WO2019206275A1 - 太阳能组件的封装方法和封装装置 - Google Patents

太阳能组件的封装方法和封装装置 Download PDF

Info

Publication number
WO2019206275A1
WO2019206275A1 PCT/CN2019/084532 CN2019084532W WO2019206275A1 WO 2019206275 A1 WO2019206275 A1 WO 2019206275A1 CN 2019084532 W CN2019084532 W CN 2019084532W WO 2019206275 A1 WO2019206275 A1 WO 2019206275A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
laminated
temperature
packaging
laminator
Prior art date
Application number
PCT/CN2019/084532
Other languages
English (en)
French (fr)
Inventor
卜明立
李秀
董俊川
杨生
Original Assignee
米亚索能光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 米亚索能光伏科技有限公司 filed Critical 米亚索能光伏科技有限公司
Publication of WO2019206275A1 publication Critical patent/WO2019206275A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of solar energy technologies, and in particular, to a packaging method and a packaging device for a solar component.
  • the main component of a solar photovoltaic cell assembly is a solar cell. Since solar cells cannot be directly exposed to natural conditions such as sunlight and rain, the practical application of solar power generation requires protective packaging of specific materials and formation of battery components. Through protective packaging, solar cells can be protected from physical and chemical erosion during an effective life cycle, enabling solar cells to provide stable and reliable output. Lamination is a widely used method of packaging solar modules. Laminating generally refers to a molding process in which a plurality of layers of the same or different packaging materials are combined with a solar cell sheet by heating or pressurizing under vacuum.
  • Some embodiments of the present disclosure provide a packaging method of a solar module, in which a component to be laminated and a heat insulating panel composed of a solar cell sheet and an encapsulating material are fed to a laminating machine for lamination, wherein A heat shield is disposed between the assembly to be laminated and the hot press assembly of the laminator, and the vacuuming and pressurizing steps are completed before the temperature of the assembly to be laminated reaches the thermal deformation temperature of the encapsulating material.
  • Some embodiments of the present disclosure provide yet another method of packaging a solar module, the method comprising the steps of:
  • the upper chamber and the lower chamber of the laminating machine are evacuated, and after vacuuming for a period of time, the upper chamber of the laminating machine is connected to the external environment, and the lower chamber of the laminating machine is continuously evacuated, thereby pressing the laminated assembly.
  • the vacuuming and pressurizing steps are completed before the temperature of the assembly to be laminated reaches the thermal deformation temperature of the encapsulating material;
  • the laminated assembly, the heat shield, the first release-resistant high temperature resistant cloth and the second release high temperature resistant cloth are conveyed to the outside of the laminating machine, cooled by a cold pressing device, and maintained under pressure during cooling. Constant.
  • Some embodiments of the present disclosure also provide a packaging device for a solar module, comprising: a laminating machine and a heat insulation board;
  • the laminating machine is used for laminating an assembly to be laminated composed of a solar cell sheet and an encapsulating material
  • the heat shield is disposed between the assembly to be laminated and a hot press assembly of the laminator, the heat shield configured to retard heat transfer, enabling the laminator to be laminated
  • the evacuation and pressurization steps are completed before the temperature of the assembly reaches the thermal deformation temperature of the encapsulating material.
  • FIG. 1 is a schematic diagram of a packaging device for a solar module according to some embodiments of the present disclosure
  • FIG. 2 is a schematic view showing the position of a laminating machine and a cooling device according to some embodiments of the present disclosure
  • FIG. 3 is a process flow diagram of a method for packaging a solar module according to Embodiment 1 of the present disclosure
  • FIG. 4 is a process flow diagram of another method for packaging a solar module according to Embodiment 2 of the present disclosure.
  • FIG. 5 is a schematic structural view of a cold press apparatus used in Embodiment 2 of the present disclosure.
  • FIG. 6 is a schematic structural view of a transmission mechanism of a cold press device used in Embodiment 2 of the present disclosure
  • Figure 7 is a front elevational view of the cold press apparatus employed in Embodiment 2 of the present disclosure.
  • FIG. 8 is a comparison view of the appearance of a solar module obtained by using the existing packaging method and the packaging method of Embodiment 2 of the present disclosure.
  • the term "component to be laminated” is defined as a combination of a solar cell sheet and an encapsulating material that have been laid on the surface of a solar cell sheet, waiting for lamination.
  • thermo deformation temperature is defined as the temperature at which the package material is deformed such as unevenness, warpage, wrinkles, and the like.
  • the term "insulation” in the term “insulated high temperature resistant board” is defined as a certain retardation effect on heat transfer, and "high temperature resistance” is defined as the work withstand temperature is greater than that of the laminating machine. Lamination temperature.
  • the "high temperature resistance” in the first release-resistant high temperature resistant cloth and the second release-resistant high temperature resistant cloth represents a substantially similar meaning.
  • the flexible solar module is taken as an example in the present disclosure, but the application of the present disclosure is not limited thereto, and can also be applied to other solar modules.
  • a flexible solar module refers to a solar module that is flexible, foldable, and crimpable.
  • the current flexible solar module package uses ultra-thin films of various functions to better reflect the light, thin and soft characteristics of the thin film solar cell.
  • the difference in the amount of thermal deformation and cold shrinkage between different materials is large, which results in the appearance of flexible solar modules, such as lightning lines, wavy lines, obvious internal traces, and obvious height difference. Poor phenomenon, so the packaging of flexible solar modules is very difficult.
  • Lightning pattern The fine lines appearing on the surface of ultra-thin materials in flexible solar modules during lamination process when making flexible solar modules with ultra-thin film materials.
  • Wave pattern Ultra-thin flexible solar modules will have obvious wavy lines in parts of the product after lamination.
  • the inventors have proposed an improved lamination encapsulation method and apparatus based on an in-depth investigation of the problems existing in existing packaging methods, which can at least partially improve the above-mentioned appearance defects.
  • Some embodiments of the present disclosure provide a packaging method of a solar module, in which a component to be laminated and a heat insulation panel composed of a solar cell sheet and an encapsulating material are fed into a laminating machine for lamination; A plate is disposed between the assembly to be laminated and the hot press assembly of the laminator, and the vacuuming and pressurizing steps are completed before the temperature of the assembly to be laminated reaches the thermal deformation temperature of the encapsulating material.
  • the thermal deformation temperature of the above encapsulating material can be obtained experimentally or empirically by those skilled in the art.
  • insulation in the above “insulation panel” is defined as a certain retardation effect on heat transfer.
  • the above heat insulation board refers to a component which has a certain retarding effect on heat transfer, but the specific shape is adapted to the shape of the solar component after pressing, including but not limited to a plate shape.
  • the shape of the hot press assembly of the laminator is also adapted to the shape of the post-press solar module, including but not limited to planar.
  • the solar module is a single glass three-curve Hanwa component, and the heat-pressing components of the heat shield and the laminator are all curved surfaces that are compatible with the single-glass three-curve Hanwa component.
  • the heat shield is an insulated high temperature resistant panel.
  • the heat resistant refractory plate has a working withstand temperature greater than the lamination temperature of the laminator.
  • the laminator heats the laminate assembly by means of a hot press assembly to bring the assembly to be laminated to a lamination temperature.
  • the heat insulating plate is disposed between the hot pressing component of the laminating machine and the component to be laminated, and can delay the heating rate of the component to be laminated, so that the laminating machine before the temperature of the component to be laminated reaches the thermal deformation temperature of the packaging material.
  • Laminators generally include an upper laminate assembly and a lower laminate assembly.
  • the laminate assembly is heated by the upper laminate assembly of the laminator, ie the upper laminate assembly is a hot press assembly, in which case the insulation panel is disposed on the upper laminate assembly of the laminator and to be laminated Between components.
  • the laminate assembly is heated by the lower laminate assembly of the laminator, i.e., the lower laminate assembly is a hot press assembly, with the insulation panel disposed between the lower laminate assembly and the assembly to be laminated.
  • the laminate assembly is heated by the upper laminate assembly and the lower laminate assembly of the laminator, ie, the upper laminate assembly and the lower laminate assembly are both hot stamped components, in which case two insulations are provided A plate, and the two heat shields are respectively disposed between the upper laminate component and the component to be laminated and between the upper laminate component and the component to be laminated.
  • the upper laminate component can be provided, for example, in the form of a hot platen.
  • the lower laminate assembly can be provided, for example, in the form of a hot press table/heating station.
  • the heat distortion temperature is generally less than the lamination temperature. If the heat distortion temperature is lower than the lamination temperature, lightning strikes generally occur during lamination. If the laminator completes the evacuation and pressurization steps when the temperature of the assembly to be laminated is less than the heat distortion temperature, the lightning pattern can be avoided or at least the probability of occurrence of lightning streaks can be avoided.
  • the assembly to be laminated and the heat shield are first fed to the laminator, and then the laminator is heated to a set lamination temperature, which may specifically include the following: the initial temperature of the laminator is not Equal to room temperature or first heat the laminator to a certain temperature (also less than the heat distortion temperature) less than the set lamination temperature, the assembly to be laminated and the insulated high temperature plate are fed into the laminator, and then the laminator is heated Up to the set laminating temperature, the assembly to be laminated and the insulating high temperature plate can be fed into the laminating machine before or during the heating of the laminating machine, as long as the step of laminating and pressing is completed, the assembly to be laminated is completed.
  • a set lamination temperature which may specifically include the following: the initial temperature of the laminator is not Equal to room temperature or first heat the laminator to a certain temperature (also less than the heat distortion temperature) less than the set lamination temperature, the assembly to be laminated and the insulated high temperature plate are fed
  • the temperature is still less than the heat distortion temperature, and the laminate to be laminated has not undergone thermal deformation.
  • the vacuum pressurization step is completed, the laminate assembly and the encapsulating material have been flattened, and then the laminator continues to be heated to the lamination temperature for a period of time, the glue of the film is completed, and the lamination is completed.
  • the laminator may be maintained at a temperature at or near the lamination temperature, and the addition of the insulation panel may result in the assembly to be laminated.
  • the laminator can perform the evacuation and pressurization steps before the temperature reaches the thermal deformation temperature of the encapsulating material. Thereafter, after the pressure is maintained for a while, the assembly to be laminated also reaches the lamination temperature, at which time the encapsulating material is gradually glued under the action of temperature and pressure, and the lamination is completed.
  • the packaging method of the solar module of the present disclosure uses a heat insulating plate to delay the heating rate, so that the laminating machine can complete the vacuuming and pressing steps before the temperature of the assembly to be laminated reaches the thermal deformation temperature of the packaging material, which can avoid The appearance of poor appearance such as lightning strikes, or at least in part, reduces the probability of appearance defects.
  • the insulating panel is selected from any one or more of a bakelite board and a fiberglass board.
  • the gum board may be formed by press-bonding a phenolic resin as a resin binder with any one or two selected from the group consisting of cotton cloth and kraft paper.
  • the fiberglass board may be glued by any one or more of glass fibers and selected from the group consisting of silicate cements, super heat resistant epoxy resins, phosphate cements, and borate cements. The objects are glued together to form.
  • the material and thickness of the heat shield are optimized such that the heat shield is disposed between the assembly to be laminated and the hot press assembly of the laminator, and when the laminate is to be laminated,
  • the laminating machine can complete the evacuation and pressurization steps before the temperature of the assembly to be laminated reaches the thermal deformation temperature of the encapsulating material. In this way, the time of the lamination step can be reduced and the production efficiency can be improved under the premise of ensuring the appearance.
  • the material and thickness of the heat shield are related to the lamination temperature, the heat distortion temperature of the encapsulating material, and the time of the vacuum pressurization step.
  • the lamination temperature is from 90 to 160 ° C;
  • the heat shield is a fiberglass board having a thickness of from about 3 mm to about 6 mm, and further preferably has a thickness of about 4 mm.
  • the lamination temperature is from 90 to 160 ° C;
  • the heat shield is an epoxy G11 plate having a thickness of about 4 mm.
  • a plurality of heat insulating sheets are provided, and a plurality of heat insulating sheets may be selected and laminated as the present embodiment according to specific conditions of the process, such as lamination temperature, heat distortion temperature, and speed of vacuuming and pressing. Insulation board. In this way, when the assembly to be laminated is different, the lamination temperature and the heat distortion temperature are changed, it is no longer necessary to specifically customize the heat shield of a specific thickness.
  • the method of packaging the solar component further comprises: pressure-retaining the solar module and the heat shield that have been laminated.
  • the pressure-maintaining cooling means that the solar module that has been laminated has a certain pressure value during the cooling process, so that the position and size of the functional film and the film after the assembly are not changed, until the deformation is completely cooled. Then remove the pressure.
  • Pressure-preserving cooling can avoid the appearance of lightning streaks or at least someeviate the probability of occurrence of lightning streaks, or at least partially reduce lightning patterns.
  • finishing the lamination means that the film for packaging flows under the action of temperature and pressure, and the glue is gradually formed for a period of time to ensure that the films are glued.
  • the pressure holding cooling step is accomplished in a laminator. Further preferably, the pressure-maintaining cooling step is performed outside the laminating machine.
  • a cold-pressing apparatus may be additionally provided to perform pressure-preserving cooling of the completed solar panel assembly and the heat-insulating panel output from the laminator.
  • Some embodiments of the present disclosure also provide a packaging device for a solar module, as shown in FIG. 1, the package includes: a laminator 100 and a heat shield 200 for use with a laminator;
  • the machine 100 is used for laminating a component to be laminated 300 composed of a solar cell sheet and an encapsulating material;
  • the heat insulating panel 200 is disposed on the assembly to be laminated 300 and the hot pressing component 1002 of the laminating machine 100
  • Between the thermal insulation panels 200 is configured to retard heat transfer, enabling the laminator 100 to complete the evacuation and pressurization steps before the temperature of the assembly to be laminated 300 reaches the thermal deformation temperature of the encapsulating material.
  • the heat shield 200 may be selected, for example, from any one or more of a wood board and a fiberglass board.
  • the heat shield is an epoxy G11 panel.
  • the thickness of the heat shield 200 is, for example, about 3-6 mm; for example, in one embodiment, the heat shield has a thickness of 4 mm.
  • the laminator 100 is provided with a cooling system for cooling the completed solar modules and insulation panels.
  • the packaging device further includes: a cold pressing device 400 disposed downstream of the laminating machine 100 on a production line, the cold pressing device 400 It is used for pressure-maintaining cooling of the solar panel 300 and the heat insulation panel 200 that have been laminated. Additional cold-pressing equipment on the production line can reduce equipment investment, avoid customizing equipment and reduce production costs.
  • Some embodiments of the present disclosure also provide a laminating machine having a thermal insulation panel 200 for use.
  • the heat insulating panel 200 is disposed between the assembly to be laminated 300 and the hot pressing assembly 1002 of the laminating machine 100.
  • the heat shield 200 is configured to retard heat transfer, enabling the laminator 100 to complete the vacuuming and pressurizing steps before the temperature of the assembly to be laminated 300 reaches the thermal deformation temperature of the encapsulating material.
  • the pressure-maintaining cooling outside the assembly lamination and laminating machine can be carried out at the same time, which improves the production efficiency.
  • the heat shield used in the following examples is a fiberglass board formed of glass fiber and super heat resistant epoxy resin, and the solar cell sheet may be any type of solar cell sheet.
  • the encapsulation method provided by the embodiment of the present disclosure includes:
  • the laminate assembly is fed to a heating station of the laminator.
  • the area occupied by the first release-resistant high temperature resistant cloth and the second release-resistant high temperature resistant cloth may be equal. In some embodiments, the area to be laminated may be smaller than the area occupied by the first release-resistant high temperature resistant cloth and the second release-resistant high temperature resistant cloth. In some embodiments, the area of the first release high temperature resistant cloth and the second release high temperature resistant cloth may be smaller than the area occupied by the heat insulation board.
  • the assembly to be laminated is continuously heated until the set lamination temperature is 90-160 ° C, the encapsulating material flows under the action of temperature and pressure, and the glue is gradually formed, that is, lamination starts, and ends after 8 to 50 minutes. laminated;
  • the heat insulating plate is used to extend the time for the assembly to be packaged to reach the laminating temperature, thereby effectively avoiding the appearance of poor appearance such as lightning, etc.
  • the packaged components are cooled and kept away from the laminator to prevent wave patterns. Other bad appearances.
  • the components to be packaged can be directly placed in a high-temperature laminating machine. When the components to be packaged are not placed in the laminating machine, the temperature can be raised at a faster rate and then placed in the package to be packaged, to a certain extent. Increased production efficiency.
  • the laminating machine may be maintained at a temperature close to the laminating temperature or close to the laminating temperature, and the heat insulating plate is added so that the temperature of the assembly to be laminated reaches the thermal deformation temperature of the encapsulating material.
  • the laminating machine was able to complete the vacuuming and pressurizing steps. Then, after the pressure is maintained for a while, the assembly to be laminated also reaches the lamination temperature, at which time the encapsulating material is gradually glued under the action of temperature and pressure to complete the lamination.
  • the encapsulation method provided by the embodiment of the present disclosure includes:
  • the laminator is heated to a set lamination temperature of 90 to 160 ° C;
  • the heat shield, the release heat resistant cloth, and the assembly to be laminated are fed to a heating stage of a laminator that has reached a set lamination temperature.
  • the assembly to be laminated is continuously heated until the set lamination temperature is 90-160° C., the encapsulating material flows under the action of temperature and pressure, and the glue is gradually formed, that is, the lamination starts, and the layer ends after 8 to 50.
  • Pressure is continuously heated until the set lamination temperature is 90-160° C., the encapsulating material flows under the action of temperature and pressure, and the glue is gradually formed, that is, the lamination starts, and the layer ends after 8 to 50.
  • the laminated assembly, the heat insulation board and the anti-stick high temperature cloth are conveyed to the cooling platform of the cold pressing equipment, the cold pressing equipment is started for cooling, and a standard atmospheric pressure is applied to the assembly, and continues until the assembly is completed. cool down.
  • the structure of the cold press device is as shown in Figure 5-7, including:
  • the first nip portion 11 and the second nip portion 12 are oppositely disposed, and the faces of the first nip portion 11 and the second nip portion 12 are all flat, the first nip portion 11 and A nip area for accommodating the laminate assembly is formed between the second nip portions 12, and a gap between the first nip portion 11 and the second nip portion 12 is adjustable;
  • a cooling mechanism for cooling a workpiece to be processed located in the nip.
  • the cold press apparatus may further include: a drive mechanism 3 for driving the second nip 12 to ascend and descend.
  • the driving mechanism 3 can also drive the first nip 11 to move up and down, or simultaneously drive the first nip 11 and the second nip 12 relatively close to or away from each other.
  • the driving mechanism 3 can be implemented in various manners, such as a spring, a hydraulic pressure, a mechanical arm, and the like, as long as the first nip 11 and the second nip 12 can be relatively close to or away from each other.
  • the cold press apparatus may further include a bracket 4, the first nip 11 is horizontally disposed on the bracket 4, and the second nip 12 is disposed under the first nip 11;
  • the second nip 12 is located on the drive mechanism 3, and the drive mechanism 3 is disposed on the bracket 4.
  • the bracket 4 may include a bobbin 41 located above the second nip 12, a bottom plate 42 located below the second nip 12, and a leg 43 disposed below the bottom plate 42.
  • the first nip 11 is disposed at the bottom On the lower surface of the skeleton 41, the driving mechanism 3 is disposed on the bottom plate 42, and the driving mechanism 3 drives the second nip 12 to approach or away from the first nip 11.
  • the lower surface of the first nip 11 may also be provided with a buffer protection plate.
  • the buffer protection plate generally adopts a silica gel plate which is laid on the lower surface of the first nip 11 and has a thickness of generally 5-6 mm, so that the irregular protrusion on the upper surface of the workpiece can be protected from the first nip. The pressure of 11 is damaged.
  • the cooling mechanism may include a cooling coil that may be disposed on an outer side surface of the first nip 11 and/or the second nip 12.
  • the outer side surface referred to herein does not include one surface of the first nip portion 11 facing the second nip portion 12 and one surface of the second nip portion 12 facing the first nip portion 11.
  • the cooling mechanism can be implemented in various ways, and can be water-cooled, air-cooled, naturally cooled, etc., for example, by water cooling, that is, by the cooling coil through which the cooling water is passed, the first nip 11 and/or the first portion.
  • the outer surface of the second nip 12 is configured to achieve rapid and uniform cooling of the workpiece to be processed therein without affecting the workpiece to be processed.
  • the cold press apparatus may further include a transmission mechanism that may be disposed on the second nip 12 for conveying the workpiece to be detached from the nip.
  • the transmission mechanism may include at least one driving roller 2, and the second nip 12 is provided with a slot 13 corresponding to the driving roller 2, and the slot 13 is configured to receive a corresponding one.
  • the drive roller 2 is driven to drive the workpiece to be moved.
  • the outer circumference of the drive roller 2 may also be provided with a friction pad 21 .
  • the cold pressing device may further include a pressure sensor, which may be disposed between the first nip 11 and the second nip 12, or may be disposed at other positions, and is sensed and regulated by the pressure sensor. Piece of pressure.
  • the heat insulating plate is used to extend the time for the assembly to be packaged to reach the laminating temperature, thereby effectively avoiding the appearance of appearance defects such as lightning, and at the same time, the pressure maintaining cooling in the cold pressing device can prevent other appearance defects such as wave patterns. produce.
  • the cold pressure device of the embodiment can reduce the appearance of poor appearance and improve the power stability of the component.
  • the investment of the cold-pressing equipment is small, and the cold-pressing equipment is used instead of the water-cooling circulation system, and the equipment is not required to be customized, thereby further reducing the equipment investment.
  • the laminating machine is prevented from being occupied during cooling, so that the pressure-maintaining cooling outside the assembly lamination and the laminating machine can be simultaneously performed, improving the production efficiency.
  • the encapsulation method of this embodiment requires only one temperature rise when the laminator is started, after which lamination of different batches of products can be continued at the lamination temperature until the end of production. Therefore, it is not necessary to repeatedly heat and cool down, and the production efficiency and the life of the laminator are improved.
  • the lamination time of the prior lamination method is 2 to 2.5 hours, and the lamination time of the encapsulation method of the present embodiment is 20 to 30 minutes, which significantly shortens the lamination time and improves the production efficiency by 4 times or more.
  • FIG. 8 is a comparison view of the appearance of a solar module obtained by using the conventional packaging method and the packaging method of Embodiment 2 of the present disclosure.
  • the left side of the drawing is a solar module obtained by the prior packaging method, and the right side of the present invention is obtained by the packaging method of Embodiment 2 of the present disclosure.
  • Solar components As can be seen from the figure, the solar module obtained by the packaging method of Embodiment 2 of the present disclosure has no appearance defects, and can obtain a product having a good appearance as in the conventional packaging method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能组件的封装方法,所述方法中,将由太阳能电池片和封装材料组成的待层压组件和隔热板送入层压机进行层压;其中,隔热板设置在所述待层压组件和所述层压机的热压组件之间,在待层压组件的温度达到封装材料的热形变温度前完成抽真空和加压步骤。

Description

太阳能组件的封装方法和封装装置
相关申请
本申请要求2018年4月28日申请的,申请号为2018104033799,名称为“一种太阳能组件的封装方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本公开涉及太阳能技术领域,尤其涉及一种太阳能组件的封装方法和封装装置。
背景技术
太阳能光伏电池组件的主要部件是太阳能电池片。由于太阳能电池片不能直接暴露在阳光、雨水等自然条件下,因此,要实现太阳能发电的实际应用,就要采用特定的材料对其进行保护性封装,并形成电池组件。通过保护性封装,可以保证太阳能电池片在有效的生命周期内,免受物理和化学侵蚀,使太阳能电池片提供稳定可靠的输出。层压是一种广泛采用的太阳能组件封装方法。层压一般是指在真空条件下,用加热、加压的方法,把多层相同或不同的封装材料与太阳能电池片结合成整体的成型加工方法。
发明内容
本公开的一些实施例提供了一种太阳能组件的封装方法,所述封装方法中,将由太阳能电池片和封装材料组成的待层压组件和隔热板送入层压机进行层压,其中,隔热板设置在所述待层压组件和所述层压机的热压组件之间,在待层压组件的温度达到封装材料的热形变温度前完成抽真空和加压步骤。
本公开的一些实施例提供了又一种太阳能组件的封装方法,所述方法包括下述步骤:
将层压机加热至设定的层压温度,所述层压机的下层压组件为热压组件;
在隔热板上依次铺设第一防粘耐高温布、由太阳能电池片和封装材料组成的待层压组件和第二防粘耐高温布,送入层压机中;
同时对层压机的上腔和下腔抽真空,抽真空一段时间后使层压机上腔 与外界环境连通,并持续对层压机下腔抽真空,从而对待层压组件进行加压,其中,在待层压组件的温度达到封装材料的热形变温度前完成抽真空和加压步骤;
当待层压组件的温度达到设定的层压温度时,开始层压;
层压结束后,将完成层压的组件、隔热板、第一防粘耐高温布和第二防粘耐高温布输送至层压机外,采用冷压设备进行冷却,冷却过程中维持压力恒定。
本公开的一些实施例还提供一种太阳能组件的封装装置,包括:层压机和隔热板;
所述层压机用于对由太阳能电池片和封装材料组成的待层压组件进行层压;
所述隔热板设置在所述待层压组件和所述层压机的热压组件之间,所述隔热板配置为延缓热量传递,使所述层压机能够在所述待层压组件的温度达到封装材料的热形变温度前完成抽真空和加压步骤。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开一些实施例提供的太阳能组件的封装装置的示意图;
图2为本公开一些实施例提供的层压机和冷却设备的位置示意图;
图3为本公开的施例1提供的一种太阳能组件的封装方法的工艺流程图;
图4为本公开实施例2提供的另一种太阳能组件的封装方法的工艺流程图;
图5为本公开实施例2采用的冷压设备的结构示意图;
图6为本公开实施例2采用的冷压设备的传动机构的结构示意图;
图7为本公开实施例2采用的冷压设备的主视图;
图8为采用现有封装方法和本公开实施例2的封装方法得到的太阳能组件的外观对比图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在本公开的技术方案中,术语“待层压组件”定义为已经在太阳能电池片表面铺设好封装材料,等待层压的太阳能电池片与封装材料的组合。
在本公开的技术方案中,术语“热形变温度”定义为封装材料出现不平整、翘曲、褶皱等形变时的温度。
在本公开的技术方案中,术语“隔热耐高温板”中的“隔热”定义为对热传递有一定的延缓作用,“耐高温”定义为工作耐受温度大于所述层压机的层压温度。第一防粘耐高温布和第二防粘耐高温布中的“耐高温”代表大体类似的含义。
本公开中以柔性太阳能组件为例进行说明,但本公开的应用并不限于此,还可以应用于其它太阳能组件。
柔性太阳能组件是指具有柔性,可折叠、卷曲的太阳能组件。目前的柔性太阳能组件封装使用的都是各种功能的超薄膜材,以更好地体现薄膜太阳能电池轻、薄、柔的特性。但是由于超薄膜材的厚度过薄,不同材料间受热变形、遇冷收缩量的差异很大,导致柔性太阳能组件的封装容易产生闪电纹、波浪纹、内部走线痕迹明显、明显高度差等外观不良现象,所以柔性太阳能组件的封装难度很大。
闪电纹:用超薄膜材料制作柔性太阳能组件时,层压过程中柔性太阳能组件中的超薄材料表面出现的细碎纹路。
波浪纹:超薄柔性太阳能组件在层压后产品部分区域会出现明显的波浪型纹路。
发明人在对现有封装方法存在的问题深入探究的基础上,提出一种改 进的层压封装方法和装置,可以至少部分地改良上述的外观不良。
本公开的一些实施例提供一种太阳能组件的封装方法,所述方法中,将由太阳能电池片和封装材料组成的待层压组件和隔热板送入层压机进行层压;其中,隔热板设置在所述待层压组件和所述层压机的热压组件之间,在待层压组件的温度达到封装材料的热形变温度前完成抽真空和加压步骤。
上述封装材料的热形变温度可通过实验获得,或者由本领域技术人员根据经验设置。
上述“隔热板”中的“隔热”定义为对热传递有一定的延缓作用。上述隔热板指对热传递有一定的延缓作用的组件,但具体形状与压合后太阳能组件的形状相适应,包括但不限于板状。类似地,层压机的热压组件的形状也与压合后太阳能组件的形状相适应,包括但不限于平面状。例如,在一些实施例,太阳能组件为单玻三曲汉瓦组件,隔热板和层压机的热压组件均是单玻三曲汉瓦组件相适应的曲面。
在一些实施例中,所述隔热板为隔热耐高温板。所述隔热耐高温板的工作耐受温度大于所述层压机的层压温度。
层压机通过热压组件对待层压组件加热,以使待层压组件达到层压温度。隔热板设置在层压机的热压组件和待层压组件之间,可延缓待层压组件得升温速度,以使得在待层压组件的温度达到封装材料的热形变温度前层压机能完成抽真空和加压步骤。
层压机一般包括上层压组件和下层压组件。在一些实施例中,通过层压机的上层压组件对待层压组件加热,即上层压组件为热压组件,这种情况下,隔热板设置在层压机的上层压组件与待层压组件之间。在另一些实施例中,通过层压机的下层压组件对待层压组件加热,即下层压组件为热压组件,这时隔热板设置在下层压组件与待层压组件之间。在又一些实施例中,通过层压机的上层压组件和下层压组件一起对待层压组件进行加热,即上层压组件和下层压组件均为热压组件,这时,可提供两个隔热板,且这两个隔热板分别设置在上层压组件与待层压组件之间以及上层压组件与待层压组件之间。上层压组件例如可以以热压板的形式提供。下层压组件 例如可以以热压台/加热台的形式提供。
热形变温度一般小于层压温度。如果热形变温度小于层压温度,层压时一般出现闪电纹。如果在待层压组件的温度小于热变形温度时,层压机完成抽真空、加压步骤,就可以避免闪电纹或者至少降低闪电纹出现的概率。
在一些实施例中,先将待层压组件和隔热板送入层压机,再将层压机加热至设定的层压温度,具体可以包括下述情况:层压机的初始温度不等于室温或者先将层压机加热至小于设定的层压温度的一定温度(也小于热变形温度),将待层压组件和隔热高温板送入层压机,再将层压机加热至设定的层压温度,即可以在层压机加热前或者升温过程中将待层压组件和隔热高温板送入层压机,只要保证抽真空加压步骤完成时,待层压组件的温度还小于热变形温度,待层压组件还没有发生热变形即可。真空加压步骤完成,待层压组件和封装材料已被压平,随后层压机继续加热至层压温度,维持一段时间,胶膜的胶联完成,层压结束。
在一些实施例中,特别是大规模连续生产的情况下,层压机可能一直维持在层压温度或接近层压温度的温度,隔热板的加入,可使得在所述待层压组件的温度达到封装材料的热形变温度前,层压机能完成抽真空和加压步骤。之后,维持压力等待一段时间后,待待层压组件也达到层压温度,这时封装材料在温度和压力的作用下逐步发生胶联,层压完成。
本公开的太阳能组件的封装方法,采用隔热板延缓升温速度,使得层压机能在待层压组件的温度达到封装材料的热形变温度之前,完成抽真空和加压步骤,这样能够避免了闪电纹等外观不良的产生或者至少部分程度上降低外观不良出现的概率。
在一些实施例中,所述隔热板选自胶木板和玻璃纤维板中的任意一种或更多种。在一些实施方式中,所述胶木板可以由选自棉布和牛皮纸中的任意一种或两种作为补强物与作为树脂粘合剂的酚醛树脂压合形成。在一些实施方式中,所述玻璃纤维板可以由玻璃纤维和选自硅酸盐胶合物、超耐热环氧树脂、磷酸盐胶合物和硼酸盐胶合物中的任意一种或更多种胶合物胶合在一起形成。
在一些实施例中,所述隔热板的材质和厚度经过优化,以使隔热板设置在待层压组件和层压机的热压组件之间,并对待层压组件进行层压时,在待层压组件的温度达到封装材料的热形变温度前层压机能完成抽真空和加压步骤。这样,可以保证外观的前提下,降低层压步骤的时间,提高生产效率。
所述隔热板的材质和厚度与层压温度、封装材料的热形变温度以及抽真空加压步骤的时间有关。例如,在一些实施例中,所述层压温度为90~160℃;所述隔热板为玻璃纤维板,厚度约为3毫米~6毫米,进一步优选厚度为约4毫米。在一些实施例中,所述层压温度为90~160℃;所述隔热板为环氧G11板,厚度约为4毫米。
在一些实施例中,提供有多个隔热片,可以根据工艺的具体情况(例如层压温度、热变形温度和抽真空加压的快慢),选择若干隔热片层叠起来作为本实施例中的隔热板。采用这种方式,在待层压组件不同,层压温度和热变形温度变化时,不再需要专门定制特定厚度的隔热板。
在一些实施例中,太阳能组件的封装方法还包括:将完成层压的所述太阳能组件和所述隔热板进行保压冷却。保压冷却指是指完成层压的所述太阳能组件在冷却的过程中保持一定的压力值,使组件各功能膜和胶膜受压后位置、尺寸不发生变化,直至完全冷却不发生形变后再撤去压力。保压冷却可以避免闪电纹的出现或者至少某种程度上降低闪电纹的出现概率,或者至少部分地减少闪电纹。此处“完成层压”指的是封装用的胶膜在温度和压力的作用下流动,逐步发生胶联,维持一段时间,保证各胶膜完成胶联。
在一些实施例中,保压冷却步骤在层压机中完成。进一步优选地,保压冷却步骤在层压机之外进行,例如,可以另外设置冷压设备,将层压机输出的完成层压的所述太阳能组件和所述隔热板进行保压冷却。
本公开的一些实施例还提供一种太阳能组件的封装装置,如图1所示,封,该装装置包括:层压机100和与层压机配套使用的隔热板200;所述层压机100用于对由太阳能电池片和封装材料组成的待层压组件300进行层 压;所述隔热板200设置在所述待层压组件300和所述层压机100的热压组件1002之间,所述隔热板200配置为延缓热量传递,使所述层压机100能够在所述待层压组件300的温度达到封装材料的热形变温度前完成抽真空和加压步骤。
所述隔热板200例如可选自胶木板和玻璃纤维板中的任意一种或更多种。在一种实施方式中,所述隔热板为环氧G11板。
所述隔热板200的厚度例如约为3-6毫米;例如,在一种实施方式中,所述隔热板的厚度为4毫米。
在一些实施例中,所述层压机100设置有用于对完成层压的太阳能组件和隔热板进行冷却的冷却系统。
在一些实施例中,如图2所示,所述的封装装置还包括:冷压设备400,所述冷压设备400在产线上设置在层压机100的下游,所述冷压设备400用于对完成层压的太阳能组300件和隔热板200进行保压冷却。在产线额外设置冷压设备,可以减小设备投入,避免对设备进行定制化改造,降低了生产成本。
本公开的一些实施例还提供一种层压机,所述层压机具有配套使用的隔热板200。在对由太阳能电池片和封装材料组成的待层压组件300进行层压时,所述隔热板200设置在所述待层压组件300和所述层压机100的热压组件1002之间。所述隔热板200配置为延缓热量传递,使所述层压机100能够在所述待层压组件300的温度达到封装材料的热形变温度前完成抽真空和加压步骤。
本公开的太阳能组件的封装方法以及装置能够获得以下有益效果:
1、避免了闪电纹、波浪纹等外观不良的产生。
2、可以减小设备投入,避免对设备进行定制化改造,降低了生产成本。
3、使得组件层压和层压机外的保压冷却可同时进行,提高了生产效率。
4、可以避免反复进行升温、降温,提高了生产效率,并且提高了层压机加热平台的使用寿命。
下面结合附图对本公开的技术方案进一步地说明。以下实施例中采用的隔热板为由玻璃纤维和超耐热环氧树脂形成的玻璃纤维板,太阳能电池片可以为任意类型的太阳能电池片。
实施例1
如图3所示,本公开的实施例提供的封装方法包括:
101、将隔热板放到层压机的进料平台上,在隔热板上平铺一张第一防粘耐高温布,将由太阳能电池片和封装材料组成的待层压组件放置在防粘耐高温布上,并在待层压组件上再平铺一张第二防粘耐高温布,其中,所述待层压组件所占的面积<所述第一防粘耐高温布所占的面积=所述第二防粘耐高温布所占的面积<所述隔热板所占的面积;
将层压机升温至设定的层压温度90~160℃,在升温前或升温过程中将所述隔热板、第一防粘耐高温布、所述第二防粘耐高温布和所述待层压组件送至层压机的加热台上。
在一些实施方式中,所述第一防粘耐高温布与所述第二防粘耐高温布所占的面积可以相等。在一些实施方式中,所述待层压组件所占的面积可以小于所述第一防粘耐高温布和所述第二防粘耐高温布所占的面积。在一些实施方式中,所述第一防粘耐高温布和所述第二防粘耐高温布所占的面积可以小于所述隔热板所占的面积。
102、同时对层压机的上腔和下腔抽真空,抽真空3~8分钟后缓慢打开层压机上腔的气阀,使层压机上腔与外界环境连通,并在1分钟内与外界环境压力相同,这期间持续对层压机下腔抽真空,从而对待层压组件进行加压,其中,在待层压组件的温度达到封装材料的热形变温度前完成抽真空和加压步骤;
103、待层压组件不断升温,直至达到设定的层压温度90~160℃时,封装材料在温度和压力的作用下流动,逐步发生胶联,即开始层压,8~50分钟后结束层压;
104、通过层压机的水冷循环系统对加热平台进行降温并保持压力不变,直至组件冷却。
105、对层压机的上腔抽真空,下腔放气,开盖,取出冷却的组件、隔 热板、第一防粘耐高温布和第二防粘耐高温布。
本实施例中采用隔热板延长了待封装组件达到层压温度的时间,有效避免了闪电纹等外观不良的产生;同时,完成封装的组件经保压冷却后离开层压机可以防止波浪纹等其它外观不良的产生。此外,使得待封装组件可以直接放入高温的层压机中,当层压机中没有放入待封装组件时,可以以较快的速率进行升温,然后再放入待封装组件,在一定程度上提高了生产效率。
大规模生产线连续生产的情况下,层压机可能一直维持在层压温度或接近层压温度的温度,隔热板的加入,使得在所述待层压组件的温度达到封装材料的热形变温度前,层压机能完成抽真空和加压步骤。然后,维持压力等待一段时间后,待待层压组件也达到层压温度,这时封装材料在温度和压力的作用下逐步发生胶联,完成层压。
实施例2
如图4所示,本公开的实施例提供的封装方法包括:
201、将层压机加热至设定的层压温度90~160℃;
202、将隔热板放到层压机的进料平台上,在隔热板上平铺一张第一防粘耐高温布,将由太阳能电池片和封装材料组成的待层压组件放置在防粘耐高温布上,并在待层压组件上再平铺一张第二防粘耐高温布,其中,所述待层压组件所占的面积<所述第一防粘耐高温布所占的面积=所述第二防粘耐高温布所占的面积<所述隔热板所占的面积;
将所述隔热板、所述防粘耐高温布和所述待层压组件送至已达到设定的层压温度的层压机的加热台上。
203、同时对层压机的上腔和下腔抽真空,抽真空3~8分钟后缓慢打开层压机上腔的气阀,使层压机上腔与外界环境连通,并在1分钟内与外界环境压力相同,这期间持续对层压机下腔抽真空,从而对待层压组件进行加压,其中,在待层压组件的温度达到封装材料的热形变温度前完成抽真空和加压步骤;
204、待层压组件不断升温,直至达到设定的层压温度90~160℃时, 封装材料在温度和压力的作用下流动,逐步发生胶联,即开始层压,8~50后结束层压;
205、对层压机的上腔抽真空,下腔放气,开盖,取出完成层压的组件、隔热板、第一防粘耐高温布和第二防粘耐高温布;
206、将完成层压的组件、隔热板和防粘耐高温布输送到冷压设备的冷却平台上,启动冷压设备进行冷却,对组件施加一个标准大气压的压力,并一直持续到组件完成冷却。
其中,所述冷压设备的结构如图5-7所示,包括:
相对设置的第一压合部11和第二压合部12,所述第一压合部11和所述第二压合部12相对的面均为平面,所述第一压合部11和所述第二压合部12之间形成用于容纳层压组件的压合区,所述第一压合部11和所述第二压合部12之间的间隙可调;
用于对位于所述压合区内的待加工件进行冷却的冷却机构。
所述冷压设备还可以包括:用于驱动所述第二压合部12升降的驱动机构3。驱动机构3也可驱动第一压合部11升降,也可同时驱动第一压合部11和第二压合部12相对靠近或远离。驱动机构3的实现方式有多种,可以是弹簧、液压、机械臂等结构,只要能实现第一压合部11和第二压合部12相对靠近或远离即可。
所述冷压设备还可以包括支架4,所述第一压合部11水平的设置在所述支架4上,所述第二压合部12设置在所述第一压合部11下方;且所述第二压合部12位于所述驱动机构3上,所述驱动机构3设置在支架4上。所述支架4可以包括位于第二压合部12上方的骨架41、位于第二压合部12下方的底板42,底板42下方设有支脚43,所述第一压合部11设置在所述骨架41的下表面,所述驱动机构3设置在所述底板42上,所述驱动机构3驱动所述第二压合部12靠近或远离所述第一压合部11。
所述第一压合部11的下表面还可以设置有缓冲保护板。缓冲保护板一般采用硅胶板,其平铺在第一压合部11的下表面,厚度一般为5-6mm,从而可以对待加工件上表面的不规则凸起形成保护,防止第一压合部11的压力对其产生损坏。
所述冷却机构可以包括冷却盘管,所述冷却盘管可以设置在所述第一压合部11和/或所述第二压合部12的外侧表面。这里所指的外侧表面不包括第一压合部11朝向第二压合部12的一面以及第二压合部12朝向第一压合部11的一面。其中,冷却机构的实现方式有多种,可以采用水冷、风冷,自然冷却等,例如,采用水冷,即通过通有冷却水的冷却盘管贴服在第一压合部11和/或第二压合部12外侧表面,从而对夹持其中的待加工件实现快速均匀冷却,同时不影响待加工件。
在夹持前或夹持后均需要使得待加工件自动运动,从而大大提高自动化程度。因此,所述冷压设备还可以包括传动机构,所述传动机构可以设置在所述第二压合部12上,用于传送待加工件脱离压合区。所述传动机构可以包括至少一个驱动滚轴2,所述第二压合部12上设置有与所述驱动滚轴2一一对应的开槽13,且所述开槽13可用于容纳对应的驱动滚轴2,所述驱动滚轴2用于驱动待加工件运动。所述驱动滚轴2外周缘还可以设置有摩擦胶垫21。
所述冷压设备还可以包括压力传感器,其可以设置在所述第一压合部11和所述第二压合部12之间,也可以设置在其他位置,通过压力传感器感知并调控对待加工件的压力。
本实施例中采用隔热板延长了待封装组件达到层压温度的时间,有效避免了闪电纹等外观不良的产生,同时在冷压设备中的保压冷却可以防止波浪纹等其它外观不良的产生。
此外,本实施例采用冷压设备可以减少外观不良的产生,并提高组件的功率稳定性。而且,冷压设备的投入小,采用冷压设备代替水冷循环系统,无需对设备进行定制化改造,进一步降低了设备投入。而且,避免了冷却时占用层压机,使得组件层压和层压机外的保压冷却可同时进行,提高了生产效率。
本实施例的封装方法只需在启动层压机时进行一次升温,之后可以维持在层压温度下持续进行不同批次产品的层压,直至生产结束。因此,无需反复升温降温,提高了生产效率和层压机寿命。
现有层压方法的层压时间为2~2.5小时,本实施例的封装方法的层压 时间为20~30分钟,显著缩短了层压时间,使生产效率提高了4倍以上。
图8为采用现有封装方法和本公开实施例2的封装方法得到的太阳能组件的外观对比图,图左为现有封装方法得到的太阳能组件,图右为本公开实施例2的封装方法得到的太阳能组件。从图中可以看出,本公开实施例2的封装方法得到的太阳能组件的无外观不良现象,能够获得与现有封装方法一样具有良好外观的产品。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (19)

  1. 一种太阳能组件的封装方法,所述方法中,将由太阳能电池片和封装材料组成的待层压组件(300)和隔热板(200)送入层压机(100)进行层压;其中,
    隔热板(200)设置在所述待层压组件(300)和所述层压机(100)的热压组件(1001,1002)之间,在待层压组件(300)的温度达到封装材料的热形变温度前完成抽真空和加压步骤。
  2. 根据权利要求1所述的太阳能组件的封装方法,其中,当所述热压组件为所述层压机(100)的下层压组件(1002)时,所述封装方法包括下述步骤:
    将所述待层压组件(300)放置在所述隔热板(200)上;
    将层压机(100)加热至设定的层压温度或在所述层压机(100)的升温过程中,将所述待层压组件(300)和所述隔热板(200)送入层压机(100),进行抽真空、加压;
    或者,将所述待层压组件(300)和所述隔热板(200)送入层压机(100),进行抽真空、加压,再将层压机(100)加热至设定的层压温度;其中,在所述待层压组件(300)的温度达到封装材料的热形变温度前完成抽真空和加压步骤;
    对待层压组件(300)进行层压。
  3. 根据权利要求1或2所述的太阳能组件的封装方法,其中,还包括:
    将完成层压的所述太阳能组件(300)和所述隔热板(200)进行保压冷却。
  4. 根据权利要求1所述的太阳能组件的封装方法,其中,
    所述隔热板(200)为隔热耐高温板。
  5. 根据权利要求3所述的太阳能组件的封装方法,其中,所述保压冷却步骤为:将完成层压的太阳能组件输出层压机(100)外,采用冷压设备(400)进行保压冷却,冷却过程中维持压力恒定。
  6. 根据权利要求1或2所述的太阳能组件的封装方法,其中,所述抽真空、加压的步骤为:同时对层压机(100)的上腔和下腔抽真空,抽真空一段时间后使层压机(100)上腔与外界环境连通,使得层压机(100)上腔中 的压力与外界环境压力相同,并持续对层压机(100)下腔抽真空,从而对待层压组件(300)进行加压。
  7. 根据权利要求6所述的太阳能组件的封装方法,其中,
    所述隔热板(200)为玻璃纤维板;
    所述层压温度为90~160℃;
    所述一段时间为3~8分钟,同时对层压机(100)的上腔和下腔抽真空至200~30Pa。
  8. 根据权利要求7所述的太阳能组件的封装方法,其中,层压机(100)上腔中的压力达到与外界环境压力相同,持续对层压机(100)下腔抽真空的时间为0.5~1.5分钟。
  9. 根据权利要求8所述的太阳能组件的封装方法,其中,所述隔热板(200)厚度为3-6毫米。
  10. 根据权利要求9所述的太阳能组件的封装方法,其中,所述层压的时间为8~50分钟。
  11. 根据权利要求3所述的太阳能组件的封装方法,其中,所述保压冷却步骤中的压力为0.5~1个标准大气压。
  12. 根据权利要求3所述的太阳能组件的封装方法,其中,所述封装材料为厚度在100微米以下的膜材料。
  13. 根据权利要求2所述的太阳能组件的封装方法,其中,
    在隔热板(200)上依次铺设第一防粘耐高温布、由太阳能电池片和封装材料组成的待层压组件(300)和第二防粘耐高温布,送入层压机(100)中。
  14. 一种太阳能组件的封装方法,所述方法包括下述步骤:
    将层压机(100)加热至设定的层压温度,所述层压机的下层压组件(1002)为热压组件;
    在隔热板(200)上依次铺设第一防粘耐高温布、由太阳能电池片和封装材料组成的待层压组件(300)和第二防粘耐高温布,送入层压机(100)中;
    同时对层压机(100)的上腔和下腔抽真空,抽真空一段时间后使层压机(100)上腔与外界环境连通,并持续对层压机(100)下腔抽真空,从而对 待层压组件(300)进行加压,其中,在待层压组件(300)的温度达到封装材料的热形变温度前完成抽真空和加压步骤;
    当待层压组件(300)的温度达到设定的层压温度时,开始层压;
    层压结束后,将完成层压的组件、隔热板(200)、第一防粘耐高温布和第二防粘耐高温布输送至层压机(100)外,采用冷压设备进行冷却,冷却过程中维持压力恒定。
  15. 一种太阳能组件的封装装置,包括:层压机(100)和隔热板(200);
    所述层压机(100)用于对由太阳能电池片和封装材料组成的待层压组件(300)进行层压;
    所述隔热板(200)设置在所述待层压组件(300)和所述层压机(100)的热压组件(1001,1002)之间,所述隔热板(200)配置为延缓热量传递,使所述层压机(100)能够在所述待层压组件(300)的温度达到封装材料的热形变温度前完成抽真空和加压步骤。
  16. 根据权利要求15所述的封装装置,其中,所述层压机(100)设置有用于对完成层压的太阳能组件(300)和隔热板(200)进行冷却的冷却系统,或者,
    所述封装装置还包括:冷压设备(400),所述冷压设备用于对完成层压的太阳能组件(300)和隔热板(200)进行保压冷却。
  17. 根据权利要求16所述的封装装置,其中,所述冷压设备(400)包括:
    相对设置的第一压合部(11)和第二压合部(12),所述第一压合部(11)和所述第二压合部(12)配置为所述第一压合部(11)和所述第二压合部(12)之间形成用于容纳层压组件的压合区,所述第一压合部(11)和所述第二压合部(12)之间的间隙可调;
    用于对位于所述压合区内的待加工件进行冷却的冷却机构。
  18. 根据权利要求15所述的封装装置,其中,所述隔热板(200)选自胶木板和玻璃纤维板中的任意一种或更多种;优选的,所述隔热板(200)为环氧G11板。
  19. 根据权利要求15所述的封装装置,其中,所述隔热板(200)的厚度为3-6毫米;优选的,所述隔热板(200)的厚度为4毫米。
PCT/CN2019/084532 2018-04-28 2019-04-26 太阳能组件的封装方法和封装装置 WO2019206275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810403379.9 2018-04-28
CN201810403379.9A CN110429151B (zh) 2018-04-28 2018-04-28 一种太阳能组件的封装方法

Publications (1)

Publication Number Publication Date
WO2019206275A1 true WO2019206275A1 (zh) 2019-10-31

Family

ID=68294827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084532 WO2019206275A1 (zh) 2018-04-28 2019-04-26 太阳能组件的封装方法和封装装置

Country Status (2)

Country Link
CN (1) CN110429151B (zh)
WO (1) WO2019206275A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583010A (zh) * 2022-02-24 2022-06-03 晟高发新能源发展(江苏)有限公司 一种太阳能晶硅电池组件层压机械及层压方法
CN115148854A (zh) * 2022-07-05 2022-10-04 苏州伟昇智能装备有限公司 一种太阳能电池组件高温布取出设备
CN115148847A (zh) * 2022-05-23 2022-10-04 江苏瑞晶太阳能科技有限公司 一种光伏组件自动化封装设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111722602A (zh) * 2020-05-22 2020-09-29 中建材光芯科技有限公司 光纤面板的自动热压成型系统及工作方法
CN113193077B (zh) * 2021-04-06 2023-03-24 湖北美格新能源科技有限公司 一种太阳能组件层压方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533873A (zh) * 2009-04-17 2009-09-16 华南理工大学 一种透光晶体硅太阳电池组件的封装方法
CN201907248U (zh) * 2010-12-29 2011-07-27 秦皇岛利阳光电设备有限公司 太阳能电池组件层压机
CN206297248U (zh) * 2016-12-12 2017-07-04 阿特斯阳光电力集团有限公司 光伏组件层压装置
CN107833942A (zh) * 2017-11-24 2018-03-23 河北羿珩科技有限责任公司 多功能层压机及其使用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632678A (zh) * 2012-04-27 2012-08-15 保定天威薄膜光伏有限公司 一种太阳能电池组件层压方法
CN202573212U (zh) * 2012-05-08 2012-12-05 秦皇岛瑞晶太阳能科技有限公司 冷却式三腔节能太阳能电池组件层压机
CN103660507B (zh) * 2013-12-06 2016-02-17 北京汉能创昱科技有限公司 一种柔性太阳能组件的层压方法及封装方法
CN106585052A (zh) * 2016-11-30 2017-04-26 浙江创盛光能源有限公司 一种太阳能电池组件的层压工艺
CN206751649U (zh) * 2017-03-03 2017-12-15 东莞恩特贝斯智能技术有限公司 一种曲面玻璃成型过程中减缓模具温升速度的格栅板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533873A (zh) * 2009-04-17 2009-09-16 华南理工大学 一种透光晶体硅太阳电池组件的封装方法
CN201907248U (zh) * 2010-12-29 2011-07-27 秦皇岛利阳光电设备有限公司 太阳能电池组件层压机
CN206297248U (zh) * 2016-12-12 2017-07-04 阿特斯阳光电力集团有限公司 光伏组件层压装置
CN107833942A (zh) * 2017-11-24 2018-03-23 河北羿珩科技有限责任公司 多功能层压机及其使用方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583010A (zh) * 2022-02-24 2022-06-03 晟高发新能源发展(江苏)有限公司 一种太阳能晶硅电池组件层压机械及层压方法
CN115148847A (zh) * 2022-05-23 2022-10-04 江苏瑞晶太阳能科技有限公司 一种光伏组件自动化封装设备
CN115148847B (zh) * 2022-05-23 2023-07-25 江苏瑞晶太阳能科技有限公司 一种光伏组件自动化封装设备
CN115148854A (zh) * 2022-07-05 2022-10-04 苏州伟昇智能装备有限公司 一种太阳能电池组件高温布取出设备
CN115148854B (zh) * 2022-07-05 2023-07-07 苏州伟昇智能装备有限公司 一种太阳能电池组件高温布取出设备

Also Published As

Publication number Publication date
CN110429151B (zh) 2021-11-09
CN110429151A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2019206275A1 (zh) 太阳能组件的封装方法和封装装置
JP3098003B2 (ja) 太陽電池におけるラミネート装置
JP4359308B2 (ja) 太陽電池モジュールの製造方法
JP5209229B2 (ja) 太陽電池モジュールの製造方法
CN106449825B (zh) 一种太阳能双玻组件的制备方法
CN108269882B (zh) 一种光伏组件层压工艺
WO2013118361A1 (ja) 太陽電池モジュールの製造方法、及びラミネータ装置
WO2015019443A1 (ja) 太陽電池モジュールのラミネート装置
JP4682014B2 (ja) 太陽電池モジュールの製造方法
JP2006088511A (ja) ラミネート装置
JP2004179261A (ja) 太陽電池モジュールの製造装置及び製造方法
JP5470341B2 (ja) 太陽電池モジュールの製造方法
JPS6169179A (ja) 太陽電池パネルの製造方法
WO2007116504A1 (ja) ラミネート装置
CN111403543B (zh) 一种光伏夹层玻璃封装方法、及光伏夹层玻璃
CN211529962U (zh) 一种具有光伏组件的复合背板及制备该复合背板的层压机
CN208986009U (zh) 用于太阳能电池组件的压合模块
CN110696471B (zh) 一种太阳能组件层压方法
CN111403513A (zh) 太阳能供电服、太阳能电池组件的封装方法及装置
JP2012529755A (ja) 太陽電池パネルを製造するための方法
CN112018203B (zh) 一种高效制备聚乙烯醇缩丁醛光伏组件的方法
CN111863990A (zh) 薄膜太阳能电池组件的热层压方法
CN111302656A (zh) 玻璃及不锈钢边框与拉伸支撑边框金属钎焊夹层真空玻璃
JP2003282920A (ja) 太陽電池モジュールの製造方法
CN216389331U (zh) 一种光伏组件封装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19792831

Country of ref document: EP

Kind code of ref document: A1