WO2019208664A1 - 超伝導加速空洞の加工装置及び方法 - Google Patents

超伝導加速空洞の加工装置及び方法 Download PDF

Info

Publication number
WO2019208664A1
WO2019208664A1 PCT/JP2019/017523 JP2019017523W WO2019208664A1 WO 2019208664 A1 WO2019208664 A1 WO 2019208664A1 JP 2019017523 W JP2019017523 W JP 2019017523W WO 2019208664 A1 WO2019208664 A1 WO 2019208664A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing liquid
acceleration cavity
superconducting
superconducting acceleration
polishing
Prior art date
Application number
PCT/JP2019/017523
Other languages
English (en)
French (fr)
Inventor
宮本 明啓
Original Assignee
三菱重工機械システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工機械システム株式会社 filed Critical 三菱重工機械システム株式会社
Publication of WO2019208664A1 publication Critical patent/WO2019208664A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • H05H7/20Cavities; Resonators with superconductive walls

Definitions

  • the present invention relates to a superconducting acceleration cavity processing apparatus and method.
  • a superconducting accelerator that accelerates charged particles such as electrons and protons by a superconducting accelerating cavity is known.
  • the superconducting accelerator is superconducting by cooling a superconducting acceleration cavity formed of a superconducting material with a coolant. As a result, the electrical resistance of the superconducting acceleration cavity becomes almost zero, and the charged particles can be accelerated efficiently without power loss.
  • the superconducting accelerating cavity used in this superconducting accelerator is composed of a superconducting material such as niobium metal and assembled after the inner surface of the inner cavity is cleaned by chemical polishing or high-pressure water cleaning. It is done.
  • the polishing liquid filled in the tank is circulated inside the superconducting acceleration cavity by a pump, and the inner surface of the superconducting cavity is polished by a chemical reaction between the polishing liquid and niobium metal. A smooth metal surface.
  • a superconducting accelerator it is necessary to introduce microwaves of the same frequency into a plurality of superconducting acceleration cavities in order to accelerate particles by introducing microwaves into the accelerating cavities. Therefore, it is necessary to adjust the resonance frequency of a plurality of superconducting acceleration cavities to the frequency of the microwaves that are input to the superconducting accelerating cavities.
  • the frequency of the resonating microwave is adjusted by mechanically deforming the inner surface of the superconducting acceleration cavity.
  • mechanical adjustment such as crushing by an external force has poor frequency adjustment sensitivity and is not an effective means.
  • Some superconducting cavities decrease the resonance frequency when the upper half of the inner surface is polished by chemical polishing, and increase the resonance frequency when the lower half is polished.
  • a discharge nozzle is inserted to a predetermined height from the bottom of the superconducting acceleration cavity, and the polishing liquid is supplied to the inside in this state. Then, since the polishing liquid supplied to the superconducting acceleration cavity is discharged at the insertion height of the discharge nozzle, the liquid level of the polishing liquid is formed at this position. Therefore, in the superconducting acceleration cavity, only the inner surface from the lower part to the predetermined height is polished, and the resonance frequency is adjusted.
  • the superconducting accelerating cavity is subjected to a chemical polishing process over the entire surface inside the cavity to clean the inner surface, and is then formed on a part of the surface inside the cavity to adjust the resonance frequency of the superconducting accelerating cavity.
  • chemical polishing treatment is performed.
  • two circulation systems for circulating the polishing liquid are required for the superconducting acceleration cavity, resulting in an increase in equipment cost.
  • a step as a discontinuous portion is generated between the surface subjected to the chemical polishing process for cleaning the inner surface and the surface subjected to the chemical polishing process for adjusting the resonance frequency. Then, when a microwave is thrown into the superconducting acceleration cavity, there is a possibility that an electric field concentrates on this step and abnormal discharge occurs.
  • the present invention solves the above-described problems, and an object of the present invention is to provide a processing apparatus and method for a superconducting acceleration cavity that suppresses an increase in equipment cost and improves processing accuracy.
  • a superconducting acceleration cavity processing apparatus of the present invention comprises a polishing liquid circulation device, and a polishing liquid supply line for supplying the polishing liquid of the liquid circulation device from the bottom of the superconducting acceleration cavity to the inside.
  • a polishing liquid return line for returning the polishing liquid supplied to the inside of the superconducting acceleration cavity from the upper part of the superconducting acceleration cavity to the polishing liquid circulation device, and a flow direction of the polishing liquid in the superconducting acceleration cavity
  • a temperature adjusting device for adjusting a part of the temperature.
  • the superconducting acceleration cavity increases the level of the polishing liquid supplied to the inside, and returns the polishing liquid.
  • the polishing liquid is discharged to the line, and the polishing liquid is returned to the polishing liquid circulation device by the polishing liquid return line.
  • the temperature adjusting device adjusts a part of the temperature in the flowing direction of the polishing liquid in the superconducting acceleration cavity.
  • the superconducting accelerating cavity is polished by a chemical reaction by contacting the polishing liquid while flowing on the inner surface, and the inner surface is processed into a flat surface without unevenness.
  • the temperature of a part of the superconducting accelerating cavity is adjusted, the temperature of the polishing liquid in contact with this part rises or falls, and the polishing thickness differs between part and other parts.
  • the resonance frequency is adjusted.
  • the temperature adjusting device adjusts the temperature of the lower side or the upper side of the superconducting acceleration cavity.
  • the resonance frequency can be easily adjusted by making the polishing thickness different between the lower side and the upper side of the superconducting acceleration cavity.
  • the temperature adjusting device adjusts a partial temperature in the circumferential direction of the superconducting acceleration cavity.
  • the defective part when a defect is generated inside the superconducting acceleration cavity, by placing a temperature control device in this defective part, the defective part is positively chemically polished, and the local defect becomes a gentle inner surface. The cause of heat generation can be removed and the superconducting state can be maintained.
  • the superconducting acceleration cavity processing apparatus of the present invention is characterized in that the temperature adjusting device is a heating device.
  • the heating device is an electric heater.
  • the structure can be simplified by using an electric heater as the heating device.
  • the heating device supplies a heat medium to a gap space between the superconducting acceleration cavity and a refrigerant tank disposed outside the superconducting acceleration cavity. It is characterized by being.
  • the temperature adjusting device includes the heating device that heats the lower side of the superconducting acceleration cavity, and the cooling device that cools the upper side of the superconducting acceleration cavity. It is characterized by that.
  • the resonance frequency can be easily adjusted by increasing the polishing thickness deviation between the lower side and the upper side of the conduction acceleration cavity.
  • the polishing liquid circulation device includes a storage tank for storing the polishing liquid, a pump for supplying the polishing liquid to the polishing liquid supply line, and a polishing stored in the storage tank. And a polishing liquid cooling device for cooling the liquid.
  • the polishing material supplied to the superconducting acceleration cavity can always be maintained at the optimum temperature.
  • a polishing thickness measuring sensor for measuring a polishing thickness deviation in the flow direction of the polishing liquid with respect to the inner surface of the superconducting acceleration cavity, and a polishing thickness with respect to a preset polishing time.
  • a control device for controlling the temperature adjusting device based on a deviation map and a measurement result of the polishing thickness measurement sensor is provided.
  • the temperature adjustment device is controlled based on the map of the polishing thickness deviation with respect to the polishing time, the resonance frequency of the superconducting acceleration cavity can be adjusted with high accuracy and the discontinuity in the superconducting acceleration cavity can be adjusted. It is possible to improve the machining accuracy by suppressing the generation of a step.
  • a polishing thickness measuring sensor for measuring a polishing thickness deviation in the flow direction of the polishing liquid with respect to the inner surface of the superconducting acceleration cavity, and a polishing thickness with respect to a preset polishing time.
  • a control device is provided that controls the supply amount of the polishing liquid supplied to the superconducting acceleration cavity by the polishing liquid circulation device based on the deviation map and the measurement result of the polishing thickness measurement sensor.
  • the polishing liquid circulation device is controlled based on the map of the polishing thickness deviation with respect to the polishing time, the resonance frequency of the superconducting acceleration cavity can be adjusted with high accuracy, and the discontinuity in the superconducting acceleration cavity can be adjusted. It is possible to improve the machining accuracy by suppressing the occurrence of uneven steps.
  • the first temperature sensor for measuring the temperature of the polishing liquid flowing in the polishing liquid supply line and the second temperature for measuring the temperature of the polishing liquid flowing in the polishing liquid return line.
  • a temperature sensor is provided, and the control device controls the temperature adjustment device or the polishing liquid circulation device based on measurement results of the first temperature sensor and the second temperature sensor.
  • the resonance frequency of the superconducting acceleration cavity is set. It can be adjusted with high accuracy.
  • a flow rate sensor for measuring the amount of polishing liquid supplied to the superconducting accelerating cavity by the polishing liquid circulation device is provided, and the control device measures the flow rate sensor.
  • the polishing liquid circulating apparatus is controlled based on the result.
  • the polishing liquid circulating apparatus is controlled based on the supply amount of the polishing liquid supplied to the superconducting acceleration cavity, the resonance frequency of the superconducting acceleration cavity can be adjusted with high accuracy.
  • the processing method of the superconducting acceleration cavity of the present invention includes a step of supplying the polishing liquid from the lower part of the superconducting acceleration cavity to the inside and discharging it from the upper part, and a flow direction of the polishing liquid in the superconducting acceleration cavity. And a step of adjusting the temperature of the part.
  • the temperature of a part of the superconducting accelerating cavity is adjusted, the temperature of the polishing liquid in contact with this part increases or decreases, and the polishing thickness differs between part and other parts.
  • the resonance frequency is adjusted.
  • the superconducting acceleration cavity processing apparatus and method of the present invention it is possible to suppress an increase in equipment cost and to improve processing accuracy.
  • FIG. 1 is a schematic diagram illustrating the superconducting accelerator according to the first embodiment.
  • FIG. 2 is a schematic view showing the superconducting acceleration cavity processing apparatus according to the first embodiment.
  • FIG. 3 is a graph showing the polishing thickness per unit time with respect to the polishing liquid temperature.
  • FIG. 4 is a schematic view showing a superconducting acceleration cavity processing apparatus according to the second embodiment.
  • FIG. 5 is a schematic diagram showing a superconducting acceleration cavity processing apparatus according to the third embodiment.
  • FIG. 6 is a schematic view showing a superconducting acceleration cavity processing apparatus according to the fourth embodiment.
  • FIG. 7 is a schematic view showing a superconducting acceleration cavity processing apparatus according to the fifth embodiment.
  • FIG. 8 is a schematic view showing a superconducting acceleration cavity processing apparatus according to the sixth embodiment.
  • FIG. 9 is a graph showing the polishing thickness deviation with respect to the polishing time.
  • FIG. 1 is a schematic diagram illustrating the superconducting accelerator according to the first embodiment.
  • the superconducting accelerator 10 is, for example, a coaxial quarter wavelength type superconducting accelerator (QWR: Quarter Wave Resonator).
  • the superconducting accelerator 10 includes a refrigerant tank 11 and a superconducting acceleration cavity (hereinafter referred to as an acceleration cavity) 12.
  • the acceleration cavity 12 has an internal space R1, and accelerates the charged particle beam B made of charged particles such as electrons and protons.
  • the acceleration cavity 12 is disposed in the refrigerant tank 11.
  • the refrigerant tank 11 has a gap space R2 between the acceleration cavity 12 and the gap space R2 is filled with the refrigerant.
  • the refrigerant tank 11 is a vacuum container having a hollow cylindrical shape having a central axis C1 along the vertical direction, and includes a cylindrical portion 11a, an upper end portion 11b, and a lower end portion 11c.
  • coolant supply port 20 is provided in the upper end part 11b.
  • the refrigerant tank 11 is supplied with a refrigerant (for example, liquid helium) from the refrigerant supply port 20 to the gap space R ⁇ b> 2 and contacts the outer peripheral surface of the acceleration cavity 12.
  • a refrigerant for example, liquid helium
  • the acceleration cavity 12 is made of a superconducting material such as niobium and has a hollow chamber shape that is continuous in the vertical direction.
  • a gap space R ⁇ b> 2 is secured between the acceleration cavity 12 and the inner surface of the refrigerant tank 11.
  • the acceleration cavity 12 has a beam introducing tube 21 and a beam deriving tube 22 having a central axis C2 perpendicular to the central axis C1 along the vertical direction at the lower portion.
  • the beam introduction tube 21 and the beam lead-out tube 22 have a cylindrical shape and are provided at positions facing the central axis C2.
  • the beam introduction tube 21 and the beam extraction tube 22 have one end communicating with the acceleration cavity 12, the other end extending outward in the radial direction, and penetrating the cylindrical portion 11 a of the refrigerant tank 11 to the outside. It protrudes.
  • the acceleration cavity 12 is provided with a stem 23 extending downward in the vertical direction along the central axis C1.
  • the stem 23 is recessed downward from the upper end portion of the acceleration cavity 12, and the inner diameter gradually decreases from the upper side to the lower side.
  • the stem 23 has a beam distribution tube portion 24 formed at the lower end portion along the central axis C2.
  • the beam distribution tube portion 24 is provided coaxially with the beam introduction tube 21 and the beam lead-out tube 22.
  • the stem 23 is provided with a beam flow tube portion 24 at a lower end portion, whereby an annular flow path 25 is formed.
  • the acceleration cavity 12 has a connection port 26 penetrating the upper end portion 11b of the refrigerant tank 11 at the upper end portion.
  • the accelerating cavity 12 can be connected to a vacuum pump (not shown) through the connection port 26, and the inside of the accelerating cavity 12 can be brought into a vacuum state by evacuating with the vacuum pump.
  • the acceleration cavity 12 has an input coupling portion 27 penetrating the lower end portion 11c of the refrigerant tank 11 at the lower end portion.
  • the acceleration cavity 12 receives an electric power of high frequency from the input coupling portion 27, and generates an electric field that accelerates the charged particle beam B in the internal space R1.
  • the accelerating cavity 12 is cooled by the refrigerant supplied to the gap space R2 of the refrigerant tank 11, and is brought into a superconducting state.
  • the charged particle beam B enters the acceleration cavity 12 from the beam introduction tube 21 of the acceleration cavity 12, and is sent out of the acceleration cavity 12 from the beam outlet tube 22 through the beam flow tube portion 24 of the stem 23.
  • a plurality of superconducting accelerators 10 are connected along the particle flow path of the charged particle beam B. Adjacent superconducting accelerators 10 are connected to each other through a connecting pipe to a beam introducing tube 21 of one superconducting accelerator 10 and a beam lead-out tube 22 of the other superconducting accelerator 10.
  • FIG. 2 is a schematic diagram showing the processing apparatus for the superconducting acceleration cavity according to the first embodiment
  • FIG. 3 is a graph showing the polishing thickness deviation with respect to the polishing liquid temperature.
  • the superconducting accelerating cavity processing apparatus 30 includes a polishing liquid circulating apparatus 31, a polishing liquid supply line L11, a polishing liquid return line L12, and a temperature adjusting apparatus 32.
  • the polishing liquid circulation device 31 has a storage tank 41, a pump 42, and a polishing liquid cooling device 43.
  • the storage tank 41 can store a predetermined amount of polishing liquid therein.
  • the polishing liquid is, for example, a mixed liquid of hydrofluoric acid, nitric acid, and phosphoric acid.
  • the polishing liquid supply line L11 has one end connected to the storage tank 41 and the other end connected to an input coupling portion 27 provided below the superconducting acceleration cavity 12 in the superconducting accelerator 10.
  • One end of the polishing liquid return line L ⁇ b> 12 is connected to the connection port 26 provided in the upper part of the superconducting acceleration cavity 12 in the superconducting accelerator 10, and the other end is connected to the storage tank 41.
  • the pump 42 is provided in the polishing liquid supply line L11, and supplies the polishing liquid in the storage tank 41 to the superconducting acceleration cavity 12 through the polishing liquid supply line L11.
  • the polishing liquid cooling device 43 is a heat exchanger, and cools the polishing liquid stored in the storage tank 41.
  • the polishing liquid cooling device 43 includes a heat exchanging unit 44, a cooling water supply line L 13, a cooling water return line L 14, a cooling water bypass line L 15, a pump 45, and a three-way valve 46.
  • the heat exchange unit 44 is arranged in the polishing liquid of the storage tank 41.
  • the cooling water supply line L ⁇ b> 13 has one end connected to the polishing liquid cooling device 43 and the other end connected to the heat exchange unit 44.
  • the cooling water return line L ⁇ b> 14 has one end connected to the heat exchange unit 44 and the other end connected to the polishing liquid cooling device 43.
  • the pump 45 is provided on the polishing liquid cooling device 43 side from the connection portion of the cooling water bypass line L15 in the cooling water supply line L13.
  • the three-way valve 46 is provided at a connection portion between the cooling water supply line L13 and the cooling water bypass line L15.
  • the temperature adjusting device 32 adjusts a part of the temperature in the flowing direction of the polishing liquid in the superconducting acceleration cavity 12.
  • the temperature adjustment device 32 is disposed outside the superconducting accelerator 10 on the lower side.
  • the temperature adjusting device 32 is a jacket-type electric heater 47 and is mounted so as to cover the entire outer surface of the lower portion of the refrigerant tank 11 in the superconducting accelerator 10.
  • the electric heater 47 as the temperature adjusting device 32 adjusts the temperature by heating the lower part of the superconducting acceleration cavity 12 through the refrigerant tank 11. In this case, it is desirable to fill the gap space R2 between the refrigerant tank 11 and the superconducting acceleration cavity 12 with a heat conducting member.
  • the polishing liquid circulating device 31 drives the pump 42 to supply the polishing liquid in the storage tank 41 from the polishing liquid supply line L11 to the lower portion of the superconducting acceleration cavity 12 through the input coupling portion 27. Then, the superconducting accelerating cavity 12 is filled with the polishing liquid from the lower part and the liquid level rises, and the polishing liquid is discharged to the polishing liquid return line L12 via the upper connection port 26 and stored by the polishing liquid return line L12. Returned to the tank 41. At this time, the lower part of the superconducting acceleration cavity 12 is heated via the refrigerant tank 11 by operating the electric heater 47 as the temperature adjusting device 32.
  • the superconducting accelerating cavity 12 is made of a superconducting material such as niobium metal, and is subjected to a polishing process by a chemical reaction when the polishing liquid contacts the inner surface while flowing, and the inner surface is processed into a flat surface without unevenness. . Further, since the lower part of the superconducting acceleration cavity 12 is heated by the electric heater 47, the polishing liquid contacting the inner surface of the lower part is also heated and the temperature rises. As shown in FIG. 3, the polishing thickness per unit time with respect to the polishing liquid temperature tends to increase as the polishing liquid temperature increases. Then, in the superconducting acceleration cavity 12, the polishing thickness on the lower inner surface is larger than the polishing thickness on the upper inner surface. Therefore, the superconducting acceleration cavity 12 has an inner diameter that is different between the upper part and the lower part, and the resonance frequency is adjusted.
  • a superconducting material such as niobium metal
  • the temperature of the polishing liquid rises by heating the lower part of the superconducting acceleration cavity 12 by the electric heater 47, but the polishing liquid rises inside the superconducting acceleration cavity 12. Therefore, the temperature deviation between the lower part and the upper part of the superconducting acceleration cavity 12 is small. Therefore, the superconducting acceleration cavity 12 has a small polishing thickness deviation between the lower inner surface and the upper inner surface, and no large step is formed.
  • the polishing liquid cooling device 43 drives the pump 35 and supplies the cooling water to the heat exchange unit 44 from the cooling water supply line L13, thereby cooling the polishing liquid stored in the storage tank 41. At this time, the temperature of the polishing liquid stored in the storage tank 41 can be maintained at an appropriate temperature by adjusting the amount of cooling water supplied to the heat exchange unit 44 by the three-way valve 36. Can be supplied to the superconducting acceleration cavity 12.
  • the polishing liquid circulating device 31 and the polishing liquid for supplying the polishing liquid in the polishing liquid circulating device 31 from the lower part of the superconducting acceleration cavity 12 to the inside.
  • a temperature adjusting device 32 for adjusting a part of the temperature in the flow direction.
  • the temperature of the superconducting acceleration cavity 12 is adjusted by the temperature adjusting device 32, the temperature of the polishing liquid that contacts this part rises or falls, and polishing in part and other parts is performed.
  • the thickness is different, and the resonance frequency is adjusted.
  • an increase in equipment cost can be suppressed by using a polishing liquid circulation system as a single system, and the generation of discontinuous steps in the superconducting acceleration cavity 12 can be suppressed to improve the processing accuracy.
  • the temperature adjusting device 32 adjusts the temperature on the lower side of the superconducting acceleration cavity 12. Accordingly, the resonance frequency can be easily adjusted by making the polishing thicknesses different between the lower side and the upper side of the superconducting acceleration cavity 12.
  • the temperature adjusting device 32 is an electric heater 47 as a heating device. Therefore, the resonance frequency can be easily adjusted by promoting the polishing thickness at the portion where the superconducting acceleration cavity 12 is heated. In addition, the structure can be simplified.
  • a storage tank 41 that stores the polishing liquid As the polishing liquid circulation device 31, a storage tank 41 that stores the polishing liquid, a pump 42 that supplies the polishing liquid to the polishing liquid supply line L11, and a storage tank 41 And a polishing liquid cooling device 43 for cooling the stored polishing liquid. Therefore, by cooling the polishing liquid stored in the storage tank 41 by the polishing liquid cooling device 43, the polishing material supplied to the superconducting acceleration cavity 12 can always be maintained at the optimum temperature.
  • the polishing liquid is supplied into the superconducting acceleration cavity 12 from the bottom and discharged from the top, and the polishing liquid in the superconducting acceleration cavity 12 is discharged. Adjusting a part of the temperature in the flow direction.
  • the temperature of a part of the superconducting accelerating cavity 12 is adjusted, the temperature of the polishing liquid in contact with the part rises or falls, and the polishing thickness in part and other parts is different. As a result, the resonance frequency is adjusted. As a result, an increase in equipment cost can be suppressed by using a polishing liquid circulation system as a single system, and the generation of discontinuous steps in the superconducting acceleration cavity 12 can be suppressed to improve the processing accuracy.
  • FIG. 4 is a schematic view showing a superconducting acceleration cavity processing apparatus according to the second embodiment.
  • symbol is attached
  • the superconducting acceleration cavity processing apparatus 30A includes a polishing liquid circulation device 31, a polishing liquid supply line L11, a polishing liquid return line L12, and a temperature adjustment device 32. ing.
  • the polishing liquid circulation device 31, the polishing liquid supply line L11, and the polishing liquid return line L12 have substantially the same configuration as that of the first embodiment, and thus description thereof is omitted.
  • the temperature adjusting device 32 adjusts a part of the temperature in the flowing direction of the polishing liquid in the superconducting acceleration cavity 12.
  • the temperature adjustment device 32 is disposed outside the superconducting accelerator 10 on the upper side.
  • the electric heater 47 as the temperature adjusting device 32 adjusts the temperature by heating the upper part of the superconducting acceleration cavity 12 through the refrigerant tank 11.
  • polishing liquid is supplied from the polishing liquid supply line L11 to the lower part of the superconducting acceleration cavity 12 by the polishing liquid circulation device 31, and returned from the upper part to the storage tank 41 by the polishing liquid return line L12.
  • the upper part of the superconducting acceleration cavity 12 is heated via the refrigerant tank 11 by operating the electric heater 47 as the temperature adjusting device 32.
  • the superconducting accelerating cavity 12 is polished by a chemical reaction when it comes into contact with the inner surface while the polishing liquid flows, and the inner surface is processed into a flat surface without irregularities.
  • the superconducting acceleration cavity 12 is heated by the electric heater 47, the polishing liquid contacting the inner surface of the upper part is also heated and the temperature rises. Then, in the superconducting acceleration cavity 12, the polishing thickness on the upper inner surface is larger than the polishing thickness on the lower inner surface. Therefore, the superconducting acceleration cavity 12 has an inner diameter that is different between the upper part and the lower part, and the resonance frequency is adjusted.
  • the temperature of the polishing liquid rises by heating the upper part of the superconducting acceleration cavity 12 by the electric heater 47.
  • the superconducting acceleration cavity 12 is heated.
  • the temperature deviation between the lower part and the upper part is large. Therefore, the superconducting acceleration cavity 12 has a large polishing thickness deviation between the lower inner surface and the upper inner surface, and a large step can be formed.
  • the polishing liquid does not change greatly in temperature locally between the region flowing in the lower part and the region flowing in the upper part, a discontinuous step does not occur on the inner surface of the superconducting acceleration cavity 12.
  • the temperature adjusting device 32 is an electric heater 47 as a heating device that adjusts the temperature of the upper side of the superconducting acceleration cavity 12. Accordingly, the resonance frequency can be easily adjusted by making the polishing thicknesses different between the lower side and the upper side of the superconducting acceleration cavity 12. Further, the polishing liquid rises inside the superconducting acceleration cavity 12, and the temperature adjusting device 32 adjusts the temperature on the upper side of the superconducting acceleration cavity 12, that is, on the downstream side. And the temperature deviation at the upper part becomes larger, and the polishing thickness deviation can be increased.
  • FIG. 5 is a schematic diagram showing a superconducting acceleration cavity processing apparatus according to the third embodiment.
  • symbol is attached
  • the superconducting acceleration cavity processing apparatus 30B includes a polishing liquid circulation device 31, a polishing liquid supply line L11, a polishing liquid return line L12, and a temperature adjustment device 32. ing.
  • the polishing liquid circulation device 31, the polishing liquid supply line L11, and the polishing liquid return line L12 have substantially the same configuration as that of the first embodiment, and thus description thereof is omitted.
  • the temperature adjusting device 32 adjusts a part of the temperature in the flowing direction of the polishing liquid in the superconducting acceleration cavity 12.
  • the temperature adjustment device 32 adjusts a partial temperature in the axial direction and the circumferential direction of the superconducting accelerator 10.
  • the temperature adjustment device 32 is disposed at an outer portion of the circumferential portion in the middle portion of the superconducting accelerator 10 in the axial direction.
  • the electric heater 47 as the temperature adjustment device 32 adjusts the temperature by heating a part of the superconducting acceleration cavity 12 through the refrigerant tank 11.
  • the superconducting acceleration cavity 12 may have a defect inside the niobium material, which is a material, and this defect is exposed to the surface by chemical polishing, and a local depression is formed on the surface. If there is a local dent in the superconducting accelerating cavity 12, it causes local heat generation when a microwave is introduced, and the superconducting state cannot be maintained and the performance deteriorates. For this reason, in the present embodiment, the temperature adjustment device 32 (electric heater 47) is disposed in a region corresponding to the local depression. Then, when the local depression of the superconducting acceleration cavity 12 is heated by the temperature adjusting device 32, this region is positively chemically polished, and the local depression becomes a gentle inner surface, thereby removing the cause of abnormal heat generation. The superconducting state can be maintained. In addition, since the effect of the temperature adjustment apparatus 32 is the structure substantially the same as 1st Embodiment, description is abbreviate
  • the temperature adjusting device 32 is an electric heater 47 as a heating device that adjusts a partial temperature in the circumferential direction of the superconducting acceleration cavity 12. is there. Therefore, when a defect is generated inside the superconducting acceleration cavity 12, by disposing the electric heater 47 in this defective portion, the defective portion is actively chemically polished, and the local defect becomes a gentle inner surface, The cause of abnormal heat generation can be removed and the superconducting state can be maintained.
  • FIG. 6 is a schematic view showing a superconducting acceleration cavity processing apparatus according to the fourth embodiment.
  • symbol is attached
  • the superconducting acceleration cavity processing apparatus 30C includes a polishing liquid circulation device 31, a polishing liquid supply line L11, a polishing liquid return line L12, and a temperature adjustment device 50. ing.
  • the polishing liquid circulation device 31, the polishing liquid supply line L11, and the polishing liquid return line L12 have substantially the same configuration as that of the first embodiment, and thus description thereof is omitted.
  • the temperature adjusting device 50 adjusts a part of the temperature in the flowing direction of the polishing liquid in the superconducting acceleration cavity 12.
  • the superconducting accelerator 10 includes a refrigerant tank 11 and a superconducting acceleration cavity 12, and the acceleration cavity 12 is disposed in the refrigerant tank 11, and a gap space R2 is secured between them.
  • the temperature adjustment device 50 is a heating device, and is a heat medium supply device 51 that supplies a heat medium to the gap space R2 between the superconducting acceleration cavity 12 and the refrigerant tank 11 disposed outside the superconducting acceleration cavity 12.
  • the heat medium supply device 51 includes a heat medium supply line L16 that supplies a heat medium to the gap space R2. At this time, the heat medium supply device 51 adjusts the temperature by heating the lower part of the superconducting acceleration cavity 12 by supplying the heat medium only to the lower side of the gap space R2 through the heat medium supply line L16.
  • polishing liquid is supplied from the polishing liquid supply line L11 to the lower part of the superconducting acceleration cavity 12 by the polishing liquid circulation device 31, and returned from the upper part to the storage tank 41 by the polishing liquid return line L12.
  • the heat medium supply device 51 as the temperature adjusting device 50 heats the lower part of the superconducting acceleration cavity 12 by supplying the heat medium only to the lower side of the gap space R2 through the heat medium supply line L16.
  • the superconducting accelerating cavity 12 is polished by a chemical reaction when it comes into contact with the inner surface while the polishing liquid flows, and the inner surface is processed into a flat surface without irregularities. Moreover, since the lower part of the superconducting accelerating cavity 12 is heated by the heat medium, the polishing liquid contacting the inner surface of the lower part is also heated and the temperature rises. Then, in the superconducting acceleration cavity 12, the polishing thickness on the lower inner surface is larger than the polishing thickness on the upper inner surface. Therefore, the superconducting acceleration cavity 12 has an inner diameter that is different between the upper part and the lower part, and the resonance frequency is adjusted.
  • the temperature adjusting device 50 supplies the heat medium to the gap space R2 between the superconducting acceleration cavity 12 and the refrigerant tank 11. 51. Therefore, an increase in equipment cost can be suppressed by heating the superconducting acceleration cavity 12 by supplying a heat medium to the existing gap space R2 by the heat medium supply device 51.
  • FIG. 7 is a schematic view showing a superconducting acceleration cavity processing apparatus according to the fifth embodiment.
  • symbol is attached
  • the superconducting acceleration cavity processing apparatus 30D includes a polishing liquid circulating apparatus 31, a polishing liquid supply line L11, a polishing liquid returning line L12, and a temperature adjusting apparatus 60. ing.
  • the polishing liquid circulation device 31, the polishing liquid supply line L11, and the polishing liquid return line L12 have substantially the same configuration as that of the first embodiment, and thus description thereof is omitted.
  • the temperature adjusting device 60 includes an electric heater 47 as a heating device that heats the lower side of the superconducting acceleration cavity 12 and a cooling device 61 that cools the upper side of the superconducting acceleration cavity 12.
  • the electric heater 47 adjusts the temperature by heating the lower part of the superconducting acceleration cavity 12 through the refrigerant tank 11.
  • the cooling device 61 is disposed outside the superconducting accelerator 10 on the upper side.
  • the cooling device 61 includes a cooling jacket 62, a refrigerant circulation device 63, a refrigerant supply line L17, and a refrigerant return line L18, and cools the upper part of the superconducting acceleration cavity 12 via the refrigerant tank 11 to increase the temperature. adjust.
  • polishing liquid is supplied from the polishing liquid supply line L11 to the lower part of the superconducting acceleration cavity 12 by the polishing liquid circulation device 31, and returned from the upper part to the storage tank 41 by the polishing liquid return line L12.
  • the electric heater 47 operates to heat the lower portion of the superconducting acceleration cavity 12 through the refrigerant tank 11.
  • the refrigerant circulation device 63 is activated, the cooling water is supplied from the refrigerant supply line L17 into the cooling jacket 62, and returned by the refrigerant return line L18, thereby heating the upper part of the superconducting acceleration cavity 12 via the refrigerant tank 11. To do.
  • the superconducting accelerating cavity 12 is polished by a chemical reaction when it comes into contact with the inner surface while the polishing liquid flows, and the inner surface is processed into a flat surface without irregularities.
  • the superconducting accelerating cavity 12 is heated at the lower part by the electric heater 47 and is cooled at the upper part by the cooling device 61, so that the polishing liquid contacting the inner surface of the lower part is heated and the temperature rises.
  • the polishing liquid coming into contact with is cooled, and the temperature drops.
  • the superconducting acceleration cavity 12 has an inner diameter that is different between the upper part and the lower part, and the resonance frequency is adjusted.
  • the polishing liquid ascends inside the superconducting acceleration cavity 12, it is heated by the electric heater 47 at the lower portion and increases in temperature, and is cooled by the cooling device 61 at the upper portion and decreases in temperature.
  • the temperature deviation between the lower part and the upper part of the cavity 12 is large. Therefore, the superconducting acceleration cavity 12 has a large polishing thickness deviation between the lower inner surface and the upper inner surface, and a large step can be formed.
  • the polishing liquid does not change greatly in temperature locally between the region flowing in the lower part and the region flowing in the upper part, a discontinuous step does not occur on the inner surface of the superconducting acceleration cavity 12.
  • the electric heater 47 as a heating apparatus for heating the lower side of the superconducting acceleration cavity 12, and the superconducting acceleration cavity 12 and a cooling device 61 for cooling the upper side. Therefore, the temperature difference of the polishing liquid rising in the superconducting acceleration cavity 12 is heated by heating the lower side of the superconducting acceleration cavity 12 by the electric heater 47 and cooling the upper side of the superconducting acceleration cavity 12 by the cooling device 61.
  • the resonance frequency can be easily adjusted by increasing the polishing thickness deviation between the lower side and the upper side of the superconducting acceleration cavity 12.
  • FIG. 8 is a schematic view showing a processing apparatus for a superconducting acceleration cavity according to the sixth embodiment, and FIG.
  • symbol is attached
  • the superconducting acceleration cavity processing apparatus 30E includes a polishing liquid circulation device 31, a polishing liquid supply line L11, a polishing liquid return line L12, a temperature adjustment device 32, A control device 80 is provided.
  • the polishing liquid circulation device 31, the polishing liquid supply line L11, the polishing liquid return line L12, and the temperature adjustment device 32 have substantially the same configuration as that of the first embodiment, and thus description thereof is omitted.
  • the superconducting accelerator 10 having no refrigerant tank 11 is processed during the manufacturing of the superconducting accelerator 10.
  • a first temperature sensor 81 for measuring the temperature of the polishing liquid flowing through the polishing liquid supply line L11 is provided, and a second temperature sensor 82 for measuring the temperature of the polishing liquid flowing through the polishing liquid return line L12 is provided.
  • a flow rate sensor 83 is provided for measuring the supply amount of the polishing liquid supplied to the superconducting acceleration cavity 12 through the polishing liquid supply line L11 by the polishing liquid circulation device 31.
  • the flow sensor 83 may be a flow rate sensor.
  • ultrasonic sensors (polishing thickness measuring sensors) 84 and 85 for measuring the polishing thickness by the polishing liquid on the inner surface of the superconducting acceleration cavity 12 are provided.
  • the first ultrasonic sensor 84 measures the polishing thickness on the lower inner surface of the superconducting acceleration cavity 12
  • the second ultrasonic sensor 85 measures the polishing thickness on the upper inner surface of the superconducting acceleration cavity 12.
  • the control device 80 receives the measurement results of the first temperature sensor 81, the second temperature sensor 82, the flow rate sensor 83, the first ultrasonic sensor 84, and the second ultrasonic sensor 85.
  • the control device 80 controls the polishing liquid circulating device 31 and the temperature adjusting device 32 based on this measurement result and a map of the polishing thickness deviation with respect to a preset polishing time.
  • the controller 80 detects the polishing thickness on the inner surface of the lower portion of the superconducting acceleration cavity 12 detected by the first ultrasonic sensor 84 and the inner surface of the upper portion of the superconducting acceleration cavity 12 detected by the second ultrasonic sensor 85.
  • the polishing thickness deviation is calculated by comparing the polishing thickness.
  • the temperature of the abrasive, the flow rate per unit time of the abrasive (flow rate of the abrasive), and the polishing thickness per unit time are in a proportional relationship. That is, as the temperature of the abrasive increases, the polishing thickness per unit time increases. Further, when the flow rate per unit time of the abrasive increases, the polishing thickness per unit time decreases. Therefore, when the resonance frequency is adjusted by polishing the inner surface of the superconducting acceleration cavity 12 with an abrasive, a map of the polishing thickness deviation with respect to the polishing time is set as shown in FIG. Yes.
  • the polishing thickness deviation is a difference between the polishing thickness of the lower part of the superconducting acceleration cavity 12 and the polishing thickness of the upper part of the superconducting acceleration cavity 12, and by setting this polishing thickness deviation to a predetermined value.
  • the resonance frequency of the superconducting acceleration cavity 12 can be adjusted to a predetermined resonance frequency.
  • the controller 80 increases the heating temperature by the polishing liquid circulation device 31 when the polishing thickness deviation decreases with respect to the polishing time, and heats the polishing liquid circulation device 31 when the polishing thickness deviation increases with respect to the polishing time. Reduce temperature. Further, when the polishing thickness deviation decreases with respect to the polishing time, the control device 80 decreases the supply amount (supply speed) of the abrasive with the temperature adjusting device 32, and the polishing thickness deviation increases with respect to the polishing time. Then, the supply amount (supply speed) of the abrasive is increased by the temperature adjusting device 32.
  • the control device 80 detects the temperature of the polishing liquid flowing through the polishing liquid supply line L11, the temperature of the polishing liquid flowing through the polishing liquid return line L12, and the supply amount of the polishing liquid flowing through the polishing liquid supply line L11 ( Supply speed).
  • the control device 80 does not exceed the upper temperature limit or lower limit value of the polishing liquid, or does not exceed the upper limit value or lower limit value of the polishing liquid regardless of the map of the polishing thickness deviation with respect to the polishing time.
  • the polishing liquid circulating device 31 and the temperature adjusting device 32 are controlled by.
  • ultrasonic sensors 84 and 85 that measure the polishing thickness deviation in the flowing direction of the polishing liquid with respect to the inner surface of the superconducting acceleration cavity 12 are set in advance.
  • the resonance frequency of the superconducting acceleration cavity 12 can be adjusted with high accuracy, and the generation of discontinuous steps in the superconducting acceleration cavity 12 can be suppressed to improve the processing accuracy.
  • the controller 80 is based on the polishing thickness deviation map with respect to a preset polishing time and the measurement results of the ultrasonic sensors 84 and 85, and the polishing liquid circulating apparatus 31.
  • the supply amount of the polishing liquid supplied to the superconducting acceleration cavity 12 is controlled. Accordingly, the resonance frequency of the superconducting acceleration cavity 12 can be adjusted with high accuracy, and the generation of discontinuous steps in the superconducting acceleration cavity 12 can be suppressed to improve the processing accuracy.
  • the first temperature sensor 81 that measures the temperature of the polishing liquid that flows in the polishing liquid supply line L11 and the temperature of the polishing liquid that flows in the polishing liquid return line L12 are measured.
  • the control device 80 controls the temperature adjustment device 32 or the polishing liquid circulation device 31 based on the measurement results of the first temperature sensor 81 and the second temperature sensor 82. Therefore, the resonance frequency of the superconducting acceleration cavity 12 can be adjusted with high accuracy.
  • a flow rate sensor 83 for measuring the amount of polishing liquid supplied to the superconducting acceleration cavity 12 by the polishing liquid circulation device 31 is provided.
  • the polishing liquid circulating device 31 is controlled based on the measurement result. Therefore, the resonance frequency of the superconducting acceleration cavity 12 can be adjusted with high accuracy.
  • the temperature adjusting device is disposed outside the refrigerant tank 11 in the superconducting accelerator 10 so that the superconducting acceleration cavity 12 is heated or cooled via the refrigerant tank 11.
  • the present invention is not limited to this configuration.
  • a temperature adjusting device is disposed outside the superconducting acceleration cavity 12, and the polishing process is performed while directly heating or cooling the superconducting acceleration cavity 12. You may comprise.
  • the temperature adjustment device is configured by only the heating device or the heating device and the cooling device.
  • the temperature adjustment device may be configured by only the cooling device.
  • the heating device and the cooling device are not limited to those described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

超伝導加速空洞の加工装置及び方法において、研磨液循環装置(31)と、研磨液循環装置(31)の研磨液を超伝導加速空洞(12)の下部から内部に供給する研磨液供給ライン(L11)と、超伝導加速空洞(12)の内部に供給された研磨液を超伝導加速空洞(12)の上部から前記研磨液循環装置(31)に戻す研磨液戻しライン(L12)と、超伝導加速空洞(12)における研磨液の流動方向における一部の温度を調整する温度調整装置(32)とを備える。

Description

超伝導加速空洞の加工装置及び方法
 本発明は、超伝導加速空洞の加工装置及び方法に関するものである。
 電子や陽子などの荷電粒子を超伝導加速空洞により加速する超伝導加速器が知られている。この超伝導加速器は、超伝導材料で形成された超伝導加速空洞を冷媒で冷却することで超伝導化する。これにより超伝導加速空洞の電気抵抗がほぼゼロになり、電力損失なく荷電粒子の加速を効率良く行うことができる。
 この超伝導加速器で用いられる超伝導加速空洞は、ニオブ金属などの超伝導材料により構成され、内部の空洞の内面に対して化学研磨や高圧水洗浄などの処理がなされて清浄化された後に組み立てられる。この化学研磨処理は、タンクに充填された研磨液をポンプにより超伝導加速空洞の内部に循環させることで、研磨液とニオブ金属の化学反応により超伝導空洞の内面を研磨するものであり、清浄な金属表面を得ることができる。
 このような超伝導加速器としては、例えば、下記特許文献に記載されたものがある。
特許第3746611号公報
 ところで、超伝導加速器では、加速空洞内にマイクロ波を導入して粒子の加速を行うために、複数の超伝導加速空洞内に同じ周波数のマイクロ波を導入する必要がある。そのため、複数の超伝導加速空洞の共振周波数を、超伝導加速空洞へ投入するマイクロ波の周波数に調整する必要がある。一般的には、超伝導加速空洞の内面を機械的に変形させることにより共振するマイクロ波の周波数の調整を行っている。しかしながら、超伝導加空洞の種類によっては、外力によりつぶすなどの機械的変形では、周波数の調整感度が悪く有効な手段ではない。また、超伝導加空洞によっては、化学研磨により内面の上半分を研磨すると共振周波数が下がり、下半分を研磨すると共振周波数が上がるものがある。このような周波数の調整方法としては、例えば、超伝導加速空洞の下部から内部に所定の高さまで排出ノズルを挿入し、この状態で内部に研磨液を供給する。すると、超伝導加速空洞に供給された研磨液は、排出ノズルの挿入高さで排出されるため、この位置に研磨液の液面が形成される。そのため、超伝導加速空洞は、下部から内部に所定の高さまでの内面だけが研磨されることとなり、共振周波数が調整される。
 このように超伝導加速空洞は、内面清浄化のために空洞内部の全面に渡って化学研磨処理を実施した後、超伝導加速空洞の共振周波数を調整するために空洞内部の一部の面に対して化学研磨処理を実施している。そのため、超伝導加速空洞に対して、研磨液を循環するための2つの循環系統が必要となり、設備コストが増加してしまう。また、内面清浄化のための化学研磨処理を実施した面と、共振周波数を調整するための化学研磨処理を実施した面との間に不連続部としての段差が生じてしまう。すると、超伝導加速空洞内にマイクロ波を投入したとき、この段差に電界が集中して異常放電が発生するおそれがある。
 本発明は、上述した課題を解決するものであり、設備コストの増加を抑制すると共に加工精度の向上を図る超伝導加速空洞の加工装置及び方法を提供することを目的とする。
 上記の目的を達成するための本発明の超伝導加速空洞の加工装置は、研磨液循環装置と、前記液循環装置の研磨液を超伝導加速空洞の下部から内部に供給する研磨液供給ラインと、前記超伝導加速空洞の内部に供給された研磨液を前記超伝導加速空洞の上部から前記前記研磨液循環装置に戻す研磨液戻しラインと、前記超伝導加速空洞における前記研磨液の流動方向における一部の温度を調整する温度調整装置と、を備えることを特徴とするものである。
 従って、研磨液循環装置の研磨液を研磨液供給ラインにより超伝導加速空洞の下部から内部に供給すると、超伝導加速空洞は、内部に供給される研磨液の液面が上昇し、研磨液戻しラインに排出され、研磨液がこの研磨液戻しラインにより研磨液循環装置に戻される。この研磨液が超伝導加速空洞の内部を上方に流動するとき、温度調整装置が超伝導加速空洞における研磨液の流動方向における一部の温度を調整する。すると、超伝導加速空洞は、内面に研磨液が流動しながら接触することで化学反応により研磨処理が施され、内面が凹凸のない平坦面に加工される。また、超伝導加速空洞は、一部の温度が調整されることから、この一部に接触する研磨液の温度が上昇または下降し、一部とその他の部分での研磨厚さが相違することとなり、共振周波数が調整される。その結果、研磨液の循環系統を一系統として設備コストの増加を抑制することができると共に、超伝導加速空洞における不連続な段差の発生を抑制して加工精度の向上を図ることができる。
 本発明の超伝導加速空洞の加工装置では、前記温度調整装置は、前記超伝導加速空洞の下部側または上部側の温度を調整することを特徴としている。
 従って、超伝導加速空洞の下部側と上部側で研磨厚さを相違させることで、共振周波数を容易に調整することができる。
 本発明の超伝導加速空洞の加工装置では、前記温度調整装置は、前記超伝導加速空洞の周方向における一部の温度を調整することを特徴としている。
 従って、超伝導加速空洞の内部に欠陥が生じているとき、この欠陥部に温度調整装置を配置することで、欠陥部が積極的に化学研磨され、局所的な欠陥がなだらかな内面となり、異常発熱の原因を取り除き、超伝導状態を維持することができる。
 本発明の超伝導加速空洞の加工装置では、前記温度調整装置は、加熱装置であることを特徴としている。
 従って、温度調整装置としての加熱装置により超伝導加速空洞を加熱する部分での研磨厚さを、他の部分での研磨厚さに比べて大きくすることで、共振周波数を容易に調整することができる。
 本発明の超伝導加速空洞の加工装置では、前記加熱装置は、電気ヒータであることを特徴としている。
 従って、加熱装置を電気ヒータとすることで、構造の簡素化を図ることができる。
 本発明の超伝導加速空洞の加工装置では、前記加熱装置は、前記超伝導加速空洞と前記超伝導加速空洞の外側に配置される冷媒槽との隙間空間に熱媒体を供給する熱媒体供給装置であることを特徴としている。
 従って、熱媒体供給装置により既存の隙間空間に対して熱媒体を供給して超伝導加速空洞を加熱することで、設備コストの増加を抑制することができる。
 本発明の超伝導加速空洞の加工装置では、前記温度調整装置は、前記超伝導加速空洞の下部側を加熱する前記加熱装置と、前記超伝導加速空洞の上部側の冷却する冷却装置とを有することを特徴としている。
 従って、加熱装置により超伝導加速空洞の下部側を加熱し、冷却装置により超伝導加速空洞の上部側を冷却することで、超伝導加速空洞内を上昇する研磨液の温度差を確保し、超伝導加速空洞の下部側と上部側での研磨厚さ偏差を大きくして共振周波数を容易に調整することができる。
 本発明の超伝導加速空洞の加工装置では、前記研磨液循環装置は、研磨液を貯留する貯留槽と、前記研磨液供給ラインに研磨液を供給するポンプと、前記貯留槽に貯留される研磨液を冷却する研磨液冷却装置とを有することを特徴としている。
 従って、研磨液冷却装置により貯留槽に貯留される研磨液を冷却することで、超伝導加速空洞に供給する研磨材を常時最適温度に維持することができる。
 本発明の超伝導加速空洞の加工装置では、前記超伝導加速空洞の内面に対する研磨液の流動方向における研磨厚さ偏差を計測する研磨厚さ計測センサと、予め設定された研磨時間に対する研磨厚さ偏差のマップと前記研磨厚さ計測センサの計測結果に基づいて前記温度調整装置を制御する制御装置とが設けられることを特徴としている。
 従って、温度調整装置を研磨時間に対する研磨厚さ偏差のマップに基づいて制御されることから、超伝導加速空洞の共振周波数を高精度に調整することができると共に、超伝導加速空洞における不連続な段差の発生を抑制して加工精度の向上を図ることができる。
 本発明の超伝導加速空洞の加工装置では、前記超伝導加速空洞の内面に対する研磨液の流動方向における研磨厚さ偏差を計測する研磨厚さ計測センサと、予め設定された研磨時間に対する研磨厚さ偏差のマップと前記研磨厚さ計測センサの計測結果に基づいて前記研磨液循環装置により前記超伝導加速空洞に供給する研磨液の供給量を制御する制御装置とが設けられることを特徴としている。
 従って、研磨液循環装置を研磨時間に対する研磨厚さ偏差のマップに基づいて制御されることから、超伝導加速空洞の共振周波数を高精度に調整することができると共に、超伝導加速空洞における不連続な段差の発生を抑制して加工精度の向上を図ることができる。
 本発明の超伝導加速空洞の加工装置では、前記研磨液供給ラインを流動する研磨液の温度を計測する第1温度センサと、前記研磨液戻しラインを流動する研磨液の温度を計測する第2温度センサとが設けられ、前記制御装置は、前記第1温度センサと前記第2温度センサの計測結果に基づいて前記温度調整装置または前記研磨液循環装置を制御することを特徴としている。
 従って、研磨液供給ラインを流動する研磨液の温度と研磨液戻しラインを流動する研磨液の温度に応じて温度調整装置または研磨液循環装置を制御することから、超伝導加速空洞の共振周波数を高精度に調整することができる。
 本発明の超伝導加速空洞の加工装置では、前記研磨液循環装置により前記超伝導加速空洞に供給する研磨液の供給量を計測する流量センサが設けられ、前記制御装置は、前記流量センサの計測結果に基づいて前記研磨液循環装置を制御することを特徴としている。
 従って、超伝導加速空洞に供給する研磨液の供給量に基づいて研磨液循環装置を制御することから、超伝導加速空洞の共振周波数を高精度に調整することができる。
 また、本発明の超伝導加速空洞の加工方法は、研磨液を超伝導加速空洞の下部から内部に供給すると共に上部から排出する工程と、前記超伝導加速空洞における前記研磨液の流動方向における一部の温度を調整する工程と、を有することを特徴とするものである。
 従って、超伝導加速空洞は、一部の温度が調整されることから、この一部に接触する研磨液の温度が上昇または下降し、一部とその他の部分での研磨厚さが相違することとなり、共振周波数が調整される。その結果、研磨液の循環系統を一系統として設備コストの増加を抑制することができると共に、超伝導加速空洞における不連続な段差の発生を抑制して加工精度の向上を図ることができる。
 本発明の超伝導加速空洞の加工装置及び方法によれば、設備コストの増加を抑制することができると共に、加工精度の向上を図ることができる。
図1は、第1実施形態の超伝導加速器を表す概略図である。 図2は、第1実施形態の超伝導加速空洞の加工装置を表す概略図である。 図3は、研磨液温度に対する単位時間当たりの研磨厚さを表すグラフである。 図4は、第2実施形態の超伝導加速空洞の加工装置を表す概略図である。 図5は、第3実施形態の超伝導加速空洞の加工装置を表す概略図である。 図6は、第4実施形態の超伝導加速空洞の加工装置を表す概略図である。 図7は、第5実施形態の超伝導加速空洞の加工装置を表す概略図である。 図8は、第6実施形態の超伝導加速空洞の加工装置を表す概略図である。 図9は、研磨時間に対する研磨厚さ偏差を表すグラフである。
 以下、添付図面を参照して、本発明に係る超伝導加速空洞の加工装置及び方法の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
[第1実施形態]
 まず、超伝導加速器について説明する。図1は、第1実施形態の超伝導加速器を表す概略図である。
 図1に示すように、超伝導加速器10は、例えば、同軸1/4波長型超伝導加速器(QWR:Quarter Wave Resonator)である。超伝導加速器10は、冷媒槽11と、超伝導加速空洞(以下、加速空洞)12とを備える。加速空洞12は、内部空間R1を有し、電子や陽子などの荷電粒子からなる荷電粒子ビームBを加速するものである。加速空洞12は、冷媒槽11内に配置される。冷媒槽11は、加速空洞12との間の隙間空間R2を有し、この隙間空間R2に冷媒が充填される。
 冷媒槽11は、鉛直方向に沿う中心軸C1を有する中空円柱形状をなす真空容器であり、円筒部11aと、上端部11bと、下端部11cとから構成されている。冷媒槽11は、上端部11bに冷媒供給口20が設けられる。冷媒槽11は、この冷媒供給口20から隙間空間R2に冷媒(例えば、液体ヘリウムなど)が供給され、加速空洞12の外周面に接触する。
 加速空洞12は、ニオブなどの超伝導材料により形成され、鉛直方向に連続する中空チャンバ形状をなしている。この加速空洞12は、冷媒槽11の内面との間に隙間空間R2が確保されている。また、加速空洞12は、下部に鉛直方向に沿って中心軸C1に直交する中心軸C2を有するビーム導入管21とビーム導出管22が配置されている。ビーム導入管21とビーム導出管22は、円筒形状をなし、中心軸C2の方向に対向する位置に設けられている。ビーム導入管21とビーム導出管22は、一端部が加速空洞12に連通し、他端部が径方向の外方に向かって延出し、冷媒槽11の円筒部11aを貫通して外方に突出している。
 加速空洞12は、中心軸C1に沿って鉛直方向の下方に延出するステム23が設けられている。ステム23は、加速空洞12の上端部から下方に向かって凹み、上方から下方に向けて内径が徐々に小さくなっている。ステム23は、下端部に中心軸C2に沿ってビーム流通管部24が形成されている。ビーム流通管部24は、ビーム導入管21およびビーム導出管22と同軸状に設けられている。ステム23は、下端部にビーム流通管部24が設けられることで、環状流路25が形成される。
 加速空洞12は、上端部に冷媒槽11の上端部11bを貫通して接続口26が設けられている。加速空洞12は、この接続口26を通して図示しない真空ポンプなどが接続可能となっており、真空ポンプにより真空引きすることで加速空洞12の内部を真空状態とすることができる。
 また、加速空洞12は、下端部に冷媒槽11の下端部11cを貫通して入力結合部27が設けられている。加速空洞12は、入力結合部27から高周波の電力が入力されることで、内部空間R1に荷電粒子ビームBを加速する電界が発生する。
 このように構成された超伝導加速器10は、冷媒槽11の隙間空間R2に供給された冷媒によって加速空洞12が冷却され、超伝導状態とされる。荷電粒子ビームBは、加速空洞12のビーム導入管21から加速空洞12内に入り、ステム23のビーム流通管部24を経てビーム導出管22から加速空洞12の外部に送り出される。超伝導加速器10は、荷電粒子ビームBの粒子流路に沿って複数連接される。隣接する超伝導加速器10同士は、一方の超伝導加速器10のビーム導入管21と他方の超伝導加速器10のビーム導出管22が接続管を介し接続される。
 次に、第1実施形態の超伝導加速空洞の加工装置及び方法について説明する。図2は、第1実施形態の超伝導加速空洞の加工装置を表す概略図、図3は、研磨液温度に対する研磨厚さ偏差を表すグラフである。
 図2に示すように、超伝導加速空洞の加工装置30は、研磨液循環装置31と、研磨液供給ラインL11と、研磨液戻しラインL12と、温度調整装置32を備えている。
 研磨液循環装置31は、貯留槽41と、ポンプ42と、研磨液冷却装置43とを有している。貯留槽41は、内部に所定量の研磨液を貯留することができる。ここで、研磨液とは、例えば、フッ化水素酸と硝酸とリン酸の混合液である。研磨液供給ラインL11は、一端部が貯留槽41に接続され、他端部が超伝導加速器10における超伝導加速空洞12の下部に設けられる入力結合部27に接続される。研磨液戻しラインL12は、一端部が超伝導加速器10における超伝導加速空洞12の上部に設けられる接続口26に接続され、他端部が貯留槽41に接続される。ポンプ42は、研磨液供給ラインL11に設けられており、貯留槽41の研磨液を研磨液供給ラインL11により超伝導加速空洞12に供給するものである。
 研磨液冷却装置43は、熱交換器であり、貯留槽41に貯留される研磨液を冷却するものである。研磨液冷却装置43は、熱交換部44と、冷却水供給ラインL13と、冷却水戻しラインL14と、冷却水迂回ラインL15と、ポンプ45と、三方弁46とを有している。熱交換部44は、貯留槽41の研磨液内に配置されている。冷却水供給ラインL13は、一端部が研磨液冷却装置43に接続され、他端部が熱交換部44に接続されている。冷却水戻しラインL14は、一端部が熱交換部44に接続され、他端部が研磨液冷却装置43に接続されている。冷却水迂回ラインL15は、一端部が冷却水供給ラインL13の中途部に接続され、他端部が冷却水戻しラインL14の中途部に接続されている。ポンプ45は、冷却水供給ラインL13における冷却水迂回ラインL15の接続部より研磨液冷却装置43側に設けられている。三方弁46は、冷却水供給ラインL13と冷却水迂回ラインL15の接続部に設けられている。
 温度調整装置32は、超伝導加速空洞12における研磨液の流動方向における一部の温度を調整するものである。温度調整装置32は、超伝導加速器10の下部側における外側に配置される。温度調整装置32は、ジャケット式の電気ヒータ47であって、超伝導加速器10における冷媒槽11の下部の外面全周を被覆するように装着される。温度調整装置32としての電気ヒータ47は、冷媒槽11を介して超伝導加速空洞12の下部を加熱して温度を調整する。この場合、冷媒槽11と超伝導加速空洞12との間の隙間空間R2に熱伝導部材を充填しておくことが望ましい。
 そのため、研磨液循環装置31にて、ポンプ42を駆動して貯留槽41の研磨液を研磨液供給ラインL11から入力結合部27を介して超伝導加速空洞12の下部に供給する。すると、超伝導加速空洞12は、下部から研磨液が充填されて液面が上昇し、研磨液が上部の接続口26を介して研磨液戻しラインL12に排出され、研磨液戻しラインL12により貯留槽41に戻される。このとき、温度調整装置32としての電気ヒータ47が作動することで、冷媒槽11を介して超伝導加速空洞12の下部を加熱する。
 超伝導加速空洞12は、ニオブ金属などの超伝導材料により構成され、内面に研磨液が流動しながら接触することで化学反応により研磨処理が施され、内面が凹凸のない平坦面に加工される。また、超伝導加速空洞12は、下部が電気ヒータ47により加熱されることから、下部の内面に接触する研磨液も加熱されて温度が上昇する。図3に示すように、研磨液温度に対する単位時間当たりの研磨厚さは、研磨液温度の上昇に伴って増加する傾向にある。すると、超伝導加速空洞12は、下部の内面における研磨厚さが上部の内面における研磨厚さより大きくなる。そのため、超伝導加速空洞12は、上部と下部で内径が相違することとなり、共振周波数が調整される。
 このとき、図2に示すように、電気ヒータ47により超伝導加速空洞12の下部を加熱することで研磨液の温度が上昇するが、研磨液は、超伝導加速空洞12の内部を上昇することから、超伝導加速空洞12の下部と上部の温度偏差は小さい。そのため、超伝導加速空洞12は、下部の内面と上部の内面との研磨厚さ偏差は小さく、大きな段差が形成されることはない。また、研磨液冷却装置43は、ポンプ35を駆動し、冷却水を冷却水供給ラインL13から熱交換部44に供給することで、貯留槽41に貯留される研磨液を冷却する。このとき、三方弁36により熱交換部44に供給する冷却水量を調整することで、貯留槽41に貯留される研磨液の温度を適正温度に維持することができ、常時、所定温度の研磨液を超伝導加速空洞12に供給することができる。
 このように第1実施形態の超伝導加速空洞の加工装置にあっては、研磨液循環装置31と、研磨液循環装置31の研磨液を超伝導加速空洞12の下部から内部に供給する研磨液供給ラインL11と、超伝導加速空洞12の内部に供給された研磨液を超伝導加速空洞12の上部から前記研磨液循環装置31に戻す研磨液戻しラインL12と、超伝導加速空洞12における研磨液の流動方向における一部の温度を調整する温度調整装置32とを備える。
 従って、超伝導加速空洞12は、温度調整装置32により一部の温度が調整されることから、この一部に接触する研磨液の温度が上昇または下降し、一部とその他の部分での研磨厚さが相違することとなり、共振周波数が調整される。その結果、研磨液の循環系統を一系統として設備コストの増加を抑制することができると共に、超伝導加速空洞12における不連続な段差の発生を抑制して加工精度の向上を図ることができる。
 第1実施形態の超伝導加速空洞の加工装置では、温度調整装置32は、超伝導加速空洞12の下部側の温度を調整する。従って、超伝導加速空洞12の下部側と上部側で研磨厚さを相違させることで、共振周波数を容易に調整することができる。
 第1実施形態の超伝導加速空洞の加工装置では、温度調整装置32を加熱装置としての電気ヒータ47としている。従って、超伝導加速空洞12を加熱する部分での研磨厚さ促進させることで、共振周波数を容易に調整することができる。また、構造の簡素化を図ることができる。
 第1実施形態の超伝導加速空洞の加工装置では、研磨液循環装置31として、研磨液を貯留する貯留槽41と、研磨液供給ラインL11に研磨液を供給するポンプ42と、貯留槽41に貯留される研磨液を冷却する研磨液冷却装置43とを有する。従って、研磨液冷却装置43により貯留槽41に貯留される研磨液を冷却することで、超伝導加速空洞12に供給する研磨材を常時最適温度に維持することができる。
 また、第1実施形態の超伝導加速空洞の加工方法にあっては、研磨液を超伝導加速空洞12の下部から内部に供給すると共に上部から排出する工程と、超伝導加速空洞12における研磨液の流動方向における一部の温度を調整する工程とを有する。
 従って、超伝導加速空洞12は、一部の温度が調整されることから、この一部に接触する研磨液の温度が上昇または下降し、一部とその他の部分での研磨厚さが相違することとなり、共振周波数が調整される。その結果、研磨液の循環系統を一系統として設備コストの増加を抑制することができると共に、超伝導加速空洞12における不連続な段差の発生を抑制して加工精度の向上を図ることができる。
[第2実施形態]
 図4は、第2実施形態の超伝導加速空洞の加工装置を表す概略図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第2実施形態において、図4に示すように、超伝導加速空洞の加工装置30Aは、研磨液循環装置31と、研磨液供給ラインL11と、研磨液戻しラインL12と、温度調整装置32を備えている。ここで、研磨液循環装置31と研磨液供給ラインL11と研磨液戻しラインL12は、第1実施形態とほぼ同様の構成であることから、説明は省略する。
 温度調整装置32は、超伝導加速空洞12における研磨液の流動方向における一部の温度を調整するものである。温度調整装置32は、超伝導加速器10の上部側における外側に配置される。温度調整装置32としての電気ヒータ47は、冷媒槽11を介して超伝導加速空洞12の上部を加熱して温度を調整する。
 そのため、研磨液循環装置31により研磨液を研磨液供給ラインL11から超伝導加速空洞12の下部に供給し、上部から研磨液戻しラインL12により貯留槽41に戻す。このとき、温度調整装置32としての電気ヒータ47が作動することで、冷媒槽11を介して超伝導加速空洞12の上部を加熱する。
 超伝導加速空洞12は、内面に研磨液が流動しながら接触することで化学反応により研磨処理が施され、内面が凹凸のない平坦面に加工される。また、超伝導加速空洞12は、上部が電気ヒータ47により加熱されることから、上部の内面に接触する研磨液も加熱されて温度が上昇する。すると、超伝導加速空洞12は、上部の内面における研磨厚さが下部の内面における研磨厚さより大きくなる。そのため、超伝導加速空洞12は、上部と下部で内径が相違することとなり、共振周波数が調整される。
 このとき、電気ヒータ47により超伝導加速空洞12の上部を加熱することで研磨液の温度が上昇するが、研磨液は、超伝導加速空洞12の内部を上昇することから、超伝導加速空洞12の下部と上部の温度偏差は大きい。そのため、超伝導加速空洞12は、下部の内面と上部の内面との研磨厚さ偏差は大きく、大きな段差が形成することができる。但し、研磨液は、下部を流動する領域と上部を流動する領域で局所的に大きく温度変化するものではないことから、超伝導加速空洞12の内面に不連続な段差が発生することはない。
 このように第2実施形態の超伝導加速空洞の加工装置にあっては、温度調整装置32は、超伝導加速空洞12の上部側の温度を調整する加熱装置としての電気ヒータ47である。従って、超伝導加速空洞12の下部側と上部側で研磨厚さを相違させることで、共振周波数を容易に調整することができる。また、研磨液は、超伝導加速空洞12の内部を上昇し、温度調整装置32が超伝導加速空洞12の上部側、つまり、下流側の温度を調整することから、超伝導加速空洞12の下部と上部での温度偏差が大きくなり、研磨厚さ偏差を大きくすることができる。
[第3実施形態]
 図5は、第3実施形態の超伝導加速空洞の加工装置を表す概略図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第3実施形態において、図5に示すように、超伝導加速空洞の加工装置30Bは、研磨液循環装置31と、研磨液供給ラインL11と、研磨液戻しラインL12と、温度調整装置32を備えている。ここで、研磨液循環装置31と研磨液供給ラインL11と研磨液戻しラインL12は、第1実施形態とほぼ同様の構成であることから、説明は省略する。
 温度調整装置32は、超伝導加速空洞12における研磨液の流動方向における一部の温度を調整するものである。温度調整装置32は、超伝導加速器10の軸方向及び周方向における一部の温度を調整するものである。温度調整装置32は、超伝導加速器10の軸方向の中間部で周方向における一部における外側に配置される。温度調整装置32としての電気ヒータ47は、冷媒槽11を介して超伝導加速空洞12の一部を加熱して温度を調整する。
 超伝導加速空洞12は、素材であるニオブ材料の内部に欠陥が生じていることがあり、この欠陥が化学研磨によって表面に露出し、表面に局所的なくぼみが形成される。超伝導加速空洞12は、局所的なくぼみがあると、マイクロ波を導入したときに局所的な発熱の原因となり、超伝導状態を維持することができずに性能が低下してしまう。そのため、本実施形態では、この局所的なくぼみに対応する領域に温度調整装置32(電気ヒータ47)を配置する。すると、超伝導加速空洞12の局所的なくぼみが温度調整装置32により加熱されることで、この領域が積極的に化学研磨され、局所的なくぼみがなだらかな内面となり、異常発熱の原因を取り除き、超伝導状態を維持することができるようになる。なお、温度調整装置32の作用効果は、第1実施形態とほぼ同様の構成であることから、説明は省略する。
 このように第3実施形態の超伝導加速空洞の加工装置にあっては、温度調整装置32は、超伝導加速空洞12の周方向における一部の温度を調整する加熱装置としての電気ヒータ47である。従って、超伝導加速空洞12の内部に欠陥が生じているとき、この欠陥部に電気ヒータ47を配置することで、欠陥部が積極的に化学研磨され、局所的な欠陥がなだらかな内面となり、異常発熱の原因を取り除き、超伝導状態を維持することができる。
[第4実施形態]
 図6は、第4実施形態の超伝導加速空洞の加工装置を表す概略図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第4実施形態において、図6に示すように、超伝導加速空洞の加工装置30Cは、研磨液循環装置31と、研磨液供給ラインL11と、研磨液戻しラインL12と、温度調整装置50を備えている。ここで、研磨液循環装置31と研磨液供給ラインL11と研磨液戻しラインL12は、第1実施形態とほぼ同様の構成であることから、説明は省略する。
 温度調整装置50は、超伝導加速空洞12における研磨液の流動方向における一部の温度を調整するものである。超伝導加速器10は、冷媒槽11と、超伝導加速空洞12とを備え、加速空洞12は、冷媒槽11内に配置され、両者の間に隙間空間R2が確保される。温度調整装置50は、加熱装置であって、超伝導加速空洞12と超伝導加速空洞12の外側に配置される冷媒槽11との隙間空間R2に熱媒体を供給する熱媒体供給装置51である。熱媒体供給装置51は、隙間空間R2に熱媒体を供給する熱媒体供給ラインL16を有している。このとき、熱媒体供給装置51は、熱媒体供給ラインL16により隙間空間R2の下部側だけに熱媒体を供給することで、超伝導加速空洞12の下部を加熱して温度を調整する。
 そのため、研磨液循環装置31により研磨液を研磨液供給ラインL11から超伝導加速空洞12の下部に供給し、上部から研磨液戻しラインL12により貯留槽41に戻す。このとき、温度調整装置50としての熱媒体供給装置51は、熱媒体供給ラインL16により隙間空間R2の下部側だけに熱媒体を供給することで、超伝導加速空洞12の下部を加熱する。
 超伝導加速空洞12は、内面に研磨液が流動しながら接触することで化学反応により研磨処理が施され、内面が凹凸のない平坦面に加工される。また、超伝導加速空洞12は、下部が熱媒体により加熱されることから、下部の内面に接触する研磨液も加熱されて温度が上昇する。すると、超伝導加速空洞12は、下部の内面における研磨厚さが上部の内面における研磨厚さより大きくなる。そのため、超伝導加速空洞12は、上部と下部で内径が相違することとなり、共振周波数が調整される。
 このように第4実施形態の超伝導加速空洞の加工装置にあっては、温度調整装置50は、超伝導加速空洞12と冷媒槽11との隙間空間R2に熱媒体を供給する熱媒体供給装置51である。従って、熱媒体供給装置51により既存の隙間空間R2に対して熱媒体を供給して超伝導加速空洞12を加熱することで、設備コストの増加を抑制することができる。
[第5実施形態]
 図7は、第5実施形態の超伝導加速空洞の加工装置を表す概略図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第5実施形態において、図7に示すように、超伝導加速空洞の加工装置30Dは、研磨液循環装置31と、研磨液供給ラインL11と、研磨液戻しラインL12と、温度調整装置60を備えている。ここで、研磨液循環装置31と研磨液供給ラインL11と研磨液戻しラインL12は、第1実施形態とほぼ同様の構成であることから、説明は省略する。
 温度調整装置60は、超伝導加速空洞12の下部側を加熱する加熱装置としての電気ヒータ47と、超伝導加速空洞12の上部側の冷却する冷却装置61とを有する。電気ヒータ47は、冷媒槽11を介して超伝導加速空洞12の下部を加熱して温度を調整する。冷却装置61は、超伝導加速器10の上部側における外側に配置される。冷却装置61は、冷却ジャケット62と、冷媒循環装置63と、冷媒供給ラインL17と、冷媒戻しラインL18とを有し、冷媒槽11を介して超伝導加速空洞12の上部を冷却して温度を調整する。
 そのため、研磨液循環装置31により研磨液を研磨液供給ラインL11から超伝導加速空洞12の下部に供給し、上部から研磨液戻しラインL12により貯留槽41に戻す。このとき、電気ヒータ47が作動することで、冷媒槽11を介して超伝導加速空洞12の下部を加熱する。また、冷媒循環装置63が作動し、冷却水を冷媒供給ラインL17から冷却ジャケット62内に供給し、冷媒戻しラインL18により戻すことで、冷媒槽11を介して超伝導加速空洞12の上部を加熱する。
 超伝導加速空洞12は、内面に研磨液が流動しながら接触することで化学反応により研磨処理が施され、内面が凹凸のない平坦面に加工される。また、超伝導加速空洞12は、下部が電気ヒータ47により加熱され、上部が冷却装置61により冷却されることから、下部の内面に接触する研磨液が加熱されて温度が上昇し、上部の内面に接触する研磨液が冷却されて温度が下降する。すると、超伝導加速空洞12は、下部の内面における研磨厚さが上部の内面における研磨厚さより大きくなる。そのため、超伝導加速空洞12は、上部と下部で内径が相違することとなり、共振周波数が調整される。
 このとき、研磨液は、超伝導加速空洞12の内部を上昇するとき、下部で電気ヒータ47により加熱されて温度上昇し、上部で冷却装置61により冷却されて温度低下することから、超伝導加速空洞12の下部と上部の温度偏差は大きい。そのため、超伝導加速空洞12は、下部の内面と上部の内面との研磨厚さ偏差は大きく、大きな段差が形成することができる。但し、研磨液は、下部を流動する領域と上部を流動する領域で局所的に大きく温度変化するものではないことから、超伝導加速空洞12の内面に不連続な段差が発生することはない。
 このように第5実施形態の超伝導加速空洞の加工装置にあっては、温度調整装置60として、超伝導加速空洞12の下部側を加熱する加熱装置としての電気ヒータ47と、超伝導加速空洞12の上部側の冷却する冷却装置61とを有する。従って、電気ヒータ47により超伝導加速空洞12の下部側を加熱し、冷却装置61により超伝導加速空洞12の上部側の冷却することで、超伝導加速空洞12内を上昇する研磨液の温度差を確保し、超伝導加速空洞12の下部側と上部側での研磨厚さ偏差を大きくして共振周波数を容易に調整することができる。
[第6実施形態]
 図8は、第6実施形態の超伝導加速空洞の加工装置を表す概略図、図9は、研磨時間に対する研磨厚さ偏差を表すグラフである。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第6実施形態において、図8に示すように、超伝導加速空洞の加工装置30Eは、研磨液循環装置31と、研磨液供給ラインL11と、研磨液戻しラインL12と、温度調整装置32と、制御装置80を備えている。ここで、研磨液循環装置31と研磨液供給ラインL11と研磨液戻しラインL12と温度調整装置32は、第1実施形態とほぼ同様の構成であることから、説明は省略する。なお、本実施形態では、超伝導加速器10の製造途中で、冷媒槽11のない超伝導加速空洞12単体に対して加工を行うものである。
 研磨液供給ラインL11を流動する研磨液の温度を計測する第1温度センサ81が設けられると共に、研磨液戻しラインL12を流動する研磨液の温度を計測する第2温度センサ82が設けられている。また、研磨液循環装置31により研磨液供給ラインL11を流動して超伝導加速空洞12に供給される研磨液の供給量を計測する流量センサ83が設けられている。この場合、流量センサ83は、流速センサであってもよい。更に、超伝導加速空洞12の内面における研磨液による研磨厚さを計測する超音波センサ(研磨厚さ計測センサ)84,85が設けられている。第1超音波センサ84は、超伝導加速空洞12の下部の内面における研磨厚さを計測し、第2超音波センサ85は、超伝導加速空洞12の上部の内面における研磨厚さを計測する。
 制御装置80は、第1温度センサ81、第2温度センサ82、流量センサ83、第1超音波センサ84、第2超音波センサ85の計測結果が入力される。制御装置80は、この計測結果と予め設定された研磨時間に対する研磨厚さ偏差のマップに基づいて研磨液循環装置31と温度調整装置32を制御する。ここで、制御装置80は、第1超音波センサ84が検出した超伝導加速空洞12の下部の内面における研磨厚さと、第2超音波センサ85が検出した超伝導加速空洞12の上部の内面における研磨厚さとを比較することで、研磨厚さ偏差を算出する。
 研磨材の温度と研磨材の単位時間当たりの流量(研磨材の流速)と単位時間当たりの研磨厚さとは比例関係にある。即ち、研磨材の温度が上昇すると、単位時間当たりの研磨厚さが増加する。また、研磨材の単位時間当たりの流量が増加すると、単位時間当たりの研磨厚さが減少する。そのため、研磨材により超伝導加速空洞12の内面に対して研磨処理が施すことで共振周波数の調整を実施するとき、図9に示すように、研磨時間に対する研磨厚さ偏差のマップが設定されている。ここで、研磨厚さ偏差とは、超伝導加速空洞12の下部の研磨厚さと、超伝導加速空洞12の上部の研磨厚さとの差であり、この研磨厚さ偏差を所定値とすることで、超伝導加速空洞12の共振周波数を所定の共振周波数に調整することができる。
 制御装置80は、研磨時間に対して研磨厚さ偏差が低下すると、研磨液循環装置31により加熱温度を上昇させ、研磨時間に対して研磨厚さ偏差が増加すると、研磨液循環装置31により加熱温度を低下させる。また、制御装置80は、研磨時間に対して研磨厚さ偏差が低下すると、温度調整装置32により研磨材の供給量(供給速度)を低下させ、研磨時間に対して研磨厚さ偏差が増加すると、温度調整装置32により研磨材の供給量(供給速度)を上昇させる。
 このとき、制御装置80は、研磨液供給ラインL11を流動する研磨液の温度と、研磨液戻しラインL12を流動する研磨液の温度と、研磨液供給ラインL11を流動する研磨液の供給量(供給速度)を監視している。そして、制御装置80は、研磨時間に対する研磨厚さ偏差のマップの拘わらず、研磨液の温度上限値や下限値を超えないように、または、研磨液の流量上限値や下限値を超えないようにて研磨液循環装置31と温度調整装置32を制御する。
 第6実施形態の超伝導加速空洞の加工装置にあっては、超伝導加速空洞12の内面に対する研磨液の流動方向における研磨厚さ偏差を計測する超音波センサ84,85と、予め設定された研磨時間に対する研磨厚さ偏差のマップと超音波センサ84,85の計測結果に基づいて温度調整装置32を制御する制御装置80とを設けている。
 従って、超伝導加速空洞12の共振周波数を高精度に調整することができると共に、超伝導加速空洞12における不連続な段差の発生を抑制して加工精度の向上を図ることができる。
 第6実施形態の超伝導加速空洞の加工装置では、制御装置80は、予め設定された研磨時間に対する研磨厚さ偏差のマップと超音波センサ84,85の計測結果に基づいて研磨液循環装置31により超伝導加速空洞12に供給する研磨液の供給量を制御する。従って、超伝導加速空洞12の共振周波数を高精度に調整することができると共に、超伝導加速空洞12における不連続な段差の発生を抑制して加工精度の向上を図ることができる。
 第6実施形態の超伝導加速空洞の加工装置では、研磨液供給ラインL11を流動する研磨液の温度を計測する第1温度センサ81と、研磨液戻しラインL12を流動する研磨液の温度を計測する第2温度センサ82とを設け、制御装置80は、第1温度センサ81と第2温度センサ82の計測結果に基づいて温度調整装置32または研磨液循環装置31を制御する。従って、超伝導加速空洞12の共振周波数を高精度に調整することができる。
 第6実施形態の超伝導加速空洞の加工装置では、研磨液循環装置31により超伝導加速空洞12に供給する研磨液の供給量を計測する流量センサ83を設け、制御装置80は、流量センサ83の計測結果に基づいて研磨液循環装置31を制御する。従って、超伝導加速空洞12の共振周波数を高精度に調整することができる。
 なお、上述した第1実施形態から第5実施形態では、温度調整装置を超伝導加速器10における冷媒槽11の外側に配置し、冷媒槽11を介して超伝導加速空洞12を加熱または冷却するように構成したが、この構成に限定されるものではない。例えば、第6実施形態のように、超伝導加速器10の製造途中で、超伝導加速空洞12の外側に温度調整装置を配置し、超伝導加速空洞12を直接加熱または冷却しながら研磨処理を実施するように構成してもよい。
 また、上述した実施形態では、温度調整装置を加熱装置だけで構成したり、加熱装置と冷却装置により構成したりしたが、温度調整装置を冷却装置だけで構成したりしてもよい。更に、加熱装置と冷却装置は、上述したものに限定されるものではない。
 10 超伝導加速器
 11 冷媒槽
 12 超伝導加速空洞
 20 冷媒供給口
 21 ビーム導入管
 22 ビーム導出管
 23 ステム
 24 ビーム流通管部
 25 環状流路
 26 接続口
 27 入力結合部
 30,30A,30B,30C,30D,30E 超伝導加速空洞の加工装置
 32,50,60 温度調整装置
 41 貯留槽
 42 ポンプ
 43 研磨液冷却装置
 44 熱交換部
 45 ポンプ
 46 三方弁
 47 電気ヒータ
 51 熱媒体供給装置
 61 冷却装置
 62 冷却ジャケット
 63 冷媒循環装置
 80 制御装置
 81 第1温度センサ
 82 第2温度センサ
 83 流量センサ
 84 第1超音波センサ
 85 第2超音波センサ
 B 荷電粒子ビーム
 C1,C2 中心軸
 R1 内部空間
 R2 隙間空間
 L11 研磨液供給ライン
 L12 研磨液戻しライン
 L13 冷却水供給ライン
 L14 冷却水戻しライン
 L15 冷却水迂回ライン
 L16 熱媒体供給ライン
 L17 冷媒供給ライン
 L18 冷媒戻しライン

Claims (13)

  1.  研磨液循環装置と、
     前記研磨液循環装置の研磨液を超伝導加速空洞の下部から内部に供給する研磨液供給ラインと、
     前記超伝導加速空洞の内部に供給された研磨液を前記超伝導加速空洞の上部から前記研磨液循環装置に戻す研磨液戻しラインと、
     前記超伝導加速空洞における前記研磨液の流動方向における一部の温度を調整する温度調整装置と、
     を備えることを特徴とする超伝導加速空洞の加工装置。
  2.  前記温度調整装置は、前記超伝導加速空洞の下部側または上部側の温度を調整することを特徴とする請求項1に記載の超伝導加速空洞の加工装置。
  3.  前記温度調整装置は、前記超伝導加速空洞の周方向における一部の温度を調整することを特徴とする請求項1または請求項2に記載の超伝導加速空洞の加工装置。
  4.  前記温度調整装置は、加熱装置であることを特徴とする請求項1から請求項3のいずれか一項に記載の超伝導加速空洞の加工装置。
  5.  前記加熱装置は、電気ヒータであることを特徴とする請求項4に記載の超伝導加速空洞の加工装置。
  6.  前記加熱装置は、前記超伝導加速空洞と前記超伝導加速空洞の外側に配置される冷媒槽との隙間空間に熱媒体を供給する熱媒体供給装置であることを特徴とする請求項4に記載の超伝導加速空洞の加工装置。
  7.  前記温度調整装置は、前記超伝導加速空洞の下部側を加熱する前記加熱装置と、前記超伝導加速空洞の上部側の冷却する冷却装置とを有することを特徴とする請求項4から請求項6のいずれか一項に記載の超伝導加速空洞の加工装置。
  8.  前記研磨液循環装置は、研磨液を貯留する貯留槽と、前記研磨液供給ラインに研磨液を供給するポンプと、前記貯留槽に貯留される研磨液を冷却する研磨液冷却装置とを有することを特徴とする請求項4から請求項7のいずれか一項に記載の超伝導加速空洞の加工装置。
  9.  前記超伝導加速空洞の内面に対する研磨液の流動方向における研磨厚さ偏差を計測する研磨厚さ計測センサと、予め設定された研磨時間に対する研磨厚さ偏差のマップと前記研磨厚さ計測センサの計測結果に基づいて前記温度調整装置を制御する制御装置とが設けられることを特徴とする請求項1から請求項8のいずれか一項に記載の超伝導加速空洞の加工装置。
  10.  前記超伝導加速空洞の内面に対する研磨液の流動方向における研磨厚さ偏差を計測する研磨厚さ計測センサと、予め設定された研磨時間に対する研磨厚さ偏差のマップと前記研磨厚さ計測センサの計測結果に基づいて前記研磨液循環装置により前記超伝導加速空洞に供給する研磨液の供給量を制御する制御装置とが設けられることを特徴とする請求項1から請求項9のいずれか一項に記載の超伝導加速空洞の加工装置。
  11.  前記研磨液供給ラインを流動する研磨液の温度を計測する第1温度センサと、前記研磨液戻しラインを流動する研磨液の温度を計測する第2温度センサとが設けられ、前記制御装置は、前記第1温度センサと前記第2温度センサの計測結果に基づいて前記温度調整装置または前記研磨液循環装置を制御することを特徴とする請求項9または請求項10のいずれか一項に記載の超伝導加速空洞の加工装置。
  12.  前記研磨液循環装置により前記超伝導加速空洞に供給する研磨液の供給量を計測する流量センサが設けられ、前記制御装置は、前記流量センサの計測結果に基づいて前記研磨液循環装置を制御することを特徴とする請求項10に記載の超伝導加速空洞の加工装置。
  13.  研磨液を超伝導加速空洞の下部から内部に供給すると共に上部から排出する工程と、
     前記超伝導加速空洞における研磨液の流動方向における一部の温度を調整する工程と、
     を有することを特徴とする超伝導加速空洞の加工方法。
PCT/JP2019/017523 2018-04-26 2019-04-24 超伝導加速空洞の加工装置及び方法 WO2019208664A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-085264 2018-04-26
JP2018085264A JP7071866B2 (ja) 2018-04-26 2018-04-26 超伝導加速空洞の加工装置及び方法

Publications (1)

Publication Number Publication Date
WO2019208664A1 true WO2019208664A1 (ja) 2019-10-31

Family

ID=68293675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017523 WO2019208664A1 (ja) 2018-04-26 2019-04-24 超伝導加速空洞の加工装置及び方法

Country Status (2)

Country Link
JP (1) JP7071866B2 (ja)
WO (1) WO2019208664A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330098A (ja) * 1995-06-05 1996-12-13 Mitsubishi Electric Corp 超伝導加速空洞位相調整システムとその空洞セルの共振周波数の修正方法
JP2003036999A (ja) * 2001-07-19 2003-02-07 Toshiba Corp 超電導高周波加速空胴の製造方法
JP2015528059A (ja) * 2012-07-11 2015-09-24 ファラデイ テクノロジー,インコーポレイティド 超伝導高周波空洞の電気化学システム及び電解研磨方法
WO2016056620A1 (ja) * 2014-10-10 2016-04-14 マルイ鍍金工業株式会社 空洞管の研磨用ロータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330098A (ja) * 1995-06-05 1996-12-13 Mitsubishi Electric Corp 超伝導加速空洞位相調整システムとその空洞セルの共振周波数の修正方法
JP2003036999A (ja) * 2001-07-19 2003-02-07 Toshiba Corp 超電導高周波加速空胴の製造方法
JP2015528059A (ja) * 2012-07-11 2015-09-24 ファラデイ テクノロジー,インコーポレイティド 超伝導高周波空洞の電気化学システム及び電解研磨方法
WO2016056620A1 (ja) * 2014-10-10 2016-04-14 マルイ鍍金工業株式会社 空洞管の研磨用ロータ

Also Published As

Publication number Publication date
JP7071866B2 (ja) 2022-05-19
JP2019192539A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP5912439B2 (ja) 温度制御システム、半導体製造装置及び温度制御方法
JP4256031B2 (ja) 処理装置およびその温度制御方法
US7838792B2 (en) Plasma processing apparatus capable of adjusting temperature of sample stand
US20150176928A1 (en) Method of supplying temperature control fluid to temperature control system and storage medium
JP5618638B2 (ja) プラズマ処理装置または試料載置台
WO2019204124A1 (en) Ceramic wafer heater with integrated pressurized helium cooling
US10553463B2 (en) Temperature control system, semiconductor manufacturing device, and temperature control method
US10964513B2 (en) Plasma processing apparatus
US20080203925A1 (en) Plasma processing apparatus
WO2019208664A1 (ja) 超伝導加速空洞の加工装置及び方法
KR101259858B1 (ko) 열교환 장치
KR100626988B1 (ko) Esrf 냉매의 가스배출처리
WO2019213253A1 (en) Methods, apparatuses and systems for substrate processing for lowering contact resistance
JP2016162794A (ja) 真空処理装置
KR102186071B1 (ko) 기판 처리 장치 및 방법
WO2023063391A1 (ja) 温度制御装置、基板処理装置および液量制御方法
KR102395029B1 (ko) 기판 처리 장치 및 기판 처리 방법
Ma et al. Surface preparation processing for superconducting cavities
JP6546041B2 (ja) プラズマ処理装置
JPH03233929A (ja) プラズマ処理装置
KR20190004504A (ko) 노즐 가온 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791852

Country of ref document: EP

Kind code of ref document: A1