WO2019208176A1 - 繊維構造体、繊維強化複合材、及び繊維構造体の製造方法 - Google Patents

繊維構造体、繊維強化複合材、及び繊維構造体の製造方法 Download PDF

Info

Publication number
WO2019208176A1
WO2019208176A1 PCT/JP2019/015205 JP2019015205W WO2019208176A1 WO 2019208176 A1 WO2019208176 A1 WO 2019208176A1 JP 2019015205 W JP2019015205 W JP 2019015205W WO 2019208176 A1 WO2019208176 A1 WO 2019208176A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
layer
fiber structure
branch
main body
Prior art date
Application number
PCT/JP2019/015205
Other languages
English (en)
French (fr)
Inventor
神谷隆太
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to EP19793534.9A priority Critical patent/EP3786326B1/en
Priority to US17/049,784 priority patent/US20210238775A1/en
Publication of WO2019208176A1 publication Critical patent/WO2019208176A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • D03D11/02Fabrics formed with pockets, tubes, loops, folds, tucks or flaps
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D3/00Woven fabrics characterised by their shape
    • D03D3/08Arched, corrugated, or like fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • D03D25/005Three-dimensional woven fabrics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to a fiber structure having a branched portion, a fiber reinforced composite material, and a method for producing the fiber structure.
  • a fiber-reinforced composite material is used as a lightweight, high-strength material.
  • Fiber reinforced composite materials are used as structural parts because reinforced fibers (reinforced substrates) are compounded in a matrix of resin, ceramics, etc., resulting in improved mechanical properties (mechanical properties) compared to the matrix itself. preferable.
  • fiber reinforced composite materials there are curved ones such as an arc shape in plan view or an annular shape in plan view.
  • a fiber structure constituting such a fiber-reinforced composite material for example, a three-dimensional fiber structure disclosed in Patent Document 1, a yarn composed of 0-degree arranged yarns arranged in an arc shape
  • a fan-like plate-like portion in which a laminated yarn group having a biaxial orientation including at least a layer and a yarn layer composed of 90-degree aligned yarns is bonded by a thickness direction yarn.
  • the three-dimensional fiber structure is formed in a shape capable of forming a ring when both end portions of the fan-shaped plate-like portion are connected to each other by a plurality of end portions in the longitudinal direction. .
  • fiber-reinforced composite materials that are circular in plan view.
  • the fiber structure constituting the reinforced base material of such a fiber reinforced composite material is branched into two yarn groups at the end in the longitudinal direction of the fiber structure having a fan-like plate-like portion as in Patent Document 1. It can manufacture by connecting the fiber structures by providing the branched part made to be, and interposing a connection member between the branch parts of the fiber structure adjacent to the circumferential direction.
  • each of the two branched yarn groups is joined by a thickness direction yarn, and in the laminated yarn group other than the branched portion, all the yarn groups are joined by the thickness direction yarn.
  • the connection from the branch boundary line located at the root of the two yarn groups to the nearest 90-degree array yarn in the laminated yarn group is joined by the thickness direction yarn.
  • the force (restraint force) becomes weaker. Since the 90-degree array yarn is arranged in the circumferential direction of the arc in which the 0-degree array yarn extends, the distance from the branch boundary line to the nearest 90-degree array yarn is large. Further, the bonding force by the thickness direction yarn is weak, and the delamination of the laminated yarn group is likely to occur.
  • An object of the present invention is to provide a fiber structure, a fiber-reinforced composite material, and a method for manufacturing the fiber structure that can suppress delamination at the branch portion.
  • a fiber structure for solving the above-mentioned problem has a first yarn layer made of a first yarn and a second yarn layer made of a second yarn intersecting with the first yarn, and The first thread layer and the second thread layer are stacked, and the first thread layer and the second thread layer are constrained by the constraining thread in the stacking direction in which the first thread layer and the second thread layer are stacked.
  • a multi-layer woven fabric all the yarn layers of the multi-layer woven fabric are constrained by the constraining yarn, and at least one end side along the main axis direction of the first yarn is continuous to the main body,
  • An inner edge portion which is a fibrous structure having a branch portion obtained by branching a yarn layer of a multilayer woven fabric into a first forming portion on one end side in the stacking direction and a second forming portion on the other end side in the stacking direction, And an outer edge that is curved in plan view outside the inner edge, and the inner edge
  • the yarn main axis direction of the first yarn extends in the circumferential direction.
  • the main yarn direction of the second yarn extends in the radial direction, and the branch portion extends along the branching portion of the branching portion into the first forming portion and the second forming portion.
  • the gist of the second yarn is that the main axis of the second yarn closest to the branch boundary line is parallel.
  • Up to the second yarn is a portion that is weak in the stacking direction in the main body.
  • the distance between the second yarn and the branch boundary line can be made constant along the radial direction. It can be eliminated, and delamination at the branch portion can be suppressed.
  • a fiber-reinforced composite material for solving the above problems is a fiber-reinforced composite material in which a fiber structure is used as a reinforcing base material, and the reinforcing base material is compounded in a matrix, and the fiber structure is claimed in claim.
  • the gist is the fiber structure according to 1.
  • Up to the second yarn is a portion that is weak in the stacking direction in the main body.
  • the distance between the second yarn and the branch boundary line can be made constant along the radial direction. It can be eliminated, and delamination at the branch portion can be suppressed. Therefore, also in the fiber reinforced composite material, the strength of the vicinity of the boundary between the main body portion and the branch portion can be eliminated.
  • the manufacturing method of the fiber structure for solving the above-described problem includes a first yarn layer made of a first yarn and a second yarn layer made of a second yarn intersecting with the first yarn.
  • the first thread layer and the second thread layer are stacked, and the first thread layer and the second thread layer are bound by a binding thread in the stacking direction in which the first thread layer and the second thread layer are stacked.
  • a constrained multilayer woven fabric wherein all the yarn layers of the multilayer woven fabric are constrained by the constraining yarn, and are continuous to the main body portion at least at one end side along the main axis direction of the first yarn.
  • the first main yarn main shaft extends in a circumferential direction in which the inner edge portion and the outer edge portion extend, and the second main yarn shaft includes the shortest distance between the inner edge portion and the outer edge portion.
  • a step of producing a precursor including the branch portion on at least one end side in the circumferential direction, and a portion branching into the first formation portion and the second formation portion in the branch portion The precursor is cut so that the main axis of the second yarn closest to the branch boundary among the second yarns of the main body portion is parallel to the branch boundary extending along the line, The gist is to form the branch portion and the main body portion.
  • Up to the second yarn is a portion that is weak in the stacking direction in the main body.
  • the distance between the second yarn and the branch boundary line can be made constant along the radial direction. It can be eliminated, and delamination at the branch portion can be suppressed. And about manufacture of such a fiber structure, a branch boundary line and a 2nd thread
  • the manufacturing method of the fiber structure for solving the above-described problem includes a first yarn layer made of a first yarn and a second yarn layer made of a second yarn intersecting with the first yarn.
  • the first thread layer and the second thread layer are stacked, and the first thread layer and the second thread layer are bound by a binding thread in the stacking direction in which the first thread layer and the second thread layer are stacked.
  • a constrained multilayer woven fabric wherein all the yarn layers of the multilayer woven fabric are constrained by the constraining yarn, and are continuous to the main body portion at least at one end side along the main axis direction of the first yarn.
  • a manufacturing method of a fiber structure having a branch portion obtained by branching the yarn layer of the multilayer fabric into a first forming portion on one end side in the stacking direction and a second forming portion on the other end side in the stacking direction One end portion of the first yarn in the main spindle direction is fixed to a first take-up member, and the first take-up member While taking the first yarn linearly, the second yarn is inserted so as to be orthogonal to the first yarn to form the first yarn layer and the second yarn layer, After the first yarn layer and the second yarn layer are restrained in the stacking direction by the restraining yarn to form the first forming portion and the second forming portion, the first forming portion and the second forming portion are 2 fixed to the take-up member, the second yarn is inserted by the second take-up member so that the yarn main shaft of the first yarn is curved in a plan view, and the first forming portion and the branch portion are inserted.
  • Up to the second yarn is a portion that is weak in the stacking direction in the main body.
  • the distance between the second yarn and the branch boundary line can be made constant along the radial direction. It can be eliminated, and delamination at the branch portion can be suppressed. And about the manufacture of such a fiber structure, it can manufacture using a loom.
  • delamination at the branch portion can be suppressed.
  • the top view which shows the fiber reinforced composite material of embodiment The perspective view which shows the fiber structure of embodiment typically.
  • (A) is a partial side view which shows a branch part and a main-body part
  • (b) is a figure which shows the fiber structure of a branch part and a main-body part typically.
  • (A)-(c) is a figure explaining the manufacturing method of the fiber structure of another example.
  • the fiber reinforced composite material 10 is formed by combining a plurality of fiber structures 12 in a matrix 11 with a reinforced base material.
  • a resin is used as the matrix 11.
  • the fiber reinforced composite material 10 has an annular plate shape in plan view.
  • the plan view means that the fiber reinforced composite material 10 is viewed from the outside along the central axis L of the fiber reinforced composite material 10.
  • the direction in which the central axis L extends is the thickness direction.
  • each fiber structure 12 forming the fiber reinforced composite material 10 has a fan shape in plan view.
  • the fiber structure 12 includes a main body portion 16 having a fan shape in plan view and a branching portion 17 having a rectangular shape in plan view continuous to both ends of the main body portion 16 along the direction in which the arc extends.
  • each branch portion 17 has a shape in which both ends of the fiber structure 12 in the extending direction of the arc are bifurcated in the thickness direction.
  • Each branch part 17 has the 1st formation part 17a located in the one end side of the thickness direction of the fiber structure 12, and the 2nd formation part 17b located in the other end side of the thickness direction.
  • the fiber structure 12 has a branch boundary line F1 at a position where the opposing surfaces of the first forming part 17a and the second forming part 17b are joined to each other, and the first forming part 17a and the first forming part 17a are separated from each other by the branch boundary line F1.
  • 2 formation part 17b has branched into two forks.
  • the fiber structure 12 has a ridge line F ⁇ b> 2 along a portion where the first forming portion 17 a and the second forming portion 17 b are bent with respect to the outer surface of the main body portion 16.
  • the first forming portion 17a and the second forming portion 17b are bent with respect to the main body portion 16 from the ridge line F2.
  • the fiber structure 12 is curved in a plan view by extending in an arc shape and having an inner edge portion 12a that is curved in plan view, and extending in an arc shape outside the inner edge portion 12a.
  • the outer edge portion 12b has a shape, and the inner edge portion 12a and the edge portion 12c that connects the ends of the outer edge portion 12b.
  • the inner edges of the main body portion 16 and the branching portion 17 respectively constitute a part of the inner edge portion 12a of the fiber structure 12, and the outer edges of the main body portion 16 and the branching portion 17 are respectively a part of the outer edge portion 12b of the fiber structure 12.
  • the edge of the 1st formation part 17a and the 2nd formation part 17b located in the both ends of the extending direction of the circular arc of the fiber structure 12 comprises the edge part 12c.
  • the circumferential length of the inner edge portion 12a is shorter than the circumferential length of the outer edge portion 12b.
  • the extending direction of the inner edge portion 12a and the outer edge portion 12b is defined as a circumferential direction X
  • the extending direction of a straight line connecting the inner edge portion 12a and the outer edge portion 12b with the shortest distance is defined as a radial direction Y.
  • the outer edge portion 12b is located on the outer side (outer diameter side) along the radial direction Y than the inner edge portion 12a.
  • the branch portion 17 is provided continuously on both sides of the main body portion 16 along the circumferential direction X.
  • each branch portion 17 the branch boundary line F ⁇ b> 1 and the ridge line F ⁇ b> 2 extend in the radial direction Y.
  • the branch boundary line F ⁇ b> 1 and the ridge line F ⁇ b> 2 are parallel to the edge 12 c of the fiber structure 12. For this reason, the distance between the edge 12c of the branching portion 17 along the circumferential direction X and the branch boundary line F1 is constant along the radial direction Y.
  • the fiber structure 12 is a multilayer fabric.
  • the fiber structure 12 has a plurality of warp yarns 13 as first yarns arranged in parallel with each other in a state where the yarn principal axis direction L1 extends in an arc shape, and the yarn principal axis direction L2 extends in a direction intersecting with the warp yarns 13.
  • It is a fabric having a plurality of wefts 14 as second yarns arranged in a state.
  • the yarn main axis direction L1 of the warp yarn 13 extends in the circumferential direction X of the fiber structure 12, and the yarn main axis direction L2 of the weft yarn 14 extends in the radial direction Y of the fiber structure 12.
  • the branch portion 17 is continuous with the main body portion 16 at both ends in the circumferential direction X that is the yarn main axis direction L ⁇ b> 1 of the warp 13.
  • the distance between the wefts 14 adjacent in the circumferential direction X is gradually increased along the radial direction Y toward the outer edge portion 12 b.
  • the spacing between the warp yarns 13 adjacent to each other in the radial direction Y is constant in the plan view of the fiber structure 12.
  • the warp 13 and the weft 14 are fiber bundles formed by bundling reinforcing fibers.
  • the reinforcing fibers organic fibers or inorganic fibers may be used, or different types of organic fibers, different types of inorganic fibers, or mixed fibers obtained by mixing organic fibers and inorganic fibers may be used.
  • the organic fiber include aramid fiber, poly-p-phenylenebenzobisoxazole fiber, ultrahigh molecular weight polyethylene fiber, and the like.
  • the inorganic fiber include carbon fiber, glass fiber, and ceramic fiber.
  • the fiber structure 12 is configured by laminating a plurality of yarn layers.
  • the direction in which the yarn layers are stacked is defined as a stacking direction Z of the fiber structure 12.
  • the stacking direction Z coincides with the thickness direction of the fiber reinforced composite material 10.
  • the adjacent warps 13 and the wefts 14 are shown separated from each other. They are arranged in such a manner that the portions and the ends of the weft yarn 14 overlap each other.
  • the main body portion 16 of the fiber structure 12 has a plurality of warp layers in which a plurality of warps 13 are formed side by side.
  • a warp layer it has the 1st warp layer 21 and the 2nd warp layer 22 arrange
  • the first warp layer 21 and the second warp layer 22 constitute a first yarn layer.
  • the main body portion 16 of the fiber structure 12 has a plurality of weft layers in which a plurality of wefts 14 are formed side by side.
  • the weft layers include a first weft layer 31, a second weft layer 32 disposed below the first weft layer 31 in the stacking direction Z, and a second weft layer 32 disposed below the second weft layer 32 in the stacking direction Z. And three weft layers 33 and a fourth weft layer 34 disposed below the third weft layer 33 in the stacking direction Z.
  • the first weft layer 31, the second weft layer 32, the third weft layer 33, and the fourth weft layer 34 constitute a second yarn layer.
  • the main body portion 16 of the fiber structure 12 has a first weft layer 31, a first warp layer 21, a second weft layer 32, a third weft layer 33, a second from one end to the other end (from top to bottom) in the stacking direction Z.
  • the warp layer 22 and the fourth weft layer 34 are laminated in this order.
  • the first weft layer 31, the first warp layer 21, the second weft layer 32, the third weft layer 33, the second warp layer 22 and the fourth weft layer 34 that is, all the thread layers of the main body portion 16, It is restrained in the stacking direction Z by the restraining yarn 15.
  • the plurality of binding yarns 15 are arranged in the radial direction Y.
  • Each constraining thread 15 is for maintaining the shape of the fiber structure 12 and is a fiber bundle of reinforcing fibers.
  • the reinforcing fibers organic fibers or inorganic fibers may be used, or different types of organic fibers, different types of inorganic fibers, or mixed fibers obtained by mixing organic fibers and inorganic fibers may be used.
  • the plurality of constraining yarns 15 are arranged substantially parallel to the respective warp yarns 13 and are folded back through the outer surfaces of the wefts 14 of the uppermost first weft layer 31 constituting the main body portion 16 of the fiber structure 12. Has been placed.
  • each constraining yarn 15 is arranged so as to penetrate the main body portion 16 in the stacking direction Z and to be folded back through the outer surface of the weft 14 of the lowermost fourth weft layer 34. Therefore, the restraining yarn 15 is engaged with the wefts 14 of the first and fourth weft layers 31 and 34 at both ends in the stacking direction Z.
  • the positions of the wefts 14 that are folded back by the first weft layer 31 or the fourth weft layer 34 are shifted in the circumferential direction X.
  • the first to fourth weft layers 31 to 34 are restrained in the stacking direction Z by engaging the restraint yarn 15 with each weft 14, and the first and second weft layers 31 and 2 adjacent to each other in the stacking direction Z.
  • the first warp layer 21 is constrained between 32 and the second warp layer 22 is constrained between the third and fourth weft layers 33 and 34.
  • the first forming portion 17 a has the first weft layer 31, the first warp layer 21, and the second weft layer 32 restrained in the stacking direction Z by the restraint yarn 15.
  • the restraint yarn 15 is engaged with the wefts 14 of the first and second weft layers 31 and 32 at both ends in the stacking direction Z of the first forming portion 17a.
  • the third weft layer 33, the second warp layer 22, and the fourth weft layer 34 are restrained in the stacking direction Z by the restraint yarn 15.
  • the restraint yarn 15 is engaged with the wefts 14 of the third weft layer 33 and the fourth weft layer 34 at both ends in the stacking direction Z of the second forming portion 17b.
  • the first forming portion 17 a and the second forming portion 17 b are not restrained in the stacking direction Z by the restraining yarn 15.
  • the first forming portion 17a is positioned on one end side in the stacking direction Z of the multilayer fabric, and the second forming portion 17b is positioned on the other end side in the stacking direction Z of the multilayer fabric.
  • the weft 14 closest to the branch boundary line F1 of each branch portion 17 along the circumferential direction X is defined as the shortest weft 14a.
  • the shortest wefts 14a are all the wefts 14 in the stacking direction Z adjacent to the branch boundary line F1 along the circumferential direction X. Therefore, the shortest weft yarn 14 a exists in the first weft layer 31, the second weft layer 32, the third weft layer 33, and the fourth weft layer 34.
  • the main spindles of all the shortest wefts 14a are parallel to the branch boundary line F1.
  • the distance between each shortest weft 14a along the circumferential direction X and the branch boundary line F1 is constant along the radial direction Y.
  • the constraining yarn 15 intersects at the position where the first forming portion 17a and the second forming portion 17b branch, and the constraining yarn 15 is included in the shortest weft 14a adjacent in the circumferential direction X to the intersecting position.
  • the main body portion 16 is restrained in the stacking direction Z by engaging with the shortest wefts 14a of the first and fourth weft layers 31 and 34.
  • the restraint yarns 15 engaged with the wefts 14 of the second weft layer 32 adjacent to the shortest weft yarns 14a are engaged with the shortest weft yarns 14a of the first weft layer 31.
  • the constraining yarn 15 engaged with the weft 14 of the first weft layer 31 adjacent to the shortest weft 14a is engaged with the shortest weft 14a of the fourth weft layer 34.
  • the restraining yarn 15 engaged with the wefts 14 of the fourth weft layer 34 adjacent to the shortest weft 14a is related to the shortest weft 14a of the first weft layer 31.
  • the constraining yarn 15 engaged with the weft 14 of the third weft layer 33 adjacent to the shortest weft 14 a is engaged with the shortest weft 14 a of the fourth weft layer 34.
  • the portion where the other weft 14 of the main body portion 16 is restrained by the restraining yarn 15.
  • the restraining force by the restraining yarn 15 is smaller than that.
  • the greater the distance from the branch boundary line F1 along the circumferential direction X to the shortest weft thread 14a the weaker the restraining force of the body portion 16 by the restraining thread 15.
  • the restraining force of the restraining thread 15 is large or small.
  • the fiber structure 12 is formed by weaving a precursor 30 whose dimensions in the circumferential direction X and radial direction Y are larger than those of the fiber structure 12 with a spiral loom, and then cutting the precursor 30 into a desired shape. .
  • the spiral loom for weaving the precursor 30 of the fiber structure 12 includes a plurality of pairs (only one pair is shown in FIG. 5) of a reed frame 41, reed 42, a weft insertion mechanism 43, a feed mechanism 44, and a winding mechanism. Weaving is performed by a known spiral loom equipped with a take-up mechanism (not shown).
  • Each of the pair of heel frames 41 includes a heald corresponding to each warp 13 and is alternately moved up and down via a heel frame drive mechanism (not shown) to open the warp 13.
  • Each warp 13 is pulled out from a creel or beam (not shown) while applying a predetermined tension.
  • ⁇ 42 is arranged in the middle between the ridge frame 41 and the feed mechanism 44.
  • each warp 13 passes through each reed, and a retreat position where the retreat is moved backward from the weft insertion mechanism 43 along the warp 13, and the weft 14 inserted by the weft insertion mechanism 43 into the front F.
  • the pre-weaving F is set to a position that is orthogonal to the warp 13 and coincides with a radius passing through the center A of the spiral or is very close to this radius.
  • the weft insertion mechanism 43 inserts the weft 14 supplied from the weft supply bobbin 46 between the opened warp 13 between the reed 42 and the weaving front F.
  • a rapier mechanism is used as the weft insertion mechanism 43, and a cutter 43a is disposed on the front surface thereof. The cutter 43a cuts the rear end portion of the weft thread 14 that is inserted every time weft insertion.
  • the feed mechanism 44 is disposed immediately in front of the weaving front F, and includes a pair of frame-like holding members (not shown) and a pair of driving members disposed so as to be housed in the holding members.
  • the warp yarns 13 from F are respectively bent to a predetermined curvature and the weft yarns 14 are radially arranged to form a spiral woven fabric having an outer radius R1 and an inner radius R2 and fed forward.
  • the outer radius R1 matches the radius at the outer edge portion 12b of the fiber structure 12, and the inner radius R2 matches the radius at the inner edge portion 12a of the fiber structure 12.
  • the winding mechanism is a horizontal disk that is disposed below the feeding mechanism 44 and rotates horizontally intermittently around the center A of the spiral.
  • the rotational movement of the winding mechanism is synchronized with the forward movement of the drive member of the feed mechanism 44, and the rotational direction and the rotation amount thereof coincide with the forward movement direction and the forward movement amount of the drive member. .
  • the branch part 17 is formed first.
  • a jig is used.
  • the first forming portion 17a and the second forming portion 17b are woven with the jig interposed therebetween.
  • the warp yarns 13 are arranged on both sides in the thickness direction of the jig, and the weft yarn 14 inserted from the weft supply bobbin 46 is sent by the feed mechanism 44 from the front weave F.
  • the binding yarn 15 is also woven by the loom.
  • the 1st formation part 17a and the 2nd formation part 17b are woven across a jig
  • the jig is removed, and then the main body part 16 is woven by a spiral loom. Thereafter, the jig 17 is used again to weave the branch portion 17 with a spiral loom.
  • FIG. 6 with respect to the branch boundary line F1 located at the branch part 17 of the precursor 30, each shortest weft 14a and edge of the main body part 16 closest to the branch boundary line F1 along the circumferential direction X
  • the precursor 30 is cut so that the parts 12c are parallel.
  • the first forming portion 17a and the second forming portion 17b having a constant distance between the branch boundary line F1 and the edge portion 12c along the circumferential direction X are formed, and the branch portion 17 is formed.
  • the main body portion 16 is formed between the branch portions 17, and the fiber structure 12 is formed.
  • the fiber structure 12 configured as described above connects a plurality of fiber structures 12 with a connecting member 39 interposed between branch portions 17 adjacent in the circumferential direction. And make an annular shape.
  • a plurality of fiber structures 12 formed in an annular shape are impregnated with a resin serving as a matrix 11, an annular fiber-reinforced composite material using the plurality of fiber structures 12 as a reinforcing base material and the resin as a matrix 11 10 is used as an annular part.
  • each shortest weft 14 a of the main body portion 16 is parallel to the branch boundary line F ⁇ b> 1 located at the root of the branch portion 17. For this reason, the distance from the branch boundary line F1 to each shortest weft 14a can be made constant in the radial direction Y, and the magnitude of the restraint force by the restraint thread 15 can be eliminated in the center portion 16 from the branch boundary line F1. . Therefore, delamination can be suppressed in the vicinity of the branch portion 17. Also in the fiber reinforced composite material 10 using the fiber structure 12 as the reinforcing base material, the strength of the main body portion 16 near the boundary with the branch portion 17 can be eliminated.
  • the fiber structure 12 weaves a precursor 30 having dimensions larger in the circumferential direction X and the radial direction Y than the fiber structure 12, and the shortest weft 14a with respect to the branch boundary line F1 in the precursor 30 And it manufactures by cutting the precursor 30 so that the edge part 12c may become parallel. Therefore, it is only necessary to weave the precursor 30 larger in size than the fiber structure 12 and cut the precursor 30, and the fiber structure 12 in which the shortest wefts 14a are parallel to the branch boundary line F1 is easily manufactured. it can.
  • the manufacturing method of the fiber structure 12 is not restricted to embodiment, You may change.
  • the manufacturing method of the fiber structure 12 is not restricted to embodiment, You may change.
  • FIG. 7A one end of the plurality of warp yarns 13 in the yarn main axis direction L1 is fixed to the first take-up member 50.
  • FIG. 7B the weft 14 is inserted from the warp supply bobbin 52 while the warp 13 is taken up (wound) by the first take-up member 50.
  • the warp 13 is taken up by the first take-up member 50 so that the yarn main axis direction L1 extends linearly, and the yarn main axis direction L2 of the weft 14 is perpendicular to the yarn main axis direction L1 of the warp 13. Inserted into.
  • the first weft layer 31 the first warp layer 21, and the second weft layer 32, the third weft layer 33, the second warp layer 22, and the fourth weft layer 34 are formed, and the constraining yarn 15
  • the first forming portion 17a and the second forming portion 17b are formed by restraining them.
  • the wefts 14 are parallel to the edge 12c and the branch boundary line F1 of the first forming portion 17a and the second forming portion 17b.
  • the leading ends of the first forming portion 17 a and the second forming portion 17 b are fixed to the second take-up member 51, and the second take-up member 51 allows the yarn main shaft of the warp 13 to be threaded.
  • the main body portion 16 is formed by inserting the weft 14 while pulling it so as to be bent in a plan view. After the main body 16 is formed, the tip portions of the first forming portion 17a and the second forming portion 17b are fixed to the first take-up member 50, and one of the first forming portion 17a and the second forming portion 17b is formed. In the same manner, the other first forming portion 17a and second forming portion 17b are formed.
  • the fiber structure 12 in which the shortest weft 14a is parallel to the edge 12c and the branch boundary line F1 of the first forming portion 17a and the second forming portion 17b is loomed. Can be manufactured by.
  • the first yarn may be the weft yarn 14 and the second yarn may be the warp yarn 13.
  • the structure provided with the branch part 17 only in the one side of the main-body part 16 along the circumferential direction X may be sufficient as the fiber structure 12.
  • the fiber reinforced composite material 10 may not be an annular shape formed by combining a plurality of fiber structures 12.
  • the fiber-reinforced composite material 10 may have a planar curved shape formed by combining two fiber structures 12 or a planar curved shape formed by one fiber structure 12. Good.
  • the curvature of the inner edge part 12a and the outer edge part 12b of the fiber structure 12 may differ.
  • the shortest weft 14a parallel to the branch boundary line F1 is provided in the first to fourth weft layers 31 to 34, and the shortest weft 14a is provided in the entire stacking direction Z of the fiber structure 12. Not exclusively.
  • the shortest wefts 14a parallel to the branch boundary line F1 may be provided only in the first and fourth weft layers 31 and 34, or only in the second and third weft layers 32 and 33. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Woven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

繊維構造体(12)は、第1~第4緯糸層及び第1~第2経糸層が拘束糸によって拘束された本体部(16)と、本体部(16)の両端に連続し、多層織物を第1形成部(17a)と第2形成部に分岐させた分岐部(17)とを有する。繊維構造体(12)は、分岐部(17)において第1形成部(17a)と第2形成部に分岐する部分に沿って延びる分岐境界線(F1)に対し、本体部(16)の緯糸(14)のうち分岐境界線(F1)に最も近い最短緯糸(14a)の糸主軸が平行である。

Description

繊維構造体、繊維強化複合材、及び繊維構造体の製造方法
 本発明は、分岐部を有する繊維構造体、繊維強化複合材、及び繊維構造体の製造方法に関する。
 軽量、高強度の材料として繊維強化複合材が使用されている。繊維強化複合材は、強化繊維(強化基材)が樹脂、セラミックス等のマトリックス中に複合化されることにより、マトリックス自体に比べて力学的特性(機械的特性)が向上するため、構造部品として好ましい。
 また、繊維強化複合材として、平面視円弧状や平面視円環状といった湾曲形状のものがある。このような繊維強化複合材の強化基材を構成する繊維構造体としては、例えば、特許文献1に開示の三次元繊維構造体のように、円弧状に配列された0度配列糸からなる糸層と、90度配列糸からなる糸層とを少なくとも含む2軸配向となる積層糸群が厚さ方向糸で結合された扇面板状部を有するものがある。また、三次元繊維構造体は、扇面板状部の両端部が、複数の三次元繊維構造体を長手方向の端部同士で連結した際に、円環を形成可能な形状に形成されている。
 また、繊維強化複合材として、平面視円環状のものがある。このような繊維強化複合材の強化基材を構成する繊維構造体は、特許文献1のように扇面板状部を有する繊維構造体の長手方向の端部に、積層糸群を二つの糸群に分岐させた分岐部を設け、周方向に隣り合う繊維構造体の分岐部同士の間に接続部材を介在させることで、繊維構造体同士を連結することで製造できる。各繊維構造体の分岐部においては、二つに分岐された各糸群それぞれは厚さ方向糸で結合され、分岐部以外の積層糸群では全ての糸群が厚さ方向糸によって結合される。
特開2005-97759号公報
 ところが、繊維構造体の積層糸群を二つの糸群に分岐させた場合、二つの糸群の根本に位置する分岐境界線から、積層糸群の中の最も近い90度配列糸までは厚さ方向糸による結合力(拘束力)が弱くなる。そして、90度配列糸は、0度配列糸の延びる円弧の周方向に配列されているため、分岐境界線から、最も近い90度配列糸までの距離に大小が生じ、その距離の大きい場所ほど、厚さ方向糸による結合力が弱く、積層糸群の層間剥離が発生しやすくなる。
 本発明の目的は、分岐部の層間剥離を抑制できる繊維構造体、繊維強化複合材、及び繊維構造体の製造方法を提供することにある。
 上記問題点を解決するための繊維構造体は、第1の糸からなる第1糸層と、前記第1の糸と交差する第2の糸からなる第2糸層と、を有するとともに、前記第1糸層と前記第2糸層とが積み重なり、前記第1糸層と前記第2糸層とが積み重なった積層方向に前記第1糸層及び前記第2糸層が拘束糸によって拘束された多層織物であり、前記多層織物の全ての糸層が前記拘束糸によって拘束された本体部と、前記第1の糸の糸主軸方向に沿った少なくとも一端側にて前記本体部に連続し、前記多層織物の糸層を前記積層方向一端側の第1形成部と積層方向他端側の第2形成部に分岐させた分岐部とを有する繊維構造体であって、平面視で湾曲した内縁部を有するとともに、前記内縁部より外側において平面視で湾曲した外縁部を有し、前記内縁部と前記外縁部を最短距離で結ぶ直線の延びる方向を径方向とし、前記内縁部及び外縁部の延びる方向を周方向とすると、前記第1の糸の糸主軸方向は前記周方向に延びるとともに、前記第2の糸の糸主軸方向は前記径方向に延び、前記分岐部において前記第1形成部と前記第2形成部に分岐する部分に沿って延びる分岐境界線に対し、前記本体部の前記第2の糸のうち前記分岐境界線に最も近い前記第2の糸の糸主軸が平行であることを要旨とする。
 これによれば、本体部及び分岐部を有する繊維構造体においては、第1形成部と第2形成部が分岐する位置、すなわち分岐境界線の位置から、その分岐境界線に最も近い本体部の第2の糸までは、本体部において積層方向への拘束が弱い部分である。しかし、その第2の糸と分岐境界線とを平行にすることで、第2の糸と分岐境界線との距離を、径方向に沿って一定にでき、積層方向への拘束力の大小が無くなり、分岐部の層間剥離を抑制できる。
 上記問題点を解決するための繊維強化複合材は、繊維構造体を強化基材とし、該強化基材がマトリックス中に複合化された繊維強化複合材であって、前記繊維構造体が請求項1に記載の繊維構造体であることを要旨とする。
 これによれば、本体部及び分岐部を有する繊維構造体においては、第1形成部と第2形成部が分岐する位置、すなわち分岐境界線の位置から、その分岐境界線に最も近い本体部の第2の糸までは、本体部において積層方向への拘束が弱い部分である。しかし、その第2の糸と分岐境界線とを平行にすることで、第2の糸と分岐境界線との距離を、径方向に沿って一定にでき、積層方向への拘束力の大小が無くなり、分岐部の層間剥離を抑制できる。よって、繊維強化複合材においても、本体部における分岐部との境界付近の強度の大小を無くすことができる。
 上記問題点を解決するための繊維構造体の製造方法は、第1の糸からなる第1糸層と、前記第1の糸と交差する第2の糸からなる第2糸層と、を有するとともに、前記第1糸層と前記第2糸層とが積み重なり、前記第1糸層と前記第2糸層とが積み重なった積層方向に前記第1糸層及び前記第2糸層が拘束糸によって拘束された多層織物であり、前記多層織物の全ての糸層が前記拘束糸によって拘束された本体部と、前記第1の糸の糸主軸方向に沿った少なくとも一端側にて前記本体部に連続し、前記多層織物の糸層を前記積層方向一端側の第1形成部と積層方向他端側の第2形成部に分岐させた分岐部とを有する繊維構造体の製造方法であって、平面視で湾曲した内縁部を有するとともに、前記内縁部より外側において平面視で湾曲した外縁部を有し、前記第1の糸の糸主軸が、前記内縁部及び外縁部の延びる周方向に延びるとともに、前記第2の糸の糸主軸が、前記内縁部と前記外縁部を最短距離で結ぶ直線の延びる径方向に延び、前記周方向の少なくとも一端側に前記分岐部を備える前駆体を製造する工程と、前記分岐部において前記第1形成部と前記第2形成部に分岐する部分に沿って延びる分岐境界線に対し、前記本体部の前記第2の糸のうち前記分岐境界線に最も近い前記第2の糸の糸主軸が平行となるように前記前駆体を裁断し、前記分岐部及び前記本体部を形成することを要旨とする。
 これによれば、本体部及び分岐部を有する繊維構造体においては、第1形成部と第2形成部が分岐する位置、すなわち分岐境界線の位置から、その分岐境界線に最も近い本体部の第2の糸までは、本体部において積層方向への拘束が弱い部分である。しかし、その第2の糸と分岐境界線とを平行にすることで、第2の糸と分岐境界線との距離を、径方向に沿って一定にでき、積層方向への拘束力の大小が無くなり、分岐部の層間剥離を抑制できる。そして、このような繊維構造体の製造について、分岐境界線と第2の糸とを容易に平行にできる。
 上記問題点を解決するための繊維構造体の製造方法は、第1の糸からなる第1糸層と、前記第1の糸と交差する第2の糸からなる第2糸層と、を有するとともに、前記第1糸層と前記第2糸層とが積み重なり、前記第1糸層と前記第2糸層とが積み重なった積層方向に前記第1糸層及び前記第2糸層が拘束糸によって拘束された多層織物であり、前記多層織物の全ての糸層が前記拘束糸によって拘束された本体部と、前記第1の糸の糸主軸方向に沿った少なくとも一端側にて前記本体部に連続し、前記多層織物の糸層を前記積層方向一端側の第1形成部と積層方向他端側の第2形成部に分岐させた分岐部とを有する繊維構造体の製造方法であって、複数の前記第1の糸の糸主軸方向の一端部を第1引取部材に固定し、前記第1引取部材によって前記第1の糸を直線状に引取ながら、前記第1の糸に対し前記第2の糸が直交するように挿入して前記第1糸層及び前記第2糸層を形成しつつ、前記拘束糸によって前記第1糸層及び前記第2糸層を積層方向に拘束し、前記第1形成部及び前記第2形成部を形成した後、前記第1形成部及び前記第2形成部を第2引取部材に固定し、前記第2引取部材によって前記第1の糸の糸主軸が平面視で湾曲するように引き取りながら前記第2の糸を挿入し、前記分岐部において前記第1形成部と前記第2形成部に分岐する部分に沿って延びる分岐境界線に対し、前記本体部の前記第2の糸のうち前記分岐境界線に最も近い前記第2の糸の糸主軸が平行となるように挿入することを要旨とする。
 これによれば、本体部及び分岐部を有する繊維構造体においては、第1形成部と第2形成部が分岐する位置、すなわち分岐境界線の位置から、その分岐境界線に最も近い本体部の第2の糸までは、本体部において積層方向への拘束が弱い部分である。しかし、その第2の糸と分岐境界線とを平行にすることで、第2の糸と分岐境界線との距離を、径方向に沿って一定にでき、積層方向への拘束力の大小が無くなり、分岐部の層間剥離を抑制できる。そして、このような繊維構造体の製造について、織機を用いて製造できる。
 本発明によれば、分岐部の層間剥離を抑制できる。
実施形態の繊維強化複合材を示す平面図。 実施形態の繊維構造体を模式的に示す斜視図。 (a)は分岐部及び本体部を示す部分側面図、(b)は分岐部及び本体部の繊維構造を模式的に示す図。 繊維構造体を示す平面図。 繊維構造体の製造工程の説明図。 裁断工程を模式的に示す図。 (a)~(c)は別例の繊維構造体の製造方法を説明する図。
 以下、繊維構造体、繊維強化複合材、及び繊維構造体の製造方法を具体化した一実施形態を図1~図6にしたがって説明する。
 図1に示すように、繊維強化複合材10は、マトリックス11中に、複数の繊維構造体12を強化基材として複合化して形成されている。本実施形態では、マトリックス11として樹脂が用いられている。なお、マトリックス11としては、樹脂以外に金属やセラミックスを用いてもよい。
 繊維強化複合材10は、平面視円環状の板状である。なお、平面視とは、繊維強化複合材10の中心軸線Lに沿って、繊維強化複合材10を外側から見ることである。また、繊維強化複合材10において、中心軸線Lの延びる方向を厚み方向とする。
 次に、繊維構造体12について説明する。
 図2に示すように、繊維強化複合材10を形成する各繊維構造体12は、それぞれ平面視扇形状である。繊維構造体12は、平面視扇形状の本体部16と、円弧の延びる方向に沿った本体部16の両端に連続する平面視矩形状の分岐部17とを有する。
 図3(a)及び図3(b)に示すように、各分岐部17は、繊維構造体12の円弧の延びる方向の両端側が厚さ方向に二股に分岐した形状である。各分岐部17は、繊維構造体12の厚さ方向の一端側に位置する第1形成部17aと、厚さ方向の他端側に位置する第2形成部17bとを有する。繊維構造体12は、第1形成部17aと第2形成部17bの対向面同士が接合する位置に分岐境界線F1を有し、この分岐境界線F1を境にして第1形成部17aと第2形成部17bが二股に分岐している。また、繊維構造体12は、第1形成部17a及び第2形成部17bが本体部16の外面に対し折れ曲がる部分に沿って稜線F2を有する。第1形成部17a及び第2形成部17bは、稜線F2から本体部16に対し折り曲がっている。
 図2に示すように、繊維構造体12は、円弧状に延びることで平面視で湾曲した形状となる内縁部12aと、内縁部12aよりも外側で円弧状に延びることで平面視で湾曲した形状となる外縁部12bと、内縁部12aと外縁部12bの端部同士を繋ぐ縁部12cとを有する形状である。
 本体部16及び分岐部17の内縁は、それぞれ繊維構造体12の内縁部12aの一部を構成し、本体部16及び分岐部17の外縁は、それぞれ繊維構造体12の外縁部12bの一部を構成する。各分岐部17において、繊維構造体12の円弧の延びる方向の両端に位置する第1形成部17a及び第2形成部17bの縁が縁部12cを構成している。
 平面視扇形状の板状である繊維構造体12において、内縁部12aの円周の長さは、外縁部12bの円周の長さより短い。繊維構造体12において、内縁部12a及び外縁部12bの延びる方向を周方向Xとし、内縁部12aと外縁部12bを最短距離で結ぶ直線の延びる方向を径方向Yとする。外縁部12bは、内縁部12aよりも径方向Yに沿った外側(外径側)に位置する。分岐部17は、周方向Xに沿った本体部16の両側に連続して設けられている。また、各分岐部17において、分岐境界線F1及び稜線F2は、径方向Yに延びている。そして、分岐境界線F1及び稜線F2は、繊維構造体12の縁部12cに対し平行である。このため、周方向Xに沿った分岐部17の縁部12cと分岐境界線F1との距離は、径方向Yに沿って一定である。
 繊維構造体12は多層織物である。繊維構造体12は、糸主軸方向L1が、円弧状に延びる状態で互いに平行に配列された複数の第1の糸としての経糸13と、糸主軸方向L2が、経糸13と交差する方向に延びる状態で配列された複数の第2の糸としての緯糸14とを有する織物である。経糸13の糸主軸方向L1は、繊維構造体12の周方向Xに延び、緯糸14の糸主軸方向L2は、繊維構造体12の径方向Yに延びる。そして、繊維構造体12において、分岐部17は、経糸13の糸主軸方向L1となる周方向Xの両端側において本体部16に連続している。
 繊維構造体12の平面視では、周方向Xに隣り合う緯糸14同士の間隔は、径方向Yに沿って外縁部12bに向かうに従い徐々に広くなっている。また、図示しないが繊維構造体12の平面視では、径方向Yに隣り合う経糸13同士の間隔は一定である。
 なお、経糸13及び緯糸14は、強化繊維を束ねて形成された繊維束である。強化繊維としては有機繊維や無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。有機繊維の種類としては、アラミド繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等が挙げられ、無機繊維の種類としては、炭素繊維、ガラス繊維、セラミック繊維等が挙げられる。
 図3(b)に示すように、繊維構造体12は、複数の糸層が積層されて構成されている。なお、糸層が積み重なった方向を繊維構造体12の積層方向Zとする。積層方向Zは、繊維強化複合材10の厚み方向と一致する。なお、図3(b)では経糸13と緯糸14との位置関係を分かり易くするため、隣り合う経糸13同士や緯糸14同士が離れた状態に図示しているが、実際は隣り合う経糸13の端部同士や緯糸14の端部同士が重なった状態に配列されている。
 繊維構造体12の本体部16は、複数本の経糸13が並んで形成された経糸層を複数有する。経糸層としては、第1経糸層21と、積層方向Zにおいて、第1経糸層21より下方に配置された第2経糸層22とを有する。第1経糸層21及び第2経糸層22は、第1糸層を構成する。
 また、繊維構造体12の本体部16は、複数本の緯糸14が並んで形成された緯糸層を複数有する。緯糸層としては、第1緯糸層31と、積層方向Zにおける第1緯糸層31より下方に配置された第2緯糸層32と、積層方向Zにおける第2緯糸層32より下方に配置された第3緯糸層33と、積層方向Zにおける第3緯糸層33より下方に配置された第4緯糸層34とを有する。第1緯糸層31、第2緯糸層32、第3緯糸層33及び第4緯糸層34は第2糸層を構成する。
 繊維構造体12の本体部16は、積層方向Zの一端から他端(上から下)へ第1緯糸層31、第1経糸層21、第2緯糸層32、第3緯糸層33、第2経糸層22及び第4緯糸層34の順番で積層されている。これら第1緯糸層31、第1経糸層21、第2緯糸層32、第3緯糸層33、第2経糸層22及び第4緯糸層34、すなわち本体部16の全ての糸層は、複数の拘束糸15により積層方向Zに拘束されている。
 複数の拘束糸15は、径方向Yに並んでいる。各拘束糸15は、繊維構造体12の形状保持用であり、強化繊維の繊維束である。強化繊維としては有機繊維や無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。複数本の拘束糸15は、各経糸13と略平行に配列されるとともに、繊維構造体12の本体部16を構成する最上層の第1緯糸層31の緯糸14の外面を通って折り返すように配置されている。また、各拘束糸15は、本体部16を積層方向Zに貫通し、最下層の第4緯糸層34の緯糸14の外面を通って折り返すように配置されている。よって、拘束糸15は、積層方向Z両端の第1緯糸層31及び第4緯糸層34の緯糸14に係合している。
 径方向Yに隣り合う拘束糸15同士は、第1緯糸層31又は第4緯糸層34で折り返される緯糸14の位置が周方向Xにずれている。そして、拘束糸15が各緯糸14に係合することで、第1~第4緯糸層31~34が積層方向Zに拘束され、積層方向Zに隣り合う第1緯糸層31と第2緯糸層32の間に第1経糸層21が拘束され、第3緯糸層33と第4緯糸層34の間に第2経糸層22が拘束されている。
 各分岐部17では、第1形成部17aは、第1緯糸層31、第1経糸層21及び第2緯糸層32が拘束糸15によって積層方向Zに拘束されている。拘束糸15は、第1形成部17aの積層方向Z両端の第1緯糸層31及び第2緯糸層32の緯糸14に係合している。第2形成部17bは、第3緯糸層33、第2経糸層22及び第4緯糸層34が拘束糸15によって積層方向Zに拘束されている。拘束糸15は、第2形成部17bの積層方向Z両端の第3緯糸層33及び第4緯糸層34の緯糸14に係合している。第1形成部17aと第2形成部17bとは拘束糸15によって積層方向Zに拘束されていない。
 したがって、分岐部17において、第1形成部17aは、多層織物における積層方向Zの一端側に位置し、第2形成部17bは、多層織物における積層方向Zの他端側に位置する。
 図4に示すように、上記構成の繊維構造体12において、各分岐部17の分岐境界線F1に対し、周方向Xに沿って最も近い緯糸14を最短緯糸14aとする。図3(b)に示すように、本実施形態では、最短緯糸14aは、周方向Xに沿って分岐境界線F1に隣り合う積層方向Z全ての緯糸14である。よって、最短緯糸14aは、第1緯糸層31と、第2緯糸層32と、第3緯糸層33と、第4緯糸層34に存在している。そして、全ての最短緯糸14aの糸主軸は分岐境界線F1に平行である。周方向Xに沿った各最短緯糸14aと分岐境界線F1との距離は、径方向Yに沿って一定である。第1形成部17aと第2形成部17bが分岐する位置で、拘束糸15が交差しているが、それら拘束糸15は、その交差する位置に対し周方向Xに隣り合う最短緯糸14aのうち、第1緯糸層31及び第4緯糸層34の最短緯糸14aに係合して積層方向Zに本体部16を拘束している。
 第1形成部17aを拘束する拘束糸15のうち、最短緯糸14aに隣り合う第2緯糸層32の緯糸14に係合した拘束糸15は、第1緯糸層31の最短緯糸14aに係合し、最短緯糸14aに隣り合う第1緯糸層31の緯糸14に係合した拘束糸15は、第4緯糸層34の最短緯糸14aに係合している。また、第2形成部17bを拘束する拘束糸15のうち、最短緯糸14aに隣り合う第4緯糸層34の緯糸14に係合した拘束糸15は、第1緯糸層31の最短緯糸14aに係合し、最短緯糸14aに隣り合う第3緯糸層33の緯糸14に係合した拘束糸15は、第4緯糸層34の最短緯糸14aに係合している。
 したがって、第1形成部17aと第2形成部17bの交差する位置から最短緯糸14aが積層方向Zに拘束された部分までは、本体部16のその他の緯糸14が拘束糸15で拘束された部分よりも、拘束糸15による拘束力が小さくなっている。周方向Xに沿った分岐境界線F1から最短緯糸14aまでの距離が大きいほど、拘束糸15による本体部16の拘束力が弱くなる。そして、周方向Xに沿った分岐境界線F1から最短緯糸14aまでの距離に大小が生じると、拘束糸15による拘束力に大小が生じてしまう。しかし、本実施形態では、周方向Xに沿った分岐境界線F1から各最短緯糸14aまでの距離を全て同じとしたため、分岐部17と本体部16の境界付近において、拘束糸15による拘束力の差を無くしている。
 次に繊維構造体12の製造方法を説明する。
 繊維構造体12は、周方向X及び径方向Yへの寸法が繊維構造体12よりも大きい前駆体30を螺旋織機によって製織した後、その前駆体30を所望する形状に裁断して形成される。
 図5に示すように、繊維構造体12の前駆体30を製織する螺旋織機は、複数対(図5では一対のみ図示)の綜絖枠41、筬42、緯入れ機構43、送り機構44及び巻き取り機構(図示せず)を備えた公知の螺旋織機により製織される。対をなす綜絖枠41は、それぞれ、各経糸13に対応するヘルドを備え、図示しない綜絖枠駆動機構を介して交互に上下動されることにより、経糸13を開口させる。経糸13は、それぞれ、所定の張力を加えながら、図示しないクリールまたはビームから引き出される。
 筬42は、綜絖枠41と送り機構44との中間に配設されている。筬42は、各筬羽を各経糸13が通過し、経糸13に沿って、緯入れ機構43より後方に後退する後退位置と、緯入れ機構43によって緯入れされる緯糸14を織前Fに打ち込む前進位置との間を前後動する。但し、織前Fは、経糸13に直交し、しかも、螺旋の中心Aを通る半径に一致させるか、この半径に極近い位置に設定されている。
 緯入れ機構43は、緯糸供給ボビン46から供給される緯糸14を、後退位置に後退した筬42と織前Fとの間において、開口された経糸13間に緯入れする。緯入れ機構43としては、レピア機構が使用され、その前面には、カッタ43aが配設されている。カッタ43aは、緯入れごとに、緯入れされた緯糸14の後端部を切断する。
 送り機構44は、織前Fの直近前方に配設されており、図示しない一対の枠状の保持部材と、保持部材に収納するようにして配設する一対の駆動部材とからなり、織前Fからの経糸13をそれぞれ所定の曲率に湾曲させて緯糸14を放射状に配列させ、外半径R1、内半径R2の螺旋織物を形成して前方に送り出すようになっている。外半径R1は、繊維構造体12の外縁部12bでの半径と一致し、内半径R2は、繊維構造体12の内縁部12aでの半径と一致する。
 巻取機構は、送り機構44の下方に配設され、螺旋の中心Aを中心にして間欠的に水平回転する水平円板である。巻取機構の回転運動は、送り機構44の駆動部材の前進運動と同期しており、その回転方向と回転量とは、駆動部材の前進方向と前進移動量とに一致するようになっている。
 そして、螺旋織機によって、繊維構造体12の前駆体30を製造する場合、まず、分岐部17を形成する。このとき、治具を使用する。治具を挟んで第1形成部17a及び第2形成部17bが製織される。治具を配置した状態で、その治具の厚さ方向の両側に経糸13が配置されており、緯糸供給ボビン46から緯入れされた緯糸14は、送り機構44により織前Fからの経糸13がそれぞれ所定の曲率に湾曲されて緯糸14が放射状に配列される際に、繊維構造体12の外周側ほど拡げられた状態になる。なお、図示しないが拘束糸15も織機によって織り込まれる。すると、第1形成部17a及び第2形成部17bが治具を挟んで製織される。
 そして、分岐部17が形成された後、治具を除去し、次に、本体部16を螺旋織機によって製織する。その後、治具を再び用いて、螺旋織機によって分岐部17を製織する。次に、図6に示すように、前駆体30の分岐部17に位置する分岐境界線F1に対し、周方向Xに沿って分岐境界線F1に最も近い本体部16の各最短緯糸14a及び縁部12cが平行となるように前駆体30を切断する。すると、周方向Xに沿った分岐境界線F1と縁部12cとの距離が一定の第1形成部17a及び第2形成部17bが形成され、分岐部17が形成される。また、分岐部17の間に本体部16が形成され、繊維構造体12が形成される。
 前記のように構成された繊維構造体12は、図1に示すように、複数の繊維構造体12同士を、周方向に隣り合う分岐部17同士の間に接続部材39を介装させて接続し、円環状にする。そして、円環状に形成された複数の繊維構造体12にマトリックス11となる樹脂を含浸させると、複数の繊維構造体12を強化基材とし、樹脂をマトリックス11とした円環状の繊維強化複合材10に形成され、円環状部品として使用される。
 上記実施形態によれば、以下のような効果を得ることができる。
 (1)繊維構造体12において、分岐部17の根本に位置する分岐境界線F1に対し、本体部16の各最短緯糸14aを平行とした。このため、分岐境界線F1から各最短緯糸14aまでの距離を径方向Yに一定にでき、本体部16において、分岐境界線F1より中央側において拘束糸15による拘束力の大小を無くすことができる。よって、分岐部17近傍において層間剥離を抑制できる。繊維構造体12を強化基材とした繊維強化複合材10においても、本体部16における分岐部17との境界付近の強度の大小を無くすことができる。
 (2)繊維構造体12は、当該繊維構造体12よりも周方向X及び径方向Yへの寸法が大きい前駆体30を製織し、その前駆体30における分岐境界線F1に対し、最短緯糸14a及び縁部12cが平行となるように前駆体30を裁断することで製造される。よって、繊維構造体12よりサイズの大きい前駆体30を製織し、その前駆体30を裁断するだけでよく、分岐境界線F1に対し、各最短緯糸14aが平行な繊維構造体12を簡単に製造できる。
 なお、上記実施形態は以下のように変更してもよい。
 ○ 繊維構造体12の製造方法は、実施形態に限らず、変更してもよい。例えば、図7(a)に示すように、複数の経糸13の糸主軸方向L1の一端部を第1引取部材50に固定する。そして、図7(b)に示すように、経糸供給ボビン52から第1引取部材50によって経糸13を引取り(巻取り)ながら緯糸14を挿入する。このとき、経糸13は、その糸主軸方向L1が直線状に延びるように第1引取部材50に引き取られるとともに、経糸13の糸主軸方向L1に対し、緯糸14の糸主軸方向L2は直交する状態に挿入される。
 そして、第1緯糸層31、第1経糸層21、及び第2緯糸層32を形成しつつ、第3緯糸層33、第2経糸層22、及び第4緯糸層34を形成し、拘束糸15によってそれらを拘束して第1形成部17a及び第2形成部17bを形成する。この状態では、第1形成部17a及び第2形成部17bの縁部12c及び分岐境界線F1に対し、緯糸14は平行な状態である。 
 次に、図7(c)に示すように、第1形成部17a及び第2形成部17bの先端部を第2引取部材51に固定し、その第2引取部材51によって経糸13の糸主軸が平面視で湾曲するように引き取りながら緯糸14を挿入して本体部16を形成する。本体部16を形成した後、第1形成部17a及び第2形成部17bの先端部を第1引取部材50に固定し、片方の第1形成部17a及び第2形成部17bを形成したときと同じようにして、もう一方の第1形成部17a及び第2形成部17bを形成する。
 このように、経糸13の引き取る方向を調節することで、第1形成部17a及び第2形成部17bの縁部12c及び分岐境界線F1に対し、最短緯糸14aが平行な繊維構造体12を織機によって製造することができる。
 ○ 第1の糸を緯糸14とし、第2の糸を経糸13としてもよい。
 ○ 繊維構造体12は、周方向Xに沿った本体部16の片側のみに分岐部17を備える構成であってもよい。
 ○ 分岐部17及び本体部16を構成する糸層の数は変更してもよい。
 ○ 繊維強化複合材10は、複数の繊維構造体12を組み合わせて形成された円環状でなくてもよい。例えば、繊維強化複合材10は、二つの繊維構造体12を組み合わせて形成された平面視湾曲形状であってもよいし、一つの繊維構造体12で形成された平面視湾曲形状であってもよい。
 ○ 繊維構造体12の内縁部12aと外縁部12bの曲率は異なっていてもよい。
 ○ 実施形態では、分岐境界線F1に対し平行な最短緯糸14aを第1~第4緯糸層31~34に設け、繊維構造体12の積層方向Z全体に最短緯糸14aを設けたが、これに限らない。分岐境界線F1に対し平行な最短緯糸14aは、第1緯糸層31及び第4緯糸層34のみに設けられていてもよいし、第2緯糸層32及び第3緯糸層33のみに設けられていてもよい。
 F1  分岐境界線
 X  周方向
 Y  径方向
 Z  積層方向
 10  繊維強化複合材
 11  マトリックス
 12  繊維構造体
 12a  内縁部
 12b  外縁部
 13  第1の糸としての経糸
 14  第2の糸としての緯糸
 15  拘束糸
 16  本体部
 17  分岐部
 17a  第1形成部
 17b  第2形成部
 21~22  第1糸層としての第1~第2経糸層
 31~34  第2糸層としての第1~第4緯糸層

Claims (4)

  1.  第1の糸からなる第1糸層と、前記第1の糸と交差する第2の糸からなる第2糸層と、を有するとともに、前記第1糸層と前記第2糸層とが積み重なり、前記第1糸層と前記第2糸層とが積み重なった積層方向に前記第1糸層及び前記第2糸層が拘束糸によって拘束された多層織物であり、
     前記多層織物の全ての糸層が前記拘束糸によって拘束された本体部と、前記第1の糸の糸主軸方向に沿った少なくとも一端側にて前記本体部に連続し、前記多層織物の糸層を前記積層方向一端側の第1形成部と積層方向他端側の第2形成部に分岐させた分岐部とを有する繊維構造体であって、
     平面視で湾曲した内縁部を有するとともに、前記内縁部より外側において平面視で湾曲した外縁部を有し、
     前記内縁部と前記外縁部を最短距離で結ぶ直線の延びる方向を径方向とし、前記内縁部及び外縁部の延びる方向を周方向とすると、前記第1の糸の糸主軸方向は前記周方向に延びるとともに、前記第2の糸の糸主軸方向は前記径方向に延び、
     前記分岐部において前記第1形成部と前記第2形成部に分岐する部分に沿って延びる分岐境界線に対し、前記本体部の前記第2の糸のうち前記分岐境界線に最も近い前記第2の糸の糸主軸が平行であることを特徴とする繊維構造体。
  2.  繊維構造体を強化基材とし、該強化基材がマトリックス中に複合化された繊維強化複合材であって、前記繊維構造体が請求項1に記載の繊維構造体であることを特徴とする繊維強化複合材。
  3.  第1の糸からなる第1糸層と、前記第1の糸と交差する第2の糸からなる第2糸層と、
    を有するとともに、前記第1糸層と前記第2糸層とが積み重なり、前記第1糸層と前記第2糸層とが積み重なった積層方向に前記第1糸層及び前記第2糸層が拘束糸によって拘束された多層織物であり、
     前記多層織物の全ての糸層が前記拘束糸によって拘束された本体部と、前記第1の糸の糸主軸方向に沿った少なくとも一端側にて前記本体部に連続し、前記多層織物の糸層を前記積層方向一端側の第1形成部と積層方向他端側の第2形成部に分岐させた分岐部とを有する繊維構造体の製造方法であって、
     平面視で湾曲した内縁部を有するとともに、前記内縁部より外側において平面視で湾曲した外縁部を有し、前記第1の糸の糸主軸が、前記内縁部及び外縁部の延びる周方向に延びるとともに、前記第2の糸の糸主軸が、前記内縁部と前記外縁部を最短距離で結ぶ直線の延びる径方向に延び、前記周方向の少なくとも一端側に前記分岐部を備える前駆体を製造する工程と、
     前記分岐部において前記第1形成部と前記第2形成部に分岐する部分に沿って延びる分岐境界線に対し、前記本体部の前記第2の糸のうち前記分岐境界線に最も近い前記第2の糸の糸主軸が平行となるように前記前駆体を裁断し、前記分岐部及び前記本体部を形成することを特徴とする繊維構造体の製造方法。
  4.  第1の糸からなる第1糸層と、前記第1の糸と交差する第2の糸からなる第2糸層と、を有するとともに、前記第1糸層と前記第2糸層とが積み重なり、前記第1糸層と前記第2糸層とが積み重なった積層方向に前記第1糸層及び前記第2糸層が拘束糸によって拘束された多層織物であり、
     前記多層織物の全ての糸層が前記拘束糸によって拘束された本体部と、前記第1の糸の糸主軸方向に沿った少なくとも一端側にて前記本体部に連続し、前記多層織物の糸層を前記積層方向一端側の第1形成部と積層方向他端側の第2形成部に分岐させた分岐部とを有する繊維構造体の製造方法であって、
     複数の前記第1の糸の糸主軸方向の一端部を第1引取部材に固定し、前記第1引取部材によって前記第1の糸を直線状に引取ながら、前記第1の糸に対し前記第2の糸が直交するように挿入して前記第1糸層及び前記第2糸層を形成しつつ、前記拘束糸によって前記第1糸層及び前記第2糸層を積層方向に拘束し、前記第1形成部及び前記第2形成部を形成した後、
     前記第1形成部及び前記第2形成部を第2引取部材に固定し、前記第2引取部材によって前記第1の糸の糸主軸が平面視で湾曲するように引き取りながら前記第2の糸を挿入し、前記分岐部において前記第1形成部と前記第2形成部に分岐する部分に沿って延びる分岐境界線に対し、前記本体部の前記第2の糸のうち前記分岐境界線に最も近い前記第2の糸の糸主軸が平行となるように挿入することを特徴とする繊維構造体の製造方法。
PCT/JP2019/015205 2018-04-27 2019-04-05 繊維構造体、繊維強化複合材、及び繊維構造体の製造方法 WO2019208176A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19793534.9A EP3786326B1 (en) 2018-04-27 2019-04-05 Fiber structure, fiber-reinforced composite material, and method of manufacturing fiber structure
US17/049,784 US20210238775A1 (en) 2018-04-27 2019-04-05 Fiber structure body, fiber-reinforced composite material, and method of producing fiber structure body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-086478 2018-04-27
JP2018086478A JP6935782B2 (ja) 2018-04-27 2018-04-27 繊維構造体、繊維強化複合材、及び繊維構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2019208176A1 true WO2019208176A1 (ja) 2019-10-31

Family

ID=68294064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015205 WO2019208176A1 (ja) 2018-04-27 2019-04-05 繊維構造体、繊維強化複合材、及び繊維構造体の製造方法

Country Status (4)

Country Link
US (1) US20210238775A1 (ja)
EP (1) EP3786326B1 (ja)
JP (1) JP6935782B2 (ja)
WO (1) WO2019208176A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158242A1 (ja) * 2019-01-30 2020-08-06 株式会社豊田自動織機 繊維構造体及び繊維強化複合材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626680B (zh) * 2020-12-10 2022-04-22 南京玻璃纤维研究设计院有限公司 一种三维机织封闭式空腔结构的制备方法及其预制件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111038A (ja) * 1987-09-26 1989-04-27 Vorwerk & Co Interholding Gmbh 多層織物から成る予備成形物
JPH03504401A (ja) * 1989-02-27 1991-09-26 ブロシエール・ソシエテ・アノニム らせん形状の織物構造、かかる構造を得るための方法及び相応する織機
WO2002055773A1 (en) * 2001-01-12 2002-07-18 Sumitomo Electric Industries, Ltd. Spiral woven fabric and high-speed rotating body using it
JP2005097759A (ja) 2003-09-22 2005-04-14 Toyota Industries Corp 三次元繊維構造体及びその製造方法並びに複合材
JP2015501890A (ja) * 2011-12-14 2015-01-19 スネクマ 3d製織繊維構造、そのような繊維構造から得られた繊維プリフォーム、およびそのようなプリフォームを含む複合材料部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076110B2 (ja) * 1985-11-18 1995-01-25 三菱重工業株式会社 三差部を有する複合材の強化部材
JP2657519B2 (ja) * 1988-06-13 1997-09-24 芦森工業株式会社 分岐部を有するバイアス織物及びその製造方法
US7655581B2 (en) * 2005-11-17 2010-02-02 Albany Engineered Composites, Inc. Hybrid three-dimensional woven/laminated struts for composite structural applications
US9833930B2 (en) * 2012-10-23 2017-12-05 Albany Engineered Composites, Inc. Circumferential stiffeners for composite fancases

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111038A (ja) * 1987-09-26 1989-04-27 Vorwerk & Co Interholding Gmbh 多層織物から成る予備成形物
JPH03504401A (ja) * 1989-02-27 1991-09-26 ブロシエール・ソシエテ・アノニム らせん形状の織物構造、かかる構造を得るための方法及び相応する織機
WO2002055773A1 (en) * 2001-01-12 2002-07-18 Sumitomo Electric Industries, Ltd. Spiral woven fabric and high-speed rotating body using it
JP2005097759A (ja) 2003-09-22 2005-04-14 Toyota Industries Corp 三次元繊維構造体及びその製造方法並びに複合材
JP2015501890A (ja) * 2011-12-14 2015-01-19 スネクマ 3d製織繊維構造、そのような繊維構造から得られた繊維プリフォーム、およびそのようなプリフォームを含む複合材料部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3786326A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158242A1 (ja) * 2019-01-30 2020-08-06 株式会社豊田自動織機 繊維構造体及び繊維強化複合材
JP2020122235A (ja) * 2019-01-30 2020-08-13 株式会社豊田自動織機 繊維構造体及び繊維強化複合材
JP7052751B2 (ja) 2019-01-30 2022-04-12 株式会社豊田自動織機 繊維構造体及び繊維強化複合材

Also Published As

Publication number Publication date
US20210238775A1 (en) 2021-08-05
EP3786326A1 (en) 2021-03-03
JP2019189987A (ja) 2019-10-31
JP6935782B2 (ja) 2021-09-15
EP3786326A4 (en) 2021-06-16
EP3786326B1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
CA2720143C (en) Improved fiber architecture for pi-preforms
EP2814648B1 (en) Pi-shaped preform with bias fibers
RU2503757C2 (ru) Гибридные трехмерные тканые/слоистые распорки для применения с композитными конструкциями
EP2242880B1 (en) Method for weaving substrates with integral sidewalls
WO2019208176A1 (ja) 繊維構造体、繊維強化複合材、及び繊維構造体の製造方法
JP2015030959A (ja) 織物、織物を構成するための繊維束及び繊維強化複合材
WO2018179878A1 (ja) 繊維構造体及び繊維強化複合材
JP6766770B2 (ja) 繊維構造体及び繊維強化複合材
JP6607026B2 (ja) 繊維強化複合材
WO2020158242A1 (ja) 繊維構造体及び繊維強化複合材
WO2016084575A1 (ja) 繊維構造体及び繊維強化複合材
JP2021025164A (ja) 繊維構造体及び繊維強化複合材
WO2017018235A1 (ja) 織物積層体、織物積層体の製造方法、及び織物積層体の製造装置
JP6885369B2 (ja) 繊維構造体及び繊維強化複合材
JP2005097759A (ja) 三次元繊維構造体及びその製造方法並びに複合材
WO2021014851A1 (ja) 繊維構造体及び繊維強化複合材
WO2012014613A1 (ja) 繊維基材及び繊維強化複合材料
WO2013035518A1 (ja) 織物基材及び繊維強化複合材料
WO2018179877A1 (ja) 繊維構造体及び繊維強化複合材
JP6620771B2 (ja) 繊維構造体及び繊維強化複合材
WO2012014605A1 (ja) 繊維基材及び繊維強化複合材料
JP2011073402A (ja) 繊維強化複合材料のプリフォーム及びその製造方法
WO2020105531A1 (ja) 衝撃吸収構造体
WO2013191232A1 (ja) 強化繊維複合材料及び強化繊維複合材料の製造方法
JP2017089053A (ja) 繊維構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019793534

Country of ref document: EP