WO2013191232A1 - 強化繊維複合材料及び強化繊維複合材料の製造方法 - Google Patents

強化繊維複合材料及び強化繊維複合材料の製造方法 Download PDF

Info

Publication number
WO2013191232A1
WO2013191232A1 PCT/JP2013/066911 JP2013066911W WO2013191232A1 WO 2013191232 A1 WO2013191232 A1 WO 2013191232A1 JP 2013066911 W JP2013066911 W JP 2013066911W WO 2013191232 A1 WO2013191232 A1 WO 2013191232A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing fiber
fabric
toughness
reinforced
composite material
Prior art date
Application number
PCT/JP2013/066911
Other languages
English (en)
French (fr)
Inventor
堀 藤夫
真梨 河原
岩田 来
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2013191232A1 publication Critical patent/WO2013191232A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/228Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being stacked in parallel layers with fibres of adjacent layers crossing at substantial angles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/226Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure comprising mainly parallel filaments interconnected by a small number of cross threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/246Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using polymer based synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter

Definitions

  • the present invention relates to a reinforcing fiber composite material obtained by impregnating a matrix resin into a laminate in which reinforcing fiber bundle layers are laminated, and a method for producing the reinforcing fiber composite material.
  • a fiber-reinforced composite material (hereinafter simply referred to as a composite material) is used as a lightweight, high-strength material.
  • a composite material having improved mechanical characteristics (mechanical characteristics) compared to the resin itself can be obtained. Therefore, composite materials are preferred as structural parts.
  • the reinforcing fiber base material 80 (reinforcing fiber bundle layer) of Patent Document 1 includes a plurality of unidirectional base materials 81 connected by sutures 82 as connecting means.
  • Each planar form of the unidirectional substrate 81 has a plurality of reinforcing fiber yarns 81a aligned so as to extend along one direction, and an auxiliary member extending so as to intersect the reinforcing fiber yarns 81a. It is held by being restrained by the thread 83.
  • At least two unidirectional substrates 81 are sewn with sutures 82 so that the ends do not overlap each other.
  • Patent Document 1 proposes to use a film made of a thermoplastic resin as a connecting means.
  • the suture thread 82 When the suture thread 82 is used as the connection means in the reinforcing fiber base 80, the suture thread 82 is passed between the reinforcing fiber threads 81a. Therefore, if one end or the other end of the suture thread 82 is frayed, the suture thread 82 may slip through between the reinforcing fiber yarns 81a, and the arrangement of the plurality of reinforcing fiber yarns 81a may be disturbed. Further, depending on the tensile strength of the suture thread 82, the arrangement of the plurality of reinforcing fiber yarns 81a may be disturbed.
  • the suture thread 82 when used, there is a possibility that the mechanical properties of the obtained composite material are deteriorated due to the disorder of the arrangement of the plurality of reinforcing fiber yarns 81a. Moreover, the operation
  • An object of the present invention is to provide a reinforced fiber composite material that can be easily manufactured without causing deterioration in mechanical properties even when a reinforcing fiber bundle layer including a woven fabric substrate connected to each other is used. It is to provide a manufacturing method.
  • a reinforcing fiber composite material includes a plurality of reinforcing fiber bundle layers, a toughened reinforcing fabric, and a matrix resin.
  • the plurality of reinforcing fiber bundle layers are stacked along the stacking direction to form a stacked body.
  • At least one of the plurality of reinforcing fiber bundle layers has a plurality of sheet-like fabric substrates.
  • Each of the plurality of woven fabric bases includes a plurality of reinforcing fiber bundles extending along one direction, and has an end extending in parallel with a direction in which the plurality of reinforcing fiber bundle layers extend.
  • the plurality of fabric base materials are arranged along a direction orthogonal to the stacking direction so that the end portions are adjacent to each other.
  • the toughness-enhanced fabric is adhered to the plurality of fabric substrates so as to cover the end portions adjacent to each other.
  • the toughness-reinforced fabric extends along a direction parallel to the direction in which the plurality of reinforcing fiber bundle layers extend.
  • the matrix resin is impregnated in the laminate.
  • a method for producing a reinforced fiber composite material includes preparing a plurality of sheet-like woven fabric base materials.
  • Each of the plurality of fabric base materials includes a plurality of reinforcing fiber bundles extending along one direction, and has an end extending in parallel with a direction in which the plurality of reinforcing fiber bundle layers extend.
  • the manufacturing method further includes arranging the plurality of fabric substrates so that the plurality of fabric substrates do not overlap each other and the ends are adjacent to each other.
  • the manufacturing method further includes preparing a toughness-reinforced fabric that is adhered to the plurality of fabric substrates so as to cover the end portions adjacent to each other.
  • the manufacturing method further includes reinforcing fiber bundles by joining the end portions adjacent to each other and the toughness-enhancing fabric with a binder made of thermoplastic resin powder so that the toughness-enhancing fabric connects the fabric substrates. Comprising producing a layer.
  • the manufacturing method further includes forming a laminate by laminating a plurality of reinforcing fiber bundle layers including at least one reinforcing fiber bundle layer.
  • the manufacturing method further includes impregnating the laminate with a matrix resin made of a thermosetting resin.
  • FIG. 3 is a cross-sectional view of the reinforcing fiber composite material of FIG. 2 taken along line 3-3.
  • (A) is a diagram schematically showing the fourth reinforcing fiber bundle layer of FIG. 1
  • (b) is a diagram schematically showing the third reinforcing fiber bundle layer of FIG. 1
  • (c) is a diagram of FIG.
  • (d) is a figure which shows the 1st reinforcing fiber bundle layer typically of FIG.
  • (A) is a schematic diagram which shows a temporary adhering process
  • (b) and (c) is a schematic diagram which each shows a reinforced fiber bundle layer manufacturing process
  • (d) is a schematic diagram which shows a lamination process.
  • the reinforcing fiber composite material 10 includes a matrix resin 30 on a laminate 20 in which first to fourth reinforcing fiber bundle layers 11 to 14 having a sheet shape are laminated in a laminating direction. It is formed by impregnation.
  • the matrix resin 30 is not shown.
  • a chain curable resin is used as the matrix resin 30.
  • the first to fourth reinforcing fiber bundle layers 11 to 14 are formed using the first to fourth reinforcing fiber bundles 11a to 14a.
  • Each of the first to fourth reinforcing fiber bundles 11a to 14a is formed by bundling a plurality of reinforcing fibers.
  • Reinforcing fiber means that the matrix resin 30 of the reinforcing fiber composite material 10 is reinforced when the first to fourth reinforcing fiber bundle layers 11 to 14 are used as the fiber base material of the reinforcing fiber composite material 10. It means the fiber that plays the role of In this embodiment, carbon fibers are used as the reinforcing fibers.
  • the first reinforcing fiber bundle layer 11 is formed by connecting two first fabric base materials 21 each having a sheet shape with a first layer toughness reinforcing fabric 31. ing.
  • Each first woven fabric base 21 includes a plurality of first reinforcing fiber bundles 11a extending in parallel and straight to each other.
  • the direction in which the first reinforcing fiber bundle 11a extends forms an angle of +45 degrees with respect to the length direction of the first fabric base material 21 (the direction in which the axis L1 extends).
  • each 1st textile base material 21 several 1st reinforcement fiber bundles 11a are connected by the auxiliary thread
  • the parallel direction of the plurality of first reinforcing fiber bundles 11a intersects the direction in which the plurality of first reinforcing fiber bundles 11a extend.
  • the 1st textile base material 21 is cut
  • Each of the two first fabric base materials 21 forming the first reinforcing fiber bundle layer 11 is in the length direction (the direction in which the axis L1 extends) of the long first fabric base material 21 before being cut. It is cut so as to have a first end 21a extending in a direction perpendicular to the first end 21a and a second end 21b extending in parallel to the direction in which the first reinforcing fiber bundle 11a extends. That is, the second end portion 21b of each first fabric base material 21 does not form a cut surface in each reinforcing fiber bundle 11a.
  • the two 1st textile base materials 21 are arranged along the direction orthogonal to the lamination direction of the laminated body 20 so that 2nd edge part 21b may adjoin. In the state where the second end portions 21b are adjacent to each other, both the first fabric base materials 21 are connected by the first layer toughness-reinforced fabric 31.
  • the first layer toughness-enhancing fabric 31 is a fabric made of glass fiber.
  • the first layer toughness-enhancing fabric 31 has a thickness of 5 to 40 ⁇ m and a basis weight of 10 to 50 g / m 2 , that is, a weight per unit of the fabric substrate 21.
  • the basis weight of the first layer toughness reinforced fabric 31 is less than 10 g / m 2 , the matrix resin 30 between the first and second fiber bundle layers 11 and 12 in the reinforced fiber composite material 10 is sufficiently toughened. It is not preferable.
  • the basis weight of the first layer toughness-enhancing fabric 31 is larger than 50 g / m 2 , the impregnation property of the matrix resin 30 is lowered, which is not preferable. When the impregnation property is lowered, an unimpregnated portion of the matrix resin 30 is formed in the resulting reinforcing fiber composite material 10, and the mechanical strength is lowered.
  • the toughness-enhancing fabric 31 for the first layer a thin and lightweight fabric is used as the toughness-enhancing fabric 31 for the first layer.
  • the first layer toughness-reinforced fabric 31 used in the first reinforcing fiber bundle layer 11 is formed in an elongated parallelogram shape.
  • the acute angle of the angles formed between the short side 31b and the long side 31a of the first layer toughness-enhancing fabric 31 is 45 degrees.
  • the length of the short side 31b of the toughness reinforcing fabric 31 for the first layer is slightly longer than the sum of the diameters of the four first reinforcing fiber bundles 11a.
  • the first layer toughness reinforced fabric 31 is to increase the toughness of the matrix resin 30 between the first reinforcing fiber bundle layer 11 and the second reinforcing fiber bundle layer 12 and improve the impact resistance.
  • strengthening fabric 31 for 1st layers is affixed on the two 1st fabric base materials 21 so that the 2nd edge part 21b adjacent to each other may be covered (stradded).
  • the short side 31b extends along the long side 21c of the first fabric base 21, and the long side 31a extends so as to be parallel to the direction in which the first reinforcing fiber bundle 11a extends.
  • Two tough reinforced fabrics 31 for the first layer are attached to both first woven fabric base materials 21 so as to cover a total of four first reinforced fiber bundles 11a, two for each first woven fabric base material 21. .
  • the toughness-enhancing fabric 31 for the first layer is attached to the first fabric substrate 21 using a binder.
  • a binder when the matrix resin is a chain-cured resin, a non-anionic powder (for example, phenoxy resin) that does not cause curing inhibition in the chain-cured resin is used.
  • a thermoplastic resin powder is used as the binder.
  • the second reinforcing fiber bundle layer 12 is formed of a single second woven fabric base material 22 in the form of a sheet.
  • the second woven fabric base 22 includes a plurality of second reinforcing fiber bundles 12a extending in parallel and straight to each other.
  • the direction in which the second reinforcing fiber bundle 12a extends is parallel to the length direction of the second fabric base material 22 (the direction in which the axis L2 extends).
  • the second fabric base material 22 is cut so as to have a predetermined length.
  • the second fabric base material 22 is manufactured in a long shape before being cut and wound into a roll shape. It has been.
  • the second fabric base 22 has a first end 22a and a second end extending in a direction perpendicular to the length direction (the direction in which the axis L2 extends) of the elongated second fabric base 22 before being cut. It is cut
  • the third reinforcing fiber bundle layer 13 is formed by connecting two third fabric base materials 23 each having a sheet shape with a toughness reinforcing fabric 33 for the third layer. ing.
  • Each third woven fabric base 23 includes a plurality of third reinforcing fiber bundles 13a extending straight in parallel with each other. The direction in which the third reinforcing fiber bundle 13a extends forms an angle of ⁇ 45 degrees with respect to the length direction of the third fabric base material 23 (the direction in which the axis L3 extends).
  • each 3rd textile base material 23 several 3rd reinforcing fiber bundle 13a is connected by the auxiliary thread
  • the parallel direction of the plurality of third reinforcing fiber bundles 13a is a direction orthogonal to the direction in which the plurality of third reinforcing fiber bundles 13a extend.
  • Each of the third fabric base materials 23 has a first end portion 23a extending in a direction perpendicular to the length direction (the direction in which the axis L3 extends) of the elongated third fabric base material 23 before being cut.
  • the second reinforcing fiber bundle 13a is cut so as to have a second end 23b extending in parallel with the extending direction. That is, the second end 23b of each third fabric base material 23 does not form a cut surface in each third reinforcing fiber bundle 13a.
  • both the third fabric base materials 23 are connected by the third layer toughness-reinforced fabric 33.
  • the third layer toughness reinforced fabric 33 is the same material as the first layer toughness reinforced fabric 31 used in the first reinforcing fiber bundle layer 11, but is different in shape.
  • the third layer toughness-enhancing fabric 33 has an elongated parallelogram shape, and the inclination direction of the long side 33a with respect to the short side 33b is opposite to that of the first layer toughness-enhancing fabric 31.
  • the acute angle among the angles formed between the short side 33b and the long side 33a is 45 degrees.
  • the length of the short side 33b of the third layer toughness-reinforced fabric 33 is slightly longer than the sum of the diameters of the four third reinforcing fiber bundles 13a.
  • the third layer toughness-enhancing fabric 33 is adhered to the two third fabric base materials 23 so as to cover (straddle) the second end portions 23b adjacent to each other.
  • the short side 33b extends along the long side 23c of the third woven fabric base 23, and the long side 33a extends so as to be parallel to the direction in which the third reinforcing fiber bundle 13a extends.
  • Two tough reinforced fabrics 33 for the third layer are adhered to both third fabric base materials 23 so as to cover a total of four third reinforcing fiber bundles 13a, two for each third fabric base material 23. .
  • the fourth reinforcing fiber bundle layer 14 is formed by connecting two fourth fabric base materials 24 each having a sheet shape with a toughness reinforcing fabric 34 for the fourth layer. ing.
  • Each fourth woven fabric base 24 includes a plurality of fourth reinforcing fiber bundles 14a extending parallel and straight to each other. The direction in which the fourth reinforcing fiber bundle 14a extends forms an angle of 90 degrees with respect to the length direction of the fourth fabric base material 24 (the direction in which the axis L4 extends).
  • each 4th textile base material 24 several 4th reinforcement fiber bundle 14a is connected by the auxiliary yarn 14b extended along the parallel direction of these 4th reinforcement fiber bundle 14a.
  • the parallel direction of the plurality of fourth reinforcing fiber bundles 14a is a direction orthogonal to the direction in which the plurality of fourth reinforcing fiber bundles 14a extend.
  • the 4th textile base material 24 was cut
  • Each of the fourth woven fabric base materials 24 is cut so as to have a first end portion 24a and a second end portion 24b extending in parallel with the direction in which the fourth reinforcing fiber bundle 14 extends. That is, the first end portion 24a and the second end portion 24b of each fourth woven fabric base 24 do not form a cut surface in each fourth reinforcing fiber bundle 14a.
  • the two 4th textile base materials 24 are arranged along the direction orthogonal to the lamination direction of the laminated body 20 so that 2nd edge part 24b may adjoin. In a state where the second end portions 24b are adjacent to each other, both the fourth fabric base materials 24 are connected by the fourth layer toughness-reinforced fabric 34.
  • the fourth layer toughness-enhancing fabric 34 is the same material as the first layer toughness-enhancing fabric 31 and the third layer toughness-enhancing fabric 33, but is different in shape. Specifically, the fourth layer toughness-reinforced fabric 34 has a rectangular shape. Further, the length of the short side 34b of the fourth layer toughness reinforcing fabric 34 is slightly longer than the sum of the diameters of the four fourth reinforcing fiber bundles 14a.
  • the fourth layer toughness-enhancing fabric 34 is adhered to the two fourth fabric base materials 24 so as to cover (straddle) the second end portions 24b adjacent to each other.
  • the short side 34b extends along the long side 24c of the fourth woven fabric base 24, and the long side 34a extends so as to be parallel to the direction in which the fourth reinforcing fiber bundle 14a extends.
  • Two tough reinforced fabrics for the fourth layer 34 are adhered to both the fourth woven fabric bases 24 so as to cover a total of four fourth reinforced fiber bundles 14a, two for each fourth woven fabric base 24. .
  • the laminate 20 is formed in a sheet shape by laminating the first to fourth reinforcing fiber bundle layers 11 to 14.
  • the first, third, and fourth reinforcing fiber bundle layers 11, 13, and 14 among the first to fourth reinforcing fiber bundle layers 11 to 14 are formed of two sheet-like woven fabric base materials 21. , 23, 24.
  • the laminated body 20 which becomes a 4-axis orientation as a whole is formed by the directions from which the reinforcing fiber bundles 11a to 14a extend different from each other.
  • the first layer toughness-enhancing fabric 31, the third layer toughness-enhancing fabric 33, and the fourth layer toughness-enhancing fabric 34 overlap in the stacking direction.
  • the first layer toughness reinforcing fabric 31 is interposed between the first reinforcing fiber bundle layer 11 and the second reinforcing fiber bundle layer 12, and the interlayer between these two fiber bundle layers.
  • the matrix resin 30 is reinforced by the first layer toughness-enhancing fabric 31.
  • a third layer toughness reinforcing fabric 33 is interposed, and a matrix resin 30 between the two fiber bundle layers is used for the third layer. It is reinforced by the toughened fabric 33. Further, in the laminate 20, the fourth layer toughness reinforced fabric 34 is adhered to the surface of the fourth reinforcing fiber bundle layer 14.
  • the laminated body 20 having the above-described configuration is arranged along the mold, and then the liquid matrix resin 30 before curing is impregnated in the laminated body 20 by, for example, the RTM method. Is formed by curing.
  • the first reinforcing fiber bundle layer 11 is formed by connecting the first fabric base material 21 with the first layer toughness reinforcing fabric 31, and the third reinforcing fiber bundle layer 13 is the third layer.
  • the fabric base material 23 is formed by connecting the third layer toughness-enhancing fabric 33.
  • the fourth reinforcing fiber bundle layer 14 is formed by connecting the fourth fabric base material 24 with the fourth layer toughness reinforcing fabric 34.
  • Each of the toughness-reinforced fabrics 31, 33, 34 is formed of glass fiber, is thin, and is lightweight.
  • the manufacturing method of the reinforcing fiber composite material 10 includes a temporary fixing step of temporarily fixing a binder to the toughness-reinforced fabric, and a reinforcing fiber bundle layer manufacturing step of manufacturing the reinforcing fiber bundle layer by connecting the fabric substrates with the toughness-reinforced fabric, It comprises a laminating step of laminating reinforcing fiber bundle layers to form a laminate, and a resin impregnation curing step of impregnating the laminate with a matrix resin.
  • the temporary fixing step and the reinforcing fiber bundle layer manufacturing step will be specifically described as the first reinforcing fiber bundle layer 11.
  • the powder binder 50 is sprinkled with respect to the single side
  • the heating temperature of the binder 50 is the melting point of the binder 50.
  • the amount of binder 50 used is desirably 5 to 10 g / m 2 .
  • a second extending in parallel with the direction in which the first reinforcing fiber bundle 11a extends so that the plurality of first fabric base materials 21 do not overlap each other.
  • the plurality of first woven fabric base materials 21 are arranged so that the end portions 21b of each other are adjacent to each other.
  • the 2nd edge part 21b of both the adjacent 1st fabric base materials 21 covers (straddles) the toughness reinforcement
  • the first layer toughness-enhancing fabric 31 is disposed on the surface of both first layer toughness-enhancing fabrics 31 so as to face the surfaces of the second end portions 21 b of both first fabric base materials 21.
  • the first layer toughness-enhancing fabric 31 is pressurized while being heated from the surface opposite to the surface on which the binder 50 is temporarily fixed, and the second end 21b of the first fabric substrate 21 and the first layer are used.
  • the toughness-enhanced fabric 31 is joined with the binder 50, and the first layer toughness-enhanced fabric 31 is bonded to the second end portions 21 b of the first fabric base materials 21.
  • the heating temperature is set to a temperature at which the binder 50 is melted.
  • the binder 50 When the binder 50 is melted by heating, the binder 50 spreads between the first layer toughness-enhancing fabric 31 and the first fabric substrate 21 and is cured. The first layer toughness-enhancing fabric 31 and the first fabric substrate 21 are joined together. As a result, the first reinforcing fiber bundle layer 11 is manufactured. In addition, the 3rd reinforcement fiber bundle layer 13 and the 4th reinforcement fiber bundle layer 14 are also manufactured through a temporary adhering process and a reinforcement fiber bundle layer manufacturing process similarly to the above.
  • the second reinforcing fiber bundle layer 12 is laminated on the first reinforcing fiber bundle layer 11, and the third reinforcing fiber bundle layer 12 is subjected to the third reinforcement.
  • the fiber bundle layer 13 is laminated.
  • the fourth reinforcing fiber bundle layer 14 is laminated on the third reinforcing fiber bundle layer 13 to form a laminate 20.
  • the laminated body 20 manufactured in the lamination step is impregnated with the liquid matrix resin 30, and the matrix resin 30 is cured to form the reinforced fiber composite material 10.
  • the impregnation and curing of the resin is performed by, for example, the RTM method.
  • the matrix resin 30 penetrates between the fibers of the reinforcing fiber bundles 11a to 14a of the first to fourth reinforcing fiber bundle layers 11 to 14, and between the glass fiber fibers of the toughness reinforcing fabrics 31, 33, and 34. Also penetrates and hardens the fibers.
  • the first, third, and fourth reinforcing fiber bundle layers 11, 13, 14 are made of the fabric base materials 21, 23, 24 with toughness-reinforced fabrics 31, 33, 34, respectively. It is formed by connecting.
  • Each toughness-reinforced fabric 31, 33, 34 is formed of glass fiber, is thin, and is lightweight.
  • Each of the toughness-enhancing fabrics 31, 33, and 34 is adhered to the corresponding fabric base material 21, 23, 24 using a binder 50.
  • each pair of fabric base materials 21, 23, and 24 is connected with a suture to form the first, third, and fourth reinforcing fiber bundle layers 11, 13, and 14, the reinforcing fibers
  • the suture does not slip through the bundles 11a, 13a, and 14a, and the arrangement of the reinforcing fiber bundles 11a, 13a, and 14a is not disturbed due to the difference in the tensile strength of the sutures. Therefore, in the reinforcing fiber composite material 10 to be obtained, there is no deterioration in mechanical characteristics due to the disorder of the arrangement of the reinforcing fiber bundles 11a, 13a, and 14a.
  • each of the toughness-reinforced fabrics 31, 33, 34 is formed of glass fiber, which is a fiber material, like the reinforcing fiber bundles 11a, 13a, 14a. Therefore, even if the obtained reinforcing fiber composite material 10 includes the toughness-enhancing fabrics 31, 33, 34, the toughness-enhancing fabrics 31, 33, 34 do not become foreign matters. Conversely, the matrix resin 30 between the layers of the reinforced fiber composite material 10 is reinforced by the toughened reinforced fabrics 31, 33 and 34. Moreover, each toughness reinforcement
  • the first layer toughness-enhancing fabric 31, the third layer toughness-enhancing fabric 33, and the fourth layer toughness-enhancing fabric 34 overlap in the stacking direction. For this reason, even if a crack is generated on the surface of the reinforcing fiber composite material 10 (the fourth layer toughness-enhancing fabric 34), the third layer toughness-enhancing fabric 33 and the third layer toughening-enhancing fabric 33 and the fourth layer are strengthened.
  • the toughness-enhancing fabric 31 for one layer prevents the crack from progressing in the stacking direction.
  • each toughness-reinforced fabric 31, 33, 34 has a basis weight of 10 to 50 g / m 2 . Therefore, the weight reduction of each toughness-reinforced fabric 31, 33, 34 can be achieved.
  • Each toughness-reinforced fabric 31, 33, 34 has a thickness of 5 to 40 ⁇ m. For this reason, the thickness of the toughness-enhancing fabrics 31, 33, 34 can be reduced as compared with the case of using a sticking yarn or a coarse cloth-like sticking cloth to connect the textile base materials 21, 23, 24. For this reason, in the reinforced fiber composite material 10 obtained, wrinkles are prevented from occurring in the portions corresponding to the toughness-reinforced fabrics 31, 33, 34, and the thickness of the portions is prevented from becoming thick.
  • the toughness-reinforced fabrics 31, 33, 34 are formed of glass fibers, which are fiber materials, like the reinforcing fiber bundles 11a, 13a, 14a. For this reason, when the matrix resin 30 is also impregnated in each of the toughness-reinforced fabrics 31, 33, 34, the matrix resin 30 enters the gaps between the glass fibers, and the glass fibers are connected to each other by the matrix resin 30. 31, 33, 34 can also be cured.
  • the binder 50 was temporarily fixed to each toughness-reinforced fabric 31, 33, 34. For this reason, it is prevented that the binder 50 is scattered when the toughness-enhancing fabrics 31, 33, and 34 are attached to the fabric base materials 21, 23, and 24, respectively. Therefore, the fabric base materials 21, 23, 24 and the toughness-reinforced fabrics 31, 33, 34 can be reliably adhered to each other. Further, the toughness-reinforced fabrics 31, 33, and 34 were provided with sticking property in advance by the temporarily fixed binder 50.
  • a chain-cured resin was used as the matrix resin 30 and a non-anionic powder was used as the binder 50. For this reason, in the reinforced fiber composite material 10, the matrix resin 30 can be reliably cured without causing a curing failure in the matrix resin 30 by the binder 50.
  • the binder 50 is temporarily fixed to the toughness-reinforced fabrics 31, 33, 34.
  • the binder 50 may not be temporarily fixed.
  • the binder 50 is interposed between the toughness-reinforced fabrics 31, 33, and the second end portions 21b, 23b, and 24b of the fabric base materials 21, 23, and 24. Then, while heating the binder 50, add one of the toughness-reinforced fabrics 31, 33, 34 and the second end portions 21b, 23b, 24b of the fabric substrates 21, 23, 24 toward the other.
  • the toughened reinforced fabrics 31, 33, and 34 may be adhered to the fabric base materials 21, 23, and 24 by the binder 50.
  • the lengths of the long sides 31a, 33a, 34a and the short sides 31b, 33b, 34b of the toughness-enhanced fabrics 31, 33, 34 may be appropriately changed according to the bonding area.
  • the short sides 31b, 33b, 34b of the toughness-enhancing fabrics 31, 33, 34 may not extend along the long sides of the fabric base materials 21, 23, 24.
  • the number of reinforcing fiber bundles 11a, 13a, and 14a covered (stranded) by the toughness-reinforced fabrics 31, 33, and 34 may be appropriately changed.
  • a chain curable resin is used as the matrix resin 30, but the present invention is not limited to this, and other thermosetting resins may be used.
  • each toughness-reinforced fabric 31, 33, 34 is formed of glass fiber, but may be formed of fiber having a thermoplastic resin as a main component.
  • the thermoplastic resin include polyarylate, polyamide, polyamideimide, polyimide, polyetherimide, polyetherketone, polyetheretherketone, polyethersulfone, polysulfone, polyphenylene oxide, and polyphenylene sulfide.
  • the toughness-reinforced fabrics 31, 33, 34 are formed of thermoplastic resin fibers, the thermoplastic resin fibers preferably have a basis weight of 5 to 20 g / m 2 .
  • each toughness-enhanced fabric 31, 33, 34 can be further reduced in weight.
  • the laminate 20 includes a first reinforcing fiber bundle layer 11, a second reinforcing fiber bundle layer 12, a third reinforcing fiber bundle layer 13, and a fourth reinforcing fiber bundle layer 14.
  • the laminate 20 may be a plurality of layers, and may be two layers, three layers, or five layers or more.
  • the two woven fabric bases 21, 23, and 24 are connected by the toughened reinforced fabrics 31, 33, and 34, respectively, but the present invention is not limited to this.
  • the reinforcing fiber bundle layer may be formed by connecting three or more fabric base materials with a toughened fabric.
  • the fibers constituting each of the fabric base materials 21, 22, 23, and 24 are not limited to carbon fibers, and in accordance with the physical properties required for the reinforcing fiber composite material 10, aramid fibers, poly-p-phenylenebenzobisoxazole fibers, High-strength organic fibers such as ultrahigh molecular weight polyethylene fibers, or inorganic fibers such as glass fibers and ceramic fibers may be used.
  • the method of manufacturing the reinforcing fiber composite material 10 by impregnating the laminate 20 with the matrix resin and curing the matrix resin is not limited to the RTM method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacturing Of Multi-Layer Textile Fabrics (AREA)

Abstract

 強化繊維複合材料は、複数の強化繊維束層と靭性強化織物とマトリックス樹脂とを備える。複数の強化繊維束層は積層されて積層体を構成する。強化繊維束層は複数のシート状の織物基材を有する。複数の織物基材の各々は、複数の強化繊維束を含むとともに、端部を有している。複数の織物基材は端部同士が隣り合うように並べられる。靭性強化織物は、互いに隣り合う端部を覆うように複数の織物基材に貼着される。マトリックス樹脂は積層体に含浸される。

Description

強化繊維複合材料及び強化繊維複合材料の製造方法
 本発明は、強化繊維束層が積層されてなる積層体にマトリックス樹脂を含浸させてなる強化繊維複合材料、及び該強化繊維複合材料の製造方法に関する。
 軽量、高強度の材料として繊維強化複合材料(以下、単に複合材料と称す。)が使用されている。強化繊維束を含む強化繊維束層がマトリックス樹脂によって複合化されることにより、樹脂自体に比べて力学的特性(機械的特性)が向上した複合材料を得ることができる。そのため複合材料は構造部品として好ましい。
 比較的大きい面積を有する複合材料を得ようとする場合は、互いに繋がれたシート状の複数の織物基材を含む強化繊維束層が使用される。(例えば、特許文献1参照)。
 図6に示すように、特許文献1の強化繊維基材80(強化繊維束層)は、接続手段としての縫合糸82で繋がれた複数の一方向性基材81を含む。一方向性基材81の各々の平面形態は、一方向に沿って延びるように引き揃えられた複数本の強化繊維糸条81aを、該強化繊維糸条81aに交差するように延在した補助糸83により拘束することにより保持されている。そして、少なくとも二枚の一方向性基材81は、端部同士が互いに重なり合わないように縫合糸82で縫合されている。その他にも、図示しないが、熱可塑性樹脂製のフィルムを接続手段として用いることが特許文献1において提案されている。
特開2006-200094号公報
 強化繊維基材80において接続手段として縫合糸82を用いた場合、強化繊維糸条81a同士の間に縫合糸82が通されている。そのため、縫合糸82の一端や他端がほつれると、縫合糸82が強化繊維糸条81a同士の間からすり抜けてしまい、複数の強化繊維糸条81aの配列に乱れが生じる虞がある。また、縫合糸82の引っ張りの強さによっても複数の強化繊維糸条81aの配列に乱れが生じる虞がある。よって、縫合糸82を用いると、複数の強化繊維糸条81aの配列の乱れが原因で、得られる複合材料の力学的特性が低下してしまう虞がある。また、縫合糸82で一方向性基材81同士を縫合する作業が必要であり、製造が面倒である。さらに、接続手段として熱可塑性樹脂製のフィルムを用いた場合は、該フィルムが強化繊維基材80内に異物として残り、強化繊維基材80の力学的特性が低下してしまう。
 本発明の目的は、互いに接続された織物基材を含む強化繊維束層を用いても力学的特性の低下を生じさせず簡単に製造することができる強化繊維複合材料及び該強化繊維複合材料の製造方法を提供することにある。
 上記目的を達成するため、本発明の一態様に係る強化繊維複合材料は、複数の強化繊維束層と靭性強化織物とマトリックス樹脂とを備える。前記複数の強化繊維束層は、積層方向に沿って積層されて積層体を構成する。前記複数の強化繊維束層のうちの少なくとも一層は複数のシート状の織物基材を有する。該複数の織物基材の各々は、一方向に沿って延びる複数の強化繊維束を含むとともに、前記複数の強化繊維束層が延びる方向と平行に延びる端部を有している。前記複数の織物基材は前記端部同士が隣り合うように前記積層方向と直交する方向に沿って並べられる。前記靭性強化織物は、互いに隣り合う前記端部を覆うように前記複数の織物基材に貼着される。該靭性強化織物は前記複数の強化繊維束層が延びる方向と平行な方向に沿って延びている。前記マトリックス樹脂は前記積層体に含浸される。
 本発明の更なる態様に係る強化繊維複合材料の製造方法は、複数のシート状の織物基材を準備することを備える。前記複数の織物基材の各々は、一方向に沿って延びる複数の強化繊維束を含むとともに、前記複数の強化繊維束層が延びる方向と平行に延びる端部を有する。前記製造方法は、さらに、前記複数の織物基材が互いに重なり合わないように且つ前記端部同士が隣り合うように前記複数の織物基材を並べることを備える。前記製造方法は、さらに、互いに隣り合う前記端部を覆うように前記複数の織物基材に貼着される靭性強化織物を準備することを備える。前記製造方法は、さらに、前記靭性強化織物が前記織物基材同士を繋ぐように互いに隣り合う前記端部と前記靭性強化織物とを熱可塑性樹脂パウダーよりなるバインダーで接合することによって、強化繊維束層を製造することを備える。前記製造方法は、さらに、前記強化繊維束層を少なくとも一層含む複数の強化繊維束層を積層して積層体を形成することを備える。前記製造方法は、さらに、前記積層体に熱硬化樹脂よりなるマトリックス樹脂を含浸させることを備える。
本発明の一実施形態に係る積層体を示す分解斜視図。 図1の積層対を含む強化繊維複合材料を示す斜視図。 図2の強化繊維複合材料の3-3線に沿った断面図。 (a)は図1の第4の強化繊維束層を模式的に示す図、(b)は図1の第3の強化繊維束層を模式的に示す図、(c)は図1の第2の強化繊維束層を模式的に示す図、(d)は図1の第1の強化繊維束層を模式的に示す図。 (a)は仮固着工程を示す模式図、(b)及び(c)はそれぞれ強化繊維束層製造工程を示す模式図、(d)は積層工程を示す模式図。 背景技術を示す斜視図。
 以下、本発明を具体化した一実施形態を図1~図5にしたがって説明する。
 図2及び図3に示すように、強化繊維複合材料10は、シート状をなす第1~第4の強化繊維束層11~14を積層方向に積層してなる積層体20にマトリックス樹脂30を含浸させて形成されている。なお、図2では、マトリックス樹脂30の図示を省略している。また、本実施形態では、マトリックス樹脂30として、連鎖硬化樹脂が使用されている。第1~第4の強化繊維束層11~14は第1~第4の強化繊維束11a~14aを用いて形成されている。第1~第4の強化繊維束11a~14aの各々は複数本の強化繊維を束ねることによって形成される。なお、「強化繊維」とは、第1~第4の強化繊維束層11~14を、強化繊維複合材料10の繊維基材として使用した際に、強化繊維複合材料10のマトリックス樹脂30を強化する役割を担う繊維を意味する。そして、本実施形態では、強化繊維として炭素繊維が使用されている。
 図1及び図4(d)に示すように、第1の強化繊維束層11は、それぞれシート状をなす二つの第1織物基材21を第1層用靭性強化織物31で繋いで形成されている。各第1織物基材21は、互いに平行且つ真っ直ぐ延びる複数の第1の強化繊維束11aを含む。第1の強化繊維束11aが延びる方向は第1織物基材21の長さ方向(軸L1の延びる方向)に対し+45度の角度をなす。また、各第1織物基材21において、複数の第1の強化繊維束11a同士は、それら第1の強化繊維束11aの並列方向に沿って延びる補助糸11bによって連結されている。複数の第1の強化繊維束11aの並列方向は、複数の第1の強化繊維束11aが延びる方向と交差する方向である。第1織物基材21は所定長さに切断されたものであるが、図4(d)に示すように、切断される前は長尺状に製造されるとともにロール状に巻き取られている。
 第1の強化繊維束層11を形成する二つの第1織物基材21の各々は、切断される前の長尺状の第1織物基材21の長さ方向(軸L1が延びる方向)に対し直交する方向へ延びる第1の端部21aと、第1の強化繊維束11aが延びる方向に対し平行に延びる第2の端部21bとを有するように切断されている。すなわち、各第1織物基材21の第2の端部21bは、各強化繊維束11aに切断面を形成しない。そして、二つの第1織物基材21は第2の端部21b同士が隣り合うように積層体20の積層方向と直交する方向に沿って並べられる。第2の端部21b同士が隣り合う状態で、両第1織物基材21は第1層用靭性強化織物31によって繋がれる。
 第1層用靭性強化織物31は、ガラス繊維からなる織物である。好ましくは、第1層用靭性強化織物31は、5~40μmの厚みと、10~50g/mの目付け、すなわち織物基材21の単位当たりの重量とを有する。第1層用靭性強化織物31の目付けが10g/mよりも小さいと、強化繊維複合材料10において第1及び第2繊維束層11,12の層間のマトリックス樹脂30が十分に高靭性化されず、好ましくない。また、第1層用靭性強化織物31の目付けが50g/mよりも大きいと、マトリックス樹脂30の含浸性が低下するため好ましくない。含浸性が低下すると、得られる強化繊維複合材料10にマトリックス樹脂30の未含浸部ができ、機械強度が低下する。
 そして、第1層用靭性強化織物31として、厚みが薄く、かつ軽量な織物が使用される。また、第1の強化繊維束層11で用いられる第1層用靭性強化織物31は、細長の平行四辺形状に形成されている。第1層用靭性強化織物31の短辺31bと長辺31aとに挟まれて形成される角のうちの鋭角の角度は45度となっている。また、第1層用靭性強化織物31の短辺31bの長さは、四本の第1の強化繊維束11aの直径の和より若干長くなっている。
 第1層用靭性強化織物31は、第1の強化繊維束層11と第2の強化繊維束層12との層間のマトリックス樹脂30を高靭性化し、耐衝撃性を向上させるものである。そして、第1層用靭性強化織物31は、互いに隣り合う第2の端部21bを覆う(跨ぐ)ように二つの第1織物基材21に貼着される。この状態において、短辺31bは第1織物基材21の長辺21cに沿って延びるとともに、長辺31aは第1の強化繊維束11aが延びる方向と平行をなすように延びる。第1層用靭性強化織物31は、各第1織物基材21につき二本ずつ、合計四本の第1の強化繊維束11aを覆うように両第1織物基材21に貼着されている。
 なお、第1層用靭性強化織物31は、バインダーを用いて第1織物基材21に貼着されている。バインダーとしては、マトリックス樹脂が連鎖硬化樹脂である場合には、その連鎖硬化樹脂に硬化阻害を生じさせない非アニオン系パウダー(例えばフェノキシ樹脂)が使用される。マトリックス樹脂が連鎖硬化樹脂ではなく、熱硬化樹脂の場合には、バインダーとしては熱可塑性樹脂パウダーが使用される。
 図1及び図4(c)に示すように、第2の強化繊維束層12は、シート状をなす一枚の第2織物基材22から形成されている。この第2織物基材22は、互いに平行且つ真っ直ぐ延びる複数の第2の強化繊維束12aを含む。第2の強化繊維束12aが延びる方向は第2織物基材22の長さ方向(軸L2の延びる方向)に対し平行をなす。第2織物基材22は所定長さを有するように切断されたものであるが、図4(c)に示すように、切断される前は長尺状に製造されるとともにロール状に巻き取られている。第2織物基材22は、切断される前の長尺状の第2織物基材22の長さ方向(軸L2が延びる方向)に対し直交する方向へ延びる第1の端部22a及び第2の端部22bを有するように切断されている。
 図1及び図4(b)に示すように、第3の強化繊維束層13は、それぞれシート状をなす二つの第3織物基材23を第3層用靭性強化織物33で繋いで形成されている。各第3織物基材23は、互いに平行に真っ直ぐ延びる複数の第3の強化繊維束13aを含む。第3の強化繊維束13aが延びる方向は第3織物基材23の長さ方向(軸L3の延びる方向)に対し-45度の角度をなす。また、各第3織物基材23において、複数の第3の強化繊維束13a同士は、それら第3の強化繊維束13aの並列方向に沿って延びる補助糸13bによって連結されている。複数の第3の強化繊維束13aの並列方向は、複数の第3の強化繊維束13aが延びる方向と直交する方向である。第3織物基材23は所定長さに切断されたものであるが、図4(b)に示すように、切断される前は長尺状に製造されるとともにロール状に巻き取られている。
第3織物基材23の各々は、切断される前の長尺状の第3織物基材23の長さ方向(軸L3が延びる方向)に対し直交する方向へ延びる第1の端部23aと、第3の強化繊維束13aが延びる方向に対し平行に延びる第2の端部23bとを有するように切断されている。すなわち、各第3織物基材23の第2の端部23bは、各第3強化繊維束13aに切断面を形成しない。
 そして、二つの第3織物基材23は第2の端部23b同士が隣り合うように積層体20の積層方向と直交する方向に沿って並べられる。第2の端部23b同士が隣り合う状態で、両第3織物基材23は第3層用靭性強化織物33によって繋がれる。第3層用靭性強化織物33は、第1の強化繊維束層11で用いられた第1層用靭性強化織物31と材質は同じであるが、形状が異なる。具体的には、第3層用靭性強化織物33は細長平行四辺形状をなし、短辺33bに対する長辺33aの傾斜の向きが第1層用靭性強化織物31と逆になっている。そして、第3層用靭性強化織物33において、短辺33bと長辺33aとに挟まれて形成される角のうちの鋭角の角度は45度となっている。また、第3層用靭性強化織物33の短辺33bの長さは、四本の第3の強化繊維束13aの直径の和より若干長くなっている。
 そして、第3層用靭性強化織物33は、互いに隣り合う第2の端部23bを覆う(跨ぐ)ように二つの第3織物基材23に貼着される。この状態において、短辺33bは第3織物基材23の長辺23cに沿って延びるとともに、長辺33aは第3の強化繊維束13aが延びる方向と平行をなすように延びる。第3層用靭性強化織物33は、各第3織物基材23につき二本ずつ、合計四本の第3の強化繊維束13aを覆うように両第3織物基材23に貼着されている。
 図1及び図4(a)に示すように、第4の強化繊維束層14は、それぞれシート状をなす二つの第4織物基材24を第4層用靭性強化織物34で繋いで形成されている。各第4織物基材24は、互いに平行且つ真っ直ぐ延びる複数の第4の強化繊維束14aを含む。第4の強化繊維束14aが延びる方向は第4織物基材24の長さ方向(軸L4の延びる方向)に対し90度の角度をなす。また、各第4織物基材24において、複数の第4の強化繊維束14a同士は、それら第4の強化繊維束14aの並列方向に沿って延びる補助糸14bによって連結されている。複数の第4の強化繊維束14aの並列方向は、複数の第4の強化繊維束14aが延びる方向と直交する方向である。第4織物基材24は所定長さに切断されたものであるが、図4(a)に示すように、切断される前は長尺状に製造されるとともにロール状に巻き取られている。
 第4織物基材24の各々は、第4の強化繊維束14が延びる方向と平行に延びる第1の端部24aと第2の端部24bとを有するように切断されている。すなわち、各第4織物基材24の第1の端部24a及び第2の端部24bは、各第4強化繊維束14aに切断面を形成しない。そして、二つの第4織物基材24は第2の端部24b同士が隣り合うように積層体20の積層方向と直交する方向に沿って並べられる。第2の端部24b同士が隣り合う状態で、両第4織物基材24は第4層用靭性強化織物34によって繋がれる。
 第4層用靭性強化織物34は、第1層用靭性強化織物31及び第3層用靭性強化織物33と材質は同じであるが、形状が異なる。具体的には、第4層用靭性強化織物34は長方形状をなす。また、第4層用靭性強化織物34の短辺34bの長さは、四本の第4の強化繊維束14aの直径の和より若干長くなっている。
 そして、第4層用靭性強化織物34は、互いに隣り合う第2の端部24bを覆う(跨ぐ)ように二つの第4織物基材24に貼着される。この状態において、短辺34bは第4織物基材24の長辺24cに沿って延びるとともに、長辺34aは第4の強化繊維束14aが延びる方向と平行をなすように延びる。第4層用靭性強化織物34は、各第4織物基材24につき二本ずつ、合計四本の第4の強化繊維束14aを覆うように両第4織物基材24に貼着されている。
 積層体20は、上記の第1~第4の強化繊維束層11~14を積層することによってシート状に形成されている。積層体20において、第1~第4の強化繊維束層11~14のうち第1、第3、及び第4の強化繊維束層11,13,14は、二つのシート状の織物基材21,23,24を有する。
 そして、強化繊維束11a~14aが延びる方向が互いに異なることにより、全体で4軸配向となる積層体20が形成されている。図3に示すように、積層体20において、第1層用靭性強化織物31と、第3層用靭性強化織物33と、第4層用靭性強化織物34とが積層方向に重なっている。また、強化繊維複合材料10において、第1の強化繊維束層11と第2の強化繊維束層12との間に第1層用靭性強化織物31が介在し、これら二つの繊維束層の層間のマトリックス樹脂30が第1層用靭性強化織物31によって強化されている。第3の強化繊維束層13と第4の強化繊維束層14との間に第3層用靭性強化織物33が介在し、これら二つの繊維束層の層間のマトリックス樹脂30が第3層用靭性強化織物33によって強化されている。また、積層体20において、第4の強化繊維束層14の表面に第4層用靭性強化織物34が貼着されている。
 そして、強化繊維複合材料10は、上記構成の積層体20を成形型に沿わせて配置した後、例えば、RTM法で硬化前の液状のマトリックス樹脂30を積層体20に含浸させ、そのマトリックス樹脂を硬化させて形成される。
 次に、強化繊維複合材料10の作用を記載する。
 強化繊維複合材料10において、第1の強化繊維束層11は第1織物基材21を第1層用靭性強化織物31で繋いで形成されるとともに、第3の強化繊維束層13は第3織物基材23を第3層用靭性強化織物33で繋いで形成されている。さらに、第4の強化繊維束層14は第4織物基材24を第4層用靭性強化織物34で繋いで形成されている。靭性強化織物31,33,34の各々はガラス繊維で形成され、厚みが薄く、かつ軽量である。このため、各靭性強化織物31,33,34によって対応する織物基材21,23,24を繋ぐことによって、力学的特性の低下がなく、しかも、厚みが薄い強化繊維複合材料10を得ることができる。さらに、靭性強化織物31,33,34によって、第1の強化繊維束層11と第2の強化繊維束層12との間のマトリックス樹脂30、及び第3の強化繊維束層13と第4の強化繊維束層14との間のマトリックス樹脂30がそれぞれ強化される。
 次に、強化繊維複合材料10の製造方法について説明する。
 強化繊維複合材料10の製造方法は、靭性強化織物にバインダーを仮固着させる仮固着工程と、靭性強化織物により織物基材同士を繋いで強化繊維束層を製造する強化繊維束層製造工程と、強化繊維束層を積層して積層体を形成する積層工程と、積層体にマトリックス樹脂を含浸させる樹脂含浸硬化工程とを備えている。なお、仮固着工程及び強化繊維束層製造工程は、第1の強化繊維束層11に具体化して説明する。
 図5(a)に示すように、仮固着工程では、まず、第1層用靭性強化織物31の片面に対し、粉末のバインダー50を振りかける。その後、バインダー50を加熱してバインダー50を第1層用靭性強化織物31の片面に仮固着する。バインダー50の加熱温度は、バインダー50の融点である。また、バインダー50の使用量は、5~10g/mが望ましい。
 図5(b)に示すように、強化繊維束層製造工程では、複数の第1織物基材21が互いに重なり合わないように且つ第1の強化繊維束11aが延びる方向と平行に延びる第2の端部21b同士が隣り合うように、複数の第1織物基材21を並べる。そして、図5(c)に示すように、隣り合う両第1織物基材21の第2の端部21bを第1層用靭性強化織物31が覆う(跨ぐ)とともに、仮固着されたバインダー50が両第1織物基材21の第2の端部21bの表面に対向するように、第1層用靭性強化織物31を両第1層用靭性強化織物31の表面に配置する。次に、第1層用靭性強化織物31をバインダー50が仮固着された面と反対側の面から加熱しながら加圧し、第1織物基材21の第2の端部21bと第1層用靭性強化織物31とをバインダー50で接合し、第1層用靭性強化織物31を両第1織物基材21の第2の端部21bに貼着する。加熱温度は、バインダー50が溶融する温度に設定され、加熱によりバインダー50が溶融することで、バインダー50が第1層用靭性強化織物31及び第1織物基材21の間で広がり、硬化することで第1層用靭性強化織物31と第1織物基材21とを接合する。その結果、第1の強化繊維束層11が製造される。なお、第3の強化繊維束層13及び第4の強化繊維束層14も、上記と同様に仮固着工程と、強化繊維束層製造工程とを経て製造される。
 図5(d)に示すように、積層工程では、第1の強化繊維束層11上に第2の強化繊維束層12を積層し、第2の強化繊維束層12上に第3の強化繊維束層13を積層する。さらに、第3の強化繊維束層13上に第4の強化繊維束層14を積層して積層体20を形成する。
 樹脂含浸硬化工程では、積層工程において製造された積層体20に液状のマトリックス樹脂30が含浸されるとともに、マトリックス樹脂30が硬化されて強化繊維複合材料10が形成される。樹脂の含浸及び硬化は、例えば、RTM法で行われる。そして、マトリックス樹脂30は、第1~第4の強化繊維束層11~14の強化繊維束11a~14aの繊維間に浸透するとともに、靭性強化織物31,33,34のガラス繊維の繊維間にも浸透し、それら繊維を硬化させる。
 上記実施形態によれば、以下のような利点を得ることができる。
 (1)強化繊維複合材料10において、第1、第3、及び第4の強化繊維束層11,13,14は、織物基材21,23,24をそれぞれ靭性強化織物31,33,34で繋いで形成されている。各靭性強化織物31,33,34はガラス繊維で形成され、厚みが薄く、かつ軽量である。そして、靭性強化織物31,33,34の各々は、対応する織物基材21,23,24にバインダー50を用いて貼着されている。このため、第1、第3、及び第4の強化繊維束層11,13,14を形成するために、織物基材21,23,24の各対を縫合糸で繋ぐ場合と異なり、強化繊維束11a,13a,14aから縫合糸がすり抜けたり、縫合糸の引っ張りの強さの違いにより各強化繊維束11a,13a,14aの配列に乱れが生じたりすることがない。よって、得られる強化繊維複合材料10においては、各強化繊維束11a,13a,14aの配列の乱れに基づく力学的特性の低下がない。
 (2)また、縫合糸で織物基材21,23,24同士を縫い合わせる作業が不要となり、織物基材21,23,24を繋ぐ作業の簡素化、ひいては強化繊維複合材料10の製造作業が簡素化される。
 (3)さらに、靭性強化織物31,33,34の各々は、強化繊維束11a,13a,14aと同様に、繊維材料であるガラス繊維で形成されている。そのため、得られた強化繊維複合材料10に靭性強化織物31,33,34が含まれていても、靭性強化織物31,33,34が異物にはならない。逆に、靭性強化織物31,33,34によって強化繊維複合材料10の層間のマトリックス樹脂30が強化される。また、ガラス繊維を用いることで、各靭性強化織物31,33,34をより軽量にすることができる。
 (4)強化繊維複合材料10において、第1層用靭性強化織物31と、第3層用靭性強化織物33と、第4層用靭性強化織物34とが積層方向において重なっている。このため、万一、強化繊維複合材料10の表面(第4層用靭性強化織物34)にクラックが生じても、第4層用靭性強化織物34に重なる第3層用靭性強化織物33及び第1層用靭性強化織物31により、クラックが積層方向に進展することが防止される。
 (5)各靭性強化織物31,33,34として使用されるガラス繊維は10~50g/mの目付けを有している。そのため、各靭性強化織物31,33,34の軽量化を図ることができる。
 (6)各靭性強化織物31,33,34は、5~40μmの厚みを有する。このため、織物基材21,23,24を繋ぐために貼付糸や粗布状の貼付布等を使用する場合と比べると、靭性強化織物31,33,34の厚みを薄くすることができる。このため、得られる強化繊維複合材料10において、各靭性強化織物31,33,34と対応する部位に皺が生じたり、その部位の厚みが厚くなったりすることが防止される。
 (7)靭性強化織物31,33,34は、強化繊維束11a,13a,14aと同様に、繊維材料であるガラス繊維で形成されている。このため、各靭性強化織物31,33,34にもマトリックス樹脂30が含浸されると、そのマトリックス樹脂30がガラス繊維の隙間に入り込み、ガラス繊維同士をマトリックス樹脂30で連結して各靭性強化織物31,33,34も硬化させることができる。
 (8)強化繊維複合材料10の製造方法において、各靭性強化織物31,33,34にバインダー50を仮固着した。このため、織物基材21,23,24に靭性強化織物31,33,34をそれぞれ貼着するとき、バインダー50が散乱することが防止される。そのため、織物基材21,23,24と靭性強化織物31,33,34とを互いに確実に貼着することができる。また、仮固着したバインダー50により、各靭性強化織物31,33,34に貼着性を予め持たせた。
 (9)マトリックス樹脂30として連鎖硬化樹脂を使用するとともに、バインダー50として非アニオン系パウダーを用いた。このため、強化繊維複合材料10において、バインダー50によってマトリックス樹脂30に硬化障害が発生することが無く、マトリックス樹脂30を確実に硬化させることができる。
 なお、上記実施形態は以下のように変更してもよい。
 実施形態では、各靭性強化織物31,33,34にバインダー50を仮固着したが、バインダー50は仮固着しなくてもよい。例えば、各靭性強化織物31,33,34と、各織物基材21,23,24の第2の端部21b,23b,24bとの間にバインダー50を介在させる。そして、そのバインダー50を加熱しつつ、各靭性強化織物31,33,34及び各織物基材21,23,24の第2の端部21b,23b,24bのいずれか一方を他方に向けて加圧して、バインダー50によって各織物基材21,23,24に各靭性強化織物31,33,34を貼着してもよい。
 実施形態において、各靭性強化織物31,33,34の長辺31a,33a,34a及び短辺31b,33b,34bの長さは、貼着面積に合わせて適宜変更してもよい。
 実施形態において、各靭性強化織物31,33,34の短辺31b,33b,34bが各織物基材21,23,24の長辺に沿って延びていなくてもよい。
 実施形態において、各靭性強化織物31,33,34が覆う(跨ぐ)強化繊維束11a,13a,14aの数は適宜変更してもよい。
 実施形態では、マトリックス樹脂30として連鎖硬化樹脂を用いたが、これに限らず、その他の熱硬化樹脂を用いてもよい。
 実施形態では、各靭性強化織物31,33,34は、ガラス繊維で形成したが、熱可塑性樹脂を主成分とする繊維で形成されていてもよい。熱可塑性樹脂としては、ポリアリレート、ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリスルホン、ポリフェニレンオキシド、ポリフェニレンスルフィド等が挙げられる。各靭性強化織物31,33,34を熱可塑性樹脂の繊維で形成した場合は、熱可塑性樹脂の繊維は5~20g/mの目付けを有するのが望ましい。このように、各靭性強化織物31,33,34を熱可塑性樹脂を主成分とする繊維で形成しても、各靭性強化織物31,33,34をより軽量化することができる。
 実施形態では、積層体20は、第1の強化繊維束層11と、第2の強化繊維束層12と、第3の強化繊維束層13と、第4の強化繊維束層14とを含むが、積層体20は複数層であればよく、2層、3層、あるいは5層以上であってもよい。
 実施形態では、それぞれ二つの織物基材21,23,24を靭性強化織物31,33,34で繋いだが、これに限らない。強化繊維束層は、三つ以上の織物基材を靭性強化織物で繋いで形成されていてもよい。
 各織物基材21,22,23,24を構成する繊維は炭素繊維に限らず、強化繊維複合材料10に要求される物性に対応して、アラミド繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等の高強度の有機繊維等、又はガラス繊維やセラミック繊維等の無機繊維を使用してもよい。
 積層体20にマトリックス樹脂を含浸させるとともにマトリックス樹脂を硬化させて強化繊維複合材料10を製造する方法はRTM法に限らない。

Claims (7)

  1.  強化繊維複合材料において、
     積層方向に沿って積層されて積層体を構成する複数の強化繊維束層であって、前記複数の強化繊維束層のうちの少なくとも一層は複数のシート状の織物基材を有し、該複数の織物基材の各々は、一方向に沿って延びる複数の強化繊維束を含むとともに、前記複数の強化繊維束が延びる方向と平行に延びる端部を有しており、前記複数の織物基材は前記端部同士が隣り合うように前記積層方向と直交する方向に沿って並べられる、前記複数の強化繊維束層と、
     互いに隣り合う前記端部を覆うように前記複数の織物基材に貼着される靭性強化織物であって、該靭性強化織物は前記複数の強化繊維束が延びる方向と平行な方向に沿って延びている、前記靭性強化織物と、
     前記積層体に含浸されるマトリックス樹脂と、
    を備える強化繊維複合材料。
  2.  前記靭性強化織物は、ガラス繊維又は熱可塑性樹脂製の繊維によって形成されている請求項1に記載の強化繊維複合材料。
  3.  前記熱可塑性樹脂製の繊維は、5~20g/mの目付けを有している、請求項2に記載の強化繊維複合材料。
  4.  前記ガラス繊維は、10~50g/mの目付けを有している、請求項2に記載の強化繊維複合材料。
  5.  前記靭性強化織物は、5~40μmの厚みを有している、請求項1~請求項4のうちいずれか一項に記載の強化繊維複合材料。
  6.  強化繊維複合材料の製造方法であって、
     複数のシート状の織物基材を準備することであって、前記複数の織物基材の各々は、一方向に沿って延びる複数の強化繊維束を含むとともに、前記複数の強化繊維束が延びる方向と平行に延びる端部を有することと、
     前記複数の織物基材が互いに重なり合わないように且つ前記端部同士が隣り合うように前記複数の織物基材を並べることと、
     互いに隣り合う前記端部を覆うように前記複数の織物基材に貼着される靭性強化織物を準備することと、
     前記靭性強化織物が前記織物基材同士を繋ぐように互いに隣り合う前記端部と前記靭性強化織物とを熱可塑性樹脂パウダーよりなるバインダーで接合することによって、強化繊維束層を製造することと、
     前記強化繊維束層を少なくとも一層含む複数の強化繊維束層を積層して積層体を形成することと、
     前記積層体に熱硬化樹脂よりなるマトリックス樹脂を含浸させることと、
    を備える、強化繊維複合材料の製造方法。
  7.  前記熱可塑性樹脂パウダーは非アニオン系パウダーであり、前記マトリックス樹脂は連鎖硬化樹脂である、請求項6に記載の強化繊維複合材料の製造方法。
PCT/JP2013/066911 2012-06-22 2013-06-20 強化繊維複合材料及び強化繊維複合材料の製造方法 WO2013191232A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-141208 2012-06-22
JP2012141208A JP2014004735A (ja) 2012-06-22 2012-06-22 強化繊維複合材料及び強化繊維複合材料の製造方法

Publications (1)

Publication Number Publication Date
WO2013191232A1 true WO2013191232A1 (ja) 2013-12-27

Family

ID=49768826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066911 WO2013191232A1 (ja) 2012-06-22 2013-06-20 強化繊維複合材料及び強化繊維複合材料の製造方法

Country Status (2)

Country Link
JP (1) JP2014004735A (ja)
WO (1) WO2013191232A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138671A (ja) * 1997-11-12 1999-05-25 Toray Ind Inc 強化繊維基材
JP2004249507A (ja) * 2003-02-18 2004-09-09 Nippon Steel Composite Co Ltd 強化繊維シート
JP2011121372A (ja) * 2011-01-24 2011-06-23 Maruhachi Kk 多軸積層強化繊維シート作製方法、長尺の傾斜強化繊維シート、及び多軸積層強化繊維シート
JP2012166498A (ja) * 2011-02-16 2012-09-06 Universal Shipbuilding Corp Frp構造体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138671A (ja) * 1997-11-12 1999-05-25 Toray Ind Inc 強化繊維基材
JP2004249507A (ja) * 2003-02-18 2004-09-09 Nippon Steel Composite Co Ltd 強化繊維シート
JP2011121372A (ja) * 2011-01-24 2011-06-23 Maruhachi Kk 多軸積層強化繊維シート作製方法、長尺の傾斜強化繊維シート、及び多軸積層強化繊維シート
JP2012166498A (ja) * 2011-02-16 2012-09-06 Universal Shipbuilding Corp Frp構造体

Also Published As

Publication number Publication date
JP2014004735A (ja) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5920471B2 (ja) 三次元繊維強化複合材及び三次元繊維強化複合材の製造方法
US20160101591A1 (en) Composite article
KR101318312B1 (ko) 섬유 강화 복합체
WO2016035694A1 (ja) エネルギー吸収部材
CN104448877A (zh) 包括分散的纤维丝的复合织物
JP5900624B2 (ja) 三次元繊維強化複合材
JP2011121372A (ja) 多軸積層強化繊維シート作製方法、長尺の傾斜強化繊維シート、及び多軸積層強化繊維シート
WO2021033484A1 (ja) 繊維構造体及び繊維強化複合材
WO2015079854A1 (ja) 繊維強化複合材料
JP6607026B2 (ja) 繊維強化複合材
WO2016084575A1 (ja) 繊維構造体及び繊維強化複合材
JP4819340B2 (ja) 強化繊維積層接合装置
WO2021014851A1 (ja) 繊維構造体及び繊維強化複合材
WO2013191232A1 (ja) 強化繊維複合材料及び強化繊維複合材料の製造方法
WO2017018235A1 (ja) 織物積層体、織物積層体の製造方法、及び織物積層体の製造装置
JP6196658B2 (ja) サンドイッチパネル,一方向プリプレグの製造方法及びサンドイッチパネルの製造方法
US7456119B2 (en) Composites
JP2019094578A (ja) 繊維構造体及び繊維強化複合材
JP5644755B2 (ja) 織物基材及び繊維強化複合材料
JP6620771B2 (ja) 繊維構造体及び繊維強化複合材
JP2017025216A (ja) 繊維強化複合材料
JP6528651B2 (ja) 繊維構造体
US11505660B2 (en) Fiber reinforced materials with improved fatigue performance
JP2022119368A (ja) 繊維構造体及び繊維強化複合材
JP2014077213A (ja) ジョイント用繊維基材及びジョイント用繊維強化複合材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807364

Country of ref document: EP

Kind code of ref document: A1