WO2019205941A1 - 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统及方法 - Google Patents
一种废铅酸蓄电池回收中废铅栅网的分离熔化系统及方法 Download PDFInfo
- Publication number
- WO2019205941A1 WO2019205941A1 PCT/CN2019/082106 CN2019082106W WO2019205941A1 WO 2019205941 A1 WO2019205941 A1 WO 2019205941A1 CN 2019082106 W CN2019082106 W CN 2019082106W WO 2019205941 A1 WO2019205941 A1 WO 2019205941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lead
- ash
- waste
- grid
- copper
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 56
- 238000002844 melting Methods 0.000 title claims abstract description 55
- 230000008018 melting Effects 0.000 title claims abstract description 55
- 239000002253 acid Substances 0.000 title claims abstract description 37
- 238000004064 recycling Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 91
- 238000003723 Smelting Methods 0.000 claims abstract description 39
- 238000001035 drying Methods 0.000 claims abstract description 37
- 239000007788 liquid Substances 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 21
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000003546 flue gas Substances 0.000 claims abstract description 16
- 239000000428 dust Substances 0.000 claims abstract description 15
- 238000007599 discharging Methods 0.000 claims abstract description 9
- 238000011010 flushing procedure Methods 0.000 claims abstract description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 74
- 229910052802 copper Inorganic materials 0.000 claims description 66
- 239000010949 copper Substances 0.000 claims description 66
- 238000000926 separation method Methods 0.000 claims description 18
- 239000004927 clay Substances 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 230000007306 turnover Effects 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 239000011505 plaster Substances 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 238000011068 loading method Methods 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 239000010865 sewage Substances 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000013022 venting Methods 0.000 claims description 3
- 239000002918 waste heat Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000011085 pressure filtration Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 230000002262 irrigation Effects 0.000 claims 2
- 238000003973 irrigation Methods 0.000 claims 2
- 238000009434 installation Methods 0.000 claims 1
- DNHVXYDGZKWYNU-UHFFFAOYSA-N lead;hydrate Chemical compound O.[Pb] DNHVXYDGZKWYNU-UHFFFAOYSA-N 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 claims 1
- 230000004888 barrier function Effects 0.000 abstract description 6
- 239000002956 ash Substances 0.000 description 93
- 229910000464 lead oxide Inorganic materials 0.000 description 13
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000004380 ashing Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 206010027439 Metal poisoning Diseases 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 208000008127 lead poisoning Diseases 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/005—Separation by a physical processing technique only, e.g. by mechanical breaking
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/40—Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B13/00—Obtaining lead
- C22B13/02—Obtaining lead by dry processes
- C22B13/025—Recovery from waste materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/04—Working-up slag
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/10—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
- C22B9/106—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents the refining being obtained by intimately mixing the molten metal with a molten salt or slag
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Definitions
- the invention relates to the field of comprehensive recycling of waste lead-acid batteries, and particularly relates to a separation and melting system and method for waste lead grid in waste lead-acid battery recycling.
- Lead-acid batteries are the most widely used and widely used batteries in the world, and they consume more than 85% of the world's total lead. China's lead-acid battery industry entered a period of vigorous development in the 1990s. With the development of the national economy, its market will continue to expand, with cars, motorcycles, electric vehicles, electricity, and communications as the main targets. In recent years, the development of smoke-free vehicles such as electric vehicles has led to a greater development of the lead-acid battery industry, and the greater the output of lead-acid batteries, the more lead-acid batteries that need to be renewed. From a point of view, lead-acid batteries are also the kind of battery that is the most harmful to the environment and human health. In the production and recycling of recycled lead, there are many sources of raw materials, and more than 90% are from waste lead-acid batteries. According to statistics, the number of waste lead-acid batteries produced in 2017 will reach 4 million tons.
- the waste lead-acid battery consists of the following parts: 1. Waste electrolyte; 2, plate (positive plate, negative plate).
- the positive and negative poles in the battery are made of lead alloy and the surface of the positive plate is coated with metal lead powder.
- the surface of the negative plate is coated with lead oxide powder;
- the battery casing is mainly made of PP, ABS and other plastics;
- the partition is generally made of microporous rubber, PVC plastic separator and paper.
- waste lead-acid batteries In the treatment of waste lead-acid batteries, the state promulgated the "Leading Conditions for Lead and Zinc Industry", “Clean Production Standard Lead-acid Battery Lead-Recycling Industry”, “Technical Specifications for Waste Lead-Acid Battery Treatment Pollution Control”, etc. It is necessary to perform crushing and sorting pretreatment on the waste lead-acid battery.
- the waste lead-acid battery is broken by the automatic crushing and sorting system to produce the following four components, waste lead grid, lead mud, waste plastic and separator paper, of which the waste lead grid accounts for about 25%.
- Such lead grids are mostly lead-based alloys containing valuable elements such as antimony and tin, which can be directly produced by low-temperature melting.
- the water content is as high as 10% or more. Can not directly enter the melting pot to melt or otherwise lead to explosion in the feeding process, affecting safe production, in addition, excessive moisture in the smelting, vaporization of the water also takes a lot of heat, which also increases the cost of smelting.
- the surface of the lead liquid melted during the production process will produce scum ash of lead oxide ash. Therefore, it is necessary to rely on the lead oxide which is artificially floated on the surface of the lead liquid.
- the residue ash is removed.
- the worker uses the iron shovel with a leak hole to remove the scum ash from the smelting pot, and the removed lead ash is put into the ash hopper.
- the copper terminal on the pole is difficult to be separated from the lead grid.
- the lead grid When the lead grid is smelted at low temperature, it is lightly entered into the lead ash due to the high melting point, and is manually detected in such a huge waste lead-acid battery stack.
- the copper terminal is extremely unrealistic. If the copper terminal enters the next smelting process and is mixed into the crude lead, it not only wastes a lot of copper resources, but also brings a very high production cost to the refined lead copper.
- the object of the present invention is to provide a separation and melting system and method for waste lead grid in waste lead acid battery recovery with high degree of automation and high heat utilization rate.
- the present invention includes a separation melting system of a waste lead grid and a separation and melting method.
- the separation and melting system of the waste lead grid includes: a dust remover, a flue gas duct, a lead liquid mixer, a lead grid net turnover box, a lead grid net baffle, an ash pipe, an automatic ash machine, a lead ash conveyor, copper Terminal separator, lead clay tank, lead mud mixer, copper collection box, circulating water treatment device, melting device, screw feeder and drying cylinder;
- a drying cylinder is installed at an upper end of the melting device, and a dust pipe is connected to the dust collector at an upper end of the drying cylinder, and a lead grid turnover box is connected to the upper end of the drying cylinder, and a lead liquid mixer passes through the drying cylinder to the melting device.
- a spiral feeder is installed on the smelting device and is located in the drying cylinder.
- the automatic ashing machine is installed in the smelting In the device, the feeding end is located in the melting device, and the discharge port is connected to the inlet of the lead ash conveyor through the ash pipe; the discharge port of the lead ash conveyor is located in the copper terminal separator, and the copper terminal separator is installed.
- the circulating water flushing pipe on the copper terminal separator is connected to the clean water outlet end of the circulating water treatment device through a pipeline, and the sewage input end of the circulating water treatment device is connected to the lower part of the lead clay tank, in the lead clay tank A lead mud mixer is also connected to it.
- the smelting device comprises: a pot cover, a melting furnace body, a melting pot, a siphon discharge tube and a lead-preventing valve; the melting pot is placed on the melting furnace body, the top of the melting pot has a pot cover, and the bottom of the melting pot has a siphon
- the lead pipe is discharged, and the siphon discharge pipe is used to discharge the lead liquid through the lead discharge valve; the drying cylinder, the screw feeder and the automatic dust collector are located on the pan cover.
- the automatic ashing machine comprises a motor, a reducer, a coupling, a cylinder, a main shaft, a spiral blade, a ash inlet, a ash outlet, a ash collection plate, a liquid leakage hole, a bottom bearing seat and a bracket wheel;
- the front end of the cylinder body has a ash outlet, the rear end is provided with a ash inlet, a spindle is installed in the cylinder body, a spiral blade is mounted on the main shaft, the main shaft penetrates the cylinder body, and the rear end of the main shaft is connected with the bottom bearing seat, and the front end of the main shaft is connected.
- the shaft and the coupling are connected to the motor through a reducer; and the gray plate is connected in the cylinder at the position of the ash inlet;
- the ash collecting plate is uniformly distributed with a liquid leakage hole, and the pore size thereof is ⁇ 3-6 mm; the lead liquid is flowed back into the smelting lead pan, so that the lead liquid and the lead ash are separated;
- a bracket wheel is connected to the bottom surface of the cylinder body, and the bracket wheel is located on the wall of the cylinder between the ash outlet and the ash inlet.
- the bracket wheel has wheels on the bracket foot to facilitate the entire hopper on the ground. mobile.
- the spiral feeder is located at the lower end of the lead grid mesh baffle, and the two ends are placed outside the drying cylinder, the upper part of the spiral cylinder is opened into the material inlet, and the lower part is opened.
- the lead grid mesh baffle is an elliptical thick 10-20MM high temperature resistant steel plate, which is connected around the inner wall of the drying cylinder, and the lower end is connected with the spiral feeder, and forms an angle of 30-60° with the surface of the melting pot. Uniformly venting holes with a pore size of ⁇ 2-6mm are convenient for the transfer of waste heat and heat to preheat the lead grid.
- the copper component terminal separator comprises: an outer cylinder body, a drum screen, a transmission pulley, an ash inlet, a lead ash conveyor, a support wheel, a support bracket, a circulating water washing pipe, a material deflector, and a discharge port.
- a copper screen is connected to one end of the support rail, and the end of the copper screen is a copper outlet;
- a drive pulley is connected to one side of the feed runner rail, and the drive pulley is connected to the motor through the belt;
- the ash conveyor passes through the inlet ring of the feed ring and enters into the drum screen.
- the outer cylinder has a lead-glued water outlet at the bottom of the outer cylinder, and a circulating water is connected to the outer cylinder The pipe is washed, and the circulating water is flushed to the rotating drum screen to spray and drain the circulating water.
- the water circulation treatment device comprises: a clear water output pipe, a filter water return pipe, a clean water pump, a lead mud pump, a circulating pool, a filter press and a lead mud input pipe; the water inlet end of the clean water pump is connected with the circulating pool, and the clean water pump is The outlet end is connected with the circulating water inlet pipe, and a filter press is arranged above the circulating pool, and the output end of the filter press is connected to the circulating pool through the pressure filtration water return pipe; the input end of the filter press passes through the output end of the pipeline and the lead mud pump Connected, the lead mud pump input is connected to the lower part of the lead clay tank.
- the separation and melting method comprises the following steps:
- Step (1) crushing and sorting the waste lead-acid battery, and loading the sorted lead grid into the tote;
- Step (2) using the high temperature flue gas of the smelting pot to dry and preheat the waste lead grid, controlling the water to be below 2%, and adding to the smelting pot for low temperature melting;
- Step (3) using an automatic ash ash machine to separate the molten lead liquid from the scum ash, and transporting the lead scum ash to the copper component terminal separator;
- Step (4) the separator is turned on, and the lead dross ash containing the copper component terminal is sprayed by the high-pressure circulating water, and the lead-acid ash adhered to the copper component terminal is washed away, and further moved forward by the material deflector. And discharging from the copper piece discharge port of the copper wire mesh to complete the separation of the copper component terminal and the lead ash;
- step (5) the purified lead liquid is sent to the heat-insulating lead package through the lead-discharge tube and sent to the next step to prepare the alloy.
- the beneficial effect is that, due to the above scheme, the waste lead grid of the waste lead-acid battery crushing and sorting is loaded into the turnover box, and the moisture content of the lead grid is generally greater than 10%, and it is not suitable to directly enter the melting pot. Open the movable bottom plate at the bottom of the totes, the wet waste lead grid drops onto the lead grid barrier, the high temperature flue gas from the lead pan is preheated and dried by the lead grid, and the dried lead grid is in its own gravity. Under the action, it slides down the slope to the feeding end of the screw feeder at the bottom of the baffle plate, and starts the screw feeder to transport the lead grid to the molten lead pan. The feeding speed can be controlled according to the feeding condition to ensure the cutting. Uniformity is not blocked.
- the waste lead grid After the waste lead grid is dried by residual heat, it enters the melting pot and melts at a low temperature. The temperature is controlled at 350-450 ° C.
- the impurities such as lead oxide attached to the surface of the lead grid and the copper terminal mixed therein are floating on the surface of the lead liquid due to the specific gravity.
- the mixer of the smelting pot After the lead liquid level reaches a certain height, the mixer of the smelting pot is turned on, and an appropriate amount of slag removing agent is added to further separate the lead in the slag from the ash.
- the automatic ash feeder 7 is put into the ash port of the mixer in the mixing shaft of the mixer, and the ash plane in the ashing machine and the pan is generally less than 45°, and the ash collecting device is opened. And the mixer, the ash is transferred into the ash device through the ash inlet through the ash collecting plate under the action of the stirring shaft rotation, and the spiral blade slowly transports the ash slag through the ash pipe to the lead ash conveyor to enter the copper terminal.
- the lead ash containing the copper terminal is under the action of the material deflector, the lead plaster slowly moves to the front end of the rotary screen, and the high-pressure water spray of the circulating water rinse pipe is used to carry out the lead oxide ash.
- Flushing and rinsing off the lead oxide ash attached to the copper terminal, and the copper terminal on the rotating screen mesh is further moved forward by the material deflector, rinsed by the circulating water to the copper screen, and It is discharged from the copper outlet of the copper wire mesh and enters the copper collection box to complete the separation of the copper terminal and the lead ash; the flushing lime water flows through the rotary screen through the lead-glued water outlet into the lead-clay tank.
- the lead liquid in the molten lead pan is discharged from the lead pipe of the molten lead pan by a siphon discharge pipe and a lead valve to be used in a lead bag for use.
- the flue gas in the production process is introduced into the dust collector through the flue gas duct for dust removal and purification treatment, and the exhaust gas reaching the standard is caused by the fan to cause the chimney to discharge.
- the melting temperature is low, effectively retaining valuable metals such as antimony and tin in the lead grid, which reduces the production cost of the prepared alloy and saves resources;
- the whole device is operated under the negative pressure state, and the flue gas is pumped into the dust collector by the induced draft fan to purify and discharge the standard to protect the environment.
- the device has a simple structure, stable and continuous production process, high degree of automation, high heat utilization rate and energy saving.
- Figure 1 is a structural view of the present invention.
- Figure 2 is a structural view of the automatic ashing machine of the present invention.
- Figure 3 is a structural view of a copper component terminal separator of the present invention.
- Figure 4 is a side elevational view of Figure 3.
- Figure 5 is a structural view of a melting apparatus of the present invention.
- Figure 6 is a structural view of a water circulation treatment apparatus of the present invention.
- Figure 7 is a structural view of the screw feeder of the present invention.
- Figure 8 is a structural view of a lead grid barrier plate of the present invention.
- Embodiment 1 The separation and melting system of the waste lead grid includes: a dust remover 1, a flue gas duct 2, a lead liquid mixer 3, a lead grid net turnover box 4, a lead grid net baffle 5, a ash pipe 6, and an automatic Ash hopper 7, lead ash conveyor 8, copper terminal separator 9, lead clay tank 10, lead mud mixer 11, copper collection box 12, circulating water treatment device 13, smelting device 14, spiral feeder 15 and Drying cylinder 16;
- a drying cylinder 16 is attached to the upper end of the melting device 14, and is connected to the dust collector 1 through the flue gas duct 2 at the upper end of the drying cylinder 16, and a lead grid turnover box 4 is connected to the upper end of the drying cylinder 16, and a lead liquid mixer 3 is provided.
- a screw feeder 15 is mounted on the melting device 14 and located in the drying cylinder 16, and a lead grid barrier baffle 5 is placed on the screw feeder 15 at one end, and the other end Laying on the inner wall of the drying cylinder 16;
- the automatic ashing machine 7 is installed on the smelting device 14, the feeding end is located in the smelting device 14, and the discharging port is connected to the inlet of the lead ash conveyor 8 through the ash discharging pipe 6;
- the discharge port of the lead ash conveyor 8 is located at the copper terminal separator 9, the copper terminal separator 9 is mounted on the lead clay tank 10; the circulating water rinsing pipe 9-8 on the copper terminal separator 9 is piped and circulated
- the fresh water outlet end of the water treatment device 13 is connected, and the sewage input end of the circulating water treatment device 13 is connected to the lower portion of the lead-clay tank 10, and a lead-mixer 11 is connected to the lead-clay tank 10.
- the smelting device 14 includes: a pot cover 14-1, a smelting furnace body 14-2, a smelting pot 14-3, a siphon discharge tube 14-4, and a lead discharge valve 14-5; the smelting pot 14-3 is placed in the smelting On the furnace body 14-2, the top of the melting pot 14-3 has a pot cover 14-1, at the bottom of the melting pot 14-3 there is a siphon discharge tube 14-4, and the siphon discharge tube 14-4 passes through the lead valve 14 -5 outputs lead liquid; the drying cylinder 16, the screw feeder 15 and the automatic hopper 7 are located on the pan 14-1.
- the automatic ashing machine comprises a motor 7-1, a speed reducer 7-2, a coupling 7-3, a cylinder 7-4, a spindle 7-5, a spiral blade 7-6, a ash inlet 7-7,
- the front end of the cylinder 7-4 has a ash outlet 7 -8, the rear end is provided with a ash inlet 7-7, the barrel 7-4 is equipped with a spindle 7-5, the main shaft 7-5 is mounted with a spiral blade 7-6, and the main shaft 7-5 is inserted through the cylinder 7-4
- the rear end of the main shaft is connected to the bottom bearing housing 7-11, the front end of the main shaft 7-5 is connected to the coupling 7-3, and the coupling 7-3 is connected to the motor 7-1 through the speed reducer 7-2;
- a ash collecting plate 7-9 is connected to the barrel 7-4 at the
- the ash collecting plate 7-9 is uniformly distributed with a liquid leakage hole 7-10, and the pore size thereof is ⁇ 3-6 mm; the lead liquid is flowed back into the smelting lead pan, so that the lead liquid and the lead ash are separated;
- a bracket wheel 7-12 is connected to the bottom surface of the cylinder 7-4, and the bracket wheel 7-12 is located on the wall of the cylinder 7-4 between the ash outlet 7-8 and the ash inlet 7-7. There are wheels on the legs of the walking wheels 7-12 to facilitate the movement of the entire hopper on the ground.
- the spiral hopper 15 is located at the lower end of the lead grid barrier baffle 5, and the two ends are placed outside the drying cylinder 16, the upper part of the spiral cylinder is opened into the material inlet, and the lower part is opened.
- the lead grid barrier baffle 5 is an elliptical thick 10-20MM high temperature resistant steel plate, which is connected around the inner wall of the drying cylinder 16 at the lower end, and is connected to the spiral hopper 7 at the lower end, and is clipped to the smelting pot surface by 30-60°.
- the horn has a venting hole with a diameter of ⁇ 2-6mm, which is convenient for the transfer of residual heat of the flue gas to preheat the lead grid.
- the copper terminal separator 9 comprises: an outer cylinder 9-1, a drum screen 9-2, a transmission pulley 9-3, a ash inlet 9-4, a lead ash conveyor 9-5, and a carrier 9- 6.
- the water circulation treatment device includes: a clean water output pipe 13-1, a filter water return pipe 13-2, a clean water pump 13-3, a lead mud pump 13-4, a circulating water tank 13-5, a filter press 13-6, and Lead slurry input pipe 13-7; the water inlet end of the clean water pump 13-3 is connected to the circulating water tank 13-5, and the water outlet end of the clean water pump 13-3 is connected with the circulating water inlet pipe 13-1, above the circulating water tank 13-5 There is a filter press 13-6, the output end of the filter press 13-6 is connected to the circulating water tank 13-5 through the pressurizing water return pipe 13-2; the input end of the filter press 13-6 is passed through the pipeline and the lead mud pump 13- The output of the lead mud pump 13-4 is connected to the lower end of the lead clay tank 10.
- the separation and melting method comprises the following steps:
- Step (1) crushing and sorting the waste lead-acid battery, and loading the sorted lead grid into the tote;
- Step (2) using the high temperature flue gas of the smelting pot to dry and preheat the waste lead grid, controlling the water to be below 2%, and adding to the smelting pot for low temperature melting;
- Step (3) using an automatic ash ash machine to separate the molten lead liquid from the scum ash, and transporting the lead scum ash to the copper component terminal separator;
- Step (4) the separator is turned on, and the lead dross ash containing the copper component terminal is sprayed by the high-pressure circulating water, and the lead-acid ash adhered to the copper component terminal is washed away, and further moved forward by the material deflector. And discharging from the copper piece discharge port of the copper wire mesh to complete the separation of the copper component terminal and the lead ash;
- step (5) the purified lead liquid is sent to the heat-insulating lead package through the lead-discharge tube and sent to the next step to prepare the alloy.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
Claims (8)
- 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统,其特征是:该废铅栅网的分离熔化系统包括:除尘器、烟气导管、铅液搅拌机、铅栅网周转箱、铅栅网隔挡板、出灰管、自动捞灰机、铅灰输送器、铜件端子分离器、铅泥罐、铅泥搅拌机、铜件收集箱、循环水处理装置、熔炼装置、螺旋下料器和干燥筒;在熔炼装置的上端安装有干燥筒,在干燥筒的上端通过烟气导管与除尘器连接,在干燥筒的上端还连接有铅栅网周转箱,有铅液搅拌机穿过干燥筒至熔炼装置内;在熔炼装置上安装有螺旋下料器并位于干燥筒内,有铅栅网隔挡板一端搭在螺旋下料器上,另一端搭在干燥筒的内壁上;自动捞灰机安装在熔炼装置上,入料端位于熔炼装置内,出料口通过出灰管与铅灰输送器的入料口连接;铅灰输送器的出料口位于铜件端子分离器,铜件端子分离器安装在铅泥罐上;铜件端子分离器上的循环水冲洗管通过管道与循环水处理装置的清水出水端连接,循环水处理装置的污水输入端连接在铅泥罐的下部,在铅泥罐上还连接有铅泥搅拌机。
- 根据权利要求1所述的一种废铅酸蓄电池回收中废铅栅网的分离熔化系统,其特征是:所述的熔炼装置包括:锅罩、熔炼炉体、熔炼锅、虹吸放铅管和放铅阀;熔炼锅安放在熔炼炉体上,熔炼锅的顶部有锅罩,在熔炼锅的底部有虹吸放铅管,虹吸放铅管通过放铅阀输出铅液;所述的干燥筒、螺旋下料器和自动捞灰机位于锅罩上。
- 根据权利要求1所述的一种废铅酸蓄电池回收中废铅栅网的分离熔化系统,其特征是:所述的自动捞灰机包括电机、减速机、联轴器、筒体、主轴、螺旋叶片、进灰口、出灰口、集灰板、漏液孔、底部轴承座和支架走轮;所述的筒体前端开有出灰口、后端开有进灰口,筒体内安装有主轴,主轴上安装有螺旋叶片,主轴贯穿筒体,主轴的后端连接底部轴承座,主轴前端连接联轴器,联轴器通过减速机与电机连接;在进灰口位置的筒体内连接有集灰板;所述集灰板上匀布有漏液孔,其孔径大小为ф3-6mm;便于铅液流回熔炼铅锅中,从而铅液与铅灰分离干净;在筒体的底面上连接有支架走轮,支架走轮位于出灰口和进灰口之间的筒体壁上,支架走轮的支架脚上有车轮,以方便整个捞灰机在地面上移动。
- 根据权利要求1所述的一种废铅酸蓄电池回收中废铅栅网的分离熔化系统,其特征是:所述的螺旋下料器位于铅栅网隔挡板下端,两端置于干燥筒外部,螺旋筒体上部开进料口,下部开下料口。
- 根据权利要求1所述的一种废铅酸蓄电池回收中废铅栅网的分离熔化系统,其特征是:所述的铅栅网隔挡板为椭圆状厚10-20MM耐高温钢板,四周连接在干燥筒内壁上,下端与螺旋下料器相连,与熔炼锅面成30-60°的夹角,上面均布孔径大小为ф2-6mm的透气孔,便于烟气余热的传递预热废铅栅网。
- 根据权利要求1所述的一种废铅酸蓄电池回收中废铅栅网的分离熔化系统,其特征是:所述的铜件端子分离器包括:外筒体、转筒筛、传动皮带轮、进灰口、铅灰输送器、托轮、托轮支架、循环水冲洗管、物料导流板、出料口托轮跑道、铜件筛网、铅灰泥水出口、铜件出料口、进料口托轮跑道、电动机;在转筒筛的两端均连接有托轮跑道,分别为出料口托轮跑道和进料口托轮跑道,所述的托轮跑道为空心环并与转筒筛内相通,在托轮跑道上有对应的托轮,托轮安装在托轮支架上;在出料口托轮跑道一端连接有铜件筛网,铜件筛网的端部为铜件出料口;在进料口托轮跑道的一侧连接有传动皮带轮,传动皮带轮通过皮带与电动机连接;有铅灰输送器穿过进料口托轮跑道环,进入至转筒筛内,在铅灰输送器的另一端有 进灰口;在转筒筛内壁有物料导流板;在转筒筛外有外筒体,在外筒体的底部有铅灰泥水出口,在外筒体上连接有循环水冲洗管,循环水冲洗管向转动的转筒筛喷、淋循环水。
- 根据权利要求1所述的一种废铅酸蓄电池回收中废铅栅网的分离熔化系统,其特征是:所述的循环水处理装置包括:清水输出管、压滤水回流管、清水泵、铅泥泵、循环水池、压滤机和铅泥浆输入管;清水泵的入水端与循环水池连接,清水泵的出水端与循环水进水管连接,在循环水池的上方有压滤机,压滤机输出端通过压滤水回流管与循环水池连接;压滤机的输入端通过管道与铅泥泵的输出端连接,铅泥泵的输入端连接在铅泥罐的下部。
- 使用权利要求1所述的一种废铅酸蓄电池回收中废铅栅网的分离熔化系统的方法,其特征是:分离熔化方法包括如下步骤:步骤(1),对废铅酸蓄电池进行破碎分选,将分选出的铅栅网装入周转箱备用;步骤(2),利用熔炼锅的高温烟气对废铅栅网进行干燥预热,控制其水分在2%以下,加入熔炼锅内进行低温熔化;步骤(3),采用自动捞灰机捞灰将熔化后的铅液与浮渣灰进行分离,将铅浮渣灰输送到铜件端子分离器;步骤(4),开启分离器,含铜件端子的铅浮渣灰经高压循环水喷淋,将附着在铜件端子上氧化铅灰冲洗掉,在物料导流板的作用下进一步向前移动,并从铜件筛网的铜件出料口排出,完成铜件端子与铅灰的分离;步骤(5),净化后的铅液通过放铅管放铅阀流入保温铅包送到下一步工序配制合金。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/050,841 US11339456B2 (en) | 2018-04-28 | 2019-04-10 | Separating and melting system and method for waste lead grid in waste lead acid storage battery recycling |
EP19793489.6A EP3770286A4 (en) | 2018-04-28 | 2019-04-10 | Separating and melting system and method for waste lead grid in waste lead acid storage battery recycling |
AU2019260137A AU2019260137B2 (en) | 2018-04-28 | 2019-04-10 | Separating and melting system and method for waste lead grid in waste lead acid storage battery recycling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810396665.7 | 2018-04-28 | ||
CN201810396665.7A CN108342581B (zh) | 2018-04-28 | 2018-04-28 | 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019205941A1 true WO2019205941A1 (zh) | 2019-10-31 |
Family
ID=62955321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/082106 WO2019205941A1 (zh) | 2018-04-28 | 2019-04-10 | 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统及方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11339456B2 (zh) |
EP (1) | EP3770286A4 (zh) |
CN (1) | CN108342581B (zh) |
AU (1) | AU2019260137B2 (zh) |
WO (1) | WO2019205941A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112853116A (zh) * | 2020-12-29 | 2021-05-28 | 安徽天畅金属材料有限公司 | 一种基于废旧铅酸蓄电池的含铅物质回收处理装置 |
CN113174489A (zh) * | 2021-05-11 | 2021-07-27 | 天津市洪瑞昌泰节能科技股份有限公司 | 一种铅栅低温熔铸工艺 |
CN113737016A (zh) * | 2021-09-18 | 2021-12-03 | 安徽华铂再生资源科技有限公司 | 一种从锡酸钠溶液压滤固体物中冶炼粗锡的工艺 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108342581B (zh) * | 2018-04-28 | 2023-07-18 | 江苏新春兴再生资源有限责任公司 | 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统及方法 |
CN109807317A (zh) * | 2019-03-20 | 2019-05-28 | 河北金宇晟再生资源利用有限公司 | 一种电解铅车间用粗铅除尘捞渣机 |
CN109750166A (zh) * | 2019-03-20 | 2019-05-14 | 河北港安环保科技有限公司 | 一种电池铜头分离装置 |
CN112129100B (zh) * | 2020-09-21 | 2022-09-09 | 天能集团(濮阳)再生资源有限公司 | 一种废旧铅酸蓄电池熔炼装置及熔炼方法 |
CN112916584B (zh) * | 2021-01-27 | 2022-06-14 | 生态环境部华南环境科学研究所 | 一种用于废铅酸电池资源综合回收装置及方法 |
CN114949891B (zh) * | 2022-06-12 | 2024-06-25 | 内蒙古溢多利生物科技有限公司 | 一种酶制剂恒温喷雾干燥系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008226768A (ja) * | 2007-03-15 | 2008-09-25 | Hosokura Kinzoku Kogyo Kk | 切断装置 |
CN201324831Y (zh) * | 2008-12-10 | 2009-10-14 | 河南豫光金铅股份有限公司 | 用于处理铅栅的熔铸装置 |
CN104087756A (zh) * | 2014-07-28 | 2014-10-08 | 扬州市华翔有色金属有限公司 | 一种再生铅氧化还原冶炼方法 |
CN205508980U (zh) * | 2016-03-22 | 2016-08-24 | 安徽华铂再生资源科技有限公司 | 电池极柱铜头分离装置 |
CN106252743A (zh) * | 2016-08-25 | 2016-12-21 | 安徽华铂再生资源科技有限公司 | 废铅酸蓄电池铅零件、铅栅低温脱渣和铜极柱分离回收工艺 |
CN108330292A (zh) * | 2018-04-28 | 2018-07-27 | 江苏新春兴再生资源有限责任公司 | 连续干燥熔化自动捞灰的一体化处理废铅栅网装置及方法 |
CN108342581A (zh) * | 2018-04-28 | 2018-07-31 | 江苏新春兴再生资源有限责任公司 | 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统及方法 |
CN108620229A (zh) * | 2018-04-28 | 2018-10-09 | 江苏新春兴再生资源有限责任公司 | 一种用于从铅灰中分离铜件端子的分离装置及方法 |
CN208121173U (zh) * | 2018-04-28 | 2018-11-20 | 江苏新春兴再生资源有限责任公司 | 连续干燥熔化自动捞灰的一体化处理回收废铅栅网装置 |
CN208121171U (zh) * | 2018-04-28 | 2018-11-20 | 江苏新春兴再生资源有限责任公司 | 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3734718A (en) * | 1971-12-15 | 1973-05-22 | Dow Chemical Co | Magnesium-magnesium chloride bath separation |
US4098685A (en) * | 1977-01-06 | 1978-07-04 | Akerlow Industries, Inc. | Apparatus and method for separating lead battery materials |
KR20040005770A (ko) * | 2003-12-17 | 2004-01-16 | 홍성호 | 폐배터리 재활용 장치 |
CN2835238Y (zh) * | 2005-11-04 | 2006-11-08 | 唐山化工机械有限公司化工机械设计研究所 | 前排式回转化灰机 |
CN101414698A (zh) * | 2008-12-10 | 2009-04-22 | 河南豫光金铅股份有限公司 | 废旧蓄电池铅栅的熔融及配合金的装置及工艺 |
RU98192U1 (ru) * | 2009-12-10 | 2010-10-10 | Общество с ограниченной ответственностью Научно-технологический центр "Аурум" | Линия переработки шламов аккумуляторного лома |
CN101979165B (zh) * | 2010-09-26 | 2013-02-27 | 杨春明 | 废铅酸蓄电池破碎分选机及分选方法 |
CN102055045B (zh) * | 2010-12-10 | 2012-10-24 | 尚诚德 | 一种废旧铅酸蓄电池回收处理方法 |
CN103014348B (zh) * | 2012-12-14 | 2015-01-07 | 河南豫光金铅股份有限公司 | 对废旧铅酸蓄电池分选的板栅进行连续处理的装置及工艺 |
CN104183883B (zh) * | 2013-07-22 | 2017-04-19 | 天能电池(芜湖)有限公司 | 一种蓄电池端子生产设备铅渣回收利用装置 |
CN203599041U (zh) * | 2013-12-05 | 2014-05-21 | 魏兴虎 | 一种蓄电池铅膏分离设备 |
CN103667725A (zh) * | 2013-12-31 | 2014-03-26 | 河南豫光金铅股份有限公司 | 废旧铅酸蓄电池铅膏底吹熔炼一步炼铅工艺及装置 |
CN203999760U (zh) * | 2014-06-18 | 2014-12-10 | 湖南鸿飞机械有限公司 | 粗铅脱铜锅环保捞渣装置 |
CN105950868A (zh) * | 2016-05-27 | 2016-09-21 | 广东新生环保科技股份有限公司 | 废旧铅酸蓄电池的铜铅分离工艺 |
CN106000557B (zh) * | 2016-06-18 | 2018-10-16 | 江苏新春兴再生资源有限责任公司 | 一种处理废铅酸蓄电池细铅栅的铅针、铅泥分离机 |
CN206015041U (zh) * | 2016-09-28 | 2017-03-15 | 江苏新春兴再生资源有限责任公司 | 一种布料式热风烘干的再生铅熔炼炉螺旋加料装置 |
CN107309158A (zh) * | 2017-07-24 | 2017-11-03 | 共享铸钢有限公司 | 铸钢件抛丸用钢丸回收装置 |
-
2018
- 2018-04-28 CN CN201810396665.7A patent/CN108342581B/zh active Active
-
2019
- 2019-04-10 WO PCT/CN2019/082106 patent/WO2019205941A1/zh unknown
- 2019-04-10 AU AU2019260137A patent/AU2019260137B2/en active Active
- 2019-04-10 US US17/050,841 patent/US11339456B2/en active Active
- 2019-04-10 EP EP19793489.6A patent/EP3770286A4/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008226768A (ja) * | 2007-03-15 | 2008-09-25 | Hosokura Kinzoku Kogyo Kk | 切断装置 |
CN201324831Y (zh) * | 2008-12-10 | 2009-10-14 | 河南豫光金铅股份有限公司 | 用于处理铅栅的熔铸装置 |
CN104087756A (zh) * | 2014-07-28 | 2014-10-08 | 扬州市华翔有色金属有限公司 | 一种再生铅氧化还原冶炼方法 |
CN205508980U (zh) * | 2016-03-22 | 2016-08-24 | 安徽华铂再生资源科技有限公司 | 电池极柱铜头分离装置 |
CN106252743A (zh) * | 2016-08-25 | 2016-12-21 | 安徽华铂再生资源科技有限公司 | 废铅酸蓄电池铅零件、铅栅低温脱渣和铜极柱分离回收工艺 |
CN108330292A (zh) * | 2018-04-28 | 2018-07-27 | 江苏新春兴再生资源有限责任公司 | 连续干燥熔化自动捞灰的一体化处理废铅栅网装置及方法 |
CN108342581A (zh) * | 2018-04-28 | 2018-07-31 | 江苏新春兴再生资源有限责任公司 | 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统及方法 |
CN108620229A (zh) * | 2018-04-28 | 2018-10-09 | 江苏新春兴再生资源有限责任公司 | 一种用于从铅灰中分离铜件端子的分离装置及方法 |
CN208121173U (zh) * | 2018-04-28 | 2018-11-20 | 江苏新春兴再生资源有限责任公司 | 连续干燥熔化自动捞灰的一体化处理回收废铅栅网装置 |
CN208121171U (zh) * | 2018-04-28 | 2018-11-20 | 江苏新春兴再生资源有限责任公司 | 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3770286A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112853116A (zh) * | 2020-12-29 | 2021-05-28 | 安徽天畅金属材料有限公司 | 一种基于废旧铅酸蓄电池的含铅物质回收处理装置 |
CN112853116B (zh) * | 2020-12-29 | 2023-04-07 | 安徽天畅金属材料有限公司 | 一种基于废旧铅酸蓄电池的含铅物质回收处理装置 |
CN113174489A (zh) * | 2021-05-11 | 2021-07-27 | 天津市洪瑞昌泰节能科技股份有限公司 | 一种铅栅低温熔铸工艺 |
CN113737016A (zh) * | 2021-09-18 | 2021-12-03 | 安徽华铂再生资源科技有限公司 | 一种从锡酸钠溶液压滤固体物中冶炼粗锡的工艺 |
Also Published As
Publication number | Publication date |
---|---|
US20210230713A1 (en) | 2021-07-29 |
CN108342581A (zh) | 2018-07-31 |
AU2019260137B2 (en) | 2021-11-25 |
AU2019260137A1 (en) | 2020-11-19 |
US11339456B2 (en) | 2022-05-24 |
CN108342581B (zh) | 2023-07-18 |
EP3770286A1 (en) | 2021-01-27 |
EP3770286A4 (en) | 2021-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019205941A1 (zh) | 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统及方法 | |
CN201345398Y (zh) | 废铅酸蓄电池及含铅废物再生利用系统 | |
CN108330292A (zh) | 连续干燥熔化自动捞灰的一体化处理废铅栅网装置及方法 | |
CN107208183A (zh) | 基于镁合金废料生产国标镁合金锭的生产线 | |
CN101197458B (zh) | 废旧铅酸蓄电池回收处理工艺 | |
CN113354129A (zh) | 一种自动化数控机床排屑装置 | |
CN100497678C (zh) | 电镀污泥的处理工艺及其装置 | |
CN102110560B (zh) | 含汞废灯管无害化处理方法 | |
CN208121173U (zh) | 连续干燥熔化自动捞灰的一体化处理回收废铅栅网装置 | |
CN208146629U (zh) | 一种生活垃圾焚烧飞灰无害化处理系统 | |
CN212664374U (zh) | 一种废铁渣回收装置 | |
CN201324831Y (zh) | 用于处理铅栅的熔铸装置 | |
CN208121171U (zh) | 一种废铅酸蓄电池回收中废铅栅网的分离熔化系统 | |
CN103014348B (zh) | 对废旧铅酸蓄电池分选的板栅进行连续处理的装置及工艺 | |
CN205637096U (zh) | 一种泥水分离型多功能疏浚车 | |
CN105149326B (zh) | 含油铜屑的一种无污染连续处理装置及其处理方法 | |
CN103337440B (zh) | 一种废荧光灯材料分离分选自动生产装置及方法 | |
CN104911373A (zh) | 封闭加热炼铅系统 | |
CN211133498U (zh) | 一种高炉瓦斯灰、电炉灰碳化陪烧废气治理设备 | |
CN211133861U (zh) | 一种节能环保的甲萘胺水浴熔化装置 | |
CN209076909U (zh) | 一种用于从铅灰中分离铜件端子的分离装置 | |
CN108620229B (zh) | 一种用于从铅灰中分离铜件端子的分离装置及方法 | |
CN207546072U (zh) | 水浴除尘器 | |
CN205874180U (zh) | 处理污泥的催化裂解炉 | |
CN104829084B (zh) | 负压热解析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19793489 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019793489 Country of ref document: EP Effective date: 20201020 |
|
ENP | Entry into the national phase |
Ref document number: 2019260137 Country of ref document: AU Date of ref document: 20190410 Kind code of ref document: A |