WO2019209015A1 - Procédé de traitement thermique d'alliage d'al-mg-si - Google Patents

Procédé de traitement thermique d'alliage d'al-mg-si Download PDF

Info

Publication number
WO2019209015A1
WO2019209015A1 PCT/KR2019/004920 KR2019004920W WO2019209015A1 WO 2019209015 A1 WO2019209015 A1 WO 2019209015A1 KR 2019004920 W KR2019004920 W KR 2019004920W WO 2019209015 A1 WO2019209015 A1 WO 2019209015A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
aging
heat treatment
time
natural aging
Prior art date
Application number
PCT/KR2019/004920
Other languages
English (en)
Korean (ko)
Inventor
김재황
권의표
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180123866A external-priority patent/KR102201131B1/ko
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2019209015A1 publication Critical patent/WO2019209015A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • an embodiment of the present invention comprises the steps of determining the time and temperature conditions of the natural aging of Al-Mg-Si alloy; Preparing an Al-Mg-Si alloy by selecting an Mg / Si content ratio according to the determined time and temperature conditions of natural aging; Solutionizing the Al-Mg-Si alloy; Quenching the solutionized alloy; And it provides a heat treatment method of the Al-Mg-Si alloy comprising the step of preaging the quenched alloy.
  • the temperature condition of the pre-aging may be 40 to 120 °C.
  • Figure 3 is a micro-Vickers hardness comparison graph of 9M4S, 6M6S and 3M10S by two-step aging (ST (560 °C, 30 min)-NA (2 months)-AA (170 °C, 20 minutes)) of one embodiment of the present invention .
  • natural aging means aging under normal temperature conditions by quenching after the solution treatment of Al-Mg-Si alloy.
  • the natural aging includes what happens during transportation to an automobile manufacturing plant or storage in a warehouse. It may have a pre-aging step of heat treatment before the natural aging after the quenching. In other words, after quenching and quenching and then aging at room temperature regardless of the presence or absence of other treatment, it is regarded as natural aging.
  • artificial aging means mainly hardening treatment after painting in an automobile manufacturing process.
  • the baking hardening treatment is usually performed for 20 to 30 minutes at a temperature of 170 to 180 ° C.
  • the specific temperature and baking time may vary depending on the color to be painted.
  • aging was performed in accordance with the temperature range.
  • Pre-aging (PA) of the present invention refers to aging performed before natural aging.
  • the concept corresponds to the stabilization heat treatment of the prior art, and in the present invention, the aging time is much longer, such as up to 3 days.
  • the method may further comprise natural aging the pre-aged alloy according to the determined time and temperature conditions of the natural aging.
  • the Mg / Si content ratio may be 0.3 to 2.5. According to the Mg / Si content ratio, there may be a difference in hardness when artificial aging after natural aging, in consideration of this Al-Mg-Si alloy is selected. For example, in the case of a natural aging period of less than one day, the Mg / Si content ratio is preferably close to one, and when the natural aging period is more than one day, it is preferable that the Mg / Si content ratio is one or more. When the Mg / Si content ratio is less than 0.3 or more than 2.5, it is not preferable because sufficient hardness is not secured.
  • the Al-Mg-Si alloy may include 0.3 to 1.0 wt% of Mg and 0.3 to 1.0 wt% of Si.
  • Mg and Si combine with Si in an aluminum alloy to form Mg 2 Si to increase hardness.
  • the amount exceeds 1.0wt%, there is a problem that the workability is deteriorated due to the lack of tensile strength of the aluminum alloy, and if it is contained less than 0.3wt%, it is not preferable because it does not secure sufficient hardness.
  • the time and temperature conditions of the natural aging may include a time and temperature at which the pre-aged Al-Mg-Si alloy is transported and stored. Natural aging may occur mainly at room temperature, but may have a temperature range of 20 to 30 °C depending on the place of transport or storage. The temperature range is highly seasonal and may require cooling or heating means in a vehicle or storage location to reduce the effects of the season.
  • the time condition of the natural aging may range from 7 days to 2 months.
  • the above conditions are taken into consideration of the conditions of ordinary automobile production, and the natural aging period may be prolonged due to strikes of automobile manufacturers.
  • the natural aging period exceeds 2 months, there is a problem that the effect of preliminary aging fades as described below.
  • the method may further comprise determining the time and temperature conditions of pre-aging according to the determined time and temperature conditions of natural aging.
  • the preparing of the Al-Mg-Si alloy by selecting the Mg / Si content ratio according to the determined time and temperature conditions of the natural aging may be determined by a predetermined database.
  • the step of determining the time and temperature conditions of the pre-aging according to the time and temperature conditions of the natural aging may be determined by a predetermined database. According to the conditions of the automobile manufacturer, the time and temperature conditions of the natural aging can be tuned in advance, and accordingly, the Mg / Si content ratio and the process conditions of the pre-aging stage can be arbitrarily selected.
  • Solving the Al-Mg-Si alloy may be made for 20 to 40 minutes in the temperature range of 550 to 570 °C, quenching the solvated alloy for 30 to 90 seconds at -10 to 10 °C It may be done.
  • ST solution treatment
  • PA pre aging
  • NA natural aging
  • AA artificial aging
  • FIG. 5 is a micro-Vickers hardness comparison table of 9M4S, 6M6S and 3M10S by multi-step aging (ST (560 ° C., 30 min) -PA (100 ° C., 1 h) -NA (2 months) -AA (170 ° C., 20 minutes)).
  • Figure 6 is a comparison graph (b)
  • Figure 6 is a multi-stage aging (ST (560 °C, 30 min) -PA (100 °C, 1 h) -NA (2 months)-AA (170 °C, 20 minutes)) 9M4S
  • It is a micro-Vickers hardness comparison graph of (a), 6M6S (b), and 3M10S (c).
  • the experimental results confirmed that the generation of the second cluster to improve the hardness during the artificial aging process of Al-Mg-Si aluminum alloy is greatly affected by the Mg, Si content and aging conditions.
  • the second cluster effective for the coating reactivity to improve the hardness after artificial aging of Al-Mg-Si aluminum alloy is generated a lot when pre-aging is performed at a ratio close to 1: 1 with a high Mg and Si content.
  • harmful first clusters are mainly generated during natural aging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

Un mode de réalisation de la présente invention concerne un procédé de traitement thermique d'un alliage d'Al-Mg-Si pour obtenir des feuilles d'alliage d'Al-Mg-Si appropriées pour une utilisation en tant que matériau de revêtement extérieur pour véhicules, le procédé comprenant les étapes consistant à : déterminer un temps et une température de vieillissement naturel pour un alliage d'Al-Mg-Si ; sélectionner un rapport de teneur en Mg/Si en fonction du temps et de la température de vieillissement naturel déterminés et préparer l'alliage d'Al-Mg-Si ; déterminer un temps et une température de pré-vieillissement sur la base du temps et de la température de vieillissement naturel déterminés ; traiter en solution l'alliage d'Al-Mg-Si ; tremper l'alliage traité en solution; pré-vieillir l'alliage trempé conformément au temps et à la température de pré-vieillissement déterminés.
PCT/KR2019/004920 2018-04-24 2019-04-23 Procédé de traitement thermique d'alliage d'al-mg-si WO2019209015A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0047393 2018-04-24
KR20180047393 2018-04-24
KR10-2018-0123866 2018-10-17
KR1020180123866A KR102201131B1 (ko) 2018-04-24 2018-10-17 Al-Mg-Si 합금의 열처리 방법

Publications (1)

Publication Number Publication Date
WO2019209015A1 true WO2019209015A1 (fr) 2019-10-31

Family

ID=68294148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004920 WO2019209015A1 (fr) 2018-04-24 2019-04-23 Procédé de traitement thermique d'alliage d'al-mg-si

Country Status (1)

Country Link
WO (1) WO2019209015A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011848A (zh) * 2022-05-11 2022-09-06 北京理工大学 一种高纯铝合金导线及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980074870A (ko) * 1997-03-27 1998-11-05 서상기 안정화 열처리에 의한 고성형성 고강도 알루미늄-마그네슘-실리콘 합금의 제조방법
JP2000503069A (ja) * 1995-12-18 2000-03-14 レイノルズ メタルズ カンパニー アルミニウム薄板材料の塗料焼付け反応及び時効安定性を向上させる方法と装置及びその製品
JP2011017063A (ja) * 2009-07-10 2011-01-27 Furukawa-Sky Aluminum Corp 冷間プレス成形用アルミニウム合金板ブランクの製造方法、およびそれによる冷間プレス成形方法および成形品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503069A (ja) * 1995-12-18 2000-03-14 レイノルズ メタルズ カンパニー アルミニウム薄板材料の塗料焼付け反応及び時効安定性を向上させる方法と装置及びその製品
KR19980074870A (ko) * 1997-03-27 1998-11-05 서상기 안정화 열처리에 의한 고성형성 고강도 알루미늄-마그네슘-실리콘 합금의 제조방법
JP2011017063A (ja) * 2009-07-10 2011-01-27 Furukawa-Sky Aluminum Corp 冷間プレス成形用アルミニウム合金板ブランクの製造方法、およびそれによる冷間プレス成形方法および成形品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IM, JIWOO ET AL.: "Effects of Si Addition with Natural Aging Time on the Two-Step and Multi-Step Aging Behavior in Al-Mg-Si Alloys", JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 17, 2017, pages 7912 - 7916 *
TAKAKI, YASUO ET AL.: "Effects of Natural Aging on Bake Hardening Behavior of AlMgSi Alloys with Multi-Step Aging Process", MATERIALS TRANSACTIONS, vol. 55, no. 8, 2014, pages 1257 - 1265, XP055647742 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011848A (zh) * 2022-05-11 2022-09-06 北京理工大学 一种高纯铝合金导线及其制备方法

Similar Documents

Publication Publication Date Title
RU2473710C2 (ru) Высокопрочный термообрабатываемый алюминиевый сплав
US5266130A (en) Process for manufacturing aluminum alloy material having excellent shape fixability and bake hardenability
WO2019209015A1 (fr) Procédé de traitement thermique d'alliage d'al-mg-si
CN110066931B (zh) 一种适于冷成形的铝合金及其制备方法
CN113710826B (zh) 用于汽车结构应用的非热处理型的铸造合金
CN1918311A (zh) 铝合金材料,它的制造方法以及它的应用
WO2005098065A1 (fr) Materiau de coulage d’alliage aluminium pour traitement thermique d’excellente conduction thermique et procédé de fabrication de celui-ci
WO2014109624A1 (fr) Alliage d'aluminium pour coulée sous pression et son procédé de préparation
WO2018121204A1 (fr) Alliage de magnésium retardateur de flamme haute résistance et procédé de préparation associé
JPH08144031A (ja) 強度と成形性に優れたAl−Zn−Mg系合金中空形材の製造方法
JP2002235158A (ja) 曲げ加工性に優れた高強度アルミニウム合金押出形材の製造方法
CN112522550B (zh) 一种快速时效响应的铝合金及其制备方法和应用
CN115652151B (zh) 一种适用于热冲压成形成性一体化工艺的6xxx系铝合金板材及其制备方法和应用
JP2000160310A (ja) 常温時効性を抑制したアルミニウム合金板の製造方法
WO2020149530A1 (fr) Alliage d'aluminium et procédé de fabrication d'un tel alliage
KR102201131B1 (ko) Al-Mg-Si 합금의 열처리 방법
WO2024143788A1 (fr) Matériau en feuille d'alliage d'aluminium à ultra-haute résistance et son procédé de fabrication
JPH11350058A (ja) 成形性及び焼き付け硬化性に優れるアルミニウム合金板及びその製造方法
JPH0788558B2 (ja) 成形性及び焼付硬化性に優れたアルミニウム合金板の製造方法
JPS59126761A (ja) 成形加工性に優れた熱処理型アルミニウム合金の製造法
WO2023096365A1 (fr) Alliage d'aluminium à haute résistance et à ductilité élevée
JPH06145918A (ja) 靭性の優れたAl−Li系合金押出材の製造方法
CN114599806A (zh) 用于高压压铸应用的铝合金
JPS6227544A (ja) 成形加工用熱処理型t4処理アルミニウム合金圧延板およびその製造方法
JP3697539B2 (ja) 成形加工性に優れたAl−Mg−Si系合金板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792082

Country of ref document: EP

Kind code of ref document: A1