaging apparatus, the ultrasound imaging apparatus comprising:
  • the processor acquires a motion parameter that characterizes a motion of the target region of the measured object; compares the motion parameter with a third preset condition, and initiates a shear wave elastography process when the motion parameter satisfies the third preset condition;
  • the shear wave elastography process includes:
  • the ultrasonic probe Exciting the ultrasonic probe to emit a first ultrasonic wave to a target area of the object to be measured by the transmitting/receiving sequence controller to track a shear wave propagating in the target area; and receiving the first ultrasonic wave returned from the target area
  • the ultrasonic echo obtains first echo data; and determines an elastic parameter of the target region based on the first echo data.
  • a sixth aspect of the embodiments of the present application provides an ultrasound imaging apparatus, the ultrasound imaging apparatus comprising:
  • the processor performs a shear wave elastography process, wherein the shear wave elastography process includes: exciting, by the transmit/receive sequence controller, the ultrasonic probe to transmit a first ultrasonic wave to a target area of the measured object to track the target area An internally propagated shear wave, receiving an ultrasonic echo of the first ultrasonic wave returned from the target region to obtain first echo data, and determining an elasticity parameter of the target region based on the first echo data;
  • the processor acquires a motion parameter characterizing the motion of the target region; and compares the motion parameter with the second preset condition, and stops performing the shear wave elastography process when the motion parameter satisfies the second preset condition.
  • the ultrasound imaging apparatus transmits a first ultrasonic wave to a target area of the measured object to track a shear wave propagating in the target area, and receive the first ultrasonic wave returned from the target area.
  • Acoustic echo to obtain first echo data; thereby determining an elasticity parameter of the target region according to the first echo data; meanwhile, the ultrasound imaging device acquires a motion parameter characterizing the motion of the target region, and displays the elasticity parameter and the Motion parameters. Therefore, in shear wave elastography, the user can consider the motion parameters and the elastic parameters, for example, to determine the degree of reliability of the elastic parameters collected when the motion amplitude is small, thereby screening out more accurate elastic results.
  • FIG. 1 is a schematic structural view of an ultrasonic imaging apparatus provided by the present application.
  • FIG. 2 is a schematic flow chart of a shear wave elastic imaging method provided by the present application.
  • FIG. 3 is a schematic diagram of monitoring human physiological parameters provided by the present application.
  • FIG. 4 is a schematic diagram of a breathing curve of a human body during normal breathing according to the present application.
  • FIG. 5 is a schematic diagram of a breathing curve of a human body while holding a breath according to the present application
  • FIG. 6 is a schematic diagram of detecting a tissue motion displacement sequence provided by the present application.
  • FIG. 7 is a schematic diagram of a displacement detecting method provided by the present application.
  • FIG. 8 is another schematic flow chart of a shear wave elastic imaging method provided by the present application.
  • FIG. 9 is another schematic flow chart of the shear wave elastic imaging method provided by the present application.
  • FIG. 1 is a block diagram showing the structure of an ultrasonic imaging apparatus 10 in an embodiment of the present application.
  • the ultrasound imaging apparatus 10 may include an ultrasound probe 100, a transmit/receive selection switch 101, a transmit/receive sequence controller 102, a processor 103, and a display 104.
  • the transmit/receive sequence controller 102 can excite the ultrasonic probe 100 to transmit ultrasonic waves to the target area, and can also control the ultrasonic probe 100 to receive ultrasonic echoes returned from the target area to obtain ultrasonic echo signals/data.
  • the processor 103 processes the ultrasonic echo signals/data to obtain tissue-related parameters and ultrasound images of the target area.
  • the ultrasound images obtained by processor 103 can be stored in memory 105, which can be displayed on display 104.
  • the display 104 of the ultrasonic imaging device 10 may be a touch display screen, a liquid crystal display, or the like, or may be an independent display device such as a liquid crystal display or a television independent of the ultrasonic imaging device 10 . It is a display on electronic devices such as mobile phones and tablets.
  • the memory 105 of the foregoing ultrasound imaging apparatus 10 may be a flash memory card, a solid state memory, a hard disk, or the like.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores a plurality of program instructions, and after the plurality of program instructions are executed by the processor 103, the scissors in various embodiments of the present application may be executed. Part or all of the steps in the shear wave elastography or any combination of the steps therein.
  • the computer readable storage medium can be a memory 105, which can be a nonvolatile storage medium such as a flash memory card, solid state memory, hard disk, or the like.
  • the processor 103 of the foregoing ultrasound imaging apparatus 10 may be implemented by software, hardware, firmware, or a combination thereof, and may use a circuit, a single or multiple application specific integrated circuits (ASICs), a single or a plurality of general purpose integrated circuits, single or multiple microprocessors, single or multiple programmable logic devices, or a combination of the foregoing circuits or devices, or other suitable circuits or devices such that the processor 103 can perform the various implementations described above The corresponding steps of the shear wave elastography method in the example.
  • ASICs application specific integrated circuits
  • a shear wave elastic imaging method provided by the embodiment of the present application is applied to the ultrasonic imaging device 10 , and is particularly suitable for including a touch display.
  • the screen ultrasound imaging device 10 is operable to input a touch screen operation using a touch touch display.
  • the ultrasonic imaging apparatus 10 can generate an elastic image using ultrasonic echo data, and can also generate a conventional ultrasonic B image or a Doppler image or the like using the ultrasonic echo data.
  • Embodiments of the shear wave elastography method in the present application include:
  • the ultrasonic imaging apparatus 10 excites the ultrasonic probe 100 to emit a first ultrasonic wave to a target area of the object to be measured by the transmitting/receiving sequence controller 102 to track the shear wave propagating in the target area.
  • the target area can be determined according to the requirements of the elastic measurement, and the determination manner can be determined by using various conventional imaging detection methods such as conventional two-dimensional B-mode imaging, conventional elastic imaging E mode, and the like, or can be selected according to the detection requirements.
  • the number of the target areas may be one or more.
  • the respective longitudinal depths or lateral positions of the plurality of target areas may be different.
  • the shear wave can be generated using external vibrations, such as using external vibrations to generate shear waves into the deep tissue of the target area.
  • an ultrasonic pulse acoustic radiation force effect may be used to generate a shear wave inside the tissue of the target region; or a physiological motion (for example, a heart beat, a blood vessel beat, etc.) in the measured object may be utilized to generate a shear wave; Etc., not described in detail here.
  • This specification is only a brief description of one of the more common methods: ultrasonic shear wave elastography based on acoustic radiation force.
  • the ultrasonic shear wave elastography with acoustic radiation force, the shear wave propagating in the target region can be excited by the transmitting/receiving sequence controller 102 of the present embodiment to transmit the ultrasonic probe 100 to the tissue for a specific waveform, length, and specific frequency.
  • An ultrasonic pulse that produces an acoustic radiation force effect inside the tissue which in turn produces shear waves that propagate through the tissue.
  • a series of ultrasound waves are then transmitted to the tissue for tracking the propagation of the shear waves described above in the tissue. It is also possible to transmit an ultrasonic pulse of a specific waveform, length, and specific frequency to the tissue by other ultrasonic devices, and the same effect can be achieved based on the acoustic radiation force effect generated by the ultrasonic pulse.
  • the processor 103 controls the ultrasound probe 100 to receive the ultrasound echo of the first ultrasound wave returned from the target area by the transmission/reception sequence controller 102 to obtain first echo data.
  • the processor 103 processes the first echo data obtained in step 202, and can calculate the elasticity parameter of the target area.
  • shear wave propagation velocity and elastic modulus there is an approximate relationship between shear wave propagation velocity and elastic modulus:
  • c represents the shear wave velocity
  • represents the tissue density
  • E represents the Young's modulus value of the structure
  • G represents the shear modulus of the structure.
  • the greater the Young's modulus the greater the tissue stiffness. Therefore, the elastic parameters can reflect the hardness of the tissue.
  • the processor 103 acquires motion parameters that characterize the motion of the target region.
  • the motion parameters may include breathing parameters of the human body or motion displacements detected by ultrasound.
  • the processor 103 can detect the respiratory motion of the subject to obtain a breathing parameter.
  • the breathing parameter may be a voltage when the human body breathes through the electrode sheet, or a current, or a voltage change amount, a current change amount, or a change amount of the human lung capacity calculated by the voltage change amount or the current change amount.
  • a physiological signal can be extracted from an electrode piece of a specific part of the human body, and after a series of signal processing such as denoising amplification, a respiratory parameter characterizing the motion of the target area can be obtained.
  • the respiratory signals can be extracted through three electrode sheets (electrodes R, L, F in the figure). Other positions can be selected for the electrode sheets, and FIG. 3 is only for illustration.
  • the respiratory motion of the subject can be detected by the electrode sheet to measure the change in the chest electrical impedance during the breathing to obtain the breathing parameter.
  • the processor 103 can generate a breathing parameter curve according to the breathing parameter.
  • Other forms of graphics can also be generated, such as a histogram of respiratory parameters, images that characterize respiratory fluctuations, graphics, and the like, which are not specifically limited herein.
  • the display 104 can simultaneously display the above-mentioned breathing parameter curve and elastic parameters, as shown in FIG. 4, which is a schematic diagram of a breathing parameter curve when the human body is breathing normally. As shown in FIG. 5, it is a schematic diagram of a breathing parameter curve when the body is holding the breath. It can be seen that the vibration amplitude of the breathing parameter curve is reduced when the human body holds the breath. The user can choose to determine the confidence of the collected elastic parameters when the vibration amplitude is small, so as to filter out more accurate elastic results.
  • the position of the tissue at different times is recorded by using ultrasonic waves while the elastography is performed.
  • the position difference (ie, displacement) of the tissue at different times can be calculated, and The displacement related parameters are displayed. The user can choose to determine the confidence of the collected elastic parameters when the displacement is small, so as to filter out more accurate elastic results.
  • the ultrasonic imaging apparatus 10 needs to transmit ultrasonic waves for recording tissue position to the tissue through the ultrasonic probe 100 during the elastography process, and receive ultrasonic echoes returned from the tissue to obtain echo data.
  • the set of ultrasonic waves may directly multiplex the ultrasonic sequence of the first ultrasonic wave for detecting the shear wave displacement in the shear wave elastography described above, or may use a different ultrasonic sequence.
  • using an ultrasound sequence different from the ultrasound sequence of the first ultrasound wave may specifically include: the processor 103 may control the ultrasound probe 100 to transmit the second ultrasound wave to the target area, and receive the second ultrasound wave returned from the target area. An ultrasonic echo to obtain second echo data; obtaining at least two frames of ultrasound images of the target region based on the second echo data, thereby determining a displacement of tissue within the target region based on the at least two frames of ultrasound images.
  • the ultrasonic sequence of the first ultrasonic wave for detecting shear wave displacement in the shear wave elastography described above may also be multiplexed to detect the displacement of the target region.
  • the processor 103 obtains at least two frames of the ultrasound image of the target area according to the first echo data; and determines the displacement of the tissue in the target area according to the at least two frames of the ultrasound image.
  • the processor 103 can generate a motion displacement curve according to the displacement of the target area.
  • Other forms of graphics may also be generated, such as displacement amplitude distribution maps, displacement vector distribution maps, or images, graphs, and the like that characterize displacement changes, and are not specifically limited herein.
  • FIG. 6 a schematic diagram of separately detecting the tissue motion displacement sequence is given, and in FIG. 6, the sequence for detecting the tissue motion displacement is shown.
  • the ultrasonic sequence of the first ultrasonic wave for performing shear wave elastography to detect the shear wave displacement is separately transmitted and received.
  • the displacement when detecting the motion displacement of the tissue using the ultrasonic sequence generated by the ultrasonic wave, the displacement may be detected only for the tissue of a certain local position, or the displacement may be detected as a whole for the tissue within a large range. It is also possible to perform displacement detection for each local position within a large range of tissue.
  • determining the displacement of the tissue in the target area according to the at least two frames of the ultrasound image may include:
  • the displacement is determined according to the to-be-matched area and the matching area.
  • the embodiment of the method for determining the displacement of tissue in the target region based on at least two frames of ultrasound images can be referred to the following description.
  • the illustration shows the tissue echo signals (the first signal and the second signal in the figure) corresponding to the two frames of ultrasound images, and selects to be matched from the first signals.
  • the area A is then searched in the second signal, with the position where the two signals are most correlated as the matching area A' matching the above-mentioned area A to be matched.
  • the difference in position between A and A' is the displacement result of the motion.
  • the display can be performed in various ways. For example, the average displacement amplitude information of the tissue in the region of interest at different times is extracted and plotted as a curve along time to obtain a motion displacement curve. For example, the local displacement information of the tissue in the region of interest at different times is calculated and plotted as a displacement amplitude distribution map along time. For example, the local displacement information of the tissue in the region of interest at different times is calculated and plotted as a displacement vector distribution along the actual change.
  • the displacement vector can be represented by an arrow of a certain length, the direction of the arrow indicates the direction of displacement, and the length of the arrow indicates the displacement amplitude.
  • the displacement information in the region of interest at different times is calculated, and the hints are displayed in different colors according to the magnitude of the amplitude, the red hint is used within a certain range, and the green hint is used within a certain range.
  • the elasticity parameter and the motion parameter obtained by the processor 103 can be displayed simultaneously on the display 104 or separately.
  • the processor 103 may generate an elastic image according to the elastic parameter, or generate a moving image according to the motion parameter, and then control the display 104 to display the elastic image and the moving image.
  • the ultrasound imaging apparatus 10 controls the ultrasound probe 100 to emit a first ultrasonic wave to a target area of the object to be measured to track a shear wave propagating in the target area, and receive the ultrasound of the first ultrasonic wave returned from the target area. Echo obtaining the first echo data; thereby determining an elasticity parameter of the target region according to the first echo data; meanwhile, the ultrasound imaging device 10 acquires a motion parameter representing the motion of the target region by the processor 103, and displays the Elastic parameters and the motion parameters. Therefore, in shear wave elastography, the user can consider the motion parameters and the elastic parameters, for example, to determine the degree of reliability of the elastic parameters collected when the motion amplitude is small, thereby screening out more accurate elastic results.
  • the processor can also determine the degree of confidence of the elasticity parameter based on the obtained motion parameters. Further, the ultrasound imaging device 10 may further provide a corresponding prompt according to a preset motion threshold parameter or a motion threshold parameter that is actively set by the user.
  • the motion parameter and the first preset condition are compared, and when the motion parameter satisfies the first preset condition, determining an elastic parameter or an elasticity image obtained when the motion parameter satisfies the first preset condition With high confidence.
  • the motion parameter and the second preset condition are compared, and when the motion parameter satisfies the second preset condition, determining an elastic parameter or an elasticity image obtained when the motion parameter satisfies the second preset condition Has low confidence.
  • the first preset condition may be set according to the type of the motion parameter.
  • the above mentioned breathing parameter may be a voltage when the human body breathes through the electrode piece, or a current, or a voltage change amount, a current change amount, or a change in the voltage change or current.
  • the amount of change in human lung capacity calculated.
  • the first preset condition may be a first preset value, and when the voltage is less than the first preset value, determining that the elasticity parameter or the elasticity image obtained at the moment has high reliability.
  • the second preset condition may be a second preset value.
  • the first preset condition may be a third preset value, and when the current is greater than the third preset value, determining that the elastic parameter or the elasticity image obtained at this moment has high reliability.
  • the second preset condition may be a fourth preset value. When the current is less than the fourth preset value, determining that the elastic parameter or the elasticity image obtained at this moment has low reliability.
  • the first preset condition may be a fifth preset value, and when the displacement is less than the fifth preset value, determining that the elasticity parameter or the elasticity image obtained at the moment has high reliability.
  • the second preset condition may be a sixth preset value. When the displacement is greater than the sixth preset value, determining that the elastic parameter or the elasticity image obtained at this moment has low reliability.
  • the ultrasound imaging apparatus 10 may output a corresponding prompt.
  • the form of the prompt may be a voice, a text, a dialog box, a graphic, a highlight, or an area in which the elastic parameter/elastic image is displayed in a specific color, and the like, which is not limited herein.
  • the present application also provides a shear wave elastography method.
  • the ultrasonic imaging device 10 is applicable to the method. Referring to FIG. 8, the method includes:
  • step 204 can be understood by referring to the description of step 204 in the foregoing embodiment, and details are not described herein again.
  • the processor 103 can determine a start or stop condition of the shear wave elastography process based on the obtained motion parameters.
  • the processor 103 compares the motion parameter with the fourth preset condition, and when the motion parameter satisfies the fourth preset condition, stops performing the shear wave elastography process.
  • the third preset condition may be set according to the type of the motion parameter.
  • the above mentioned breathing parameter may be a voltage when the human body breathes through the electrode piece, or a current, or a voltage change amount, a current change amount, or a change in the voltage change or current. The amount of change in human lung capacity calculated.
  • the third preset condition may be a seventh preset value, and when the voltage is less than the seventh preset value, determining to start the shear wave elastography process.
  • the fourth preset condition may be an eighth preset value, and when the voltage is greater than the eighth preset value, determining to stop performing the shear wave elastography process.
  • the third preset condition may be a ninth preset value, and when the current is greater than the ninth preset value, determining to start the shear wave elastography process.
  • the fourth preset condition may be a tenth preset value, and when the current is less than the tenth preset value, determining to stop performing the shear wave elastography process.
  • the third preset condition may be an eleventh preset value, and when the displacement is less than the eleventh preset value, determining to start the shear wave elastography process.
  • the fourth preset condition may be a twelfth preset value, and when the displacement is greater than the twelfth preset value, determining to stop performing the shear wave elastography process.
  • the shear wave elastography process includes:
  • the present application also provides a shear wave elastography method, which is applied to the ultrasonic imaging apparatus 10.
  • the method includes:
  • the shear wave elastography process comprises transmitting a first ultrasonic wave to a target region of the object to be measured to track a shear wave propagating within the target region, and receiving an ultrasonic echo of the first ultrasonic wave returned from the target region to obtain First echo data and determining an elasticity parameter of the target region based on the first echo data.
  • This step can be understood by referring to steps 201 to 203 in the foregoing embodiment, and details are not described herein again.
  • step 204 can be understood by referring to the description of step 204 in the foregoing embodiment, and details are not described herein again.
  • the processor 103 compares the motion parameter with the fourth preset condition, and when the motion parameter satisfies the fourth preset condition, stops performing the shear wave elastography process.
  • the processor 103 compares the motion parameter with the fourth preset condition, and when the motion parameter meets the fourth preset condition, may delay after a period of time (eg, delay 100 ms, 1 s, etc.), and then The shear wave elastography process is stopped.
  • the fourth preset condition may be set according to the type of the motion parameter.
  • the above mentioned breathing parameter may be a voltage when the human body breathes through the electrode piece, or a current, or a voltage change amount, a current change amount, or a change in the voltage change or current. The amount of change in human lung capacity calculated.
  • the fourth preset condition may be an eighth preset value, and when the voltage is greater than the eighth preset value, determining to stop performing the shear wave elastography process.
  • the fourth preset condition may be a tenth preset value, and when the current is less than the tenth preset value, determining to stop performing the shear wave elastography process. If the motion parameter corresponds to a displacement, the fourth preset condition may be a twelfth preset value, and when the displacement is greater than the twelfth preset value, determining to stop performing the shear wave elastography process.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • DSL digital subscriber line
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method of various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Abstract

公开了一种剪切波弹性成像方法及超声成像设备,其提供组织弹性相关的参数或图像的同时,提供与组织运动相关的参数或图像,便于用户得到更为准确的弹性结果。该方法包括:于被测对象的目标区域产生剪切波;向所述目标区域发射第一超声波并接收第一回波数据;根据所述第一回波数据确定所述目标区域的弹性参数;获取所述目标区域的运动参数;显示所述弹性参数和所述运动参数。

Description

剪切波弹性成像方法及超声成像设备 技术领域
本申请涉及医用超声成像领域,尤其涉及一种剪切波弹性成像方法及超声成像设备。
背景技术
超声弹性成像是近年来临床研究关心的热点之一,主要反映组织的弹性和软硬程度,在组织癌症病变的辅助检测、良恶性判别和预后恢复评价等方面得到越来越多应用。按成像原理的不同,超声弹性成像技术主要分为两类:一类是应变式弹性成像技术,另一类是剪切波式弹性成像技术。
其中,应变式弹性成像方法主要通过探头按压组织产生一定的形变,再将应变量、应变率等与组织弹性相关的参数计算出来并成像,间接反映不同组织间的弹性差异。由于应变参数对压力敏感,因此这种方法中通过探头施加的压力需要尽量均匀稳定,从而对操作者的手法提出了较高的要求。剪切波式弹性成像方法主要通过在组织内部产生剪切波的传播并检测其传播参数(比如传播速度)进行成像的方法来反映组织间的硬度差异。由于不再依赖操作者对组织的特定施压,这种弹性成像方式在稳定性和重复性方面有所改善,而且定量的测量结果使得医生的诊断更加方便客观。
但是,剪切波式弹性成像方法中,由于在人体组织中所产生的剪切波的振动幅度通常较小(比如几um-几百um),而且衰减很快,所以成像过程中运动的干扰很大可能会引起伪像,导致测量失败或测量值不准确。
发明内容
本申请实施例提供了一种剪切波弹性成像方法及超声成像设备,其提供组织弹性相关的参数或图像的同时,提供与组织运动相关的参数或图像,便于用户得到更为准确的弹性结果。
本申请实施例的第一方面提供了一种剪切波弹性成像方法,该方法包括:
向被测对象的目标区域发射第一超声波,以跟踪在该目标区域内传播的剪切波;
接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据;
根据该第一回波数据确定该目标区域的弹性参数;
获取表征该目标区域运动的运动参数;
显示该弹性参数和该运动参数。
本申请实施例的第二方面提供了一种剪切波弹性成像方法,该方法包括:
获取表征被测对象的目标区域运动的运动参数;
比较该运动参数和第三预设条件,并且当该运动参数满足该第三预设条件时启动剪切波弹性成像过程;
其中该剪切波弹性成像过程包括:
向被测对象的目标区域发射第一超声波,以跟踪在该目标区域内传播的剪切波;
接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据;
根据该第一回波数据确定该目标区域的弹性参数。
本申请实施例的第三方面提供了一种剪切波弹性成像方法,该方法包括:
执行剪切波弹性成像过程,其中该剪切波弹性成像过程包括向被测对象的目标区域发射第一超声波以跟踪在该目标区域内传播的剪切波、接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据和根据该第一回波数据确定该目标区域的弹性参数;
获取表征该目标区域运动的运动参数;
比较该运动参数和第二预设条件,并且当该运动参数满足该第二预设条件时,停止执行该剪切波弹性成像过程。
本申请实施例的第四方面提供了一种超声成像设备,该超声成像设备包括:
超声探头;
发射/接收序列控制器,该发射/接收序列控制器激励该超声探头向被测对象的目标区域发射第一超声波,以跟踪在该目标区域内传播的剪切波;以及接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据;
处理器,该处理器根据该第一回波数据确定该目标区域的弹性参数;以及获取表征该目标区域运动的运动参数;
显示器,该显示器显示该弹性参数和该运动参数。
本申请实施例的第五方面提供了一种超声成像设备,该超声成像设备包括:
超声探头;
发射/接收序列控制器;
处理器;
该处理器获取表征被测对象的目标区域运动的运动参数;比较该运动参数和第三预设条件,并且当该运动参数满足该第三预设条件时启动剪切波弹性成像过程;
其中该剪切波弹性成像过程包括:
通过该发射/接收序列控制器激励该超声探头向被测对象的目标区域发射第一超声波,以跟踪在该目标区域内传播的剪切波;以及接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据;根据该第一回波数据确定该目标区域的弹性参数。
本申请实施例的第六方面提供了一种超声成像设备,该超声成像设备包括:
超声探头;
发射/接收序列控制器;
处理器;
该处理器执行剪切波弹性成像过程,其中该剪切波弹性成像过程包括:通过该发射/接收序列控制器激励该超声探头向被测对象的目标区域发射第一超声波以跟踪在该目标区域内传播的剪切波、接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据,以及根据该第一回波数据确定该目标区域的弹性参数;
该处理器获取表征该目标区域运动的运动参数;以及比较该运动参数和第二预设条件,并且当该运动参数满足该第二预设条件时,停止执行该剪切波弹性成像过程。
本申请实施例提供的技术方案中,超声成像设备向被测对象的目标区域发射第一超声波,以跟踪在该目标区域内传播的剪切波,接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据;从而根据该第一回波数据确 定该目标区域的弹性参数;同时,该超声成像设备获取表征该目标区域运动的运动参数,并显示该弹性参数和该运动参数。因此,在剪切波弹性成像时,用户可结合运动参数和弹性参数进行考虑,例如确定运动幅度较小时采集的弹性参数的可信程度较高,从而筛选出更为准确的弹性结果。
附图说明
图1为本申请提供的超声成像设备的一个结构示意图;
图2为本申请提供的剪切波弹性成像方法的一个流程示意图;
图3为本申请提供的监测人体生理参数的一个示意图;
图4为本申请提供的人体正常呼吸时的一个呼吸曲线示意图;
图5为本申请提供的人体屏住呼吸时的一个呼吸曲线示意图;
图6为本申请提供的一个检测组织运动位移序列的示意图;
图7为本申请提供的位移检测方法的示意图;
图8为本申请提供的剪切波弹性成像方法的另一个流程示意图;
图9为本申请提供的剪切波弹性成像方法的另一个流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1为本申请实施例中的超声成像设备10的结构框图示意图。该超声成像设备10可以包括超声探头100、发射/接收选择开关101、发射/接收序列控制器102、处理器103和显示器104。发射/接收序列控制器102可以激励超声 探头100向目标区域发射超声波,还可以控制超声探头100接收从目标区域返回的超声回波,从而获得超声回波信号/数据。处理器103对该超声回波信号/数据进行处理,以获得目标区域的组织相关参数和超声图像。处理器103获得的超声图像可以存储于存储器105中,这些超声图像可以在显示器104上显示。
本申请实施例中,前述的超声成像设备10的显示器104可为触摸显示屏、液晶显示屏等,也可以是独立于超声成像设备10之外的液晶显示器、电视机等独立显示设备,也可为手机、平板电脑等电子设备上的显示屏。
本申请实施例中,前述的超声成像设备10的存储器105可为闪存卡、固态存储器、硬盘等。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有多条程序指令,该多条程序指令被处理器103调用执行后,可执行本申请各个实施例中的剪切波弹性成像中的部分步骤或全部步骤或其中步骤的任意组合。
一个实施例中,该计算机可读存储介质可为存储器105,其可以是闪存卡、固态存储器、硬盘等非易失性存储介质。
本申请实施例中,前述的超声成像设备10的处理器103可以通过软件、硬件、固件或者其组合实现,可以使用电路、单个或多个专用集成电路(application specific integrated circuits,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路或器件的组合、或者其他适合的电路或器件,从而使得该处理器103可以执行前述各个实施例中的剪切波弹性成像方法的相应步骤。
下面对本申请中的剪切波弹性成像方法进行详细描述,请参阅图2,本申请实施例提供的一种剪切波弹性成像方法,该方法应用于超声成像设备10,特别适用于包含触摸显示屏的超声成像设备10,用于可以利用接触触摸显示屏来输入触屏操作。该超声成像设备10可利用超声回波数据生成弹性图像,也可以利用超声回波数据生成常规的超声B图像或者多普勒图像等等。本申请中的剪切波弹性成像方法实施例包括:
201、向被测对象的目标区域发射第一超声波,以跟踪在该目标区域内传播的剪切波。
本实施例中,超声成像设备10通过该发射/接收序列控制器102激励该超声探头100向被测对象的目标区域发射第一超声波,以跟踪在该目标区域内传播的剪切波。该目标区域可根据弹性测量的需求确定,确定方式如可采用常规二维B模式成像、常规弹性成像E模式等各类适用成像检测方式初步检测后确定,也可根据检测需求选定。
一个实施例中,该目标区域的数量可以为一个或者多个。当目标区域的数量为多个时,多个目标区域的各自纵向深度或横向位置可以不同。
其中,剪切波的产生方式可参考如下说明。一个实施例中,剪切波可以利用外部振动产生,例如利用外部振动产生剪切波传入目标区域的组织深部。或者也可以利用超声脉冲声辐射力效应在目标区域的组织内部产生剪切波;或者也可以利用被测对象内的组织生理运动(例如,心脏搏动、血管搏动等等)产生剪切波;等等,此处不做详细描述。本说明书仅举例简述其中一种比较常用的方法:基于声辐射力的超声剪切波弹性成像。
以声辐射力的超声剪切波弹性成像,在该目标区域内传播的剪切波可通过本实施例的发射/接收序列控制器102激励超声探头100向组织发射一个特定波形、长度、特定频率的超声脉冲,该超声脉冲会在组织内部产生声辐射力效应,进而产生剪切波在组织中传播。然后向该组织发射一系列超声波用于跟踪检测上述剪切波在组织中的传播过程。也可以通过其他超声设备向该组织发射一个特定波形、长度、特定频率的超声脉冲,基于该超声脉冲产生的声辐射力效应,同样能达到相同的效果。
202、接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据。
本实施例中,该处理器103通过发射/接收序列控制器102控制超声探头100接收从目标区域返回的该第一超声波的超声回波,以获得第一回波数据。
203、根据该第一回波数据确定该目标区域的弹性参数。
本实施例中,该处理器103对步骤202得到的第一回波数据进行处理,可以计算出目标区域的弹性参数。比如杨氏模量、剪切模量、剪切波传播速度等。对于各向同性的弹性体,剪切波传播速度与弹性模量间有近似的关系:
E=3ρc 2=3G
式中,c表示剪切波速度,ρ表示组织密度,E表示组织的杨氏模量值,G表示组织的剪切模量。一般来说,杨氏模量越大,意味着组织硬度越大。因此,通过弹性参数可以反映组织的硬度大小。
204、获取表征该目标区域运动的运动参数。
该步骤中,处理器103获取表征该目标区域运动的运动参数。该运动参数可包括人体的呼吸参数或者是通过超声波检测出的运动位移。
一个实施例中,处理器103可检测该被测对象的呼吸运动以获得呼吸参数。该呼吸参数可以是通过电极片监测人体呼吸时的电压,或者是电流,也可以是电压变化量、电流变化量或者是通过该电压变化量或电流变化量计算出的人体肺容量的变化量。
例如,可以通过从人体特定部位的电极片引出生理信号,经过去噪放大等一系列信号处理后,获得表征该目标区域运动的呼吸参数。如图3所示,可通过3个电极片(图示中电极R、L、F)引出呼吸信号。电极片也可以选择其他位置,图3仅作示意。呼吸运动时,随着胸廓的张弛,会产生胸部组织的电阻抗变化。胸部电阻抗的变化与胸部肺容量的变化之间存在一定的对应关系。因此,可以通过电极片测量呼吸过程中胸部电阻抗的变化来检测被测对象的呼吸运动以获得呼吸参数。
进一步的,在一个实施例中,该处理器103可以根据该呼吸参数生成呼吸参数曲线。也可以生成其他形式的图形,比如呼吸参数柱状图、表征呼吸波动的图像、图形等等,此处不做具体限制。
在弹性成像过程中,显示器104可以同时显示上述呼吸参数曲线和弹性参数,如图4所示,为人体正常呼吸时的一个呼吸参数曲线示意图。如图5所示,为人体屏住呼吸时的一个呼吸参数曲线示意图。可以看出,在人体屏住呼吸时,呼吸参数曲线振动幅度会降低。用户可选择在振动幅度较小时确定采集的弹性参数可信,从而筛选出更为准确的弹性结果。
另一个实施例中,是在弹性成像的同时,利用超声波记录不同时刻下组织的位置,通过比较不同时间返回的超声回波,可以计算出组织在不同时刻的位置差异(即位移),将与位移相关的参数显示出来。用户可选择在位移较小时确定采集的弹性参数可信,从而筛选出更为准确的弹性结果。
该实施例中,超声成像设备10需要在弹性成像过程中通过超声探头100向组织发射用于记录组织位置的超声波,并接收从该组织返回的超声回波,以获得回波数据。该组超声波可以直接复用上述剪切波弹性成像中用于检测剪切波位移的第一超声波的超声序列,也可以使用与之不同的超声序列。
一个实施例中,使用与第一超声波的超声序列不同的超声序列,具体可包括:处理器103可控制超声探头100向该目标区域发射第二超声波,并接收从该目标区域返回的第二超声波的超声回波,以获得第二回波数据;根据该第二回波数据获得该目标区域的至少两帧超声图像,从而根据该至少两帧超声图像确定该目标区域内的组织的位移。
一个实施例中,也可以复用上述剪切波弹性成像中用于检测剪切波位移的第一超声波的超声序列来检测目标区域的位移。具体可包括:处理器103根据该第一回波数据获得该目标区域的至少两帧超声图像;根据该至少两帧超声图像确定该目标区域内的组织的位移。
进一步的,在一个实施例中,该处理器103可以根据该目标区域的位移生成运动位移曲线。也可以生成其他形式的图形,比如位移幅度分布图、位移矢量分布图、或者说表征位移变化的图像、图形等等,此处不做具体限制。
以使用与第一超声波的超声序列不同的超声序列进行检测为例,如图6所示,给出了一种单独检测组织运动位移序列的示意图,图6中,用于检测组织运动位移的序列与用于进行剪切波弹性成像检测剪切波位移的第一超声波的超声序列分别独立进行发射和接收。
一个实施例中,在使用超声波产生的超声序列检测组织运动位移时,可以只单独针对某一个局部位置的组织来进行位移的检测,也可以针对一大片范围内的组织来整体进行位移的检测,还可以对一大片范围组织内部各局部位置都分别进行位移检测。
进一步的,一个实施例中,该根据该至少两帧超声图像确定该目标区域内的组织的位移可包括:
从该至少两帧超声图像的第一帧超声图像中确定待匹配区域;
从该至少两帧超声图像的第二帧超声图像中确定与该待匹配区域相匹配的匹配区域;
根据该待匹配区域和该匹配区域确定该位移。
该实施例根据至少两帧超声图像确定目标区域内的组织的位移检测方法可参考如下说明。如图7所示,以两帧超声图像为例,图示给出了两帧超声图像对应的组织回波信号(图示中第一信号和第二信号),从第一信号中选择待匹配区域A,然后在第二信号中进行搜索,以两个信号相关性最大的位置作为与上述待匹配区域A相匹配的匹配区域A'。A与A’之间的位置差异就是运动的位移结果。通过这种方法,可以计算出待匹配区域A运动的幅度、方向等。
得到待匹配区域与匹配区域的位移结果后,可以以各种方式进行显示。比如将不同时刻感兴趣区域内组织的平均位移幅度信息提取出来,绘制成沿时间变化的曲线,得到运动位移曲线。比如将不同时刻感兴趣区域内组织的局部位移信息计算出来,绘制成沿时间变化的位移幅度分布图。比如将不同时刻感兴趣区域内组织的局部位移信息计算出来,绘制成沿实际变化的位移矢量分布图,位移矢量可以用一定长度的箭头表示,箭头方向表示位移方向,箭头长度表示位移幅度。比如将不同时刻感兴趣区域内的位移信息计算出来,按照其幅度大小以不同颜色进行提示,某个幅度范围内用红色提示,某个幅度范围内用绿色提示等等。
205、显示该弹性参数和该运动参数。
该步骤中,通过处理器103得到的弹性参数和运动参数可以在显示器104上同时显示,也可以分别显示。
处理器103可根据该弹性参数生成弹性图像,也可根据该运动参数生成运动图像,然后控制显示器104显示该弹性图像和该运动图像。
上述方案中,超声成像设备10控制超声探头100向被测对象的目标区域发射第一超声波,以跟踪在该目标区域内传播的剪切波,接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据;从而根据该第一回波数据确定该目标区域的弹性参数;同时,该超声成像设备10通过处理器103获取表征该目标区域运动的运动参数,并显示该弹性参数和该运动参数。因此,在剪切波弹性成像时,用户可结合运动参数和弹性参数进行考虑,例如确定运动幅度较小时采集的弹性参数的可信程度较高,从而筛选出更为准确的弹性结果。
一个实施例中,该处理器还可根据得到的运动参数确定弹性参数的可信程度。进一步的,该超声成像设备10还可以根据预设运动阈值参数或者用户主动设置的运动阈值参数,给出相应提示。
一个实施例中,比较该运动参数和第一预设条件,并且当该运动参数满足该第一预设条件时,确定在该运动参数满足该第一预设条件时获得的弹性参数或者弹性图像具有高可信度。
一个实施例中,比较该运动参数和第二预设条件,并且当该运动参数满足该第二预设条件时,确定在该运动参数满足该第二预设条件时获得的弹性参数或者弹性图像具有低可信度。
该第一预设条件的可以根据运动参数的类型设定。以运动参数为呼吸参数为例,上面提到呼吸参数可以是通过电极片监测人体呼吸时的电压,或者是电流,也可以是电压变化量、电流变化量或者是通过该电压变化量或电流变化量计算出的人体肺容量的变化量。如果运动参数对应的是电压,第一预设条件可以是第一预设值,当该电压小于第一预设值时,确定这个时刻获得的弹性参数或者弹性图像具有高可信度。同理,第二预设条件可以是第二预设值,当该电压大于第二预设值时,确定这个时刻获得的弹性参数或者弹性图像具有低可信度。如果是电流,第一预设条件可以是第三预设值,当该电流大于第三预设值时,确定这个时刻获得的弹性参数或者弹性图像具有高可信度。同理,第二预设条件可以是第四预设值,当该电流小于第四预设值时,确定这个时刻获得的弹性参数或者弹性图像具有低可信度。如果运动参数对应的是位移,第一预设条件可以是第五预设值,当该位移小于第五预设值时,确定这个时刻获得的弹性参数或者弹性图像具有高可信度。同理,第二预设条件可以是第六预设值,当该位移大于第六预设值时,确定这个时刻获得的弹性参数或者弹性图像具有低可信度。
对于运动参数的其他形式,可以参考上述方案相应的设置预设条件,此处不一一列举。
进一步的,在根据该运动参数确定获得的弹性参数或者弹性图像具有高可信度或者低可信度后,该超声成像设备10可以输出相应的提示。以提示用户在该运动参数满足该第一预设条件时获得的弹性参数或者弹性图像具有高可 信度,或者在该运动参数满足该第二预设条件时获得的弹性参数或者弹性图像具有低可信度。提示的形式可以是语音、文字、对话框、图形、高亮或者是以特定的颜色显示弹性参数/弹性图像的区域,等等,此处不做限定。
本申请还提供了一种剪切波弹性成像方法,超声成像设备10适用该方法,请参阅图8,该方法包括:
801、获取表征被测对象的目标区域运动的运动参数。
该步骤可参考上述实施例中步骤204的说明进行理解,此处不再赘述。
802、比较该运动参数和第三预设条件,并且当该运动参数满足该第三预设条件时启动剪切波弹性成像过程。
处理器103可根据得到的运动参数确定剪切波弹性成像过程的启动或者停止条件。
一个实施例中,处理器103比较该运动参数和第四预设条件,并且当该运动参数满足该第四预设条件时,停止执行该剪切波弹性成像过程。
需要说明的是,该第三预设条件的可以根据运动参数的类型设定。以运动参数为呼吸参数为例,上面提到呼吸参数可以是通过电极片监测人体呼吸时的电压,或者是电流,也可以是电压变化量、电流变化量或者是通过该电压变化量或电流变化量计算出的人体肺容量的变化量。如果运动参数对应的是电压,第三预设条件可以是第七预设值,当该电压小于第七预设值时,确定启动剪切波弹性成像过程。同理,第四预设条件可以是第八预设值,当该电压大于第八预设值时,确定停止执行该剪切波弹性成像过程。如果是电流,第三预设条件可以是第九预设值,当该电流大于第九预设值时,确定启动剪切波弹性成像过程。同理,第四预设条件可以是第十预设值,当该电流小于第十预设值时,确定停止执行该剪切波弹性成像过程。如果运动参数对应的是位移,第三预设条件可以是第十一预设值,当该位移小于第十一预设值时,确定启动剪切波弹性成像过程。同理,第四预设条件可以是第十二预设值,当该位移大于第十二预设值时,确定停止执行该剪切波弹性成像过程。
对于运动参数的其他形式,可以参考上述方案相应的设置预设条件,此处不一一列举。
其中该剪切波弹性成像过程包括:
向被测对象的目标区域发射第一超声波,以跟踪在该目标区域内传播的剪切波;
接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据;
根据该第一回波数据确定该目标区域的弹性参数。
可参考上述实施例中步骤201~203进行理解,此处不再赘述。
本申请还提供了一种剪切波弹性成像方法,超声成像设备10适用该方法,请参阅图9,该方法包括:
901、执行剪切波弹性成像过程。
其中该剪切波弹性成像过程包括向被测对象的目标区域发射第一超声波以跟踪在该目标区域内传播的剪切波、接收从该目标区域返回的该第一超声波的超声回波以获得第一回波数据和根据该第一回波数据确定该目标区域的弹性参数。
该步骤可参考上述实施例中步骤201~203进行理解,此处不再赘述。
902、获取表征被测对象的目标区域运动的运动参数。
该步骤可参考上述实施例中步骤204的说明进行理解,此处不再赘述。
903、比较该运动参数和第四预设条件,并且当该运动参数满足该第四预设条件时,停止执行该剪切波弹性成像过程。
处理器103比较该运动参数和第四预设条件,并且当该运动参数满足该第四预设条件时,停止执行该剪切波弹性成像过程。一个实施例中,处理器103比较该运动参数和第四预设条件,并且当该运动参数满足该第四预设条件时,可延时一段时间后(例如延时100ms、1s等),再停止执行该剪切波弹性成像过程。
需要说明的是,该第四预设条件的可以根据运动参数的类型设定。以运动参数为呼吸参数为例,上面提到呼吸参数可以是通过电极片监测人体呼吸时的电压,或者是电流,也可以是电压变化量、电流变化量或者是通过该电压变化量或电流变化量计算出的人体肺容量的变化量。如果运动参数对应的是电压,第四预设条件可以是第八预设值,当该电压大于第八预设值时,确定停止执行该剪切波弹性成像过程。如果是电流,第四预设条件可以是第十预设值,当该电流小于第十预设值时,确定停止执行该剪切波弹性成像过程。如果运动参数 对应的是位移,第四预设条件可以是第十二预设值,当该位移大于第十二预设值时,确定停止执行该剪切波弹性成像过程。
对于运动参数的其他形式,可以参考上述方案相应的设置预设条件,此处不一一列举。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本发明实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上该,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (34)

  1. 一种剪切波弹性成像方法,其特征在于,包括:
    向被测对象的目标区域发射第一超声波,以跟踪在所述目标区域内传播的剪切波;
    接收从所述目标区域返回的所述第一超声波的超声回波以获得第一回波数据;
    根据所述第一回波数据确定所述目标区域的弹性参数;
    获取表征所述目标区域运动的运动参数;
    显示所述弹性参数和所述运动参数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述弹性参数生成弹性图像;
    根据所述运动参数生成运动图像;
    所述显示所述弹性参数和所述运动参数包括:
    显示所述弹性图像和所述运动图像。
  3. 根据权利要求2所述的方法,其特征在于,所述获取表征所述目标区域运动的运动参数包括:
    检测所述被测对象的呼吸运动以获得呼吸参数。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述运动参数生成运动图像包括:
    根据所述呼吸参数生成呼吸参数曲线。
  5. 根据权利要求2所述的方法,其特征在于,所述获取表征所述目标区域运动的运动参数包括:
    向所述目标区域发射第二超声波;
    接收从所述目标区域返回的所述第二超声波的超声回波以获得第二回波数据;
    根据所述第二回波数据获得所述目标区域的至少两帧超声图像;
    根据所述至少两帧超声图像确定所述目标区域内的组织的位移。
  6. 根据权利要求2所述的方法,其特征在于,所述获取表征所述目标区域的运动的运动参数包括:
    根据所述第一回波数据获得所述目标区域的至少两帧超声图像;
    根据所述至少两帧超声图像确定所述目标区域内的组织的位移。
  7. 根据权利要求5或6所述的方法,其特征在于,所述根据所述运动参数生成运动图像包括:
    根据所述目标区域内的组织的位移生成运动位移曲线。
  8. 根据权利要求5或6所述的方法,其特征在于,所述根据所述至少两帧超声图像确定所述目标区域内的组织的位移包括:
    从所述至少两帧超声图像的第一帧超声图像中确定待匹配区域;
    从所述至少两帧超声图像的第二帧超声图像中确定与所述待匹配区域相匹配的匹配区域;
    根据所述待匹配区域和所述匹配区域确定所述位移。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,在向被测对象的目标区域发射第一超声波之前还包括:
    产生在所述目标区域内传播的剪切波。
  10. 根据权利要求1至8任一项所述的方法,其特征在于,所述方法还包括:
    根据所述运动参数确定所述弹性参数的可信程度。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述运动参数确定所述弹性参数的可信程度包括:
    比较所述运动参数和第一预设条件,并且当所述运动参数满足所述第一预设条件时,确定在所述运动参数满足所述第一预设条件时获得的弹性参数或者弹性图像具有高可信度。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    输出第一提示,所述第一提示用于提示在所述运动参数满足所述第一预设条件时获得的弹性参数或者弹性图像具有高可信度。
  13. 根据权利要求10所述的方法,其特征在于,所述根据所述运动参数确定所述弹性参数的可信程度包括:
    比较所述运动参数和第二预设条件,并且当所述运动参数满足所述第二预设条件时,确定在所述运动参数满足所述第二预设条件时获得的弹性参数或者弹性图像具有低可信度。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    输出第二提示,所述第二提示用于提示在所述运动参数满足所述第二预设条件时获得的弹性参数或者弹性图像具有低可信度。
  15. 一种剪切波弹性成像方法,其特征在于,包括:
    获取表征被测对象的目标区域运动的运动参数;
    比较所述运动参数和第三预设条件,并且当所述运动参数满足所述第三预设条件时启动剪切波弹性成像过程;
    其中所述剪切波弹性成像过程包括:
    向被测对象的目标区域发射第一超声波,以跟踪在所述目标区域内传播的剪切波;
    接收从所述目标区域返回的所述第一超声波的超声回波以获得第一回波数据;
    根据所述第一回波数据确定所述目标区域的弹性参数。
  16. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    比较所述运动参数和第四预设条件,并且当所述运动参数满足所述第四预设条件时,停止执行所述剪切波弹性成像过程。
  17. 一种剪切波弹性成像方法,其特征在于,包括:
    执行剪切波弹性成像过程,其中所述剪切波弹性成像过程包括向被测对象的目标区域发射第一超声波以跟踪在所述目标区域内传播的剪切波、接收从所述目标区域返回的所述第一超声波的超声回波以获得第一回波数据和根据所述第一回波数据确定所述目标区域的弹性参数;
    获取表征所述目标区域运动的运动参数;
    比较所述运动参数和第四预设条件,并且当所述运动参数满足所述第四预设条件时,停止执行所述剪切波弹性成像过程。
  18. 一种超声成像设备,其特征在于,包括:
    超声探头;
    发射/接收序列控制器,所述发射/接收序列控制器激励所述超声探头向被测对象的目标区域发射第一超声波,以跟踪在所述目标区域内传播的剪切波;以及接收从所述目标区域返回的所述第一超声波的超声回波以获得第一回波数据;
    处理器,所述处理器根据所述第一回波数据确定所述目标区域的弹性参数;以及获取表征所述目标区域运动的运动参数;
    显示器,所述显示器显示所述弹性参数和所述运动参数。
  19. 根据权利要求18所述的超声成像设备,其特征在于,所述处理器还用于执行如下步骤:
    根据所述弹性参数生成弹性图像;
    根据所述运动参数生成运动图像;
    所述显示器显示所述弹性参数和所述运动参数包括:
    所述显示器显示所述弹性图像和所述运动图像。
  20. 根据权利要求19所述的超声成像设备,其特征在于,所述处理器获取表征所述目标区域运动的运动参数包括:
    所述处理器检测所述被测对象的呼吸运动以获得呼吸参数。
  21. 根据权利要求20所述的超声成像设备,其特征在于,所述处理器根据所述运动参数生成运动图像包括:
    所述处理器根据所述呼吸参数生成呼吸参数曲线。
  22. 根据权利要求19所述的超声成像设备,其特征在于,所述处理器获取表征所述目标区域运动的运动参数包括:
    所述处理器控制所述发射/接收序列控制器激励所述超声探头向所述目标区域发射第二超声波,以及接收从所述目标区域返回的所述第二超声波的超声回波以获得第二回波数据;
    所述处理器根据所述第二回波数据获得所述目标区域的至少两帧超声图像;根据所述至少两帧超声图确定所述目标区域内的组织的位移。
  23. 根据权利要求19所述的超声成像设备,其特征在于,所述处理器获取表征所述目标区域运动的运动参数包括:
    所述处理器根据所述第一回波数据获得所述目标区域的至少两帧超声图像;根据所述至少两帧超声图像确定所述目标区域内的组织的位移。
  24. 根据权利要求22或23所述的超声成像设备,其特征在于,所述处理器根据所述运动参数生成运动图像包括:
    所述处理器根据所述目标区域内的组织的位移生成运动位移曲线。
  25. 根据权利要求22或23所述的超声成像设备,其特征在于,所述处理器根据所述至少两帧超声图像确定所述目标区域内的组织的位移包括:
    所述处理器从所述至少两帧超声图像的第一帧超声图像中确定待匹配区 域;从所述至少两帧超声图像的第二帧超声图像中确定与所述待匹配区域相匹配的匹配区域;以及根据所述待匹配区域和所述匹配区域确定所述位移。
  26. 根据权利要求18至25任一项所述的超声成像设备,其特征在于,在向被测对象的目标区域发射第一超声波之前,所述超声成像设备还执行如下步骤:
    产生在所述目标区域内传播的剪切波。
  27. 根据权利要求18至25任一项所述的超声成像设备,其特征在于,所述处理器还执行如下步骤:
    所述处理器根据所述运动参数确定所述弹性参数的可信度。
  28. 根据权利要求27所述的超声成像设备,其特征在于,所述处理器根据所述运动参数确定所述弹性参数的可信程度包括:
    所述处理器比较所述运动参数和第一预设条件,并且当所述运动参数满足所述第一预设条件时,确定在所述运动参数满足所述第一预设条件时获得的弹性参数或者弹性图像具有高可信度。
  29. 根据权利要求28所述的超声成像设备,其特征在于,所述处理器还执行如下步骤:
    所述处理器输出第一提示,所述第一提示用于提示在所述运动参数满足所述第一预设条件时获得的弹性参数或者弹性图像具有高可信度。
  30. 根据权利要求27所述的超声成像设备,其特征在于,所述处理器根据所述运动参数确定所述弹性参数的可信程度包括:
    所述处理器比较所述运动参数和第二预设条件,并且当所述运动参数满足所述第二预设条件时,确定在所述运动参数满足所述第二预设条件时获得的弹性参数或者弹性图像具有低可信度。
  31. 根据权利要求30所述的超声成像设备,其特征在于,所述处理器还执行如下步骤:
    所述处理器输出第二提示,所述第二提示用于提示在所述运动参数满足所述第二预设条件时获得的弹性参数或者弹性图像具有低可信度。
  32. 一种超声成像设备,其特征在于,包括:
    超声探头;
    发射/接收序列控制器;
    处理器;
    所述处理器获取表征被测对象的目标区域运动的运动参数;比较所述运动参数和第三预设条件,并且当所述运动参数满足所述第三预设条件时启动剪切波弹性成像过程;
    其中所述剪切波弹性成像过程包括:
    通过所述发射/接收序列控制器激励所述超声探头向被测对象的目标区域发射第一超声波,以跟踪在所述目标区域内传播的剪切波;以及接收从所述目标区域返回的所述第一超声波的超声回波以获得第一回波数据;根据所述第一回波数据确定所述目标区域的弹性参数。
  33. 如权利要求32所述的超声成像设备,其特征在于,所述处理器还执行如下步骤:
    所述处理器比较所述运动参数和第四预设条件,并且当所述运动参数满足所述第四预设条件时,停止执行所述剪切波弹性成像过程。
  34. 一种超声成像设备,其特征在于,包括:
    超声探头;
    发射/接收序列控制器;
    处理器;
    所述处理器执行剪切波弹性成像过程,其中所述剪切波弹性成像过程包括:通过所述发射/接收序列控制器激励所述超声探头向被测对象的目标区域 发射第一超声波以跟踪在所述目标区域内传播的剪切波、接收从所述目标区域返回的所述第一超声波的超声回波以获得第一回波数据,以及根据所述第一回波数据确定所述目标区域的弹性参数;
    所述处理器获取表征所述目标区域运动的运动参数;以及比较所述运动参数和第四预设条件,并且当所述运动参数满足所述第四预设条件时,停止执行所述剪切波弹性成像过程。
PCT/CN2018/085461 2018-05-03 2018-05-03 剪切波弹性成像方法及超声成像设备 WO2019210479A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880060622.XA CN111093522B (zh) 2018-05-03 2018-05-03 剪切波弹性成像方法及超声成像设备
PCT/CN2018/085461 WO2019210479A1 (zh) 2018-05-03 2018-05-03 剪切波弹性成像方法及超声成像设备
CN202310259141.4A CN116269499A (zh) 2018-05-03 2018-05-03 剪切波弹性成像方法及超声成像设备
US17/087,496 US11925503B2 (en) 2018-05-03 2020-11-02 Shear wave elasticity imaging method and ultrasonic imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085461 WO2019210479A1 (zh) 2018-05-03 2018-05-03 剪切波弹性成像方法及超声成像设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/087,496 Continuation US11925503B2 (en) 2018-05-03 2020-11-02 Shear wave elasticity imaging method and ultrasonic imaging device

Publications (1)

Publication Number Publication Date
WO2019210479A1 true WO2019210479A1 (zh) 2019-11-07

Family

ID=68386900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085461 WO2019210479A1 (zh) 2018-05-03 2018-05-03 剪切波弹性成像方法及超声成像设备

Country Status (3)

Country Link
US (1) US11925503B2 (zh)
CN (2) CN111093522B (zh)
WO (1) WO2019210479A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667522A (zh) * 2009-11-25 2012-09-12 皇家飞利浦电子股份有限公司 采用聚焦扫描线波束形成的超声剪切波成像
US20130058195A1 (en) * 2011-06-29 2013-03-07 Guy Cloutier Device system and method for generating additive radiation forces with sound waves
CN103908289A (zh) * 2012-12-31 2014-07-09 Ge医疗系统环球技术有限公司 消除剪切波中的背景噪声的方法和相应的超声成像系统
CN104622507A (zh) * 2013-11-11 2015-05-20 中国科学院深圳先进技术研究院 弹性模量测量方法和系统
CN105212968A (zh) * 2015-10-29 2016-01-06 无锡海斯凯尔医学技术有限公司 弹性检测方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844058B1 (fr) * 2002-09-02 2004-11-12 Centre Nat Rech Scient Procede et dispositif d'imagerie utilisant des ondes de cisaillement
BR112015032724B1 (pt) * 2013-06-26 2022-03-08 Koninklijke Philips N.V. Sistema de elastografia ultrassônica e método de elastografia ultrassônica para inspecionar um sítio anatômico
US10143442B2 (en) * 2013-10-24 2018-12-04 Ge Medical Systems Global Technology, Llc Ultrasonic diagnosis apparatus
BR112017008908B1 (pt) * 2014-10-28 2022-10-18 Supersonic Imagine Métodos e aparelhos de formação de imagem para realizar formação de imagem por elastografia com onda de cisalhamento

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667522A (zh) * 2009-11-25 2012-09-12 皇家飞利浦电子股份有限公司 采用聚焦扫描线波束形成的超声剪切波成像
US20130058195A1 (en) * 2011-06-29 2013-03-07 Guy Cloutier Device system and method for generating additive radiation forces with sound waves
CN103908289A (zh) * 2012-12-31 2014-07-09 Ge医疗系统环球技术有限公司 消除剪切波中的背景噪声的方法和相应的超声成像系统
CN104622507A (zh) * 2013-11-11 2015-05-20 中国科学院深圳先进技术研究院 弹性模量测量方法和系统
CN105212968A (zh) * 2015-10-29 2016-01-06 无锡海斯凯尔医学技术有限公司 弹性检测方法和设备

Also Published As

Publication number Publication date
CN111093522A (zh) 2020-05-01
CN111093522B (zh) 2023-05-09
CN116269499A (zh) 2023-06-23
US11925503B2 (en) 2024-03-12
US20210045709A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
EP3701873A1 (en) System, stethoscope and method for indicating risk of coronary artery disease
US10820884B2 (en) Ultrasound diagnosis apparatus and method of operating the same
JPWO2007063619A1 (ja) 超音波診断装置
CN113081054B (zh) 一种超声成像方法以及超声成像系统
KR102205507B1 (ko) 초음파 영상 표시 방법 및 장치
CN103153197B (zh) 超声波诊断装置、图像处理装置以及图像处理方法
JP7074871B2 (ja) 超音波診断装置および超音波診断装置の制御方法
JP4918369B2 (ja) 超音波診断装置
CN111110275A (zh) 血管力学性能的测量方法、装置、系统及存储介质
EP3197366B1 (en) Ultrasound image processing method and ultrasound imaging apparatus thereof
JP5346555B2 (ja) 動脈硬化リスク表示機能を備えた超音波診断装置
JP2009039277A (ja) 超音波診断装置
JP5844175B2 (ja) 超音波診断装置および超音波画像生成方法
JP3857256B2 (ja) 超音波映像での媒質の弾性特性の測定装置
JPWO2007080870A1 (ja) 超音波診断装置
WO2019210479A1 (zh) 剪切波弹性成像方法及超声成像设备
JP7045335B6 (ja) 脂肪層に依存するセンサの適応
JP2023105632A (ja) 厚み算出方法、厚み算出プログラム、記録媒体、及び厚み算出装置
WO2021217475A1 (zh) 弹性成像方法、系统和存储介质
WO2019196103A1 (zh) 超声成像方法及超声成像设备
WO2021212578A1 (zh) 粘弹性测量方法、弹性测量方法和超声测量系统
US20230380810A1 (en) Ultrasonic imaging system and ultrasonic imaging method
JP2014223114A (ja) 超音波診断装置、医用画像処理装置、及び医用画像処理プログラム
CN114144119A (zh) 瞬时弹性测量方法、声衰减参数测量方法和超声成像系统
JP2007020998A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917294

Country of ref document: EP

Kind code of ref document: A1