WO2019205364A1 - 一种利用卫星结构的增强拉曼检测方法 - Google Patents

一种利用卫星结构的增强拉曼检测方法 Download PDF

Info

Publication number
WO2019205364A1
WO2019205364A1 PCT/CN2018/101544 CN2018101544W WO2019205364A1 WO 2019205364 A1 WO2019205364 A1 WO 2019205364A1 CN 2018101544 W CN2018101544 W CN 2018101544W WO 2019205364 A1 WO2019205364 A1 WO 2019205364A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
shell
oxide
nanoparticles
silver
Prior art date
Application number
PCT/CN2018/101544
Other languages
English (en)
French (fr)
Inventor
李剑锋
张华�
梁苗苗
Original Assignee
厦门斯贝克科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门斯贝克科技有限责任公司 filed Critical 厦门斯贝克科技有限责任公司
Publication of WO2019205364A1 publication Critical patent/WO2019205364A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Definitions

  • the present invention relates to Raman spectroscopy, and more particularly to an enhanced Raman detection method for enhancing a Raman signal on a transition metal and its oxide using a satellite structure.
  • Raman spectroscopy is a fingerprint vibration spectroscopy technique that can be used for specific identification and detection of substances.
  • conventional Raman spectroscopy has the disadvantage of low sensitivity. This greatly limits the application of Raman spectroscopy.
  • Van Duyne et al. found that the Raman signal of molecules adsorbed on the surface of gold and silver nanomaterials can be enhanced to more than a million times. This effect has evolved into a new technology, Surface Enhanced Raman Spectroscopy (SERS).
  • SERS Surface Enhanced Raman Spectroscopy
  • SERS has a very high surface sensitivity, generally with an enhancement factor of 10 6 to 10 12 , and even up to the single molecule detection limit under optimized conditions. At the same time, it also has the advantages of resistance to water interference and detection of low wavenumber regions. Therefore, surface-enhanced Raman spectroscopy has broad application prospects in the fields of electrochemistry, analytical science, and life sciences. However, long-term studies have shown that only gold, silver, copper and other coin-based metals have strong Raman-enhancing activity; while for other materials (such as transition metals and their oxides), their Raman-enhancing activity is very low. Even without Raman enhancement (material restrictions).
  • the principle is to enhance the Raman signal of the surface molecules of the transition metal such as platinum and palladium adsorbed by the strong local electromagnetic field generated by the core gold and silver nanoparticles.
  • the borrowing strategy they obtained the Raman signals of CO adsorption on transition metals such as platinum, palladium, rhodium and ruthenium, and studied their changes under electrochemical conditions.
  • the Applicant has further developed the strategy of “borrowing power”.
  • the chemical synthesis method is used to directly coat a surface of gold and silver nanoparticles with a very thin and dense transition metal shell layer, and the thickness of the shell layer is adjustable, which greatly simplifies.
  • Raman signal is obtained from nm or smooth surface.
  • SHERNERS shell-isolated nanoparticle-enhanced Raman spectrum
  • Jian-Feng Li Yi-Fan Huang, Yong Ding, Zhi-Lin Yang, Song-Bo Li, Xiao-Shun Zhou , Feng-Ru Fan, Wei Zhang, Zhi-You Zhou, De-Yin Wu, Bin Ren, Zhong-Lin Wang, Zhong-Qun Tian.
  • SHINERS the core Au nanoparticles are used as signal amplifiers to enhance the Raman signal of nearby molecules.
  • Au is coated with a very thin and dense SiO 2 shell layer to form a shell to isolate the nanoparticles, which isolates the interaction between the sample to be tested and Au, and eliminates the interference of other signals, thereby obtaining the signal of the sample to be tested.
  • SHINERS overcomes the material and topographical constraints of traditional SERS and is theoretically applicable to any material and smooth surface. For example, the applicant obtained the Raman signal of the adsorbed substance on the surface of the single crystal by using SHERNERS, thereby realizing the in-situ study of the surface reaction process of the single crystal.
  • the object of the present invention is to provide an enhanced Raman detection method using satellite structure, which has wide universality, high sensitivity, and can be used for rapid analysis and detection of trace substances in gases and liquids.
  • the invention comprises the following steps:
  • step 2) The surface of the gold and silver nanoparticles synthesized in step 1) is coated with an extremely thin and dense oxide shell layer;
  • step 2) modifying the nanomaterial to be tested, and then assembling the surface of the nanoparticle obtained in step 2) to form gold as a core, oxide as a shell, and nanomaterial as a satellite composite, referred to as SHINES satellite structure;
  • the composite material obtained in the step 3) is placed in an environment containing the molecule to be tested, and the molecule to be tested is adsorbed on the surface of the composite material, and tested by a Raman spectrometer to obtain a Raman signal of the molecule to be tested.
  • the gold and silver nanoparticles may have a size of 30 to 200 nm.
  • the extremely thin and dense oxide shell layer may be selected from one of silicon oxide, aluminum oxide, titanium oxide, manganese oxide, etc., and the thickness of the extremely thin and dense oxide shell layer may be 0.5 to 10 Nm.
  • the nano material to be tested may be selected from one of a transition metal, a transition metal alloy, a transition metal oxide, etc.; the nano material to be tested may be electrostatically adsorbed on the surface of gold or silver nanoparticles. Or a chemical bond coupling or the like; the electrostatic adsorption method can assemble the nano material into the gold-oxide core-shell nanoparticle or the silver-oxide core-shell nanoparticle, and the specific steps can be:
  • the nano-materials can be assembled into gold-oxide core-shell nanoparticles or silver-oxide core-shell nanoparticles by means of chemical bond coupling, and the specific steps can be:
  • the invention firstly synthesizes gold or silver nanoparticles of a certain size, coats a very thin and dense oxide shell on the surface thereof, and then modifies and assembles the nanomaterial to be tested on the surface of the oxide shell to form gold-oxidation.
  • a core-shell-satellite structure composite composed of a material-nano material and used to adsorb a substance to be tested.
  • the Raman signal of the substance to be tested can be obtained by testing with a laser Raman spectrometer.
  • the method disclosed by the invention solves the problem that the traditional SERS technology is difficult to be widely used in the fields of catalytic science, environmental science, energy science and the like (the size thereof is generally 10 The problem used on nm below).
  • the advantages of the present invention are as follows:
  • the conventional SERS substrate uses bare Au and Ag as reinforcing materials, so the adsorption of many molecules is weak, so it is difficult to achieve their detection.
  • the invention can assemble the specific satellite structure by isolating the nano-particles in the shell layer, and can specifically adsorb the molecules to be tested by regulating the material of the satellite structure, thereby realizing the detection thereof;
  • the method disclosed by the invention can realize the detection of different molecules by changing the constituent materials of the satellite structure, has good versatility, and is simple to operate;
  • the molecules can be adsorbed on the surface of the gold (or silver) nanoparticles, and the nanomaterials and gold can be excluded. (or silver) the electron interaction between the nanoparticles, so that the obtained Raman signal is true and accurate; at the same time, the shell layer can also improve the stability of the particles, making it applicable to more severe conditions (such as high temperature, strong acid, etc.) ;
  • the coupling between the satellite structure and the shell layer can improve the detection sensitivity and can be directly used for the detection of substances in the solution.
  • Figure 1 is a model diagram of nanomaterials assembled on the surface of gold (or silver) @oxide core-shell nanoparticles (SHINERS satellite structure).
  • Figure 2 is a scanning electron micrograph of platinum nanoparticles assembled on the surface of Au@SiO 2 core shell.
  • Figure 3 is a transmission electron micrograph of platinum nanoparticles assembled on the surface of Au@SiO 2 core shell.
  • Figure 4 is a Raman diagram of the p-nonylnitrobenzene in the solution using the SHINERS satellite structure.
  • curve a is an Au@SiO 2 @Pt satellite structure
  • curve b is a Pt nanoparticle.
  • Figure 5 is a Raman diagram of the detection of isocyanobenzene and cinnamaldehyde in a solution using the SHINERS satellite structure.
  • curve a is the detection of isocyanide in the solution using the Au@SiO 2 @Pd satellite structure
  • curve b is the detection of cinnamaldehyde in the solution using the Au@SiO 2 @Pt satellite structure.
  • Figure 6 is a scanning electron micrograph of gold nanoparticles assembled on the surface of gold@oxide core-shell nanoparticles.
  • Figure 7 is a Raman spectrum of the pyridylpyridine in the solution using the SHINERS satellite structure.
  • curve a is the Au@SiO 2 @Au SHINERS satellite structure;
  • curve b is the Au@SiO 2 shell insulating nanoparticle.
  • Figure 8 is a Raman diagram for detecting CO in a gas using a SHINERS satellite structure.
  • Figure 9 is a Raman diagram for detecting ethylene in a gas using the SHINERS satellite structure.
  • Platinum nanoparticles are assembled on the surface of Au@SiO 2 core-shell nanoparticles:
  • FIGS 2 and 3 show the characterization results of scanning electron microscopy and transmission electron microscopy, respectively.
  • the platinum nanoparticles can be uniformly assembled on the surface of the Au@SiO 2 core-shell nanoparticles, and the obtained material is referred to as the SHINES satellite structure.
  • an Au@SiO 2 @Pt or Au@SiO 2 @Pd satellite structure was prepared. Take 50 ⁇ L of the above satellite structure and drop it on the silicon wafer. After drying naturally, it was immersed in a solution of p-nonylnitrobenzene, isocyanobenzene or cinnamaldehyde for 10 min, and then directly subjected to Raman test. At the same time, the platinum nanoparticles to be tested were directly immersed in the p-nonylnitrobenzene solution for 10 min, and then subjected to Raman test for reference.
  • Figure 4 shows the results of Raman test for the adsorption of mercaptonitrobenzene on Au@SiO 2 @Pt and ordinary platinum nanoparticles.
  • ordinary platinum nanoparticles since they do not have Raman enhancement ability, no Raman signal is observed during the test.
  • the Raman signal of the fluorenyl nitrobenzene can be clearly observed.
  • the peak of the Raman shift at 1340 cm -1 can be attributed to the characteristic vibration of the nitro group, and the peak at 1530 cm -1 can be attributed to the characteristic vibration of the benzene ring.
  • the Raman detection of isocyanide and cinnamaldehyde in the solution was successfully carried out, and the results are shown in Fig. 5.
  • Nanoparticles are assembled on the surface of Au@SiO 2 core-shell nanoparticles:
  • the SHINS obtained by amination 20 ml Au SHINs sol, slowly add 4 ml of acidified solution (40 ml water, 1 ml 0.1 mol HCl, 400 ⁇ L aminosilane solution mixed evenly) for 20 min After centrifugation, the supernatant was removed and 20 ml of 30 nm Au sol was added. The mixture was uniformly mixed and allowed to stand at 4 ° C overnight to assemble the gold nanoparticles onto the surface of the SHINs particles. The results are shown in Fig. 6. The obtained satellite structure was centrifuged, subjected to Raman test, and compared with the Raman signal of SHINs of unassembled satellites, and the results are shown in FIG.
  • an Au@SiO 2 @Pt or Au@SiO 2 @Pd satellite structure was prepared. Take 50 ⁇ L of the above satellite structure and drop it on the silicon wafer. After drying naturally, it was placed in an atmosphere containing 1% CO or 1% ethylene for 10 min, and then directly subjected to Raman test.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种利用卫星结构的增强拉曼检测方法,涉及拉曼光谱。其包括以下步骤:1)合成金、银纳米粒子;2)在步骤1)合成的金、银纳米粒子表面包覆极薄且致密的氧化物壳层;3)将待测纳米材料进行修饰,然后组装于步骤2)得到的纳米粒子表面,形成金、银为核,氧化物为壳层,纳米材料为卫星的复合材料,简称SHINERS卫星结构;4)将步骤3)得到的复合材料置于含有待测分子的环境中,使待测分子吸附在复合材料表面,并利用拉曼光谱仪进行测试,从而获得待测分子的拉曼信号。解决了传统SERS技术很难在广泛应用于催化科学、环境科学、能源科学等领域的纳米材料上使用的问题。

Description

一种利用卫星结构的增强拉曼检测方法
技术领域
本发明涉及拉曼光谱,尤其是涉及一种利用卫星结构增强过渡金属及其氧化物上拉曼信号的增强拉曼检测方法。
背景技术
拉曼光谱是一种指纹振动光谱技术,可用于物质的特异性识别和检测。然而,传统的拉曼光谱存在灵敏度低的缺点。这就极大地限制了拉曼光谱的应用。上个世纪70年代,Van Duyne等发现吸附在金、银纳米材料表面的分子的拉曼信号可被增强至百万倍以上。这一效应逐渐发展为一个新的技术——表面增强拉曼光谱(SERS)。
SERS具有极高的表面灵敏度,一般其增强因子可达106~1012,在优化的条件下甚至可达单分子检测极限。同时,它还具有抗水干扰、适合低波数区域的检测等优点。因此,表面增强拉曼光谱在电化学、分析科学、生命科学等领域具有广阔的应用前景。然而,长期的研究表明仅有金、银、铜等币族金属才具有较强的拉曼增强活性;而对于其它材料(例如过渡金属及其氧化物等),其拉曼增强活性均很低,甚至不具备拉曼增强能力(材料限制)。另一方面,即使是金、银、铜等币族金属材料,也要求他们具有特定的纳米级粗糙表面(往往是几十纳米至几百纳米),才具有SERS效应,因此SERS也无法用于目前广泛应用于催化科学、环境科学、能源科学等领域的纳米材料(其尺寸一般都在10 nm以下)(形貌限制)。材料与形貌上的限制大大地影响了SERS的应用。因此研究者一直致力于拓展SERS的普适性。
SERS普适性问题的解决方法之一是“借力”策略的发展。Weaver等发现通过电化学方法在粗糙金、银电极或者纳米粒子的表面沉积一层过渡金属可以将SERS拓展至铂、钯、钌、铑等过渡金属。(Sungho Park, Pengxiang Yang, Piedad Corredor, Michael J. Weaver. Transition metal-coated nanoparticle films:  Vibrational characterization with surface-enhanced Raman scattering. J. Am. Chem. Soc. 2002, 124, 2428-2429.)他们将这种方法称之为 “借力”。其原理是利用内核金、银纳米粒子产生的极强的局域电磁场增强吸附在外层铂、钯等过渡金属表面分子的拉曼信号。利用借力策略,他们获得了铂、钯、钌、铑等过渡金属上CO吸附的拉曼信号,并研究了他们在电化学条件下的变化规律。本申请人进一步发展了“借力”的策略,利用化学合成法在金、银纳米粒子表面直接包覆一层极薄且致密的过渡金属壳层,且壳层厚度可调,大大地简化了“借力”策略的操作步骤,并拓展了其应用范围。(Jian-Feng Li, Zhi-Lin Yang, Bin Ren, Guo-Kun Liu, Ping-Ping Fang, Yu-Xiong Jiang, De-Yin Wu, Zhong-Qun Tian. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: Toward a versatile vibrational strategy for electrochemical interfaces. Langmuir 2006, 22, 10372-10379)“借力”策略在一定程度上解决了SERS的材料普适问题,使得SERS可拓展至过渡金属材料。然而,实际应用过程中很难将每一种材料均可控地沉积在金银的表面。同时,由于外层过渡金属与内核金、银纳米材料间直接接触,并存在明显的电子作用,从而导致外层过渡金属的性质发生改变,因此获得的拉曼信号也将受到影响。另一方面,它仍未解决SERS的形貌普适性问题,即利用“借力”策略仍无法在纳米材料(尺寸<10 nm)或平滑表面获得拉曼信号。
为了解决SERS的普适性问题,2010年申请人发明了壳层隔绝纳米粒子增强拉曼光谱,简称SHINERS。(中国发明专利ZL201010044867.9公开一种用壳层隔绝纳米粒子增强拉曼光谱的方法;Jian-Feng Li, Yi-Fan Huang, Yong Ding, Zhi-Lin Yang, Song-Bo Li, Xiao-Shun Zhou, Feng-Ru Fan, Wei Zhang, Zhi-You Zhou, De-Yin Wu, Bin Ren, Zhong-Lin Wang, Zhong-Qun Tian. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392-395)在SHINERS中,利用内核Au纳米粒子作为信号放大器,增强附近分子的拉曼信号。同时在Au外包覆一层极薄且致密的SiO2壳层,形成壳层隔绝纳米粒子,隔绝待测样品与Au间的相互作用,排除其它信号的干扰,从而获得待测样品自身的信号。SHINERS很好地克服了传统SERS的材料和形貌限制,理论上可用于任何材料和平滑表面。例如,申请人利用SHINERS获得了单晶表面吸附物质的拉曼信号,从而实现了单晶表面反应过程的原位研究。然而,由于SHINERS粒子表面为惰性的SiO2壳层,无法吸附分子,故很难直接用于特定分子的拉曼检测。因此,亟待开发一种可以应用于分子特异性检测的拉曼方法。
发明内容
本发明的目的是提供一种普适性广、灵敏度高且可用于气体、液体中痕量物质的快速分析与检测的利用卫星结构的增强拉曼检测方法。
本发明包括以下步骤:
1)合成金、银纳米粒子;
2)在步骤1)合成的金、银纳米粒子表面包覆极薄且致密的氧化物壳层;
3)将待测纳米材料进行修饰,然后组装于步骤2)得到的纳米粒子表面,形成金为核,氧化物为壳层,纳米材料为卫星的复合材料,简称SHINERS卫星结构;
4)将步骤3)得到的复合材料置于含有待测分子的环境中,使待测分子吸附在复合材料表面,并利用拉曼光谱仪进行测试,从而获得待测分子的拉曼信号。
在步骤1)中,所述金、银纳米粒子的尺寸可为30~200 nm。
在步骤2)中,所述极薄且致密的氧化物壳层可选自氧化硅、氧化铝、氧化钛、氧化锰等中的一种,极薄且致密的氧化物壳层的厚度可为0.5~10 nm。
在步骤3)中,所述待测纳米材料可选自过渡金属、过渡金属合金、过渡金属氧化物等中的一种;待测纳米材料在金、银纳米粒子表面组装的方式可采用静电吸附或化学键偶联等;所述静电吸附的方式可将纳米材料组装于金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子,具体步骤可为:
(1)将金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子利用抗坏血酸或柠檬酸钠等进行修饰,使金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子表面带上负电;
(2)将待测纳米材料利用十六烷基三甲基溴化铵或亚硝四氟硼酸盐等进行修饰,使待测纳米材料表面带上正电;
(3)将步骤(1)和(2)所得材料置于水、乙醇、乙腈、N, N-二甲基甲酰胺等溶剂中的一种,振荡至少12 h,使纳米材料组装于核壳纳米粒子的表面。
所述利用化学键偶联的方式可将纳米材料组装于金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子,具体步骤可为:
(1)将金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子利用氨基硅烷可巯基硅烷等偶联剂进行修饰;
(2)将修饰后的金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子与待测纳米材料置于水、乙醇、乙腈、N, N-二甲基甲酰胺等溶剂中的一种,振荡至少12 h,使纳米材料组装于核壳纳米粒子的表面。
本发明首先合成一定尺寸的金或银纳米粒子,在其表面包覆极薄且致密的氧化物壳层,然后将待测纳米材料进行修饰并组装于氧化物壳层表面,形成由金-氧化物-纳米材料组成的核-壳-卫星结构复合物,并用其去吸附待测物质。最后将利用激光拉曼光谱仪进行测试便可获得待测物质的拉曼信号。
本发明的有益效果如下:
本发明所公开的方法解决了传统SERS技术很难在广泛应用于催化科学、环境科学、能源科学等领域的纳米材料(其尺寸一般都在10 nm以下)上使用的问题。相比于现有技术,本发明所具有的优势如下:
(1)传统的SERS基底以裸Au、Ag作为增强材料,因此对很多分子的吸附很弱,故很难实现它们的检测。本发明通过在壳层隔绝纳米粒子外组装特定的卫星结构,通过调控卫星结构的材料,便可特异性的吸附待测分子,从而实现其检测;
(2)本发明所公开的方法可通过改变卫星结构的组成材料,从而实现不同分子的检测,具有很好的通用性,而且操作简单;
(3)通过在金(或银)纳米粒子外包覆一层极薄且致密的氧化物壳层,既能隔绝分子吸附在内核金(或银)纳米粒子表面,也能排除纳米材料与金(或银)纳米粒子之间的电子作用,从而使获得的拉曼信号真实准确;同时壳层还能提高粒子的稳定性,使得其可应用于在更苛刻的条件(例如高温、强酸等);
(4)通过卫星结构与壳层隔绝纳米粒子之间的耦合作用,可提高检测灵敏度,并可直接用于溶液中物质的检测。
附图说明
图1为纳米材料组装在金(或银)@氧化物核壳纳米粒子(SHINERS卫星结构)表面的模型图。
图2为铂纳米粒子组装在Au@SiO2核壳表面的扫描电镜图。
图3为铂纳米粒子组装在Au@SiO2核壳表面的透射电镜图。
图4为利用SHINERS卫星结构检测溶液中对巯基硝基苯的拉曼图。在图4中,曲线a为Au@SiO2@Pt卫星结构,曲线b为Pt纳米粒子。
图5为利用SHINERS卫星结构检测溶液中异氰苯、肉桂醛的拉曼图。在图5中,曲线a为利用Au@SiO2@Pd卫星结构检测溶液中的异氰苯,曲线b为利用Au@SiO2@Pt卫星结构检测溶液中的肉桂醛。
图6为金纳米粒子组装在金@氧化物核壳纳米粒子表面的扫描电镜图。
图7为利用SHINERS卫星结构检测溶液中对巯基吡啶的拉曼光谱图。在图7中,曲线a为Au@SiO2@Au SHINERS卫星结构;曲线b为Au@SiO2壳层隔绝纳米粒子。
图8为利用SHINERS卫星结构检测气体中CO的拉曼图。
图9为利用SHINERS卫星结构检测气体中乙烯的拉曼图。
具体实施方式
以下实施例将结合附图对本发明作进一步说明。
实施例1
Au@SiO2核壳纳米粒子的合成:
取100 mL 0.01% HAuCl4,加热煮沸后,在匀速搅拌条件下,快速加入1.4 mL 1%的柠檬酸三钠水溶液,保持沸腾30 min后,停止反应并冷却至常温,即得到平均粒径约为55 nm的金溶胶。取该30 mL新鲜制备的金溶胶,置于圆底烧瓶中,加入0.4 mL 1 mmol/L的氨基硅烷溶液,并剧烈搅拌15 min。再加入3.2 mL 浓度为0.54%的硅酸钠水溶液,继续搅拌10 min后,加热至90 ℃,并保持30 min。然后停止反应,冷却至室温便可制得SiO2壳层厚度约2 nm的Au@SiO2核壳纳米粒子。
实施例2
铂纳米粒子组装于Au@SiO2核壳纳米粒子表面:
取1 mL待测铂纳米粒子溶胶(尺寸约3 nm),加入1 mL NOBF4溶液,剧烈震荡30 min后,离心分离。倒去上清液,得到的固体分散于1 mL水中。取上述分散液0.1 mL,加入1 mL新鲜制备的Au@SiO2核壳纳米溶胶中,搅拌10 h以上。然后离心分离,得到的固体即为Au@SiO2@Pt卫星结构,其模型如图1所示(分别给出待测纳米材料、氧化物壳层和金(或银)纳米粒子)。图2、图3分别为扫描电镜和透射电镜的表征结果。由图2和3可知,通过这种方法铂纳米粒子可均匀地组装在Au@SiO2核壳纳米粒子表面,所获得材料简称SHINERS卫星结构。
实施例3
利用SHINERS卫星结构检测溶液中分子:
按实施例2所示方法,制备Au@SiO2@Pt或Au@SiO2@Pd卫星结构。取50 μL上述卫星结构,滴在硅片上。自然晾干后,在对巯基硝基苯、异氰苯或肉桂醛等溶液中浸泡10 min,然后直接进行拉曼测试。同时直接取待测的铂纳米粒子浸泡于对巯基硝基苯溶液中10 min,然后进行拉曼测试以作参照。
图4分别为对巯基硝基苯吸附在Au@SiO2@Pt和普通铂纳米粒子上的拉曼测试结果。由图可知,对于普通的铂纳米粒子,由于其不具备拉曼增强能力,所以测试时观察不到任何拉曼信号。而对于Au@SiO2@Pt卫星结构,由于Au纳米粒子可以增强吸附在Pt上的分子的拉曼信号,所以可以明显观察到对巯基硝基苯的拉曼信号。其中拉曼位移在1340 cm-1处的谱峰可归属于硝基的特征振动,1530 cm-1处的谱峰可归属为苯环的特征振动。类似地利用这种卫星结构,成功地实现了溶液中异氰苯、肉桂醛的拉曼检测,结果如图5所示。
实施例4
纳米粒子组装于Au@SiO2核壳纳米粒子表面:
取100 mL 0.01%HAuCl4,加热煮沸后,在匀速搅拌条件下,快速加入1~6 mL 1%的柠檬酸三钠水溶液,保持沸腾30 min后,停止反应并冷却至常温,即得到平均粒径约为30 nm的金溶胶。可参考中国专利CN201710803044.1 (一种极薄壳层隔绝大粒径金纳米粒子的合成方法),但在加入硅酸钠之前先加入200 μL 1 mmol巯基吡啶(MPY),合成包覆有MPY分子的120 nm 的Au SHINs,将得到的SHINS进行氨基化处理:20 ml Au SHINs溶胶,缓慢加入酸化液4 ml(40 ml 水,1ml 0.1 mol HCl,400 μL 氨基硅烷溶液混合均匀)20 min 后离心,取走上清液,加入20 ml 30 nm Au 溶胶。混合均匀,4 ℃静置过夜,即可把金纳米粒子组装到SHINs粒子表面,结果如图6所示。将得到的卫星结构进行离心,进行拉曼测试,并将其与未组装卫星的SHINs的拉曼信号进行对比,结果如图7所示。
实施例5
利用SHINERS卫星结构检测气体中分子:
按实施例2所示方法,制备Au@SiO2@Pt或Au@SiO2@Pd卫星结构。取50 μL上述卫星结构,滴在硅片上。自然晾干后,在含1% CO或1%乙烯的气氛中放置10 min,然后直接进行拉曼测试。
图8分别为利用Au@SiO2@Pt或Au@SiO2@Pd卫星结构检测气体中的CO的拉曼测试结果。由于Au纳米粒子可以增强吸附在Pt或Pd上的分子的拉曼信号,所以可以明显观察到CO的拉曼信号。Au@SiO2@Pt卫星结构上则可观察到486 cm-1和2096 cm-1两个拉曼峰。它们可否分别归属为线式吸附CO的Pt-C键和C=O键的伸缩振动。类似地,利用Au@SiO2@Pd卫星结构对气体中的乙烯进行检测,也可明显观察到乙烯的拉曼信号(图9)。

Claims (8)

  1. 一种利用卫星结构的增强拉曼检测方法,其特征在于包括以下步骤:
    1)合成金、银纳米粒子;
    2)在步骤1)合成的金、银纳米粒子表面包覆氧化物壳层;
    3)将待测纳米材料进行修饰,然后组装于步骤2)得到的纳米粒子表面,形成金为核,氧化物为壳层,纳米材料为卫星的复合材料,简称SHINERS卫星结构;
    4)将步骤3)得到的复合材料置于含有待测分子的环境中,使待测分子吸附在复合材料表面,并利用拉曼光谱仪进行测试,从而获得待测分子的拉曼信号。
  2. 如权利要求1所述一种利用卫星结构的增强拉曼检测方法,其特征在于在步骤1)中,所述金、银纳米粒子的尺寸为30~200 nm。
  3. 如权利要求1所述一种利用卫星结构的增强拉曼检测方法,其特征在于在步骤2)中,所述氧化物壳层选自氧化硅、氧化铝、氧化钛、氧化锰中的一种。
  4. 如权利要求1或3所述一种利用卫星结构的增强拉曼检测方法,其特征在于在步骤2)中,所述氧化物壳层的厚度为0.5~10 nm。
  5. 如权利要求1所述一种利用卫星结构的增强拉曼检测方法,其特征在于在步骤3)中,所述待测纳米材料选自过渡金属、过渡金属合金、过渡金属氧化物中的一种。
  6. 如权利要求1所述一种利用卫星结构的增强拉曼检测方法,其特征在于在步骤3)中,所述待测纳米材料在金、银纳米粒子表面组装的方式采用静电吸附或化学键偶联。
  7. 如权利要求6所述一种利用卫星结构的增强拉曼检测方法,其特征在于所述静电吸附的方式是将纳米材料组装于金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子,具体步骤为:
    (1)将金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子利用抗坏血酸或柠檬酸钠进行修饰,使金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子表面带上负电;
    (2)将待测纳米材料利用十六烷基三甲基溴化铵或亚硝四氟硼酸盐进行修饰,使待测纳米材料表面带上正电;
    (3)将步骤(1)和(2)所得材料置于水、乙醇、乙腈、N, N-二甲基甲酰胺等溶剂中的一种,振荡至少12 h,使纳米材料组装于核壳纳米粒子的表面。
  8. 如权利要求6所述一种利用卫星结构的增强拉曼检测方法,其特征在于所述利用化学键偶联的方式是将纳米材料组装于金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子,具体步骤为:
    (1)将金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子利用氨基硅烷可巯基硅烷等偶联剂进行修饰;
    (2)将修饰后的金-氧化物核壳纳米粒子或银-氧化物核壳纳米粒子与待测纳米材料置于水、乙醇、乙腈、N, N-二甲基甲酰胺溶剂中的一种,振荡至少12 h,使纳米材料组装于核壳纳米粒子的表面。
PCT/CN2018/101544 2018-04-28 2018-08-21 一种利用卫星结构的增强拉曼检测方法 WO2019205364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810403280.9A CN108333168A (zh) 2018-04-28 2018-04-28 一种利用卫星结构的增强拉曼检测方法
CN201810403280.9 2018-04-28

Publications (1)

Publication Number Publication Date
WO2019205364A1 true WO2019205364A1 (zh) 2019-10-31

Family

ID=62934954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101544 WO2019205364A1 (zh) 2018-04-28 2018-08-21 一种利用卫星结构的增强拉曼检测方法

Country Status (2)

Country Link
CN (1) CN108333168A (zh)
WO (1) WO2019205364A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333168A (zh) * 2018-04-28 2018-07-27 厦门斯贝克科技有限责任公司 一种利用卫星结构的增强拉曼检测方法
CN109358033B (zh) * 2019-01-08 2019-04-30 中国科学院烟台海岸带研究所 一种核-卫星型金银复合纳米sers基底及其制备方法
CN110687100A (zh) * 2019-11-26 2020-01-14 启东科赛尔纳米科技有限公司 一种高sers增强活性的核壳型纳米粒子及sers定量检测基底
CN111122539A (zh) * 2019-12-24 2020-05-08 深圳大学 一种核壳嵌入型拉曼增强剂及其制备方法与应用
CN113702352A (zh) * 2021-08-25 2021-11-26 山东智微检测科技有限公司 一种适用于气相糜烂性毒剂的sers检测芯片及其制备方法
CN114527111A (zh) * 2022-01-21 2022-05-24 厦门大学 一种Fe-Ni复合金属氧化物用于析氧反应原位拉曼的研究方法
CN115739109A (zh) * 2022-09-02 2023-03-07 厦门大学 一种具有拉曼增强能力的卫星结构的AuCu催化剂的制备方法
CN116148410A (zh) * 2022-12-23 2023-05-23 苏州大学 一种可用于连续tlc检测的sers基底材料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832933A (zh) * 2010-01-21 2010-09-15 厦门大学 用壳层隔绝纳米粒子增强拉曼光谱的方法
US20160299081A1 (en) * 2015-04-13 2016-10-13 Washington University In St. Louis Bio-enabled plasmonic superstructures with built-in and accessible hotspots
CN106323935A (zh) * 2015-07-06 2017-01-11 中国人民解放军军事医学科学院放射与辐射医学研究所 一种核-壳-卫星三维结构的磁性复合sers基底及其制备方法
CN106623894A (zh) * 2016-12-02 2017-05-10 中国人民解放军国防科学技术大学 磁性复合颗粒及其制备方法和应用
CN107478635A (zh) * 2017-06-23 2017-12-15 中北大学 一种mof‑贵金属复合sers基底及其制备方法
WO2018030785A1 (ko) * 2016-08-09 2018-02-15 한양대학교 에리카산학협력단 전기적 자극 반응성을 지닌 이중 금속-전도성 고분자 야누스 복합 나노구조체, 이의 콜로이드 자가 조립 구조체, 제조방법 및 바이오센싱, 바이오이미징, 약물전달 및 산업적 응용
CN108333168A (zh) * 2018-04-28 2018-07-27 厦门斯贝克科技有限责任公司 一种利用卫星结构的增强拉曼检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914313B (zh) * 2010-08-13 2012-10-31 南通纳威数码材料科技有限公司 阳离子水性纳米二氧化硅及其制备方法和用途
CN102964881B (zh) * 2012-12-07 2015-04-08 北京彤程创展科技有限公司 一种氨基/巯基硅烷改性二氧化硅及其制备方法
CN103205258B (zh) * 2013-04-07 2015-04-01 中国科学技术大学 一种具有光热及荧光增强双功能的金纳米星@量子点复合型细胞探针及其制备方法和应用
CN103439160B (zh) * 2013-08-22 2015-10-28 中山大学 表面增强拉曼光谱快速检测挥发性甲醛的方法及其应用
CN104384508B (zh) * 2014-11-26 2016-07-06 厦门大学 一种二氧化硅包金纳米粒子针孔填补方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832933A (zh) * 2010-01-21 2010-09-15 厦门大学 用壳层隔绝纳米粒子增强拉曼光谱的方法
US20160299081A1 (en) * 2015-04-13 2016-10-13 Washington University In St. Louis Bio-enabled plasmonic superstructures with built-in and accessible hotspots
CN106323935A (zh) * 2015-07-06 2017-01-11 中国人民解放军军事医学科学院放射与辐射医学研究所 一种核-壳-卫星三维结构的磁性复合sers基底及其制备方法
WO2018030785A1 (ko) * 2016-08-09 2018-02-15 한양대학교 에리카산학협력단 전기적 자극 반응성을 지닌 이중 금속-전도성 고분자 야누스 복합 나노구조체, 이의 콜로이드 자가 조립 구조체, 제조방법 및 바이오센싱, 바이오이미징, 약물전달 및 산업적 응용
CN106623894A (zh) * 2016-12-02 2017-05-10 中国人民解放军国防科学技术大学 磁性复合颗粒及其制备方法和应用
CN107478635A (zh) * 2017-06-23 2017-12-15 中北大学 一种mof‑贵金属复合sers基底及其制备方法
CN108333168A (zh) * 2018-04-28 2018-07-27 厦门斯贝克科技有限责任公司 一种利用卫星结构的增强拉曼检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG HUA ET AL.: "In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy", NATURE COMMUNICATIONS, vol. 8, no. 1, 24 May 2017 (2017-05-24), XP055648353, ISSN: 2041-1723, DOI: 10.1038/ncomms15447 *

Also Published As

Publication number Publication date
CN108333168A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
WO2019205364A1 (zh) 一种利用卫星结构的增强拉曼检测方法
Kong et al. Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@ SiO 2 core/shell nanoparticles in protein detection
Wang et al. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates
Wang et al. Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface
Li et al. The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification
CN110296973B (zh) 一种SiO2@Ag@ZrO2多层核壳结构纳米材料及其制备方法和应用
Li et al. Fast-response MoS 2-based humidity sensor braced by SiO 2 microsphere layers
Yang et al. Preparation and characterization of an ultrathin carbon shell coating a silver core for shell-isolated nanoparticle-enhanced Raman spectroscopy
Long et al. Preparation of stable core–shell dye adsorbent Ag-coated silica nanospheres as a highly active surfaced-enhanced Raman scattering substrate for detection of Rhodamine 6G
CN104730056A (zh) 利用纳米级Cu2-xS材料作为基底进行SERS检测的方法
Liao et al. An effective oxide shell-protected surface-enhanced Raman scattering (SERS) substrate: the easy route to Ag@ Ag x O-silicon nanowire films via surface doping
Zhang et al. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering
Song et al. Fabrication of Fe3O4@ Ag magnetic nanoparticles for highly active SERS enhancement and paraquat detection
Zhang et al. Graphene‐coated Au nanoparticle‐enhanced Raman spectroscopy
ul Ahmad et al. Cheap, reliable, reusable, thermally and chemically stable fluorinated hexagonal boron nitride nanosheets coated Au nanoparticles substrate for surface enhanced Raman spectroscopy
Gao et al. In situ monitoring of plasmon-driven photocatalytic reactions at gas–liquid–solid three-phase interfaces by surface-enhanced Raman spectroscopy
Yang et al. Synthesis and superior SERS performance of porous octahedron Cu 2 O with oxygen vacancy derived from MOFs
He et al. A highly sensitive and stable SERS substrate using hybrid tungsten dioxide/carbon ultrathin nanowire beams
Pruneanu et al. Template and template-free preparation of one-dimensional metallic nanostructures
Cao et al. Cysteine-modified graphene/gold nanorod composites toward rhodamine 6G detection by surface-enhanced Raman scattering
Chen et al. Surface-enhanced Raman scattering enhancement due to localized surface plasmon resonance coupling between metallic nanoparticles and substrate
Dwivedi et al. Near Room Temperature Sensing by In₂O₃ Decorated Silicon Nanowires for Sensitive Detection of Ethanol
Dhall et al. Hydrogen gas sensing characteristics of multiwalled carbon nanotubes based hybrid composites
Liu et al. A self-cleaning SERS substrate based on flower-like Au@ MoS2/Ag NPs with photocatalytic ability
Ngan et al. Improvement of Raman enhancement factor due to the use of silver nanoparticles coated obliquely aligned silicon nanowire arrays in SERS measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915833

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18915833

Country of ref document: EP

Kind code of ref document: A1