WO2019206097A1 - 全自动进样血细胞分析测量方法及装置、对末梢血试管进行混匀操作的方法 - Google Patents

全自动进样血细胞分析测量方法及装置、对末梢血试管进行混匀操作的方法 Download PDF

Info

Publication number
WO2019206097A1
WO2019206097A1 PCT/CN2019/083737 CN2019083737W WO2019206097A1 WO 2019206097 A1 WO2019206097 A1 WO 2019206097A1 CN 2019083737 W CN2019083737 W CN 2019083737W WO 2019206097 A1 WO2019206097 A1 WO 2019206097A1
Authority
WO
WIPO (PCT)
Prior art keywords
test tube
peripheral blood
tube
mixing
blood
Prior art date
Application number
PCT/CN2019/083737
Other languages
English (en)
French (fr)
Inventor
陆锋
翟留伟
于记良
Original Assignee
深圳市帝迈生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市帝迈生物技术有限公司 filed Critical 深圳市帝迈生物技术有限公司
Publication of WO2019206097A1 publication Critical patent/WO2019206097A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1051General features of the devices using the transfer device for another function for transporting containers, e.g. retained by friction

Definitions

  • the invention belongs to the technical field of blood cell analysis, and more particularly, to a method and a device for measuring and measuring a fully automatic blood cell, and a method for mixing a peripheral blood tube.
  • the automatic injection blood cell analysis and measurement device is only suitable for venous blood, but for peripheral blood, due to its relatively small amount of blood collection, there is no corresponding fully automatic blood cell analysis and measurement device.
  • the existing venous blood mixing device in the existing blood cell analyzer is not suitable for the peripheral blood mixing, at the beginning, the operator needs to manually mix and then hold a well-mixed tip.
  • the blood-stained test tube is placed under the sampling needle of the blood cell analyzer, and the sampling needle mixes the well-prepared peripheral blood sample into the blood cell analyzer for detection and analysis.
  • the blood cell analyzer analyzes the peripheral blood only by manual entry. The way it is.
  • the manual injection method is too inefficient, so there is a certain degree of automatic injection device on the market.
  • the test tube When the device is in use, the test tube is placed on the test tube rack, and the blood cell analyzer can perform the test tube on the entire test tube rack.
  • Automatic operation the operator only uses the test tube on the test tube rack, without holding the test tube to the sample needle; but the blood cell analyzer is required to first drive the diluent into the test tube, and then the operator has to take the test tube holder from the blood cell analyzer. The inside is taken out, and the blood sample of the peripheral blood is added to the test tube which has been diluted, and then returned to the blood cell analyzer, and the blood cell analyzer is used for the absorption and mixing, and then the subsequent detection operation is automatically performed.
  • the device has achieved automatic injection to some extent, but the manual operation is still necessary.
  • the operator needs to take out the test tube and manually add the blood sample of the peripheral blood to the test tube. . And it is not possible to automatically distinguish between venous blood and peripheral blood, and the efficiency of automatic injection still needs to be improved.
  • the object of the present invention is to provide a method and a device for fully automatic blood cell analysis and measurement, which can automatically distinguish venous blood and peripheral blood, and perform automatic injection detection on venous blood and peripheral blood.
  • an embodiment of the present invention provides a method for mixing a peripheral blood test tube, which is characterized by comprising:
  • the peripheral blood test tube mixing mechanism is fed to the mixing position, the test tube jaws are clamped to the peripheral blood test tube, and the peripheral blood test tube is placed in the through-tube chamber of the peripheral blood test tube mixing mechanism, and the peripheral blood test tube bottom and the distal end
  • the test tube holder of the blood test tube mixing mechanism is abutted, and the test tube jaws perform horizontal feed to move away from the test tube rack to the horizontal ready position;
  • the brushless motor of the peripheral blood tube mixing mechanism drives the eccentric block to rotate, thereby driving the through-tube holder to generate a swinging swing, so that the blood sample in the peripheral blood vessel abutting the tube holder is mixed.
  • an embodiment of the present invention provides a method for fully automatic blood cell analysis and measurement, the method comprising the following steps:
  • test tube type includes a venous blood test tube and a peripheral blood test tube
  • the descending height is determined according to the determined test tube type, and the sampling needle performs a descending motion corresponding to the determined descending height and sucks the sample;
  • the sample taken is analyzed and measured. After the analysis is completed, the test tube rack is fed to the unloading position to unload and exit to the unloading platform, and the analytical measurement result of the sample taken is output.
  • the thickness of the bottom of the peripheral blood test tube is greater than the thickness of the bottom of the venous blood test tube, and the bottom of the peripheral blood test tube is permeable to light.
  • the peripheral blood test tube comprises an outer tube body and an inner tube body, wherein a bottom portion of the inner tube body is located in a central portion of the outer tube body, and a lower portion of the outer tube body is permeable Light.
  • the determining the corresponding mixing mode according to the type of the tube, and mixing the blood in the tube by using the determined mixing method further includes:
  • test tube type is a peripheral blood test tube
  • the blood sample in the test tube is mixed using a peripheral blood test tube mixing mechanism.
  • the using the peripheral blood tube mixing mechanism to mix the blood sample in the test tube further comprising:
  • test tube is placed in a through-tube holder of a peripheral blood test tube mixing mechanism, and the bottom of the test tube is brought into contact with the test tube holder of the peripheral blood test tube mixing device.
  • the tube is placed in a through-tube holder of a peripheral blood tube mixing mechanism, and the bottom of the tube is brought into contact with the tube holder of the peripheral blood tube mixing mechanism. Also includes:
  • the brushless motor of the peripheral blood test tube mixing device drives the eccentric block to rotate, thereby driving the test tube to abut
  • the test tube holder vibrates, causing the peripheral blood tube in the test tube chamber to swing and vibrate in a rotary manner, thereby achieving mixing of the blood sample in the test tube.
  • the determining the corresponding mixing mode according to the type of the tube, and mixing the blood in the tube by using the determined mixing method further includes:
  • test tube type is a venous blood test tube
  • test tube jaws are taken from the test tube holder and moved to the top of the test tube holder, and the blood sample is mixed by turning it upside down.
  • the test tube type is a venous blood test tube
  • determining a rotational speed parameter corresponding to the venous blood test tube wherein the brushless motor of the peripheral blood test tube mixing mechanism adopts the The determined rotational speed parameter mixes the blood sample in the test tube.
  • an embodiment of the present invention further provides a fully automatic blood sample analysis and measurement device, including a control unit, the device further comprising a control unit connected to the control unit, and the control unit controls the execution of the control unit by sending a control command.
  • a control unit including a control unit, the device further comprising a control unit connected to the control unit, and the control unit controls the execution of the control unit by sending a control command.
  • Operating sample analysis device venous blood test tube mixing mechanism, peripheral blood test tube mixing mechanism, unloading and withdrawing platform mechanism, sampling needle, injection loading platform, test tube detecting unit, test tube jaw;
  • the sample loading platform is configured to place a test tube rack and feed the test tube rack to the sample analysis mechanism, so that the sample analysis mechanism performs sample analysis measurement on the blood sample in the test tube on the test tube rack;
  • the test tube detecting unit is configured to detect the loading condition of the test tube on the test tube rack and the type of the test tube;
  • the sampling needle is configured to perform a descending motion corresponding to the descending height according to the descending height determined by the control unit, and suck the sample for the sample analyzing device to perform sample analysis and measurement;
  • the venous blood tube mixing mechanism and/or the peripheral blood tube mixing mechanism is configured to mix a blood sample in the test tube on the test tube rack;
  • the unloading exit platform mechanism is configured to unload the exit test tube rack
  • test tube jaw is used to clamp the peripheral blood test tube to rise
  • the peripheral blood test tube mixing mechanism is used for controlled feeding to a mixing position, the test tube jaws are used to clamp a peripheral blood test tube, and the test tube clamp is used to place a peripheral blood test tube in a peripheral blood test tube mixing mechanism.
  • the bottom of the peripheral blood test tube is abutted with the test tube holder of the peripheral blood test tube mixing mechanism, and the test tube jaw performs horizontal feed to move away from the test tube holder to the horizontal ready position;
  • the peripheral blood test tube mixing mechanism comprises a brushless motor and an eccentric block, and the brushless motor drives the eccentric block to rotate, thereby driving the through-tube holder to generate a rotary swing, so that the blood sample in the peripheral blood vessel abutting the test tube holder is mixed. .
  • the test tube detecting unit is an optocoupler, and may be disposed on any of the working positions before the mixing position or the mixing position on the injection loading platform.
  • the venous blood tube mixing mechanism is provided with a test tube claw for clamping the test tube from the test tube holder and moving to the top of the test tube holder, and performing the round-trip reverse on the blood sample. Mix well.
  • the peripheral blood tube mixing mechanism comprises a feeding mechanism, at least three horizontal supports, a flexible column, a through-tube holder, a test tube holder having a concave curved surface, a brushless motor, and an eccentric block.
  • the brushless motor is located on a second horizontal support
  • the test tube holder is located on the second horizontal support
  • the through-tube holder is located on the third horizontal support.
  • one end of the flexible column is connected to the first horizontal bracket, and the other end is connected to the second horizontal bracket.
  • the invention provides a method and a device for fully automatic blood cell analysis and measurement, and realizes a simpler operation mode for detecting peripheral blood whole blood, one is pre-dilution without external dilution of the diluent, and the other is that the measurement sample is not strictly quantified.
  • the requirements of the impact only need to meet the minimum test dosage requirements, like the measurement method of venous blood, through the automatic injection blood cell analysis measurement method and device provided by the invention, the peripheral blood sample and the venous blood sample can be realized in the same
  • the automatic injection test on the machine does not need to be detected on different corresponding blood cell analyzers, which simplifies the operation of medical personnel and reduces the cost of hospital testing.
  • the method and the device of the embodiment of the invention can automatically identify the test tube type of the venous blood sample collection test tube and the peripheral blood sample collection test tube by the detecting unit, and perform the corresponding blood mixing mode according to the test tube, and control the sampling needle automatically according to different test tube types. Perform a sample analysis and finally output the analytical measurement results.
  • the method and device provided by the embodiments of the invention have high degree of automation, release the labor intensity of the clinical staff, and improve the efficiency of blood sample injection and detection.
  • FIG. 1 is a schematic structural view of a fully automatic blood cell analysis and measurement device in an embodiment
  • FIG. 2 is a perspective view of a fully automatic blood cell analysis and measurement device according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for fully automatic blood cell analysis and measurement in an embodiment
  • Figure 4 is a structural view showing the structure of a peripheral blood test tube according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing the structure and effect of a test tube rack after loading a venous blood test tube and/or a peripheral blood test tube according to an embodiment of the present invention
  • FIG. 6 is a schematic view showing the structure and effect of a test tube rack after loading a venous blood test tube and/or a peripheral blood test tube according to an embodiment of the present invention
  • FIG. 7 is a partial schematic view showing the structure of a device for sampling a needle in an automatic sampling position according to an embodiment of the present invention
  • Figure 8 is a schematic view showing the structure of a peripheral blood test tube mixing mechanism according to an embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of a mixing operation of a test tube in an embodiment of the present invention.
  • Fig. 10 is a schematic view showing a state in which a test tube jaw and a peripheral blood tube mixing mechanism are in a state of a coordinated action according to an embodiment of the present invention.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • a method and a device for fully automatic blood cell analysis and measurement are proposed, which can automatically distinguish venous blood and peripheral blood, and perform automatic injection detection on venous blood and peripheral blood.
  • a fully automatic blood sample analysis and measurement device including a control unit 100, the device further including a connection with the control unit 100, and The control unit controls the sample analysis device 1001, the venous blood tube mixing mechanism 200, the peripheral blood tube mixing mechanism 300, the unloading and exiting platform mechanism 2, the sampling needle 7, and the injection loading platform 6, which perform the corresponding operations by transmitting control commands.
  • the sample loading platform is configured to place a test tube rack and feed the test tube rack to the sample analysis device, so that the sample analysis device performs sample analysis measurement on the blood sample in the test tube on the test tube rack;
  • the test tube detecting unit is configured to detect the loading condition of the test tube on the test tube rack and the type of the test tube;
  • the sampling needle is configured to perform a descending motion corresponding to the descending height according to the descending height determined by the control unit, and suck the sample for the sample analyzing device to perform sample analysis and measurement;
  • the venous blood tube mixing mechanism and/or the peripheral blood tube mixing mechanism is configured to mix a blood sample in the test tube on the test tube rack;
  • the unloading exit platform mechanism is used to unload the exit test tube rack.
  • the above-mentioned test tube detecting unit is configured to detect the loading condition of the test tube in the test tube rack, and detect the type of the test tube corresponding to the loaded test tube.
  • the test tube detecting unit detects the type of the blood sample tube in the test tube rack, that is, the blood sample tube in the test tube rack is a venous blood test tube or a peripheral blood test tube.
  • the control unit identifies different test tube types on the test tube rack.
  • the test tube is mixed with the venous blood test tube mixing mechanism or the peripheral blood test tube mixing mechanism.
  • the control unit controls the sampling needle to descend at different depths to absorb the blood sample in the test tube.
  • For the sample analyzer to perform sample analysis measurements.
  • the fully automatic injection blood cell analysis measurement device can be based on a physical device as shown in FIG.
  • the embodiment of the invention further provides a method for fully automatic blood cell analysis and measurement, as shown in FIG. 3, the method comprises the following steps:
  • Step S1 During the process of injecting the test tube laterally into the test tube rack, determine the loading condition of the test tube on the test tube rack.
  • the test tube is used to detect whether or not a test tube is loaded in the test tube rack, and the execution of this step is performed in the case where the test sample rack is fed laterally from the injection loading platform. That is to say, the execution of the subsequent steps is performed only when the test tube rack is loaded with the test tube to avoid unnecessary program waste.
  • the test tube detecting unit is a pair of optical couplings. If the test tube holder is fed laterally through the test tube with or without the detection of the optocoupler, if the test tube has an occlusion optocoupler that detects the optocoupler, the judgment is made. There is a test tube in the test tube rack. Otherwise, it is determined that the test tube rack is not loaded with the test tube.
  • Step S2 determining the type of the test tube loaded in the test tube rack in the case where it is determined that the test tube rack is loaded with the test tube, wherein the test tube type includes a venous blood test tube and a peripheral blood test tube.
  • test tube In the case where a test tube is loaded on a test tube rack, it is necessary to analyze the blood sample in the loaded test tube.
  • there may be two kinds of test tubes for the test tube rack one is a common venous blood test tube, and the other is a special peripheral blood test tube, and the different test tubes correspond to different subsequent operation steps. Therefore, the type of tube needs to be resolved.
  • the test tube type of the test tube loaded in the test tube rack is detected by a test tube detecting unit, wherein the test tube type includes a venous blood test tube and a peripheral blood test tube.
  • the thickness of the bottom of the peripheral blood test tube is greater than the thickness of the bottom of the venous blood test tube, wherein the thickness of the bottom of the test tube is the bottom of the outer tube of the test tube and the bottom of the test tube lumen (the test tube can be filled with blood sample)
  • the distance between the bottom of the base For example, the bottom of the inner tube of the peripheral blood test tube is located in the middle of the test tube, and the thickness of the bottom of the tube is half of the overall height of the test tube, and the thickness of the bottom of the venous blood test tube is the thickness of the test tube wall, which is negligible with the overall height of the test tube. .
  • the material of the test tube is made of glass or PP material, that is to say, the corresponding part of the thickness of the tube bottom is permeable to light, and whether or not there is a blood sample in the inner cavity of the test tube, it is permeable. Light.
  • the lower portion of the tube corresponding to the thickness of the tube bottom of the peripheral blood test tube is permeable to light, and the venous blood test tube has a light-transmissive area at the bottom of the tube because of the small thickness of the tube bottom.
  • the lower area of the test tube is opaque, that is, the test tube detection unit can determine which type is determined by detecting whether the lower portion of the test tube is permeable to light. test tube.
  • the peripheral blood test tube includes an outer tube body and an inner tube body, and the bottom portion of the inner tube body is located at a central portion of the outer tube body, and the outer tube body The lower area is permeable to light.
  • the peripheral blood test tube includes a tube body 11 and a tube cap 12; the whole or middle portion of the tube cap 12 is made of rubber material so that the sampling needle can penetrate therethrough; the tube body 11 includes an inner tube body and an outer tube body, The bottom of the inner tube body is arranged as a rounded bottom, so that the sampling needle is immersed in the depth of the blood sample; the outer tube body is a skirt 111 which is formed by a straight length above the bottom taper of the inner tube body and extends downward along the height direction of the tube body by a certain length.
  • FIG. 5 and FIG. 6 show the case where the test tube rack is loaded with the venous blood test tube and the peripheral blood test tube, wherein, as shown in FIG. 5, the number 011 corresponds to the venous blood test tube. The blood sample in the middle, the number 021 corresponds to the blood sample in the peripheral blood test tube.
  • the test tube rack 5 is loaded with a venous blood test tube corresponding to the number 010, and a peripheral blood test tube corresponding to the number 020.
  • the test tube detecting unit is a photoelectric sensor, for example, may be an optocoupler, the detection of the bottom or lower region of the test tube is determined by the optocoupler, and the photoelectricity is received according to the optocoupler on the opposite side. Information to determine the type of tube.
  • the test tube detecting unit for determining the type of the test tube may be any one of the working positions before the mixing position or the mixing position on the injection loading platform, that is, the test tube before the mixing operation is performed. Type is detected.
  • the test tube detecting unit selects an optocoupler, as shown in FIG. 7 , wherein the first test unit for detecting whether the test tube is loaded with the test tube is a pair of optocouplers 8 , and is disposed in the venous blood test tube.
  • the second test tube detecting unit of the test tube type is an optocoupler 10, which is disposed on the peripheral blood test tube mixing mechanism.
  • the test tube detection unit when the test tube detection unit is fed laterally to the preset working position, if the test tube detects that the optocoupler is not blocked, it is judged to be a micro-tip blood test tube; if the test tube detects that the optocoupler is blocked, it is judged as a vein. Blood test tube.
  • the two types of test tubes of the venous blood test tube and the peripheral blood test tube are realized by adding a high-low level of the optocoupler coupled to the blood sample area at the bottom of the test tube, and determining whether the test tube is in a test tube state.
  • the peripheral blood test tube is in a transparent or translucent state corresponding to the tube body region of the newly added optocoupler.
  • Step S3 determining a corresponding mixing mode according to the type of the test tube, and mixing the blood in the test tube by using a determined mixing method.
  • the venous blood test tube and the peripheral blood test tube correspond to different mixing modes, wherein the amount and position of the blood sample are different. Therefore, it is necessary to determine the mixing mode corresponding to the test tube type to perform blood in the test tube. Mixing operations to improve the efficiency and accuracy of subsequent aspirate and analytical measurements.
  • test tube type is a venous blood test tube
  • a general mixing operation corresponding to the venous blood test tube is used for the mixing operation.
  • the test tube jaw 9 grips the test tube from the test tube holder and moves it over the test tube holder, and performs a round-trip reverse to mix the blood sample.
  • the test tube type is a peripheral blood test tube
  • the blood sample in the test tube is mixed using a peripheral blood test tube mixing mechanism.
  • the peripheral blood tube mixing mechanism is internally provided with a through-tube holder, a test tube holder, a brushless motor, and an eccentric block.
  • the tube is placed in the through-tube holder of the peripheral blood tube mixing mechanism.
  • the bottom of the test tube is brought into contact with the test tube holder of the peripheral blood test tube mixing device, so that the effect of the later mixing operation is optimal.
  • the brushless motor of the peripheral blood test tube mixing device drives the eccentric block to rotate, thereby driving the test tube to abut
  • the test tube holder vibrates, causing the peripheral blood tube in the test tube chamber to swing and vibrate in a rotary manner, thereby achieving mixing of the blood sample in the test tube.
  • the mixing mechanism for mixing the venous blood test tube and the peripheral blood mixing operation may be set to the same mechanism, for example, both are blood test tubes.
  • Mixing mechanism in a case where the test tube type is a venous blood test tube, a rotational speed parameter corresponding to the venous blood test tube is determined, and the brushless motor of the peripheral blood test tube mixing mechanism adopts the determination The rotational speed parameter mixes the blood sample in the test tube. That is to say, the different mixing parameters corresponding to the peripheral blood test tube and the venous blood test tube are mixed for different test tube types using different mixing parameters (for example, the rotational speed parameter of the brushless motor).
  • the number 200 indicates a venous blood tube mixing mechanism
  • the number 300 indicates a peripheral blood tube mixing mechanism
  • the number 400 indicates a sample suction needle mechanism including the sampling needle 7.
  • Step S4 When the test tube rack is fed to the aspiration position, the descending height is determined according to the determined test tube type, and the sampling needle performs a descending motion corresponding to the determined descending height and sucks the sample.
  • the height of the blood samples in different tube types is different, which results in the sampling needle when sucking the sample. Different heights are also required. If the same height is used, it may cause some samples to be ingested or insufficient samples to be taken. Therefore, in the present embodiment, in the case where the test tube rack is fed to the sample suction position, it is necessary to determine the corresponding position of the sample needle in the process of sucking the sample sample according to the type of the test tube, that is, the corresponding drop height, and then control the sampling needle. The falling action corresponding to the determined falling height is performed, and then the sampling operation is performed, thereby improving the success rate of the sampling sample and improving the effectiveness of the subsequent sample analysis.
  • Step S5 Analyze and measure the sample taken. After the analysis is completed, the test tube rack is fed to the unloading position to unload and exit to the unloading platform, and the analytical measurement result of the sample taken is output.
  • the sample analysis mechanism analyzes and measures the sample taken by the sampling needle, and outputs the corresponding analytical measurement result for use after the analysis and measurement is completed; and, after the analysis and measurement is completed, the test tube on the test tube rack is no longer needed. Operation, in which case the test tube on it needs to be unloaded, that is, the process of controlling the test tube rack feeding to the unloading position to exit to the unloading platform to complete this automatic injection and analytical measurement.
  • the test tube jaw of the venous blood test tube mixing mechanism is from the ready position, and the level toward the test tube is first executed. Feed the appropriate position, clamp the peripheral blood test tube; then move up the tube to the appropriate height in the axial direction of the test tube, make sure that the test tube is pulled away from the test tube rack and the bottom of the test tube is lifted to the space between the top surface of the test tube rack to allow the peripheral blood test tube mixing mechanism Horizontal feed insertion. That is, the venous blood tube mixing mechanism is provided with a test tube claw for holding the test tube on the test tube holder to move the test tube.
  • the test tube jaw 9 of the venous blood test tube mixing mechanism is ready from the ready position, and the horizontal feed to the test tube is performed first. Position, clamp the peripheral blood test tube; then move up the tube to the appropriate height in the axial direction of the test tube, make sure that the test tube is pulled away from the test tube rack 5 and the bottom of the test tube is lifted to the space between the top surface of the test tube rack 5 to allow the peripheral blood test tube to mix the mechanism level. Feed insertion.
  • the specific process of mixing the peripheral blood test tube includes the steps S31-S33 shown in FIG. 9, and before the step of introducing the corresponding mixing operation, firstly, the peripheral blood test tube mixed to perform the mixing operation is mixed.
  • the peripheral blood test tube mixed to perform the mixing operation is mixed.
  • the peripheral blood tube mixing mechanism 300 includes a feeding mechanism, a third horizontal bracket 21, a second horizontal bracket 19, a brushless motor 24, and an eccentric block 26; the third horizontal bracket 19 a test tube holder 22 is disposed, the second horizontal support is provided with a test tube holder having a concave curved surface; the test tube holder 23 is for supporting a peripheral blood collection tube, and the tube holder 22 is for limiting the test tube to the test tube
  • the brushless motor 24 of the peripheral blood tube mixing mechanism drives the eccentric block 26 to rotate around the motor shaft of the brushless motor 24, thereby driving the second horizontal bracket and the test tube holder to produce a swinging swing.
  • the feeding mechanism of the embodiment of the present invention preferably includes: a horizontal feed linear motor 13, wherein the motor shaft of the horizontal feed linear motor 13 is fixed in a horizontal direction to the L-shaped peripheral blood test tube mixing mechanism base 14 A horizontal linear guide 15 is fixed to the base 14, and the fixed block 16 is fixed to the slider corresponding to the linear guide 15, and the movable push plate 17 is connected to the fixed block 16 and the sliding nut of the linear motor 13, respectively.
  • the peripheral blood tube mixing mechanism 300 further includes a first horizontal bracket 18, the first horizontal bracket 18 is fixed on the fixed block 16, and the second horizontal bracket 19 is connected to the flexible rubber shock absorbing column 25 at the first Above the horizontal bracket 18, and a rubber tube holder 23 having a concave curved surface is fixed on the second horizontal bracket 19;
  • the support rod 20 is fixed above the first horizontal bracket 18, and the height of the support rod 20 is higher than the second horizontal bracket 19, correspondingly in the second horizontal bracket 19 crossing area should have air avoidance;
  • the third horizontal bracket 21 is fixed on the upper end of the support rod 20 and is fixed with a through-tube holder 22, and the brushless motor 24 is fixed on the second horizontal bracket Above the 19, the eccentric block 26 is fixed to the output shaft end of the brushless motor 24, and the horizontal movable position is blocked on the moving push plate 17 to block the optical coupling piece 27, and the corresponding horizontal position detecting optocoupler 28 is fixed on the base 14.
  • the working principle of the peripheral blood test tube mixing mechanism 300 is as follows: under the driving of the horizontal feed linear motor 13, the sliding wire of the linear motor 13 drives the movable push plate 17, the optical coupling plate 27 and the fixed block 16 The horizontal movement is performed in the guiding direction of the linear guide rail 15 in the horizontal direction, and the first horizontal bracket 18, the second horizontal bracket 19, the support rod 20, the third horizontal bracket 21, the through-tube storage box 22, the test tube holder 23, and the associated horizontally mounted bracket 16 are mounted.
  • the brushless motor 24, the flexible rubber damper column 25, and the eccentric block 26 move horizontally in synchronization.
  • the eccentric block 26 fixed on the output end of the brushless motor 24 is rotated about the motor shaft; since the second horizontal bracket 19 of the fixed brushless motor 24 is connected and fixed by the flexible rubber damper column 25 Above the horizontal bracket 18, and the rotating shaft hole of the eccentric block 26 is not at the center of gravity thereof, the eccentric block 26 rotates to drive the second horizontal bracket 19 to swing and vibrate.
  • peripheral blood test tubes Specifically, the specific process of mixing the peripheral blood test tubes is as follows:
  • Step S31 controlling the tube clamp to clamp the peripheral blood test tube to rise
  • Step S32 controlling the peripheral blood test tube mixing mechanism to feed to the mixing position, the test tube jaws are clamped to the peripheral blood test tube, and the peripheral blood test tube is placed in the through-tube storage chamber of the peripheral blood test tube mixing mechanism, and the peripheral blood test tube is The bottom is abutted with the test tube holder of the peripheral blood test tube mixing mechanism, and the test tube jaw performs horizontal feed to move away from the test tube holder to the horizontal ready position;
  • Step S33 The brushless motor of the peripheral blood tube mixing mechanism drives the eccentric block to rotate, thereby driving the through-tube holder to generate a swinging swing, so that the blood sample in the peripheral blood vessel abutting the tube holder is mixed.
  • the method further includes the following steps:
  • Step S34 controlling the test tube jaws to clamp and mix the peripheral blood test tube to rise, so that the peripheral blood test tube is away from the through-tube holder;
  • Step S35 the peripheral blood tube mixing mechanism performs movement away from the test tube rack
  • Step S36 Control the tube clamp to clamp and mix the peripheral blood test tube to drop, and put the mixed peripheral blood test tube back into the test tube rack.
  • the step S33 further includes: the brushless motor of the peripheral blood tube mixing mechanism is driven for a certain period of time, and the eccentric block rotates around the motor shaft, thereby driving the second horizontal bracket to generate a rotary swing; fixed at the second level.
  • the embodiment of the present invention falls on the second horizontal support 19 and the test tube on the rubber test tube holder 23 having a concave curved surface, the bottom of which is rotated and vibrated with the second horizontal support 19, and the test tube holder 22 is relatively stationary.
  • the tube body is restrained, and the bottom of the tube is relatively oscillated; thus, the blood sample in the test tube is combined with the multiple effects of centrifugal turbulence and vibration to achieve the purpose of blood sample mixing, and at the same time prevent broken blood cells.
  • the corresponding mixing operation of the venous blood test tube comprises: lifting the corresponding test tube from the test tube holder to the test tube holder from the test tube holder, performing back-and-forth mixing, and then putting the test tube back into the test tube holder and exiting the test tube holder. claw.
  • the sampling needle descending depth set according to the corresponding test tube type of the venous blood test tube is performed; when the peripheral blood test tube is recognized, the test tube according to the peripheral blood test tube is used.
  • the type set of the needle drop depth is performed; the venous blood tube set has a sample needle drop depth greater than the sample needle drop depth set by the peripheral blood tube.
  • the fully automatic injection blood cell analysis measuring device further comprises an automatic counting module for triggering an automatic analysis and counting operation on the blood sample, and the automatic counting module is provided with a device as shown in FIG. 2 for facilitating startup.
  • Automatically count button 1 press the auto count button 1 to start the automatic injection analysis measurement in whole blood mode.
  • pressing the auto-count button 1 is equivalent to informing the control unit that an analysis is performed, which can be used to count the number of times the tube is analyzed or to check the number of tubes to be analyzed.
  • the invention provides a method and a device for fully automatic blood cell analysis and measurement, and realizes a simpler operation mode for detecting peripheral blood whole blood, one is pre-dilution without external dilution of the diluent, and the other is that the measurement sample is not strictly quantified.
  • the requirements of the impact only need to meet the minimum test dosage requirements, like the measurement method of venous blood, through the automatic injection blood cell analysis measurement method and device provided by the invention, the peripheral blood sample and the venous blood sample can be realized in the same
  • the automatic injection test on the machine does not need to be detected on different corresponding blood cell analyzers, which simplifies the operation of medical personnel and reduces the cost of hospital testing.
  • the method and the device of the embodiment of the invention can automatically identify the test tube type of the venous blood sample collection test tube and the peripheral blood sample collection test tube by the detecting unit, and perform the corresponding blood mixing mode according to the test tube, and control the sampling needle automatically according to different test tube types. Perform a sample analysis and finally output the analytical measurement results.
  • the method and device provided by the embodiments of the invention have high degree of automation, release the labor intensity of the clinical staff, and improve the efficiency of blood sample injection and detection.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种全自动进样血细胞分析测量方法及装置,方法包括:进样装载平台(6)横向进给试管架(5)的过程中,确定试管架(5)上的试管(010,020)的装载情况(S1);在确定试管架(5)上装载有试管(010,020)的情况下,确定试管(010,020)类型,其中试管(010,020)类型包括静脉血试管(010)和末梢血试管(020) (S2);根据试管(010,020)类型确定混匀方式,并采用确定的混匀方式对试管(010,020)内的血液样本(011,021)进行混匀操作(S3);当试管架(5)进给到吸样位时,根据确定的试管(010,020)类型确定下降高度,采样针(7)执行与确定的下降高度对应的下降动作并吸取血液样本(011,021) (S4);对吸取的血液样本(011,021)进行分析测量,分析测量完成后,试管架(5)进给至卸载位,卸载退出到卸载平台上,输出分析测量结果。方法及装置自动化程度高、效率高,降低了临床人员劳动强度。

Description

全自动进样血细胞分析测量方法及装置、对末梢血试管进行混匀操作的方法 【技术领域】
本发明属于血细胞分析技术领域,更具体地说,本发明涉及一种全自动进样血细胞分析测量方法及装置、对末梢血试管进行混匀操作的方法。
【背景技术】
目前全自动进样血细胞分析测量装置只适用于静脉血,但对于末梢血,由于其采血量比较少,目前并未有相应的全自动进样血细胞分析测量装置。因为现有的血细胞分析仪内现有设置的静脉血混匀装置不适应于末梢血混匀,所以一开始的时候,需要操作人员手动进行混匀,然后将手持一个装有混匀好的末梢血血样的试管放在血细胞分析仪的采样针下,采样针将混匀好的末梢血血样吸入血细胞分析仪中检测分析,这种情况下的血细胞分析仪分析末梢血时,只能通过手动进样的方式。而手动进样方式的效率过低,因此市面上出现了一定程度上实现自动进样的装置,该装置在使用时,试管放在试管架上,血细胞分析仪可以对整个试管架上的试管进行自动操作,操作员只用将试管放在试管架上,不用举着试管到采样针下;但需要血细胞分析仪先将稀释液打入试管内,然后操作人员还要将试管架从血细胞分析仪里面取出来,往打了稀释液的试管内再加末梢血血样,然后再放回血细胞分析仪里面,由血细胞分析仪进行吸吐混匀,再自动进行后续的检测操作。该装置一定程度上已经实现了自动进样,但是中间还是要人工操作,即在血细胞分析仪往试管内打了稀释液之后,需要操作员将试管取出,再人工往试管里面加末梢血的血样。并且无法自动区分静脉血和末梢血,自动进样效率仍有待提高。
【发明内容】
本发明的目的在于提供一种全自动进样血细胞分析测量方法及装置,能够自动区别静脉血和末梢血,并对静脉血和末梢血进行自动进样检测。
为实现本发明目的,本发明实施例提供一种对末梢血试管进行混匀操作的方法,其特征在于,包括:
控制试管夹爪夹持末梢血试管上升;
控制末梢血试管混匀机构进给到混匀位置,所述试管夹爪夹持末梢血试管下降,将末梢血试管置于末梢血试管混匀机构的贯通试管仓中,末梢血试管底部与末梢血试管混匀机构的试管托抵接,试管夹爪执行水平进给远离试管架方向运动到水平就绪位;
末梢血试管混匀机构的无刷电机带动偏心块转动,进而带动贯通试管托产生回转式摆动,致使置与所述试管托抵接的末梢血管中的血样被混匀。
为实现本发明目的,本发明实施例提供一种全自动进样血细胞分析测量方法,所述方法包括如下步骤:
进样装载平台横向进给试管架的过程中,确定试管架上的试管的装载情况;
在确定所述试管架上装载有试管的情况下,确定所述试管架中装载的试管的试管类型,其中所述试管类型包括静脉血试管和末梢血试管;
根据所述试管类型确定对应的混匀方式,并采用确定的混匀方式对试管内的血液进行混匀操作;
当试管架进给到吸样位时,根据所述确定的试管类型确定下降高度,采样针执行与所述确定的下降高度对应的下降动作并吸取样本;
对吸取的样本进行分析测量,分析测量完成后,试管架进给至卸载位卸载退出到卸载平台上,输出吸取的样本的分析测量结果。
可选的,在一个实施例中,所述末梢血试管的管底厚度大于所述静脉血试管的管底厚度,所述末梢血试管的管底为可透光的。
可选的,在一个实施例中,所述末梢血试管包括外管体和内管体,所述内管体的管体底部位于外管体的中部区域,外管体的下部区域为可透光的。
可选的,在一个实施例中,所述根据所述试管类型确定对应的混匀方式,并采用确定的混匀方式对试管内的血液进行混匀操作,还包括:
在所述试管类型为末梢血试管的情况下,使用末梢血试管混匀机构对所述试管内的血样进行混匀操作。
可选的,在一个实施例中,所述使用末梢血试管混匀机构对所述试管内的血样进行混匀操作,还包括:
将所述试管放置在末梢血试管混匀机构的贯通试管仓中,使所述试管的底部与末梢血试管混匀装置的试管托抵接。
可选的,在一个实施例中,所述将所述试管放置在末梢血试管混匀机构的 贯通试管仓中,使所述试管的底部与末梢血试管混匀机构的试管托抵接之后,还包括:
在所述试管的底部与所述末梢血试管混匀机构的是管托抵接的情况下,所述末梢血试管混匀装置的无刷电机带动偏心块转动,进而带动所述试管所抵接的试管托产生震动,致使贯通试管仓内的末梢血试管回转式摆动和震动,从而实现试管内血样的混匀。
可选的,在一个实施例中,所述根据所述试管类型确定对应的混匀方式,并采用确定的混匀方式对试管内的血液进行混匀操作,还包括:
在所述试管类型为静脉血试管的情况下,试管夹爪从试管架中夹取试管并移动至试管架上方,实施来回颠倒对血样进行混匀。
可选的,在一个实施例中,在所述试管类型为静脉血试管的情况下,确定与所述静脉血试管对应的转速参数,所述末梢血试管混匀机构的无刷电机采用所述确定的转速参数对所述试管内的血样进行混匀操作。
此外,本发明实施例还提供一种全自动进样血细胞分析测量装置,包括控制单元,所述装置还包括与所述控制单元连接、并由所述控制单元通过发送控制指令来控制其执行相应操作的样本分析装置、静脉血试管混匀机构、末梢血试管混匀机构、卸载退出平台机构、采样针、进样装载平台、试管检测单元、试管夹爪;
所述进样装载平台用于放置试管架并将试管架进给至样本分析机构,以使所述样本分析机构对试管架上的试管内的血样进行样本分析测量;
所述试管检测单元用于检测所述试管架上试管的装载情况以及试管类型;
所述采样针用于根据控制单元确定的下降高度执行与该下降高度对应的下降动作并吸取样本以供所述样本分析装置进行样本分析测量;
所述静脉血试管混匀机构和/或末梢血试管混匀机构用于对所述试管架上的试管内的血样进行混匀操作;
所述卸载退出平台机构用于卸载退出试管架;
所述试管夹爪用于夹持末梢血试管上升;
所述末梢血试管混匀机构用于受控进给到混匀位置,所述试管夹爪夹持末梢血试管下降,所述试管夹爪用于将末梢血试管置于末梢血试管混匀机构的贯通试管仓中,末梢血试管底部与末梢血试管混匀机构的试管托抵接,试管夹爪 执行水平进给远离试管架方向运动到水平就绪位;
末梢血试管混匀机构包括无刷电机和偏心块,无刷电机带动偏心块转动,进而带动贯通试管托产生回转式摆动,致使置与所述试管托抵接的末梢血管中的血样被混匀。
可选的,在一个实施例中,所述试管检测单元为对射光耦,可以设置于所述进样装载平台上的混匀位或混匀位之前的任一工作位上。
可选的,在一个实施例中,所述静脉血试管混匀机构上设置有试管爪,所述试管爪用于从试管架中夹取试管并移动至试管架上方,实施来回颠倒对血样进行混匀。
可选的,在一个实施例中,所述末梢血试管混匀机构包括进给机构、至少三个水平支架、柔性柱、贯通试管仓、具有内凹曲面的试管托、无刷电机和偏心块
可选的,在一个实施例中,所述无刷电机位于第二水平支架上,所述试管托位于第二水平支架上,所述贯通试管仓位于第三水平支架上。
可选的,在一个实施例中,所述柔性柱的一端连接所述第一水平支架,另一端连接所述第二水平支架。
实施本发明实施例的方法及装置具有如下有益效果:
本发明提供了一种全自动进样血细胞分析测量方法及装置,实现了更为简便的末梢血全血检测操作模式,一是无需稀释液的机外预稀释、二是对测量样本无严格定量要求影响,只需满足最小测试用量要求即可,如同静脉血的测量方式,通过本发明提供的全自动进样血细胞分析测量方法及装置,可以实现末梢血试样和静脉血试样在同一台机器上自动进样完成检测,不需要分别在不同的对应血细胞分析仪上检测,简化了医护人员的操作,降低了医院检测的成本。同时本发明实施例方法及装置可以通过检测单元自动识别静脉血样品采集试管和末梢血样品采集试管的试管类型,并根据试管实施对应的血液混匀方式,并根据不同的试管类型控制采样针自动进行抽样分析,最后输出分析测量结果。本发明实施例提供的方法及装置自动化程度高,释放了临床人员的劳动强度,提高了血液样本进样和检测的效率。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施方式,并配合所附附图,作详细说明如下。
【附图说明】
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施方式,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为一个实施例中一种全自动进样血细胞分析测量装置的结构示意图;
图2是本发明实施例全自动进样血细胞分析测量装置立体示意图;
图3为一个实施例中一种全自动进样血细胞分析测量方法的流程示意图;
图4是本发明实施例末梢血试管结构形式图;
图5是本发明实施例装载静脉血试管和/或末梢血试管后的试管架结构及效果示意图;
图6是本发明实施例装载静脉血试管和/或末梢血试管后的试管架结构及效果示意图;
图7是本发明实施例采样针在自动采样位的装置结构局部示意图;
图8是本发明实施例末梢血试管混匀机构结构示意图;
图9为本发明实施例中对试管进行混匀操作的流程示意图;
图10是本发明实施例试管夹爪与末梢血试管混匀机构在某一配合动作位状态的示意图。
【具体实施方式】
下面将结合本发明实施方式中附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。通常在此处附图中描述和示出的本发明实施方式的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明的实施方式,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“垂直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必 须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本实施例中,提出了一种全自动进样血细胞分析测量方法及装置,能够自动区别静脉血和末梢血,并对静脉血和末梢血进行自动进样检测。
具体的,在一个实施例中,如图1所示,提出了一种全自动进样血细胞分析测量装置,包括控制单元100,所述装置还包括与所述控制单元100连接、并由所述控制单元通过发送控制指令来控制其执行相应操作的样本分析装置1001、静脉血试管混匀机构200、末梢血试管混匀机构300、卸载退出平台机构2、采样针7、进样装载平台6、试管检测单元1002;
其中,
所述进样装载平台用于放置试管架并将试管架进给至样本分析装置,以使所述样本分析装置对试管架上的试管内的血样进行样本分析测量;
所述试管检测单元用于检测所述试管架上试管的装载情况以及试管类型;
所述采样针用于根据控制单元确定的下降高度执行与该下降高度对应的下降动作并吸取样本以供所述样本分析装置进行样本分析测量;
所述静脉血试管混匀机构和/或末梢血试管混匀机构用于对所述试管架上的试管内的血样进行混匀操作;
所述卸载退出平台机构用于卸载退出试管架。
具体的,上述试管检测单元用于检测试管架中试管的装载情况,并检测装载的试管对应的试管类型。试管检测单元检测判断试管架中血液样本试管类型,即试管架中血液样本试管为静脉血试管或末梢血试管,根据试管检测单元的检测结果,所述控制单元对试管架上所识别不同试管类型的试管对应执行静脉血试管混匀机构混匀或末梢血试管混匀机构混匀,针对静脉血试管和末梢血试管两种不同试管类型,控制单元控制采样针下降不同深度来吸取试管中血液样本, 以供所述样品分析仪进行样本分析测量。
例如,该全自动进样血细胞分析测量装置可以是基于如图2所示的实体装置。
本发明实施例还提供一种全自动进样血细胞分析测量方法,如图3所示,所述方法包括如下步骤:
步骤S1:进样装载平台横向进给试管架的过程中,确定试管架上的试管的装载情况。
通过试管检测单元来检测试管架中是否装载有试管,并且,该步骤的执行是在进样装载平台横向将试管架进给的情况下进行的。也就是说,后续的步骤的执行只有在试管架上装载有试管的情况下才执行,以避免不必要的程序浪费。
在一个具体的实施例中,试管检测单元为一对射光耦,在试管架横向进给通过试管有无检测对射光耦的情况下,若所述试管有无检测对射光耦产生遮挡信号,判断试管架中有试管存在,反之,则确定试管架中未有装载有试管。
步骤S2:在确定所述试管架上装载有试管的情况下,确定所述试管架中装载的试管的试管类型,其中所述试管类型包括静脉血试管和末梢血试管。
在试管架上装载有试管的情况下,需要对装载的试管内的血液样本进行分析。在本实施例中,试管架的试管可能有两种,一种是普通的静脉血试管,一种特制的末梢血试管,不同的试管对应了后续不同的操作步骤。因此,需要对试管类型进行分辨。具体的,通过试管检测单元来检测试管架中装载的试管的试管类型,其中,试管类型包括了静脉血试管以及末梢血试管。
在一个可选的实施例中,末梢血试管的管底厚度大于所述静脉血试管的管底厚度,其中试管的管底厚度为试管外部的底部与试管内腔底部(试管内腔可装血样的最底部)之间的间隔距离大小。例如,末梢血试管的试管内腔底部位于试管中部,其管底厚度为试管整体高度的一半,而静脉血试管的管底厚度为一般的试管壁厚度,与试管整体高度来讲可忽略不计。一般来讲,试管的材质为玻璃或者PP材质,也就是说,管底厚度所对应的部分是可透光的,并且,无论试管内腔内是否有装有血样的情况下,均为可透光的。
在装有血样的情况下,所述末梢血试管的管底厚度所对应的试管的下部区域为可透光的,所述静脉血试管因为管底厚度较小,其管底可透光区域可忽略不计,因此,在装有血样的情况下,其试管的下部区域是不可透光的,也就是说,试管检测单元可以通过检测试管下部区域的是否可透光的特征来确定为哪 一种试管。
在另一个可选的实施例中,如图4所示,所述末梢血试管包括外管体和内管体,所述内管体的管体底部位于外管体的中部区域,外管体的下部区域为可透光的。
如图4所示,末梢血试管包括管体11和管帽12;管帽12整体或中部为橡胶材质,以便采样针可穿透通过;管体11包括内管体和外管体,所述内管体的底部设置为锥度圆底,以便采样针没入血样中的深度;所述外管体为内管体底部锥度上方直边沿所述管体高度方向向下延伸一定长度构成的裙边111,使得末梢血采集管放入试管架可适应试管夹爪的夹取和放入,无需变化试管架;裙边111靠近底部区为透明或半透明状态,对所述真空采血管检测光线不产生遮挡状态。具体可如图5和图6所示,图5和图6给出了试管架上装载有静脉血试管和末梢血试管的情况,其中,如图5所示,编号011对应的为静脉血试管中的血液样本,编号021对应的为末梢血试管中的血液样本,如图6所示,在试管架5上装载有编号010对应的为静脉血试管、以及编号020对应的为末梢血试管。
在另一个可选的实施例中,试管检测单元为光电传感器,例如可以是对射光耦,通过对射光耦来对试管的底部或者下部区域确定检测,并根据对侧的光耦接收到的光电信息来确定试管类型。在本实施例中,确定试管类型的试管检测单元可以是设置在进样装载平台上的混匀位或混匀位之前的任一工作位上,也就是说,在进行混匀操作之前对试管类型进行检测。
可选地,所述试管检测单元选用对射光耦,如图7所示,其中,检测试管架上是否装载有试管的第一试管检测单元为对射光耦8,设置于所述静脉血试管混匀机构上,检测试管类型的第二试管检测单元为对射光耦10,设置于所述末梢血试管混匀机构上。
也就是说,试管检测单元在试管架横向进给到预设的工作位时,如果试管检测对射光耦不被遮挡,判断为微量末梢血试管;如果试管检测对射光耦被遮挡,判断为静脉血试管。具体而言,本发明实施例方法通过新增设置在试管底部血样区域的对射光耦高低电平、以及结合试管有无判断检测为有试管状态实现静脉血试管和末梢血试管两种试管类型检测;所述末梢血试管对应所述新增对射光耦的管体区域为透明或半透明状态。
步骤S3:根据所述试管类型确定对应的混匀方式,并采用确定的混匀方式 对试管内的血液进行混匀操作。
在本实施例中,静脉血试管与末梢血试管对应了不同的混匀方式,其中的血样的量以及位置均有不同,因此,需要确定与试管类型对应的混匀方式对试管内的血液进行混匀操作,以提高后续的吸样以及分析测量的有效率和准确率。
具体的,在试管类型为静脉血试管的情况下,采用一般的与静脉血试管对应的混匀操作进行混匀操作。例如,试管夹爪9从试管架中夹取试管并移动至试管架上方,实施来回颠倒对血样进行混匀。
在试管类型为末梢血试管的情况下,需要采用与末梢血类型对应的混匀操作进行混匀操作。具体的,使用末梢血试管混匀机构对所述试管内的血样进行混匀操作。末梢血试管混匀机构内部设置有贯通试管仓、试管托、无刷电机、偏心块,在进行混匀操作的过程中,控制将所述试管放置在末梢血试管混匀机构的贯通试管仓中,使所述试管的底部与末梢血试管混匀装置的试管托抵接,以使得后期的混匀操作的效果最佳。在所述试管的底部与所述末梢血试管混匀机构的是管托抵接的情况下,所述末梢血试管混匀装置的无刷电机带动偏心块转动,进而带动所述试管所抵接的试管托产生震动,致使贯通试管仓内的末梢血试管回转式摆动和震动,从而实现试管内血样的混匀。
在另一个可选的实施例中,为了节省设备的空间,可以将对静脉血试管进行混匀操作以及末梢血进行混匀操作的混匀机构设置为同一个机构,例如,均为末梢血试管混匀机构。具体的,在本实施例中,在所述试管类型为静脉血试管的情况下,确定与所述静脉血试管对应的转速参数,所述末梢血试管混匀机构的无刷电机采用所述确定的转速参数对所述试管内的血样进行混匀操作。也就是说,末梢血试管以及静脉血试管对应的不同的混匀参数,针对不同的试管类型采用不同的混匀参数(例如无刷电机的转速参数)进行混匀操作。
如图8所示,编号200所示的为静脉血试管混匀机构,编号300所示的为末梢血试管混匀机构,编号400所示的为包含了采样针7的样本吸取采样针机构。
步骤S4:当试管架进给到吸样位时,根据所述确定的试管类型确定下降高度,采样针执行与所述确定的下降高度对应的下降动作并吸取样本。
如前所述,因为试管类型的不同(管底高度)以及试管内的血量的不同,导致不同的试管类型中的血样的高度也不一样,因此,这就导致了采样针在吸取样本时也需要采用不同的高度,如果采用了相同的高度可能会导致部分情况 下吸取不到样本或者吸取的样本不足。因此,在本实施例中,在试管架进给到吸样位的情况下,就需要根据试管类型来确定采样针在吸取样本的过程中相应的位置,即对应的下降高度,然后控制采样针执行与确定的下降高度对应的下降动作,然后进行吸取样本的操作,从而提高了吸取样本的成功率,提高后续样本分析的有效性。
步骤S5:对吸取的样本进行分析测量,分析测量完成后,试管架进给至卸载位卸载退出到卸载平台上,输出吸取的样本的分析测量结果。
在本步骤中,样本分析机构对采样针吸取的样本进行分析测量,在分析测量完成之后输出对应的分析测量结果以供使用;并且,在分析测量完成之后,试管架上的试管不再需要进行操作,在此种情况下需要将其上的试管进行卸载,也就是说,控制试管架进给到卸载位以退出至卸载平台完成这个自动进样和分析测量的过程。
本发明实施例中,具体而言,在识别出试管状态和类型之后,例如识别出末梢血试管时,静脉血试管混匀机构上试管夹爪从其准备就绪位,先执行向试管方向的水平进给合适位置,对末梢血试管产生夹持;然后沿试管轴向向上运动到合适高度,确保提起试管抽离试管架并且被提起试管底部到试管架顶面间空间允许末梢血试管混匀机构水平进给插入。也就是说,静脉血试管混匀机构上设置有试管爪,所述试管爪用于夹持试管架上的试管以移动试管。本发明实施例中,在识别出试管状态和类型之后,例如识别出末梢血试管时,静脉血试管混匀机构上试管夹爪9从其准备就绪位,先执行向试管方向的水平进给合适位置,对末梢血试管产生夹持;然后沿试管轴向向上运动到合适高度,确保提起试管抽离试管架5并且被提起试管底部到试管架5顶面间空间允许末梢血试管混匀机构水平进给插入。
具体的,上述对末梢血试管进行混匀操作的具体过程包括如图9所示的步骤S31-S33,在介绍相应的混匀操作的步骤之前,首先对执行该混匀操作的末梢血试管混匀机构进行详述:
如图10所示,所述末梢血试管混匀机构300:包括进给机构、第三水平支架21、第二水平支架19、无刷电机24和偏心块26;所述第三水平支架19上设置有试管仓22,所述第二水平支架上设置有具有内凹曲面的试管托;所述试管托23用于支撑末梢血采集管,所述试管仓22用于将试管限位于所述试管托23上;末 梢血试管混匀机构的无刷电机24带动偏心块26绕无刷电机24的电机轴进行转动,进而带动第二水平支架和试管托产生回转式摆动。
进一步地,本发明实施例所述进给机构优选包括:水平进给直线电机13,所述水平进给直线电机13电机轴沿水平方向固定到L形末梢血试管混匀机构基座14上,基座14上固定有水平方向直线导轨15,固定块16固定在直线导轨15上的滑动件对应滑块上,移动推板17分别与固定块16和直线电机13的滑动丝母连接。
进一步地,所述末梢血试管混匀机构300还包括第一水平支架18,所述第一水平支架18固定在固定块16上,第二水平支架19柔性橡胶减震柱25连接固定在第一水平支架18上方,并在第二水平支架19上固定有具有内凹曲面的橡胶试管托23;支撑杆20固定在第一水平支架18上方,且支撑杆20高度要越过高于第二水平支架19,相应在第二水平支架19穿越区域应有避空避让;第三水平支架21固定在支撑杆20上端以及在及其上固定有贯通试管仓22,无刷电机24固定在第二水平支架19上方、偏心块26固定在无刷电机24输出轴端,移动推板17上固定有水平移动位置遮挡光耦挡片27,其对应的水平位置检测光耦28固定在基座14上。
本发明实施例所述的末梢血试管混匀机构300工作原理如下:在水平进给直线电机13驱动下,直线电机13的滑动丝母带动移动推板17、光耦挡片27以及固定块16沿水平方向直线导轨15导向方向执行水平移动,固定块16上关联安装的第一水平支架18、第二水平支架19、支撑杆20、第三水平支架21、贯通试管仓22、试管托23、无刷电机24、柔性橡胶减震柱25、偏心块26同步水平移动。在无刷电机24驱动下,无刷电机24输出轴端上固定的偏心块26绕电机轴执行转动;由于固定无刷电机24的第二水平支架19通过柔性橡胶减震柱25连接固定在第一水平支架18上方,以及偏心块26旋转轴孔不在其重心上,故偏心块26转动时带动所述第二水平支架19回转式摆动和振动。
具体的,上述对末梢血试管进行混匀操作的具体过程如下:
步骤S31:控制试管夹爪夹持末梢血试管上升;
步骤S32:控制末梢血试管混匀机构进给到混匀位置,所述试管夹爪夹持末梢血试管下降,将末梢血试管置于末梢血试管混匀机构的贯通试管仓中,末梢血试管底部与末梢血试管混匀机构的试管托抵接,试管夹爪执行水平进给远离 试管架方向运动到水平就绪位;
步骤S33:末梢血试管混匀机构的无刷电机带动偏心块转动,进而带动贯通试管托产生回转式摆动,致使置与所述试管托抵接的末梢血管中的血样被混匀。
可选地,所述执行完上述步骤S31-S33对应的末梢血试管对应的混匀操作之后,还包括如下步骤:
步骤S34:控制试管夹爪夹持混匀后的末梢血试管上升,致使末梢血试管远离所述贯通试管仓;
步骤S35:末梢血试管混匀机构执行远离试管架方向运动;
步骤S36:控制试管夹爪夹持混匀后的末梢血试管下降,将混匀后的末梢血试管放回试管架中。
可选地,所述步骤S33还包括:末梢血试管混匀机构的无刷电机执行驱动一定时间,偏心块绕电机轴进行转动,进而带动第二水平支架产生回转式摆动;固定于第二水平支架上具有内凹曲面的试管托上的试管,其底部随第二水平支架产生回转式摆动。本发明实施例落在第二水平支架19上固定的具有内凹曲面的橡胶试管托23上的试管,其底部随第二水平支架19产生回转式摆动和振动,以及贯通试管仓22相对静止对试管管身约束,试管底部相对摆动较大;从而试管中血样在离心甩动和振动多重影响结合下而达成血样混匀目的,同时防止破碎血细胞。
可选地,所述静脉血试管对应的混匀操作包括:试管夹爪从试管架中提起对应试管到试管架上方,实施来回颠倒混匀后,再放试管回到试管架中并退出试管夹爪。
可选地,所述步骤S35中,当识别为静脉血试管的情况下,按静脉血试管对应的试管类型设置的采样针下降深度执行;当识别为末梢血试管时,按末梢血试管的试管类型设置的采样针下降深度执行;静脉血试管设置的采样针下降深度大于末梢血试管设置的采样针下降深度。
可选地,所述全自动进样血细胞分析测量装置还包括自动计数模块,其用于触发对于血液样本的自动分析和计数操作,为了便于启动,所述自动计数模块设置有如图2所示的自动计数按键1,按下自动计数按键1即可启动全血模式下的全自动进样分析测量。并且,按下自动计数按键1相当于告知控制单元进行了一次分析,该计数操作可用于对分析试管的次数进行统计或用于核对分析试管 的数量。
通过以上描述可知,实施本发明实施例的方法及装置具有如下有益效果:
本发明提供了一种全自动进样血细胞分析测量方法及装置,实现了更为简便的末梢血全血检测操作模式,一是无需稀释液的机外预稀释、二是对测量样本无严格定量要求影响,只需满足最小测试用量要求即可,如同静脉血的测量方式,通过本发明提供的全自动进样血细胞分析测量方法及装置,可以实现末梢血试样和静脉血试样在同一台机器上自动进样完成检测,不需要分别在不同的对应血细胞分析仪上检测,简化了医护人员的操作,降低了医院检测的成本。同时本发明实施例方法及装置可以通过检测单元自动识别静脉血样品采集试管和末梢血样品采集试管的试管类型,并根据试管实施对应的血液混匀方式,并根据不同的试管类型控制采样针自动进行抽样分析,最后输出分析测量结果。本发明实施例提供的方法及装置自动化程度高,释放了临床人员的劳动强度,提高了血液样本进样和检测的效率。
参考具体实施方式,尽管本发明已经在说明书和附图中进行了说明,但应当理解,在不脱离权利要求中所限定的本发明范围的情况下,所属技术领域人员可作出多种改变以及多种等同物可替代其中多种元件。而且,本文中具体实施方式之间的技术特征、元件和/或功能的组合和搭配是清楚明晰的,因此根据这些所公开的内容,所属技术领域人员能够领会到实施方式中的技术特征、元件和/或功能可以视情况被结合到另一个具体实施方式中,除非上述内容有另外的描述。此外,根据本发明的教导,在不脱离本发明本质的范围,适应特殊的情形或材料可以作出许多改变。因此,本发明并不限于附图所图解的个别的具体实施方式,以及说明书中所描述的作为目前为实施本发明所设想的最佳实施方式的具体实施方式,而本发明意旨包括落入上述说明书和所附的权利要求范围内的所有的实施方式。

Claims (14)

  1. 一种对末梢血试管进行混匀操作的方法,其特征在于,包括:
    控制试管夹爪夹持末梢血试管上升;
    控制末梢血试管混匀机构进给到混匀位置,所述试管夹爪夹持末梢血试管下降,将末梢血试管置于末梢血试管混匀机构的贯通试管仓中,末梢血试管底部与末梢血试管混匀机构的试管托抵接,试管夹爪执行水平进给远离试管架方向运动到水平就绪位;
    末梢血试管混匀机构的无刷电机带动偏心块转动,进而带动贯通试管托产生回转式摆动,致使置与所述试管托抵接的末梢血管中的血样被混匀。
  2. 如权利要求1所述的对末梢血试管进行混匀操作的方法,其特征在于,所述末梢血试管包括管体,所述管体包括外管体和内管体,所述内管体的管体底部位于外管体的中部区域,外管体的下部区域为可透光的。
  3. 如权利要求1所述的对末梢血试管进行混匀操作的方法,其特征在于,所述末梢血试管还包括管帽,所述管帽整体或中部为橡胶材质。
  4. 如权利要求1所述的对末梢血试管进行混匀操作的方法,其特征在于,所述内管体的底部设置为锥度圆底。
  5. 如权利要求1所述的对末梢血试管进行混匀操作的方法,其特征在于,所述外管体为内管体底部锥度上方直边沿所述管体高度方向向下延伸一定长度构成的裙边。
  6. 如权利要求5所述的对末梢血试管进行混匀操作的方法,其特征在于,所述裙边靠近底部区为透明或半透明。
  7. 一种全自动进样血细胞分析测量装置,其特征在于,包括控制单元,所述装置还包括与所述控制单元连接、并由所述控制单元通过发送控制指令来控制其执行相应操作的样本分析装置、静脉血试管混匀机构、末梢血试管混匀机构、卸载退出平台机构、采样针、进样装载平台、试管检测单元、试管夹爪;
    所述进样装载平台用于放置试管架并将试管架进给至样本分析机构,以使所述样本分析机构对试管架上的试管内的血样进行样本分析测量;
    所述试管检测单元用于检测所述试管架上试管的装载情况以及试管类型;
    所述采样针用于根据控制单元确定的下降高度执行与该下降高度对应的下降动作并吸取样本以供所述样本分析装置进行样本分析测量;
    所述静脉血试管混匀机构和/或末梢血试管混匀机构用于对所述试管架上的试管内的血样进行混匀操作;
    所述卸载退出平台机构用于卸载退出试管架;
    所述试管夹爪用于夹持末梢血试管上升;
    所述末梢血试管混匀机构用于受控进给到混匀位置,所述试管夹爪夹持末梢血试管下降,所述试管夹爪用于将末梢血试管置于末梢血试管混匀机构的贯通试管仓中,末梢血试管底部与末梢血试管混匀机构的试管托抵接,试管夹爪执行水平进给远离试管架方向运动到水平就绪位;
    末梢血试管混匀机构包括无刷电机和偏心块,无刷电机带动偏心块转动,进而带动贯通试管托产生回转式摆动,致使置与所述试管托抵接的末梢血管中的血样被混匀。
  8. 如权利要求7所述的一种全自动进样血细胞分析测量装置,其特征在于,所述试管检测单元为对射光耦,可以设置于所述进样装载平台上的混匀位或混匀位之前的任一工作位上。
  9. 如权利要求7所述的一种全自动进样血细胞分析测量装置,其特征在于,所述末梢血试管混匀机构包括进给机构、至少三个水平支架、柔性柱、贯通试管仓、具有内凹曲面的试管托、无刷电机和偏心块,所述无刷电机位于第二水平支架上,所述试管托位于第二水平支架上,所述贯通试管仓位于第三水平支架上,所述柔性柱的一端连接所述第一水平支架,另一端连接所述第二水平支架。
  10. 一种全自动进样血细胞分析测量方法,其特征在于,所述方法基于权利要求7至9中任一项所述装置实施,所述方法包括如下步骤:
    进样装载平台横向进给试管架的过程中,确定试管架上的试管的装载情况;
    在确定所述试管架上装载有试管的情况下,确定所述试管架中装载的试管的试管类型,其中所述试管类型包括静脉血试管和末梢血试管;
    根据所述试管类型确定对应的混匀方式,并采用确定的混匀方式对试管内的血液进行混匀操作;
    当试管架进给到吸样位时,根据所述确定的试管类型确定下降高度,采样针执行与所述确定的下降高度对应的下降动作并吸取样本;
    对吸取的样本进行分析测量,分析测量完成后,试管架进给至卸载位卸载 退出到卸载平台上,输出吸取的样本的分析测量结果。
  11. 如权利要求10所述的一种全自动进样血细胞分析测量方法,其特征在于,所述末梢血试管的管底厚度大于所述静脉血试管的管底厚度,所述末梢血试管的管底为可透光的。
  12. 根据权利要求10所述的一种全自动进样血细胞分析测量方法,其特征在于,所述末梢血试管包括外管体和内管体,所述内管体的管体底部位于外管体的中部区域,外管体的下部区域为可透光的。
  13. 如权利要求10所述的一种全自动进样血细胞分析测量方法,其特征在于,所述根据所述试管类型确定对应的混匀方式,并采用确定的混匀方式对试管内的血液进行混匀操作,还包括:
    在所述试管类型为静脉血试管的情况下,试管夹爪从试管架中夹取试管并移动至试管架上方,实施来回颠倒对血样进行混匀。
  14. 如权利要求13所述的一种全自动进样血细胞分析测量方法,其特征在于,在所述试管类型为静脉血试管的情况下,确定与所述静脉血试管对应的转速参数,所述末梢血试管混匀机构的无刷电机采用所述确定的转速参数对所述试管内的血样进行混匀操作。
PCT/CN2019/083737 2018-04-24 2019-04-22 全自动进样血细胞分析测量方法及装置、对末梢血试管进行混匀操作的方法 WO2019206097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810372005 2018-04-24
CN201810372005.5 2018-04-24

Publications (1)

Publication Number Publication Date
WO2019206097A1 true WO2019206097A1 (zh) 2019-10-31

Family

ID=68293754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083737 WO2019206097A1 (zh) 2018-04-24 2019-04-22 全自动进样血细胞分析测量方法及装置、对末梢血试管进行混匀操作的方法

Country Status (2)

Country Link
CN (6) CN110398597B (zh)
WO (1) WO2019206097A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686962A (zh) * 2019-11-04 2020-01-14 无锡博慧斯生物医药科技有限公司 一种试管的混匀装置及分析仪
CN112415627A (zh) * 2020-12-16 2021-02-26 深圳市爱康生物科技有限公司 一种应用于实验室流水线设备的试管检测装置及方法
CN112540184A (zh) * 2020-12-24 2021-03-23 长沙迈迪克智能科技有限公司 一种自动医用移液设备
US20210239725A1 (en) * 2018-08-24 2021-08-05 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Blood sample analyzer and blood sample agitating method
CN113219187A (zh) * 2021-03-17 2021-08-06 济南国科医工科技发展有限公司 推拉式试管架自动化供应装置
CN114152770A (zh) * 2022-02-09 2022-03-08 深圳市帝迈生物技术有限公司 样本分析仪及其检测流程
CN114236154A (zh) * 2021-11-24 2022-03-25 昆明金域医学检验所有限公司 一种全血标本采血管全自动更换装置
WO2023056625A1 (zh) * 2021-10-09 2023-04-13 阳普医疗科技股份有限公司 血栓弹力图仪混匀机构
CN116242994A (zh) * 2022-12-09 2023-06-09 中国人民解放军总医院第八医学中心 一种家用血常规自动分析仪
CN117554313A (zh) * 2024-01-10 2024-02-13 绍兴君鸿智能科技有限公司 一种自动化检测系统及自动化检测方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157750B (zh) * 2019-12-31 2024-03-15 深圳开立生物医疗科技股份有限公司 一种自动进样控制方法及相关装置
CN114054123B (zh) * 2020-07-31 2023-04-18 深圳市帝迈生物技术有限公司 样本分析仪、试管适配装置
CN113181811A (zh) * 2021-04-30 2021-07-30 宁波美康盛德生物科技有限公司 一种血液样本自动混匀装置及混匀方法
CN113607967A (zh) * 2021-09-30 2021-11-05 宁波奥丞生物科技有限公司 一种化学发光免疫分析仪用试管样本混匀装置
CN114354957B (zh) * 2022-03-18 2022-08-23 深圳市帝迈生物技术有限公司 一种样本分析仪的清场方法及样本分析仪
CN114460321A (zh) * 2022-04-14 2022-05-10 深圳市帝迈生物技术有限公司 样本分析仪及其试管检测组件
CN114950218B (zh) * 2022-04-28 2024-04-02 桂林优利特医疗电子有限公司 一种样本全自动混匀系统及混匀方法
CN114887687A (zh) * 2022-05-16 2022-08-12 苏州市吴江区儿童医院 放末梢血的试管架

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361061A (ja) * 2001-06-12 2002-12-17 Japan Tobacco Inc 振とう装置
CN201251579Y (zh) * 2008-09-11 2009-06-03 杭州迪安医学检验中心有限公司 全自动生化免疫分析仪专用试管
CN102151510A (zh) * 2011-02-14 2011-08-17 四川迈克生物科技股份有限公司 一种混匀装置
CN103364577A (zh) * 2012-03-29 2013-10-23 深圳市开立科技有限公司 用于血细胞分析仪的进样取样装置
CN103760372A (zh) * 2013-12-26 2014-04-30 杭州中翰盛泰生物技术有限公司 一种全自动即时检验仪
CN203630149U (zh) * 2013-12-26 2014-06-04 杭州中翰盛泰生物技术有限公司 一种全自动即时检验仪用摇匀装置
CN205656132U (zh) * 2016-04-14 2016-10-19 深圳市帝迈生物技术有限公司 一种管内有无试剂的检测装置
CN107167344A (zh) * 2017-07-05 2017-09-15 四川迈克生物医疗电子有限公司 吸样系统及样本分析仪
CN208140723U (zh) * 2018-04-24 2018-11-23 深圳市帝迈生物技术有限公司 一种全自动进样血细胞分析测量装置
CN208459415U (zh) * 2018-04-24 2019-02-01 深圳市帝迈生物技术有限公司 一种血样自动混匀装置及血细胞分析设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162955A (ja) * 1984-02-03 1985-08-24 Hitachi Ltd 血球自動分析装置
JPH0536364U (ja) * 1991-10-22 1993-05-18 東亜医用電子株式会社 検体容器
CN2820177Y (zh) * 2005-06-16 2006-09-27 赵缜 末梢血血常规标本用容器
CN1932514A (zh) * 2006-09-30 2007-03-21 江西特康科技有限公司 血细胞分析仪送样方式及自动送样装置
CN101688874A (zh) * 2007-07-12 2010-03-31 希森美康株式会社 标本容器
CN101603968B (zh) * 2009-07-14 2011-12-21 重庆天海医疗设备有限公司 血流变测量的封闭式自动检测装置
JP5735361B2 (ja) * 2010-08-02 2015-06-17 シスメックス株式会社 検体処理装置
US8460620B2 (en) * 2010-12-03 2013-06-11 Becton, Dickinson And Company Specimen collection container assembly
CN102095841B (zh) * 2011-01-27 2013-05-08 桂林优利特医疗电子有限公司 血细胞分析仪的单个自动进样装置
JP2014128329A (ja) * 2012-12-28 2014-07-10 Aso Corp 末梢動脈血管の光電脈波解析方法および光電脈波解析装置
CN103901220B (zh) * 2014-04-02 2015-04-08 长春迪瑞医疗科技股份有限公司 一种自动夹取、摇匀和穿刺的装置
CN104502178B (zh) * 2015-01-07 2017-04-12 深圳市帝迈生物技术有限公司 一种全自动试管液体样本混匀装置及血细胞分析仪
CN204723071U (zh) * 2015-06-17 2015-10-28 江苏康健医疗用品有限公司 微量末梢血采集管
CN205317799U (zh) * 2015-12-31 2016-06-15 四川奥博生物医学电子有限公司 自动进样器
CN105854976B (zh) * 2016-05-04 2017-11-21 安徽省华腾农业科技有限公司 阶梯式自动识别试管架及试管识别报警方法
CN107121559B (zh) * 2017-05-09 2018-11-23 深圳市帝迈生物技术有限公司 可对末梢血进行全自动进样血细胞分析的测量方法和装置
CN207215844U (zh) * 2017-08-22 2018-04-10 深圳市帝迈生物技术有限公司 自动进样血液分析仪及其试管自动进样识别装置
CN107807247B (zh) * 2017-10-31 2020-12-01 威海市妇女儿童医院 一种血液真空管自动上样混匀一体机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361061A (ja) * 2001-06-12 2002-12-17 Japan Tobacco Inc 振とう装置
CN201251579Y (zh) * 2008-09-11 2009-06-03 杭州迪安医学检验中心有限公司 全自动生化免疫分析仪专用试管
CN102151510A (zh) * 2011-02-14 2011-08-17 四川迈克生物科技股份有限公司 一种混匀装置
CN103364577A (zh) * 2012-03-29 2013-10-23 深圳市开立科技有限公司 用于血细胞分析仪的进样取样装置
CN103760372A (zh) * 2013-12-26 2014-04-30 杭州中翰盛泰生物技术有限公司 一种全自动即时检验仪
CN203630149U (zh) * 2013-12-26 2014-06-04 杭州中翰盛泰生物技术有限公司 一种全自动即时检验仪用摇匀装置
CN205656132U (zh) * 2016-04-14 2016-10-19 深圳市帝迈生物技术有限公司 一种管内有无试剂的检测装置
CN107167344A (zh) * 2017-07-05 2017-09-15 四川迈克生物医疗电子有限公司 吸样系统及样本分析仪
CN208140723U (zh) * 2018-04-24 2018-11-23 深圳市帝迈生物技术有限公司 一种全自动进样血细胞分析测量装置
CN208459415U (zh) * 2018-04-24 2019-02-01 深圳市帝迈生物技术有限公司 一种血样自动混匀装置及血细胞分析设备

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210239725A1 (en) * 2018-08-24 2021-08-05 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Blood sample analyzer and blood sample agitating method
CN110686962A (zh) * 2019-11-04 2020-01-14 无锡博慧斯生物医药科技有限公司 一种试管的混匀装置及分析仪
CN112415627A (zh) * 2020-12-16 2021-02-26 深圳市爱康生物科技有限公司 一种应用于实验室流水线设备的试管检测装置及方法
CN112540184A (zh) * 2020-12-24 2021-03-23 长沙迈迪克智能科技有限公司 一种自动医用移液设备
CN113219187B (zh) * 2021-03-17 2022-06-17 济南国科医工科技发展有限公司 推拉式试管架自动化供应装置
CN113219187A (zh) * 2021-03-17 2021-08-06 济南国科医工科技发展有限公司 推拉式试管架自动化供应装置
WO2023056625A1 (zh) * 2021-10-09 2023-04-13 阳普医疗科技股份有限公司 血栓弹力图仪混匀机构
CN114236154A (zh) * 2021-11-24 2022-03-25 昆明金域医学检验所有限公司 一种全血标本采血管全自动更换装置
CN114236154B (zh) * 2021-11-24 2024-04-12 昆明金域医学检验所有限公司 一种全血标本采血管全自动更换装置
CN114152770B (zh) * 2022-02-09 2022-04-29 深圳市帝迈生物技术有限公司 样本分析仪及其检测流程
CN114152770A (zh) * 2022-02-09 2022-03-08 深圳市帝迈生物技术有限公司 样本分析仪及其检测流程
CN116242994A (zh) * 2022-12-09 2023-06-09 中国人民解放军总医院第八医学中心 一种家用血常规自动分析仪
CN116242994B (zh) * 2022-12-09 2023-10-13 中国人民解放军总医院第八医学中心 一种家用血常规自动分析仪
CN117554313A (zh) * 2024-01-10 2024-02-13 绍兴君鸿智能科技有限公司 一种自动化检测系统及自动化检测方法
CN117554313B (zh) * 2024-01-10 2024-04-02 绍兴君鸿智能科技有限公司 一种自动化检测系统及自动化检测方法

Also Published As

Publication number Publication date
CN110398597A (zh) 2019-11-01
CN110398596A (zh) 2019-11-01
CN210401441U (zh) 2020-04-24
CN112285369B (zh) 2021-11-23
CN110398597B (zh) 2021-12-10
CN110398599A (zh) 2019-11-01
CN110398599B (zh) 2021-03-19
CN112326982B (zh) 2024-04-19
CN112326982A (zh) 2021-02-05
CN110398596B (zh) 2023-12-01
CN112285369A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2019206097A1 (zh) 全自动进样血细胞分析测量方法及装置、对末梢血试管进行混匀操作的方法
CN208140723U (zh) 一种全自动进样血细胞分析测量装置
CN110398598B (zh) 一种血样自动混匀装置及血细胞分析设备
JPH087222B2 (ja) 自動分注希釈装置
US9448247B2 (en) Blood sample processing apparatus and blood sample processing method
JP3295014B2 (ja) 液体試料中の成分物質の自動抽出装置および液体試料中の成分物質の自動濃度測定装置
JP4755927B2 (ja) 血液試料中の血球測定方法及び装置
CN107063830A (zh) 一种阴道分泌物样本前处理装置
CN111013831A (zh) 医用血液检测用的离心装置
CN112557685A (zh) 一种检测样本分析仪吸样的方法及装置
CN112180106A (zh) 一种穿刺加液混匀机
JP6076075B2 (ja) 検体分析装置
JP3639832B2 (ja) サンプル投入装置
CN219302089U (zh) 一种用于病原体核酸检测的生物样本混匀装置
JP6570522B2 (ja) 体外自動診断方法
KR102331945B1 (ko) 다채널 혈액 점도 측정 장치
JP4719711B2 (ja) サンプル投入器具
CN114814250A (zh) 一种自动卸杯的血栓弹力图仪
CN113049801B (zh) 免疫分析仪
CN210243221U (zh) 采血管模拟采血设备
WO2014005462A1 (zh) 一种自动样品识别的采样系统及其方法
CN112684193A (zh) 拨块机构以及使用该机构的血液检测装置
JP6133651B2 (ja) 検体分析装置
CN114460320B (zh) 样本分析仪及其样本检测流程
CN219551944U (zh) 一种穿刺采样机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791808

Country of ref document: EP

Kind code of ref document: A1