WO2019205354A1 - 液体加热容器 - Google Patents

液体加热容器 Download PDF

Info

Publication number
WO2019205354A1
WO2019205354A1 PCT/CN2018/100364 CN2018100364W WO2019205354A1 WO 2019205354 A1 WO2019205354 A1 WO 2019205354A1 CN 2018100364 W CN2018100364 W CN 2018100364W WO 2019205354 A1 WO2019205354 A1 WO 2019205354A1
Authority
WO
WIPO (PCT)
Prior art keywords
rib
groove
ribs
noise reduction
coating
Prior art date
Application number
PCT/CN2018/100364
Other languages
English (en)
French (fr)
Inventor
梅长云
陈炜杰
刘华
曹正
刘苗
何柏锋
李兴航
Original Assignee
广东美的生活电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820642790.7U external-priority patent/CN208988507U/zh
Priority claimed from CN201810411160.3A external-priority patent/CN110403464A/zh
Application filed by 广东美的生活电器制造有限公司 filed Critical 广东美的生活电器制造有限公司
Publication of WO2019205354A1 publication Critical patent/WO2019205354A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/21Water-boiling vessels, e.g. kettles

Definitions

  • the present invention relates to the field of kitchen appliances, and in particular to a liquid heating vessel.
  • the liquid heating vessel is often heated by means of a heating pipe, and the heating surface thereof is small, resulting in a local power density (the power of the heating pipe/the projected area of the heating pipe at the bottom of the kettle) is high, thereby causing the bottom wall surface of the kettle body.
  • the degree of superheat is large, and the bubbles thus generated are small and dense, so that the noise is large.
  • the prior art adopts a method of adding a hydrophobic coating on the bottom wall of the kettle body, so that the hydrophobicity of the hydrophobic coating layer can be utilized, so that a plurality of small bubbles gradually aggregate into large bubbles at the bottom of the kettle body, so that The amount of detachment of the bubble and the amount of rupture can be reduced to achieve the effect of noise reduction.
  • the contact angle of the hydrophobic coating is difficult to control accurately, which results in the inability to precisely control the size of the generated bubbles, and the diameter of the large bubbles after collection may even reach 10 mm or more, which makes it gather in the pot.
  • the bubbles in the bottom wall of the body are larger, so that the bubbles will isolate the water in the kettle body from the bottom wall of the kettle body to a certain extent, so that the heat transfer efficiency of the bottom wall of the kettle body is low, thereby reducing the product.
  • Heating efficiency on the other hand, the heat generated by the heating pipe will accumulate on the bottom wall of the kettle body, resulting in the temperature of the bottom wall of the kettle body being too high, which will easily cause the bottom wall of the kettle body to dry dry, thus affecting the bottom.
  • the life of the thermostat also creates the risk of early warning of the thermostat.
  • the present invention aims to solve at least one of the technical problems existing in the prior art or related art.
  • the embodiment of the first aspect of the present invention provides a liquid heating container, the liquid heating container comprising: a kettle body, the kettle body including a kettle bottom, and the bottom of the kettle is formed with a rib and a groove The groove is surrounded by the protruding rib; a heating device is disposed on an outer surface of the bottom of the kettle for heating the kettle body, and a surface of the kettle bottom connected to the heating device is a metal surface.
  • a liquid heating container includes a kettle body and a heating device, wherein the kettle body is for holding water, and the heating device is for heating the kettle body to heat water in the kettle body.
  • the rib can be used as a boundary of the groove, so that the shape and size of the rib can be used to define the shape of the groove and Size, so that a plurality of boundaries can be reasonably defined on the bottom of the pot by the size of the ribs and the grooves, so that the bubbles generated at the bottom of the pot can only be collected within the boundary defined by the grooves, and the ribs can rise in the bubbles
  • the surface of the groove is touched, the bubble is broken or the bubble is separated from the bottom of the body, so that the size of the groove can be reasonably limited to reasonably define the size of the bubble generated at the bottom of the body and the area of the bubble.
  • the collection shape of the bubbles in order to achieve precise control of the size of the bubbles generated and to control the collection area of the bubbles and the collection shape of the bubbles, thereby preventing the bubbles generated by the electric kettle during heating from being excessively large and avoiding bubbles generated by the kettle body.
  • Messy, bubble collection, and other irregularities so that on the one hand, it is possible to control the noise of the product by controlling the size of the bubble.
  • Precise control of noise and can be reduced in size by the bubble generated, so that the water within the pot can be sufficiently in contact with the bottom of the pot body, thereby enhancing the heat transfer efficiency of the product, in order to improve the heating efficiency of the product.
  • the pooling area of the bubble can be defined by the rib and the groove, so that the collection rule of the plurality of bubbles and the shape or pattern formed by the bubble collection can be controlled as a whole to improve the user experience satisfaction of the liquid heating process.
  • the heat at the bottom of the kettle body can be more uniform, thereby preventing the bottom portion of the kettle body from being partially heated due to the isolation of the air bubbles, thereby causing local temperature of the kettle body. High, which in turn reduces the risk of early warning of the thermostat.
  • the grooves are disposed at different positions, so that the bubbles can be generated at different positions, so that the position at which the bubbles are generated can be reasonably defined by the position of the grooves, thereby
  • the shape of the concave and convex ribs on the bottom of the pot can be reasonably set, for example, the grooves are arranged in a spiral shape, a plurality of concentric rings, etc., so that the positions of the bubbles are correspondingly presented in different shapes, such as a spiral shape.
  • Concentric rings, etc. so that the bubbles generated by the kettle body can form a shape corresponding to the concaves in the process of ascending in the kettle body, so that the shape of the bubbles during the ascending process can be reasonably defined by the shape of the grooves, and
  • a heating container such as a transparent electric kettle
  • the user can view the air bubbles in the kettle body through the kettle body, and the air bubbles can form a shape conforming to the shape of the groove during the ascending process, and therefore, by setting the grooves into various patterns.
  • Shape when the product is working, the bubbles generated can form a very beautiful picture in the pot body, which can enhance the user's use of the product. User experience to improve user satisfaction with the product.
  • the surface connected to the heating device is preferably a metal surface, that is, a surface made of a metal material, because the heat conduction performance of the metal surface is good, so that the heating device can transfer more heat to the bottom of the kettle, so that Improve the heating efficiency of the liquid heating vessel.
  • the surface of the bottom of the pot connected to the heating device can also be a non-metallic surface, such as a ceramic surface made of ceramic material.
  • the entire bottom of the pot can be set to be metal to form a metal surface, or a metal coating can be disposed on the outer bottom of the other bottom to form a metal surface.
  • the grooves in the present application are surrounded by the ribs, and the grooves are separated by the ribs, that is, the grooves and the ribs are inseparable, and both are indispensable, and the ribs are indispensable.
  • the number and shape can be set as needed.
  • the rib can be set as one or more annular ribs.
  • the inside of the annular rib can form a groove and one or more rings.
  • one or more grooves may be disposed independently of each other.
  • the plurality of annular ribs may be concentrically arranged to each other to form a plurality of concentrically disposed annular grooves.
  • a long rib can also be wound in a ring shape into a rib disk including a plurality of inner and outer layers and a plurality of inner and outer layers are spaced apart.
  • a rib can be spirally wound into a spiral rib.
  • the ribs can be enclosed into a spiral groove.
  • a notch may be provided on the ribs, but the notches are not too large, and specifically, should not be concave. The bubbles in the grooves pass through or pass through the gaps, and merge with the bubbles in the adjacent grooves to form large bubbles.
  • a gap may be provided between two adjacent grooves A and B, and the notch is sized such that bubbles in the groove A cannot pass through the notch and merge into a large bubble in the groove B. That is, the ribs and the grooves can reasonably define the boundary where the bubbles are generated, so that a plurality of bubbles cannot be pooled into larger bubbles.
  • liquid heating container provided according to the above embodiment of the present invention has the following additional technical features:
  • the liquid heating container further comprises: a first noise reduction coating, wherein the first noise reduction coating is disposed at least on an inner bottom surface of the groove.
  • the noise of the product can be reduced by the first noise reduction coating, specifically, for example, at the bottom of the kettle.
  • the hydrophobic coating is arranged on the surface, so that the hydrophobic property of the hydrophobic coating can be utilized, so that the bubbles generated on the bottom wall of the kettle body are not easily detached from the bottom of the kettle body, so that the small and dense small bubbles generated by the kettle body can be in the kettle body.
  • the large grooves in the grooves on the bottom wall are collected into a large bubble, and the heat in the large bubbles is more consistent with the heat in the water, so that the large bubbles can be broken after being exposed to the water surface, thereby preventing the bubbles from being trapped.
  • the water ruptured and caused a lot of noise.
  • the hydrophobic coating allows a small and dense small bubble to be collected into a large bubble, which can effectively reduce the number of small bubbles and reduce the breakage of small bubbles in the water, thereby further reducing noise.
  • the noise reduction coating may not be provided.
  • the bottom of the kettle body can be made to generate larger bubbles or by other means, such as changing the structure of the heating device, changing the heating mode, or Changing the heating parameters and the like enables small and dense bubbles to collect into large bubbles.
  • a maximum height difference h1 between a top of the rib and a bottom of the groove is greater than a thickness t1 of the first noise reduction coating.
  • the maximum height difference h1 between the top of the rib and the bottom of the groove is greater than the thickness t1 of the first noise reduction coating, that is, the rib is higher than the first noise reduction coating setting, so that The ribs are exposed to expose the first noise-reducing coating, so that the ribs and the grooves can effectively define the boundary of the bubbles generated on the first noise-reducing coating, and vice versa, if the top of the ribs and the bottom of the groove
  • the maximum height difference h1 between is less than or equal to the thickness t1 of the first noise reduction coating, such that the ribs are hidden in the first noise reduction coating, so that the ribs and grooves cannot be applied to the first noise reduction coating.
  • the bubbles are bounded by boundaries.
  • a maximum height difference between a top of the rib and a bottom of the groove is h1, wherein 0.03 mm ⁇ h1 ⁇ 2 mm, or 0.1 mm ⁇ h1 ⁇ 1.0 mm , or 0.1mm ⁇ h1 ⁇ 0.5mm.
  • the maximum height difference between the top of the rib and the bottom of the groove is not easy to be too large, because the over-construction causes the rib to be poorly processed, the material is wasted and the cost is high, and the bottom of the body is caused.
  • the wall is too thick and convex, so it is not easy to clean. Therefore, it is preferable to set the height difference h1 between the top of the rib and the bottom of the groove to be between 0.03 mm and 2 mm, so that the rib is both processed and reduced in cost, and the product can be cleaned better. .
  • 0.1 mm ⁇ h1 ⁇ 1.0 mm, or 0.1 mm ⁇ h1 ⁇ 0.5 mm so that the maximum height difference h1 between the top of the rib and the bottom of the pot can be further set between 0.1 mm and 1 mm or set at Between 0.1 mm and 0.5 mm, such as between 0.2 mm and 0.5 mm, of course, the maximum height difference h1 between the top of the rib and the bottom of the pot may also be set between 0.5 mm and 1 mm.
  • the groove has a width of a, 3 mm ⁇ a ⁇ 10 mm or 5 mm ⁇ a ⁇ 8 mm, or 0.1 mm ⁇ a ⁇ 1.0 mm.
  • the width a between any two adjacent grooves may be set between 3 mm and 10 mm, or further preferably the width a between any two adjacent grooves is set at 5 mm to 8 mm. between. Further, the width of the ribs may be set larger, and the width of the grooves may be set smaller. At this time, the width a of the grooves may be set between 0.1 mm and 1.0 mm.
  • the width of the rib is e
  • the width of the groove is a, wherein 0.1 mm ⁇ e ⁇ 1.0 mm, 3 mm ⁇ a ⁇ 10 mm or 5 mm ⁇ a ⁇ 8 mm Or 0.1 mm ⁇ a ⁇ 1.0 mm, 3 mm ⁇ e ⁇ 10 mm or 5 mm ⁇ e ⁇ 8 mm.
  • the width e of the ribs may preferably be set between 0.1 mm and 1.0 mm.
  • the width a of the grooves may be set at Between 3 mm and 10 mm, or further preferably the width a of the groove is set between 5 mm and 8 mm, so that the space between the rib and the groove can be reasonably defined to reasonably define the size of the bubble so that the generated bubble The size is moderate, which effectively reduces the noise of the product.
  • the width of the ribs may be set larger, and the width of the grooves may be set smaller.
  • the width e of the ribs may preferably be set between 3 mm and 10 mm, or further preferably 5 mm to Between 8mm, and the width a of the groove can be set between 0.1mm and 1.0mm.
  • the width e of the rib can also be set between 0.1 mm and 5.0 mm.
  • a height difference between the rib and the first noise reduction coating is h2, wherein 0 mm ⁇ h2 ⁇ 1 mm, or 0.05 mm ⁇ h2 ⁇ 0.5 mm, or 0.1 mm ⁇ h2 ⁇ 0.3 mm.
  • the height difference h2 between the rib and the first noise reduction coating may be set to be greater than 0 mm and less than or equal to 1 mm, for example, between 0 mm and 0.5 mm, or further preferably set at 0.05 mm.
  • the ribs can be higher than the first noise-reducing coating by a certain distance, so that the ribs can form grooves for the first noise-reducing coating
  • the perimeter of the bubble defines the boundary of the bubble to reasonably define the size of the bubble.
  • the first noise reduction coating layer has a thickness t1, wherein 10 ⁇ m ⁇ t1 ⁇ 100 ⁇ m, or 15 ⁇ m ⁇ t1 ⁇ 70 ⁇ m, or 20 ⁇ m ⁇ t1 ⁇ 50 ⁇ m.
  • the thickness of the first noise reduction coating layer can be reasonably set, so that the first noise reduction coating layer can have better noise reduction performance, and the first noise reduction coating layer can be prevented from being too thick. And this leads to an increase in costs. Therefore, preferably, the thickness t1 of the first noise reduction coating layer may be set between 10 ⁇ m and 100 ⁇ m, and further preferably, the thickness t1 of the first noise reduction coating layer may be set between 15 ⁇ m and 70 ⁇ m, such as 15 ⁇ m to Between 50 ⁇ m, or between 20 ⁇ m and 50 ⁇ m, such as 40 ⁇ m.
  • the first noise reduction coating is a hydrophobic coating.
  • the first noise reduction coating is a hydrophobic coating, so that the hydrophobic property of the hydrophobic coating can be utilized, so that bubbles generated on the bottom wall of the kettle body are not easily detached from the bottom of the kettle body, thus causing the kettle body to be produced.
  • the small and dense small bubbles can accumulate into a large bubble in the groove on the bottom wall of the kettle body, and after being collected into a large bubble, the heat in the large bubble is more consistent with the heat in the water, thereby enabling the large bubble to be It ruptures when it is exposed to the water surface, which prevents bubbles from rupturing in the water and causing loud noise.
  • the hydrophobic coating allows a small and dense small bubble to be collected into a large bubble, which can effectively reduce the number of small bubbles and reduce the breakage of small bubbles in the water, thereby further reducing noise.
  • the noise reduction treatment can be performed, for example, by a silicon coating or a fluorine coating or the like, because a silicon coating or a fluorine coating or the like for performing a noise reduction treatment is relatively common and mature, and thus is easy to implement.
  • the hydrophobic coating can make the bubbles gather in the grooves on the bottom of the pot, the grooves can accurately define the maximum size of the bubbles, and the ribs can cause the bubbles to rupture in time or from the bottom of the pot. Disengaged, the hydrophobic coating can be used in combination with the ribs and grooves to accurately control the size of the bubbles, thereby greatly reducing noise and improving noise reduction.
  • the rib is provided with a second noise reduction coating.
  • the groove and the rib of the entire bottom of the pot are covered with a noise-reducing coating, so that the noise of the product can be further reduced.
  • the materials of the first noise reduction coating and the second noise reduction coating are set to be coatings of the same material, so that the first noise reduction coating and the second noise reduction coating can be applied during specific processing.
  • the layers are processed together to increase the processing speed of the noise-reducing coating and reduce the processing difficulty of the noise-reducing coating.
  • the first noise reduction coating is consistent with the thickness of the second noise reduction coating, or the thickness of the second noise reduction coating is t2, wherein 10 ⁇ m ⁇ T2 ⁇ 100 ⁇ m, or 15 ⁇ m ⁇ t2 ⁇ 70 ⁇ m, or 20 ⁇ m ⁇ t2 ⁇ 50 ⁇ m.
  • the thickness of the first noise reduction coating and the second noise reduction coating can enable the first noise reduction coating and the second noise reduction coating to be integrally formed.
  • the thickness t2 of the second noise reduction coating layer may be set between 10 ⁇ m and 100 ⁇ m, and further preferably, the thickness t2 of the second noise reduction coating layer may be set between 15 ⁇ m and 70 ⁇ m or between 20 ⁇ m and 50 ⁇ m. For example 40 ⁇ m.
  • the second noise reduction coating is a hydrophobic coating.
  • the noise reduction treatment may preferably be performed by a hydrophobic coating such as a silicon coating or a fluorine coating, because the noise reduction treatment is performed by a hydrophobic coating such as a silicon coating or a fluorine coating.
  • a hydrophobic coating such as a silicon coating or a fluorine coating.
  • This type of noise reduction can be used in combination with the ribs, thereby greatly reducing noise and improving noise reduction.
  • the first noise reduction coating on the groove is a continuous coating, or the first noise reduction coating on the groove comprises a plurality of a mutually disconnected coating segment; and/or the first noise-reducing coating on the groove and the second noise-reducing coating on the rib are a unitary structure.
  • the first noise reduction coating between the ribs is a continuous coating, that is, the first noise reduction coating between the ribs is uninterrupted, that is, the ribs are
  • the first noise reduction coating is a one-piece structure, which can prevent the first noise reduction coating from being mutually restrained, thereby preventing the noise reduction coating from falling off.
  • the continuous placement of all of the first noise-reducing coatings, that is, the uninterrupted arrangement also facilitates the processing of the first noise-reducing coating.
  • the first noise-reducing coating between the ribs can also be independently arranged as a plurality of coating segments separated by a plurality of ribs, so that the first noise-reduction coating between the ribs can mutually Disconnect settings, that is, discontinuous settings.
  • the first noise reduction coating layer and the second noise reduction layer are preferably used.
  • the coating is provided in a one-piece structure, which enables all the noise-reducing coatings to be processed together and is arranged as a continuous and unbroken structure, thereby reducing the processing difficulty of the noise-reducing coating and reducing the processing cost.
  • the contact angle of the first noise reduction coating is ⁇ , wherein 90° ⁇ 150°, or 95° ⁇ 110°, and/or the first The contact angle of the second noise reduction coating is ⁇ , wherein 90° ⁇ ⁇ ⁇ 150°, or 95° ⁇ ⁇ ⁇ 110°.
  • the contact angle ⁇ of the first noise reduction coating and/or the second noise reduction coating between 90° and 150°, and further setting between 95° and 110°, it can be reasonable.
  • the adsorption force of the noise-reducing coating on the bubble is set, so that the bubble is more difficult to be detached from the bottom of the pot, so that the small and dense bubbles generated at the bottom of the pot can be gathered into a large bubble at the bottom of the pot, thereby uniformly defining the bubble.
  • the size is reasonable to control the noise.
  • the heating device comprises: a heat conducting plate disposed on an outer surface of the bottom of the pot; and a heat generating tube disposed on a side of the heat conducting plate away from the bottom of the pot;
  • the rib and the groove form an area on the bottom of the pot, and a projection of the heat pipe on the bottom of the pot is located in the area.
  • the heating device includes a heat conducting plate for conducting heat conduction, and a heat generating tube for specifically heating the heat conducting plate to heat the bottom of the pot.
  • the ribs and the grooves form an area on the bottom of the pot, that is, the ribs and the grooves are disposed in the area.
  • the area can be set as a ring shape, that is, the ribs and the grooves are distributed in an annular area.
  • the ribs and grooves can also be distributed outward from the center of the bottom of the pot.
  • the projection of the heating tube on the bottom of the pot is located in the area.
  • the projection of the heating tube on the bottom of the pot should be located in the inner contour line and the outer contour line of the annular area, and in the area from the bottom of the pot
  • the projection of the heating tube on the bottom of the pot should be within the outer contour of the area.
  • the inner contour of the area is a point, and preferably aligned with the center of the bottom of the pot, so that the ribs and The installation area of the groove can completely cover the installation area of the heat pipe, and at the portion where the heat pipe is disposed, the bubbles will be concentrated, so that the ribs and the grooves corresponding to the installation areas of all the heat pipes can further reduce the noise.
  • the inner diameter D1 of the annular region should be smaller than the inner diameter D3 of the heat pipe, and the outer diameter D2 of the annular region should be greater than or equal to the heat pipe.
  • the heat conducting plate is an aluminum disk
  • the heat generating tube may be an aluminum tube or a copper tube.
  • the area of the heat pipe in contact with the heat conducting plate is A
  • the sum of the total areas of the outer surfaces of the ribs is B
  • the area of the inner surface of the bottom of the pot bottom Is C, wherein A ⁇ B ⁇ C, and/or 0.01 ⁇ B/C ⁇ 0.2, or 0.02 ⁇ B/C ⁇ 0.1, or 0.03 ⁇ B/C ⁇ 0.07.
  • the sum B of the total areas of the outer surfaces of the plurality of ribs is greater than or equal to the area A of the heat pipe in contact with the heat conducting plate is less than or equal to the area of the inner surface of the bottom of the pot, so that the area of the ribs can be made. It is more moderate and can further reduce noise.
  • the ratio of the sum B of the total areas of the outer surfaces of the plurality of ribs to the area C of the inner surface of the bottom of the pot may be set between 0.01 and 0.2, and the outer surfaces of the plurality of ribs may be further The ratio of the sum B of the total area to the area C of the inner surface of the bottom of the pot is set between 0.02 and 0.1, and further, the sum B of the total areas of the outer surfaces of the plurality of ribs and the inner surface of the bottom of the pot can be The area C ratio is set between 0.03 and 0.07.
  • an angle between an inner side surface of the groove and an inner bottom surface of the groove is ⁇ , wherein 90° ⁇ ⁇ ⁇ 130°.
  • the sides of the ribs may be preferably disposed perpendicularly such that the angle between the side of the rib and the inner surface of the bottom of the pot is 90°, at which time the inner side of the groove and the groove are The angle ⁇ between the inner bottom surfaces is also 90°.
  • the ribs may also be arranged in a top-down width structure, such as a triangle or a trapezoid.
  • the sides of the ribs and the inner surface of the bottom of the pot may be The angle between the two is greater than 90°, so that the angle ⁇ between the inner side surface of the groove and the inner bottom surface of the groove can also be greater than 90°, but preferably, the side surface of the rib and the inner surface of the bottom of the pot can be The angle is set in a range of 90° or more and 130° or less, so that the angle ⁇ between the inner side surface of the groove and the inner bottom surface of the groove can be set to a range of 90° or more and 130° or less.
  • the longitudinal section of the rib has a triangular or circular arc shape or a trapezoidal shape.
  • the shape of the longitudinal section of the rib may be any shape such as a triangular shape, a circular arc shape, or a trapezoidal shape according to actual needs, and is not specifically limited herein.
  • the rib is wound on the bottom of the pot by a rib having a plurality of inner and outer layers and inner and outer layers spaced apart from each other, such as a rib on the bottom of the pot. plate.
  • the rib includes a spiral rib disposed spirally on the bottom of the kettle, the groove including a spiral concave formed by the spiral rib groove.
  • a spiral rib can be arranged on the bottom of the kettle so as to be able to form a spiral groove on the bottom of the kettle, so that bubble generation can be defined by the spiral groove and the spiral rib.
  • the boundary to define the size of the bubble makes the arrangement of the ribs and the grooves relatively regular, so that the ribs and grooves can be more evenly distributed on the bottom of the pot.
  • all the ribs can be joined together, and all the grooves can be connected in one body, so that the ribs and the grooves can be processed more conveniently.
  • the spiral groove can make the bubble spiral in the rising process, that is, the bubble can form a specific spiral shape during the rising process, so that when the kettle body is transparent, the user can observe that the bubble in the kettle body is rising.
  • the process is spiraled, which in turn improves the user experience.
  • the rib is a ring-shaped rib, for example, the rib is a plurality of polygonal ribs or circular ribs or other irregularly shaped annular ribs that are independently disposed, and specifically
  • the annular rib may include a plurality of first annular ribs disposed concentrically such that the plurality of first annular ribs are capable of forming concentric annular ribs.
  • the annular bead may also include a plurality of second annular ribs that are not nested from each other.
  • the rib comprises a concentric ring rib disposed concentrically by a plurality of first annular ribs, the groove comprising an annular groove formed by a plurality of concentric ring ribs And a first groove formed by the first annular rib of the innermost layer.
  • a plurality of first annular ribs may also be concentrically arranged on the bottom of the pot to form a concentric ring rib on the bottom of the pot.
  • An annular groove can be formed, and the innermost rib can form a common groove, such as a first groove.
  • This arrangement is arranged concentrically by the concentric rings, so that the arrangement of the ribs and the grooves is relatively regular, so that the ribs and the grooves can be more evenly distributed on the bottom of the pot.
  • the concentric ring ribs can make the bubbles have a concentric ring shape during the ascending process, that is, the bubbles can form a specific concentric ring during the ascending process, so that when the kettle body is transparent, the user can observe that the bubbles in the kettle body are rising.
  • the process is concentric, which in turn improves the user experience.
  • the rib includes a plurality of S-shaped ribs disposed in an S shape, and the groove includes an S-shaped groove formed by two adjacent S-shaped ribs .
  • a plurality of S-shaped ribs may also be disposed on the bottom of the pot to form a plurality of S-shaped grooves through the plurality of S-shaped ribs.
  • the S-shaped groove can make the bubble S-shaped during the ascending process, that is, the bubble can form a specific S shape during the ascending process, so that when the kettle body is transparent, the user can observe that the bubble in the kettle body is rising.
  • the process is S-shaped, which can improve the user experience.
  • the rib includes a plurality of second annular ribs, and the plurality of the second annular ribs are located on the inner surface of the bottom of the kettle on the other of the second Outside the annular rib, a plurality of the second annular ribs are connected to each other, or a plurality of the second annular ribs are spaced apart from each other, and the groove is included in an inner region of each of the second annular ribs a second groove formed.
  • the plurality of second annular ribs are located outside the other second annular rib on the inner surface of the bottom of the kettle, so that the plurality of second annular ribs are not nested with each other, so that the first
  • the inner wall surface of the two annular ribs encloses a second groove, which is equivalent to hollowing out the middle portion of one rib to additionally form a second groove.
  • one rib can form a second groove, and the size of the second groove can be completely determined by the second annular rib, so that the second concave can be accurately defined by the second annular rib
  • the size of the groove so that the boundary of the bubble generation can be accurately defined to accurately define the size of the bubble.
  • such an arrangement can enclose the second recess through the inside of the second annular rib, so that the width of the rib can be made narrower than that of the solid rib, so that the cost of the product can be made lower.
  • the plurality of second annular ribs may be connected to each other or may be disposed independently of each other, but preferably, the plurality of second annular ribs are connected to each other, and the plurality of second annular ribs are preferably arranged in a polygonal shape, so that all All sides of the second annular bead can be connected to the other second annular bead, so that the spacing between the plurality of second annular bead can be minimized so that more can be formed on the bottom of the pot The second groove.
  • the second groove is provided with a communication port.
  • a notch may be formed on the second annular rib, so that a communication port can be formed between the adjacent two grooves. So that the second groove surrounded by each of the second annular ribs can communicate with the area outside the second annular rib, so that the first noise reduction coating between the plurality of second annular ribs is not It will be separated by the second annular ribs, so that the first noise-reducing coating can be integrated into one body, so that the first noise-reducing coating can be integrally formed during processing to reduce the processing difficulty and improve the first drop.
  • the processing speed of the noise coating can be set at any one.
  • the rib when the rib includes a plurality of second annular ribs, the plurality of second annular ribs comprise regular polygonal ribs, and the inside of each of the regular polygonal ribs Each of them forms a regular polygonal groove, and the number of sides of the regular polygon of the regular polygonal groove is m, wherein 3 ⁇ m ⁇ 10, or 5 ⁇ m ⁇ 7.
  • each of the plurality of second annular ribs may preferably be set as a regular polygonal rib, such as a regular pentagon, a regular hexagon or other regular polygon, but preferably,
  • the number m of sides of the polygonal rib is preferably between 3 and 10. Further, m can be set between 5 and 7, such that the number of sides of the second annular rib is not excessive, so that the second annular rib
  • the structure is relatively simple, so that the processing difficulty of the second annular rib can be reduced.
  • a gap is not disposed between the plurality of the regular polygonal ribs, and the arrangement is such that all the sides of all the second annular ribs can be connected with the other second annular rib, thereby maximizing The spacing between the plurality of second annular ribs is reduced to enable more second grooves to be formed on the bottom of the pot.
  • the second annular rib may also be circular or elliptical or other irregular shape, such as a cloud shape.
  • the rib comprises a spiral rib disposed on the bottom of the kettle, the inner surface of the bottom of the kettle is from the spiral rib
  • the middle to the edge of the spiral rib is further provided with a first connecting rib, and the width of the first connecting rib is b1, wherein 0.1mm ⁇ b1 ⁇ 5mm, or 0.1mm ⁇ b1 ⁇ 1.0mm, or 0.2mm ⁇ b1 ⁇ 0.5 mm;
  • the rib comprises concentric ring ribs concentrically arranged by a plurality of first annular ribs, the inner surface of the bottom of the pot is from the middle of the concentric ring rib to the concentric
  • the edge of the ring rib is further provided with a second connecting rib, and the width of the second connecting rib is b2, wherein 0.1mm ⁇ b2 ⁇ 5mm, or 0.1mm ⁇ b2 ⁇ 1.0mm, or 0.2mm ⁇ b2 ⁇ 0.5mm .
  • the first connecting rib when the rib includes the spiral rib, the first connecting rib may be disposed in a radial direction of the spiral rib so that the ribs of the inner and outer layers can be connected to each other through the first connecting rib.
  • the width of the first connecting rib may preferably coincide with the width of the spiral rib, for example, the width b1 of the first connecting rib may preferably be set between 0.1 mm and 5 mm, or further set between 0.5 mm and 1 mm,
  • the height of a connecting rib may preferably be set between 0.1 mm and 1 mm, and further, may be set between 0.2 mm and 0.5 mm.
  • the number of the first connecting ribs is plural, such as two or four, so that the spiral ribs can be reinforced from a plurality of directions.
  • the second connecting rib may be disposed in the radial direction of the concentric ring rib so that the ribs of the inner and outer layers can be connected to each other through the second connecting rib, thereby improving The strength of the connection between the concentric ring ribs.
  • the width of the second connecting rib may preferably coincide with the width of the concentric ring rib, for example, the width b2 of the second connecting rib may preferably be set between 0.1 mm and 5 mm, or further set between 0.5 mm and 1 mm, The height of the two connecting ribs may preferably be set between 0.1 mm and 1 mm, and further, may be set between 0.2 mm and 0.5 mm.
  • the number of the second connected ribs is plural, such as two or four, so that the concentric ring ribs can be reinforced from a plurality of directions.
  • the diameter of the largest inscribed circle that can be formed between the ribs is d, wherein 3 mm ⁇ d ⁇ 10 mm, or 5 mm ⁇ d ⁇ 8 mm.
  • the diameter of the largest inscribed circle that can be formed between the ribs is d, where the maximum inscribed circle is defined as the trajectory of the rib can form the diameter of the largest inscribed circle, for example, in the rib
  • the largest inscribed circle is the largest one that can be drawn in the space surrounded by the second annular rib a circle
  • the largest inscribed circle is the largest circle that can be formed between the inner and outer adjacent two ribs, here
  • the size of the area surrounded by the innermost rib is not limited by the above-mentioned maximum inscribed circle, that is, the rib can be
  • the vacant space the size of the vacant space can be set according to actual needs, but preferably the boundary line of the outer edge of the vacant space should be located inside the inner diameter of the heat pipe.
  • the diameter d of the largest inscribed circle between 3 mm and 10 mm, or further between 5 mm and 8 mm, the size of the bounding boundary of the rib can be reasonably defined to accurately define the groove.
  • the size of the bubble can be reasonably limited to reasonably define the size of the bubble, thereby reducing the noise of the product.
  • the first bottom noise reduction coating is disposed on an inner bottom surface of the groove and an inner side surface of the groove.
  • the first noise reduction coating layer is disposed on both the inner bottom surface of the groove and the inner side surface of the groove, so that the entire inner surface of the groove can be covered with the noise reduction coating, thereby further Enhance the noise reduction performance of the groove to further reduce noise.
  • the rib is processed by CNC, or the rib is formed by laser engraving, or the rib is processed by an etching process, or the rib passes Processed by a stretch stamping process.
  • the ribs can be processed by various processing methods, for example, by CNC machining or by laser engraving or by an etching process or by a drawing process. .
  • it can be processed by a stretch stamping process, which makes the processing of the ribs simpler.
  • the kettle body is made of stainless steel, so that the kettle body has better strength and is less likely to rust.
  • the liquid heating container further comprises: a casing, the kettle body is disposed in the casing, the heating device is disposed in the casing, a bottom of the kettle body; and a base disposed outside the casing
  • the outer casing is detachably mounted on the base, and can supply power to the heating device and the like, and support the outer casing and the kettle body.
  • the product can be powered by the base, and the outer casing is used for thermal insulation and hidden protection of the kettle body.
  • the liquid heating container further comprises: a handle disposed on the outer casing; and a lid attached to the spout of the kettle body for opening or closing the spout of the kettle body.
  • the liquid heating container is an electric kettle, so that water can be boiled by the electric kettle.
  • FIG. 1 is a schematic structural view of a liquid heating container according to an embodiment of the present invention.
  • FIG. 2 is another schematic structural view of a liquid heating container according to an embodiment of the present invention.
  • FIG. 3 is a first partial structural schematic view of a liquid heating container according to an embodiment of the present invention.
  • Figure 4 is a partially enlarged schematic view of the portion A in Figure 3;
  • Figure 5 is a second partial structural schematic view of a liquid heating container according to an embodiment of the present invention.
  • Figure 6 is a partially enlarged schematic view showing a portion B in Figure 5;
  • Figure 7 is a third partial structural schematic view of a liquid heating container according to an embodiment of the present invention.
  • Figure 8 is a partially enlarged schematic view showing a portion C in Figure 7;
  • Figure 9 is a fourth partial structural schematic view of a liquid heating container according to an embodiment of the present invention.
  • Figure 10 is a partially enlarged schematic view showing a portion D in Figure 9;
  • Figure 11 is a schematic view showing the structure of a heating device for a liquid heating container according to an embodiment of the present invention.
  • Figure 12 is a partially enlarged schematic structural view of a liquid heating container according to an embodiment of the present invention.
  • Figure 13 is a partially enlarged schematic view showing the liquid heating container according to an embodiment of the present invention.
  • Figure 14 is a partially enlarged schematic view showing the liquid heating container according to an embodiment of the present invention.
  • Figure 15 is a fifth partial structural schematic view of a liquid heating container according to an embodiment of the present invention.
  • Figure 16 is a sixth partial structural schematic view of a liquid heating container according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural view of a bottom of a liquid heating container according to an embodiment of the present invention.
  • Figure 18 is a partially enlarged schematic view showing the structure at E in Figure 17;
  • FIG. 19 is a schematic structural view of a bottom of a liquid heating container according to another embodiment of the present invention.
  • Figure 20 is a partially enlarged schematic view showing the structure of F in Figure 19;
  • FIG. 21 is a schematic structural view of a bottom of a liquid heating container according to still another embodiment of the present invention.
  • Figure 22 is a schematic structural view of a bottom of a liquid heating container according to still another embodiment of the present invention.
  • FIG. 23 is a schematic structural view of a bottom of a liquid heating container according to a fifth embodiment of the present invention.
  • Figure 24 is a schematic view showing the structure of the bottom of the liquid heating container according to the sixth embodiment of the present invention.
  • a liquid heating vessel provided in accordance with some embodiments of the present invention is described below with reference to Figures 1 through 24.
  • an embodiment of the first aspect of the present invention provides a liquid heating container including a kettle body 1 and a heating device 2, the kettle body 1 including a kettle bottom 12, and a kettle bottom 12 formed thereon.
  • a rib 122 and a groove 120 are surrounded by a rib 122.
  • the heating device 2 is located on the outer surface of the bottom 12 for heating the kettle body 1.
  • the surface of the bottom 12 connected to the heating device 2 is metal. surface.
  • a liquid heating container includes a kettle body 1 and a heating device 2, wherein the kettle body 1 is for holding water, and the heating device 2 is for heating the kettle body 1 to heat the kettle body 1 Water.
  • the rib 122 By providing the rib 122 on the bottom 12 of the pot and forming a groove on the pot body 1 by the rib 122, the rib 122 can be used as the boundary of the groove 120, thereby being able to pass the shape and size of the rib 120.
  • the shape and size of the recess is defined such that a plurality of boundaries can be reasonably defined on the bottom 12 by the size of the recess 120 such that bubbles generated by the bottom 12 can only be collected within the boundaries defined by the recess 120.
  • the rib 122 can rupture the bubble or detach the bubble from the bottom of the body 1 when the bubble rises to touch the boundary of the groove 120, so that the size of the groove 120 can be reasonably set to reasonably define the body 1
  • the size of the bubble generated at the bottom and the pooling area defining the bubble, the collection shape of the bubble to achieve precise control of the size of the bubble generated and the purpose of controlling the bubble collection area and the bubble collection shape, thereby preventing the electric kettle from being heated during the heating process
  • the generated bubbles are too large, and the bubbles generated by the kettle body are not disordered, and the bubble collection is irregular, so that the size of the bubbles can be reasonably limited by controlling the size of the bubbles.
  • the noise can realize the precise control of the product noise, and can reduce the size of the generated bubbles, so that the water in the kettle body 1 can fully contact the bottom of the kettle body 1, thereby enhancing the heat transfer efficiency of the product, thereby improving the product. Heating efficiency.
  • the collection area of the air bubbles can be defined by the ribs 122 and the grooves 120, so that the collection rule of the plurality of air bubbles and the shape or pattern formed by the bubble collection can be controlled as a whole to improve the user experience satisfaction of the liquid heating process. .
  • the heat of the bottom of the kettle body 1 can be made more uniform, thereby preventing the bottom portion of the kettle body 1 from being seriously heated by the isolation of the air bubbles, thereby causing the kettle body 1 to be severely heated.
  • the local temperature is too high, which in turn reduces the risk of early warning of the thermostat.
  • the hydrophobic coating allows a small and dense small bubble to be collected into a large bubble, which can effectively reduce the number of small bubbles and reduce the breakage of small bubbles in the water, thereby further reducing noise.
  • the grooves 120 are disposed at different positions, so that the air bubbles can be generated at different positions, so that the bubble can be appropriately defined by the position of the grooves 120.
  • a spiral shape, a concentric ring shape, or the like so that the bubble generated by the kettle body 1 can be formed in a shape conforming to the concave groove 120 during the ascending process in the kettle body 1, so that the shape of the groove 120 can be reasonably defined.
  • the shape of the bubble during the ascending process, and for a heating container such as a transparent electric kettle the user can view the bubble in the body 1 through the body 1, and the bubble can form a shape conforming to the shape of the groove 120 during the ascending process.
  • the shape therefore, by setting the groove 120 into the shape of various patterns, the bubbles generated during the work of the product can form a very beautiful picture in the body 1, so that Users can enhance the user experience when using the product in order to increase user satisfaction with the product.
  • the surface of the bottom 12 connected to the heating device 2 is preferably a metal surface, that is, a surface made of a metal material, because the heat conduction performance of the metal surface is good, so that the heating device 2 can transfer more heat to the bottom 12 of the kettle. In this way, the heating efficiency of the liquid heating vessel can be improved.
  • the surface of the bottom 12 connected to the heating device 2 can also be a non-metallic surface, such as a ceramic surface made of ceramic material.
  • the entire bottom 12 can be made metal to form a metal surface, or a metal coating can be disposed on the outer bottom of the other bottom 12 to form a metal surface.
  • the groove 120 in the present application is surrounded by the rib 122, and the groove 120 is separated by the rib 122, that is, the groove 120 and the rib 122 are inseparable, and both are lacking.
  • the size and shape of the ribs 122 can be set as needed.
  • the ribs 122 can be arranged as one or more annular ribs.
  • the inside of the annular rib can form a groove. 120, and when one or more annular ribs are independently disposed, one or more grooves 120 may be disposed independently of each other.
  • a plurality of annular ribs may also be concentrically arranged to form a plurality of concentrically arranged rings.
  • a long rib 122 may be wound in a ring shape into a rib disk including a plurality of inner and outer layers and a plurality of inner and outer layers are spaced apart.
  • a rib 122 may be spirally wound into a spiral rib.
  • the spiral rib can enclose a spiral groove.
  • a notch may be provided on the ribs 122, but the notches are not too large, and specifically, should be insufficient.
  • the bubbles in the groove 120 are traversed or passed through the gap to merge with the bubbles in the adjacent groove 120 into large bubbles.
  • a gap may be provided between two adjacent grooves A and B, and the notch is sized such that bubbles in the groove A cannot merge with the bubbles in the groove B through the gap.
  • the large bubbles i.e., the ribs 122 and the grooves 120, can reasonably define the boundary at which the bubbles are generated, so that a plurality of bubbles cannot be pooled into larger bubbles.
  • the liquid heating container further includes: a first noise reduction coating 14 disposed on at least the inner bottom surface of the recess 120 on.
  • the noise of the product can be reduced by the first noise reduction coating 14, specifically, for example, A hydrophobic coating is disposed on the bottom 12 of the pot, so that the hydrophobic property of the hydrophobic coating can be utilized, so that bubbles generated on the bottom wall of the body 1 are not easily detached from the bottom of the body 1, thus making the body 1 small and densely small.
  • the air bubbles can be collected into a large bubble in the groove 120 on the bottom wall of the body 1, and after being collected into a large bubble, the heat in the large bubble is more consistent with the heat in the water, so that the large bubble can be exposed after the water surface Rupture, which prevents bubbles from rupturing in the water and causing loud noise.
  • the hydrophobic coating allows a small and dense small bubble to be collected into a large bubble, which can effectively reduce the number of small bubbles and reduce the breakage of small bubbles in the water, thereby further reducing noise.
  • the noise reduction coating may not be provided.
  • the bottom of the kettle body 1 can be made to generate larger bubbles or by other means, such as changing the structure of the heating device 2, and changing the heating. The way, or changing the heating parameters, allows small, dense bubbles to collect into large bubbles.
  • the maximum height difference h1 between the top of the rib 122 and the bottom of the groove 120 is greater than the thickness t1 of the first noise-reducing coating 14.
  • the maximum height difference h1 between the top of the rib 122 and the bottom of the groove 120 is greater than the thickness t1 of the first noise reduction coating 14, that is, the rib 122 is higher than the first noise reduction coating.
  • the layer 14 is disposed such that the ribs 122 can expose the first noise-reducing coating layer 14, thereby enabling the ribs 122 and the grooves 120 to effectively define the boundaries of the bubbles generated on the first noise-reducing coating layer 14, and vice versa.
  • the rib 122 is hidden from being mounted in the first noise reduction coating 14, The ribs 122 and the grooves 120 do not define the boundaries of the bubbles of the product on the first noise reduction coating 14.
  • the maximum height difference between the top of the rib 122 and the bottom of the groove 120 is h1, wherein 0.03 mm ⁇ h1 ⁇ 2 mm, or 0.1 mm ⁇ h1 ⁇ 1.0 mm, or 0.1 mm ⁇ h1 ⁇ 0.5 mm.
  • the maximum height difference between the top of the rib 122 and the bottom of the groove 120 is not too large, because the over-construction causes the rib 122 to be poorly processed, wastes material and leads to high cost, and leads to a pot.
  • the bottom wall of the body 1 is too thick and convex, so that it is not easy to clean. Therefore, it is preferable to set the height difference h1 between the top of the rib 122 and the bottom of the groove 120 to be between 0.03 mm and 2 mm, so that the rib 122 is both processed and reduced in cost, and can also make the product Better cleaning.
  • 0.1 mm ⁇ h1 ⁇ 1.0 mm, or 0.1 mm ⁇ h1 ⁇ 0.5 mm so that the maximum height difference h1 between the top of the rib 122 and the bottom 12 can be further set between 0.1 mm and 1 mm or It is disposed between 0.1 mm and 0.5 mm, such as between 0.2 mm and 0.5 mm.
  • the maximum height difference h1 between the top of the rib 122 and the bottom 12 can also be set between 0.5 mm and 1 mm.
  • the width of the groove 120 is a, 3 mm ⁇ a ⁇ 10 mm or 5 mm ⁇ a ⁇ 8 mm, or 0.1 mm ⁇ a ⁇ 1.0 mm.
  • the width a between any two adjacent grooves 120 may be set between 3 mm and 10 mm, or further preferably the width a between any two adjacent grooves 120 is set at 5 mm. Between 8mm. Further, the width of the rib 122 may be set larger, and the width of the groove 120 may be set smaller. At this time, the width a of the groove 120 may be set to be between 0.1 mm and 1.0 mm. By defining the width of the groove 120, the size of the space surrounded by the plurality of grooves 120 can be reasonably defined to reasonably define the size of the bubble so that the size of the generated bubble is relatively moderate, thereby effectively reducing the noise of the product.
  • the width of the rib 122 is e
  • the width of the groove 120 is a, wherein 0.1 mm ⁇ e ⁇ 1.0 mm, 3 mm ⁇ a ⁇ 10mm or 5mm ⁇ a ⁇ 8mm; or 0.1mm ⁇ a ⁇ 1.0mm, 3mm ⁇ e ⁇ 10mm or 5mm ⁇ e ⁇ 8mm.
  • the width e of the rib 122 may preferably be set between 0.1 mm and 1.0 mm.
  • the groove 120 may be The width a is set between 3 mm and 10 mm, or further preferably the width a of the groove 120 is set between 5 mm and 8 mm, so that the space between the rib 122 and the groove 120 can be reasonably defined to reasonably define the bubble The size of the bubbles to make the size of the bubbles relatively moderate, thus effectively reducing the noise of the product.
  • the width of the rib 122 may be set larger, and the width of the groove 120 may be set smaller.
  • the width e of the rib 122 may preferably be set between 3 mm and 10 mm, or further preferably. Between 5 mm and 8 mm, and the width a of the groove 120 may be set between 0.1 mm and 1.0 mm. Of course, when the rib 122 is made of a regular polygon, the width e of the rib 122 may also be set between 0.1 mm and 5.0 mm.
  • the height difference between the rib 122 and the first noise reduction coating 14 is h2, wherein 0 mm ⁇ h2 ⁇ 1 mm, or 0.05 mm ⁇ h2 ⁇ 0.5 mm, or 0.1 mm ⁇ h2 ⁇ 0.3 mm.
  • the height difference h2 between the ribs 122 and the first noise-reduction coating layer 14 may be set to be greater than 0 mm and less than or equal to 1 mm, such as between 0 mm and 0.5 mm, or further preferably Between 0.05 mm and 0.5 mm or between 0.1 mm and 0.3 mm, such as 0.2 mm, such that the rib 122 can be higher than the first noise-reducing coating 14 by a certain distance, so that the rib 122 can form the groove 120 to
  • the perimeter of the first noise reduction coating 14 defines the boundaries of the bubbles to reasonably define the size of the bubbles.
  • the thickness of the first noise reduction coating layer 14 is t1, wherein 10 ⁇ m ⁇ t1 ⁇ 100 ⁇ m, or 15 ⁇ m ⁇ t1 ⁇ 70 ⁇ m, or 20 ⁇ m ⁇ T1 ⁇ 50 ⁇ m.
  • the thickness of the first noise reduction coating 14 can be reasonably set so that the first noise reduction coating 14 can have better noise reduction performance, and the first noise reduction coating 14 can be prevented. As for too thick, the cost increases. Therefore, preferably, the thickness t1 of the first noise reduction coating layer 14 may be set between 10 ⁇ m and 100 ⁇ m, and further preferably, the thickness t1 of the first noise reduction coating layer 14 may be set between 15 ⁇ m and 70 ⁇ m, such as Between 15 ⁇ m and 50 ⁇ m, or between 20 ⁇ m and 50 ⁇ m, such as 40 ⁇ m.
  • the first noise reduction coating 14 is a hydrophobic coating.
  • the first noise reduction coating 14 is a hydrophobic coating, such that the hydrophobic properties of the hydrophobic coating can be utilized such that bubbles generated by the bottom wall of the body 1 are not easily detached from the bottom of the body 1, thus
  • the small and dense small bubbles generated by the body 1 can be collected into a large bubble in the groove 120 on the bottom wall of the body 1, and after being collected into a large bubble, the heat in the large bubble is more consistent with the heat in the water. Therefore, the large bubbles can be broken after being exposed to the water surface, thereby preventing the bubbles from being broken in the water and generating a large noise.
  • the hydrophobic coating allows a small and dense small bubble to be collected into a large bubble, which can effectively reduce the number of small bubbles and reduce the breakage of small bubbles in the water, thereby further reducing noise.
  • the noise reduction treatment can be performed, for example, by a silicon coating or a fluorine coating or the like, because a silicon coating or a fluorine coating or the like for performing a noise reduction treatment is relatively common and mature, and thus is easy to implement.
  • the hydrophobic coating can make the bubbles gather in the groove 120 on the bottom 12 of the pot, the groove 120 can accurately define the maximum size of the bubble, and the rib 122 can cause the bubble to rupture in time. Or detached from the bottom 12, the hydrophobic coating can be used in combination with the ribs 122 and the grooves 120 to accurately control the size of the bubbles, thereby greatly reducing noise and improving noise reduction.
  • the second louver coating layer 16 is disposed on the rib 122.
  • the second noise-reducing coating 16 on the ribs 122, the grooves 120 and the ribs 122 of the entire bottom 12 are covered with a noise-reducing coating, which can be further reduced.
  • Product noise Preferably, the materials of the first noise reduction coating 14 and the second noise reduction coating 16 may be set to a coating of the same material, so that the first noise reduction coating 14 and the second may be specifically processed.
  • the noise-reducing coating 16 is processed together to improve the processing speed of the noise-reducing coating and reduce the processing difficulty of the noise-reducing coating.
  • the first noise reduction coating 14 is uniform in thickness with the second noise reduction coating 16, or the thickness of the second noise reduction coating 16 is T2, wherein 10 ⁇ m ⁇ t2 ⁇ 100 ⁇ m, or 15 ⁇ m ⁇ t2 ⁇ 70 ⁇ m, or 20 ⁇ m ⁇ t2 ⁇ 50 ⁇ m.
  • the first noise reduction coating 14 and the second noise reduction coating 16 are uniform in thickness to enable the first noise reduction coating 14 and the second noise reduction coating 16 to be integrally formed.
  • the thickness t2 of the second noise reduction coating layer 16 may be set between 10 ⁇ m and 100 ⁇ m, and further preferably, the thickness t2 of the second noise reduction coating layer 16 may be set between 15 ⁇ m and 70 ⁇ m or between 20 ⁇ m and 50 ⁇ m. Between, for example, 40 ⁇ m.
  • the second noise reduction coating 16 is a hydrophobic coating.
  • the noise reduction treatment may preferably be performed by a hydrophobic coating such as a silicon coating or a fluorine coating, because the noise reduction treatment is performed by a hydrophobic coating such as a silicon coating or a fluorine coating.
  • a hydrophobic coating such as a silicon coating or a fluorine coating.
  • This type of noise reduction can be used in combination with the ribs 122, thereby greatly reducing noise and improving noise reduction.
  • the first noise reduction coating 14 on the groove 120 is a continuous coating, or the first noise reduction on the groove 120.
  • the coating 14 includes a plurality of mutually interrupted coating segments; and/or the first noise-reducing coating 14 on the recess 120 and the second noise-reducing coating 16 on the ribs 122 are of unitary construction.
  • the first noise-reducing coating 14 between the ribs 122 is a continuous coating, that is, the first noise-reducing coating 14 between the ribs 122 is uninterrupted, that is, It is said that the first noise-reducing coating 14 between the ribs 122 is of a one-piece structure, so that the first noise-reducing coatings 14 can be mutually restrained, thereby preventing the noise-reducing coating from falling off.
  • the continuous placement of all of the first noise-reducing coatings 14, i.e., the uninterrupted arrangement also facilitates the processing of the first noise-reducing coating 14.
  • the first noise reduction coating 14 between the ribs 122 can also be disposed independently of each other to form a plurality of coating segments separated by the plurality of ribs 122 such that the first noise reduction coating between the ribs 122 is provided. 14 can be disconnected from each other, that is, discontinuous settings.
  • the first noise reduction coating layer 14 may be preferably disposed.
  • the second noise reduction coating 16 is arranged in a one-piece structure, so that all the noise reduction coatings are processed together, and is arranged as a continuous and unbroken structure, thereby reducing the processing difficulty of the noise reduction coating. Reduce processing costs.
  • the contact angle of the first noise reduction coating 14 is ⁇ , wherein 90° ⁇ 150°, or 95° ⁇ 110°, and/or the second noise reduction
  • the contact angle of the coating layer 16 is ⁇ , where 90° ⁇ ⁇ ⁇ 150°, or 95° ⁇ ⁇ ⁇ 110°.
  • the contact angle ⁇ of the first noise reduction coating 14 and/or the second noise reduction coating 16 between 90° and 150°, further between 95° and 110°.
  • the adsorption force of the noise-reducing coating on the bubbles can be reasonably set, so that the bubbles are less likely to be detached from the bottom 12 of the pot, so that the small and dense bubbles generated by the bottom 12 can be pooled into large bubbles at the bottom 12, and thus The size of the bubble can be reasonably limited to reasonably control the noise.
  • the heating device 2 includes: a heat conducting plate 22 disposed on an outer surface of the bottom 12; and a heat generating tube 24 disposed on the heat conducting plate 22 away from the pot On one side of the bottom 12; wherein the ribs 122 and the recesses 120 form an area on the bottom 12 of the pot, the projection of the heat pipe 24 on the bottom 12 is located in the area.
  • the heating device 2 includes a thermal pad 22 for conducting heat, and a heating tube 24 for specifically heating the thermal pad 22 to heat the bottom 12.
  • the rib 122 and the groove 120 form an area on the bottom 12, that is, the rib 122 and the groove 120 are disposed in the area.
  • the area can be set to a ring shape, that is, the rib 122 and the concave
  • the grooves 120 are distributed in an annular region, and of course, the ribs 122 and the grooves 120 may be distributed outward from the center of the bottom 12 of the pot.
  • the projection of the heating tube 24 on the bottom 12 is located in the region.
  • the projection of the heating tube 24 on the bottom 12 should be located within the inner contour and the outer contour of the annular region.
  • the projection of the heating tube 24 on the bottom 12 should be within the outer contour of the area.
  • the inner contour of the area is a point, and preferably with the bottom 12 of the pot.
  • the center is aligned such that the arrangement regions of the ribs 122 and the grooves 120 can completely cover the mounting area of the heat-generating tube 24, and at the portion where the heat-generating tube 24 is disposed, the bubbles are relatively concentrated, and thus the installation of all the heat-generating tubes 24 is corresponding.
  • the provision of the ribs 122 and the grooves 120 in the regions can further reduce noise.
  • the inner diameter D1 of the annular region should be smaller than the inner diameter D3 of the heat-generating tube 24, and the annular region is The outer diameter D2 should be greater than or equal to the outer diameter D4 of the heat pipe 24.
  • the heat conducting plate 22 is an aluminum disk, and the heat generating tube may be an aluminum tube or a copper tube.
  • the area of the heat pipe 24 in contact with the heat conducting plate 22 is A, and the sum of the total areas of the outer surfaces of the ribs 122 is B, and the inner surface of the bottom 12 is The area is C, where A ⁇ B ⁇ C, and / or 0.01 ⁇ B / C ⁇ 0.2, or 0.02 ⁇ B / C ⁇ 0.1, or 0.03 ⁇ B / C ⁇ 0.07.
  • the sum B of the total areas of the outer surfaces of the plurality of ribs 122 is greater than or equal to the area A of the heat pipe 24 contacting the heat conducting plate 22 being less than or equal to the area of the inner surface of the bottom 12 being C, which enables The area of the ribs 122 is relatively moderate, so that noise can be further reduced.
  • the ratio of the sum B of the total areas of the outer surfaces of the plurality of ribs 122 to the area C of the inner surface of the bottom 12 may be set between 0.01 and 0.2, and further, the plurality of ribs 122 may be The ratio of the sum B of the total area of the outer surface to the area C of the inner surface of the bottom 12 is set between 0.02 and 0.1, and further, the sum B of the total areas of the outer surfaces of the plurality of ribs 122 may be The ratio of the area C of the inner surface of the bottom 12 is set between 0.03 and 0.07.
  • the angle between the inner side surface of the groove 120 and the inner bottom surface of the groove 120 is ⁇ , wherein 90° ⁇ ⁇ ⁇ 130°. .
  • the sides of the ribs 122 may be preferably disposed perpendicularly such that the angle between the side of the rib 122 and the inner surface of the bottom 12 is 90°, at which point the inner side of the recess 120 The angle ⁇ between the inner bottom surface of the groove 120 and the inner bottom surface of the groove 120 is also 90°.
  • the rib 122 can also be arranged in a top-down width structure, such as a triangle or a trapezoid, in which case the side of the rib 122 can be made.
  • the angle between the inner surface of the bottom 12 and the inner surface of the groove 12 is greater than 90°, so that the angle ⁇ between the inner side surface of the groove 120 and the inner bottom surface of the groove 120 can also be greater than 90°, but preferably, the rib can be used.
  • the angle between the side surface of 122 and the inner surface of the bottom 12 is set in a range of 90° or more and 130° or less so that the inner side surface of the recess 120 and the inner bottom surface of the recess 120 can be sandwiched.
  • the angle ⁇ is set in a range of 90° or more and 130° or less.
  • the longitudinal section of the rib 122 has a triangular or circular arc shape or a trapezoidal shape.
  • the shape of the longitudinal section of the rib 122 may be any shape such as a triangular shape, a circular arc shape, or a trapezoidal shape according to actual needs, and is not specifically limited herein.
  • the rib 122 is wound on the bottom 12 of the pot by a rib having a plurality of inner and outer layers and a plurality of inner and outer layers spaced apart from each other, such as the rib 122 being spirally wound on the bottom of the pot.
  • the rib disk preferably, the rib disk.
  • the rib 122 includes a spiral rib 1222 that is spirally disposed on the bottom 12, and the groove 120 includes a spiral rib.
  • a spiral groove 1202 is formed in 1222.
  • a spiral rib 1222 can be provided on the bottom 12 to enable a spiral groove 1202 to be formed on the bottom 12 so as to pass through the spiral groove 1202 and the spiral rib. 1222 defines the boundary at which the bubble is created to define the size of the bubble.
  • the spiral arrangement makes the arrangement of the ribs 122 and the grooves 120 relatively regular, so that the ribs 122 and the grooves 120 can be more evenly distributed on the bottom 12 of the pot.
  • all of the ribs 122 can be joined together, and all of the grooves 120 can be joined together, thereby enabling the ribs 122 and the grooves 120 to be processed more conveniently.
  • the spiral groove 1202 can make the bubble spiral in the rising process, that is, the bubble can form a specific spiral shape during the rising process, so that when the kettle body 1 is transparent, the user can view the inside of the kettle body 1.
  • the bubbles are spiraled during the ascent, which in turn improves the user experience.
  • the ribs 122 are annular ribs.
  • the ribs 122 are a plurality of polygonal ribs or circular ribs or other irregularly shaped annular ribs disposed independently of each other.
  • the annular ribs can include a plurality of first annular ribs 1224 that are concentrically disposed such that the plurality of first annular ribs 1224 can form concentric ring ribs.
  • the annular bead may also include a plurality of second annular ribs 1226 that are not nested from each other.
  • the rib 122 includes concentric ring ribs concentrically disposed by the plurality of first annular ribs 1224, and the groove 120 includes a plurality of concentricities The annular groove 1204 formed by the ring rib and the first groove 1206 formed by the first annular rib 1224 of the innermost layer.
  • a plurality of first annular ribs 1224 may also be concentrically disposed on the bottom 12 to form a concentric annular rib on the bottom 12, at which time the inner and outer layers of the concentric annular ribs 122 are
  • An annular groove 1204 can be formed between the ribs, and the innermost rib can form a common groove 120, such as the first groove 1206.
  • This arrangement concentrically arranged by the concentric rings, allows the arrangement of the ribs 122 and the grooves 120 to be relatively regular, thereby enabling the ribs 122 and grooves 120 to be more evenly distributed over the bottom 12.
  • the concentric ring ribs can make the bubbles have a concentric ring shape during the ascending process, that is, the bubbles can form a specific concentric ring shape during the ascending process, so that when the kettle body 1 is transparent, the user can view the inside of the kettle body 1.
  • the bubbles are concentric in the ascent process, which in turn improves the user experience.
  • the rib 122 includes a plurality of S-shaped ribs 1228 disposed in an S shape, and the groove 120 includes an adjacent two S-shaped ribs 1228. S-shaped groove 1200.
  • a plurality of S-shaped ribs 1228 may also be provided on the bottom 12 to form a plurality of S-shaped grooves 1200 through the plurality of S-shaped ribs 1228.
  • the S-shaped groove 1200 can make the bubble S-shaped during the ascending process, that is, the bubble can form a specific S shape during the ascending process, so that when the kettle body 1 is transparent, the user can view the inside of the kettle body 1.
  • the bubbles are S-shaped during the ascent, which in turn improves the user experience.
  • the rib 122 includes a plurality of second annular ribs 1226, and the plurality of second annular ribs 1226 are on the inner surface of the bottom 12. Located outside the other second annular rib 1226, the plurality of second annular ribs 1226 are connected to each other, or the plurality of second annular ribs 1226 are spaced apart from each other, and the groove 120 is included in the interior of each of the second annular ribs 1226. A second recess 1208 is formed in the region.
  • the plurality of second annular ribs 1226 are located outside the other second annular rib 1226 on the inner surface of the bottom 12 such that the plurality of second annular ribs 1226 are not nested with each other, such that A second recess 1208 can be enclosed by the inner wall surface of the second annular rib 1226, which is equivalent to hollowing out the middle of one rib to additionally form the second recess 1208.
  • a rib can form a second recess 1208, and the size of the second recess 1208 can be completely determined by the second annular rib 1226, and thus can be accurately defined by the second annular rib 1226.
  • the size of the second recess 1208 is such that the boundary at which the bubble is generated can be accurately defined to accurately define the size of the bubble.
  • this arrangement can enclose the second groove 1208 through the inside of the second annular bead 1226, so that the width of the bead 122 can be made narrower than that of the solid bead, thereby enabling the cost of the product. Lower.
  • the plurality of second annular ribs 1226 may be connected to each other or may be disposed independently of each other, but preferably, the plurality of second annular ribs 1226 are connected to each other, and the plurality of second annular ribs 1226 are preferably arranged in a polygonal shape. This allows all of the sides of all of the second annular ribs 1226 to be coupled to the other of the second annular ribs 1226, thereby minimizing the spacing between the plurality of second annular ribs 1226 so that they can be More second grooves 1208 are formed in the bottom 12.
  • the second groove 1208 is provided with a communication port.
  • a notch may be formed on the second annular rib 1226, so that the adjacent two grooves 120 can be formed.
  • a communication port such that the second groove 1208 surrounded by each of the second annular ribs 1226 can communicate with a region outside the second annular rib 1226, which results in a plurality of second annular ribs 1226
  • the first noise reduction coating 14 is not separated by the second annular bead 1226, so that the first noise reduction coating 14 can be integrated into one body, so that the first noise reduction coating 14 can be integrated during processing. Processing and molding to reduce the processing difficulty and improve the processing speed of the first noise reduction coating 14.
  • the number and width of the communication ports can be set at any one.
  • the rib 122 when the rib 122 includes a plurality of second annular ribs 1226, the plurality of second annular ribs 1226 comprise regular polygonal ribs, each The inside of the regular polygonal ribs forms a regular polygonal groove, and the number of sides of the regular polygon of the regular polygonal groove is m, wherein 3 ⁇ m ⁇ 10, or 5 ⁇ m ⁇ 7.
  • each of the plurality of second annular ribs 1226 may preferably be disposed as a regular polygonal rib, such as a regular pentagon, a regular hexagon, or other regular polygon, but preferably,
  • the number m of sides of the regular polygonal rib is preferably between 3 and 10. Further, m may be disposed between 5 and 7, such that the number of sides of the second annular rib 1226 is not excessive, thereby making the second ring
  • the structure of the rib 1226 is relatively simple, so that the processing difficulty of the second annular rib 1226 can be reduced.
  • no gap is provided between the plurality of regular polygonal ribs, and the arrangement is such that all the sides of all the second annular ribs 1226 can be combined with the other second annular convex
  • the ribs 1226 are joined such that the spacing between the plurality of second annular ribs 1226 can be minimized so that more second grooves 1208 can be formed in the bottom 12.
  • the second annular rib 1226 may also be circular or elliptical or other irregular shape, such as a cloud shape.
  • the rib 122 when the rib 122 includes a spiral rib 1222 which is spirally disposed on the bottom 12, the inner surface of the bottom 12 is convexly convex.
  • the middle portion of the rib 1222 to the edge of the spiral rib 1222 is further provided with a first connecting rib 124, and the width of the first connecting rib 124 is b1, wherein 0.1 mm ⁇ b1 ⁇ 5 mm, or 0.1 mm ⁇ b1 ⁇ 1.0 mm, or 0.2mm ⁇ b1 ⁇ 0.5mm;
  • the rib 122 when the rib 122 includes concentric ring ribs concentrically arranged by the plurality of first annular ribs 1224, the inner surface of the bottom 12 is from the middle of the concentric ring rib to the concentric ring rib
  • the edge is also provided with a second connecting rib, and the width of the second connecting rib is b2, wherein 0.1 mm ⁇ b2 ⁇ 5 mm, or 0.1
  • the first connecting rib 124 may be disposed in the radial direction of the spiral rib 1222 so that the rib of the inner and outer layers can pass the first connection.
  • the ribs 124 are connected to each other, so that the strength of the connection between the spiral ribs 1222 can be improved.
  • the width of the first connecting ribs 124 may preferably coincide with the width of the spiral ribs 1222.
  • the width b1 of the first connecting ribs 124 may preferably be between 0.1 mm and 5 mm, or further set at 0.5 mm to 1 mm.
  • the height of the first connecting ribs 124 may preferably be set between 0.1 mm and 1 mm, and further, may be set between 0.2 mm and 0.5 mm. Wherein, the number of the first connecting ribs 124 is plural, such as two or four, so that the spiral ribs 1222 can be reinforced from a plurality of directions.
  • the second connecting ribs may be disposed in the radial direction of the concentric ring ribs, so that the ribs of the inner and outer layers can be connected to each other through the second connecting rib, so that Increase the strength of the connection between the concentric ring ribs.
  • the width of the second connecting rib may preferably coincide with the width of the concentric ring rib, for example, the width b2 of the second connecting rib may preferably be set between 0.1 mm and 5 mm, or further set between 0.5 mm and 1 mm, The height of the two connecting ribs may preferably be set between 0.1 mm and 1 mm, and further, may be set between 0.2 mm and 0.5 mm.
  • the number of the second connected ribs is plural, such as two or four, so that the concentric ring ribs can be reinforced from a plurality of directions.
  • the diameter of the largest inscribed circle that can be formed between the ribs 122 is d, wherein 3 mm ⁇ d ⁇ 10 mm, or 5 mm ⁇ d ⁇ 8mm.
  • the diameter of the largest inscribed circle that can be formed between the ribs 122 is d, where the maximum inscribed circle is defined as the trajectory of the rib 122 capable of forming the largest diameter of the inscribed circle, for example,
  • the largest inscribed circle is a space that can be surrounded by the second annular rib 1226
  • the largest circle drawn inside, and when the rib 122 includes the spiral rib 1222 and the concentric ring ribs concentrically disposed by the plurality of first annular ribs 1224, the largest inscribed circle is the inner and outer adjacent two ribs 122
  • the largest circle that can be formed between, here, when there is no rib in the middle of the bottom 12 of the pot bottom, at this time, the size of the area surrounded by the rib of the innermost layer is not limited by the
  • the size of the vacant space can be set according to actual needs, but preferably the boundary line of the outer edge of the vacant space should be located inside the inner diameter of the heat pipe.
  • the diameter d of the largest inscribed circle between 3 mm and 10 mm, or further between 5 mm and 8 mm, the size of the bounding boundary of the rib 122 can be reasonably defined to accurately define the concave shape.
  • the size of the groove 120 can reasonably define the size of the bubble generation to reasonably define the size of the bubble, thereby reducing the noise of the product.
  • the inner bottom surface of the recess 120 and the inner side surface of the recess 120 are provided with a first noise reduction coating 14.
  • the first noise reduction coating 14 is disposed on both the inner bottom surface of the recess 120 and the inner side surface of the recess 120 such that the entire inner surface of the recess 120 can be covered with a noise reduction coating. Therefore, the noise reduction performance of the groove 120 can be further enhanced to further reduce noise.
  • the rib 122 is processed by CNC, or the rib 122 is laser-engraved, or the rib 122 is processed by an etching process, or the rib 122 is passed through a drawing process. Processed.
  • the ribs 122 can be processed by various processing methods, such as, for example, by CNC machining or by laser engraving or by an etching process or by a drawing process. to make. Preferably, however, it can be processed by a stretch stamping process, which makes the processing of the ribs 122 simpler.
  • the kettle body 1 is made of stainless steel, so that the kettle body 1 has better strength and is less prone to rust.
  • the liquid heating container further comprises: a casing 3, the kettle body 1 is disposed in the casing 3, the heating device 2 is disposed in the casing 3, the bottom of the kettle body 1, and the base 4, Provided outside the outer casing 3, the outer casing 3 is detachably mounted on the base 4, and can supply power to the heating device 2 and the like, and support the outer casing 3 and the kettle body 1.
  • the product can be powered by the base 4, which is used to insulate and conceal the body 1.
  • the liquid heating container further comprises: a handle 5 disposed on the outer casing 3; a lid 6 mounted on the spout of the kettle body 1 for opening or closing the kettle body 1 of the mouth of the pot.
  • the liquid heating vessel is an electric kettle so that water can be boiled by the electric kettle.
  • connection may be a fixed connection, a detachable connection, or an integral connection; it may be directly connected or indirectly connected through an intermediate medium.
  • connection may be a fixed connection, a detachable connection, or an integral connection; it may be directly connected or indirectly connected through an intermediate medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Cookers (AREA)

Abstract

本发明提供了一种液体加热容器,包括:壶体,壶体包括壶底,壶底上形成有凸筋和凹槽,凹槽由凸筋围成;加热装置,位于壶底的外表面上,用于加热壶体,壶底与加热装置连接的面为金属面。该方案通过在壶底上设置凸筋和凹槽,能够在壶底上通过凹槽合理地限定出多个边界,而凸筋能够在气泡上升碰触到凹槽边界上时使气泡产生破裂或与壶底脱离,这样使得壶底产生的气泡只能够在凹槽内进行汇集,这样便能够准确地限定出壶体底部产生的气泡的大小,以实现对产品噪音的精准控制,及增强产品的传热效率,降低温控器早跳的风险。

Description

液体加热容器
本申请要求于2018年4月26日提交中国专利局、申请号为201810388326.4、发明名称为“液体加热容器”、于2018年4月26日提交中国专利局、申请号为201820611637.8、实用新型名称为“液体加热容器”、于2018年4月26日提交中国专利局、申请号为201810387554.X、发明名称为“液体加热容器”、于2018年4月26日提交中国专利局、申请号为201820611638.2、实用新型名称为“液体加热容器”、于2018年5月02日提交中国专利局、申请号为201810411160.3、发明名称为“液体加热容器”、于2018年5月02日提交中国专利局、申请号为201820644243.2、实用新型名称为“液体加热容器”、于2018年5月02日提交中国专利局、申请号为201810410316.6、发明名称为“液体加热容器”、于2018年5月02日提交中国专利局、申请号为201820642790.7、实用新型名称为“液体加热容器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及厨房用具领域,具体而言,涉及一种液体加热容器。
背景技术
目前的液体加热容器常采用加热管的方式进行加热,其加热面较小,导致局部功率密度(加热管的功率/加热管在壶底的投影面积)较高,进而引起壶体的底壁面的过热度较大,这样产生的气泡小且密集,从而使得噪声较大。而针对噪音问题,现有技术通过在壶体的底壁上增加疏水涂层的方法,这样可利用疏水涂层的疏水性,使多个小气泡在壶体底部先逐渐汇聚成大气泡,这样便可减小气泡的脱离量及破裂量,以达到降噪的效果。但该种结构,疏水涂层的接触角较难精准控制,这就导致无法精确地控制产生的气泡的尺寸,而汇集后的大气泡的直径有些甚至会达到10mm以上,这就使得聚集在壶体底壁的气泡较大,从而气泡会在一定程度上使壶体内的水与壶体的底壁隔离,这样一方面会 使得壶体的底壁的传热效率较低,因而降低了产品的加热效率,另一方面加热管产生的热量会聚集到壶体的底壁上,从而导致壶体的底壁温度过高,这样也就容易造成壶体的底壁进行干烧,因而影响了底部温控器的寿命,同时会产生温控器早跳的风险。
因此,如何提出一种能够合理控制产生的气泡的大小以降低噪音的液体加热容器成为目前亟待解决的问题。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
因此,本发明的一个目的在于提供了一种液体加热容器。
有鉴于此,本发明第一方面的实施例提供了一种液体加热容器,所述液体加热容器包括:壶体,所述壶体包括壶底,所述壶底上形成有凸筋和凹槽,所述凹槽由所述凸筋围成;加热装置,位于所述壶底的外表面上,用于加热所述壶体,所述壶底与所述加热装置连接的面为金属面。
根据本发明第一方面的实施例提供的液体加热容器,包括壶体和加热装置,其中,壶体用于盛装水,加热装置用于加热壶体,以加热壶体内的水。而通过在壶底上设置凸筋,并通过凸筋在壶体上围成凹槽,使得凸筋能够作为凹槽的边界,从而能够通过凸筋的形状、大小来限定出凹槽的形状和大小,这样能够在壶底上通过凸筋和凹槽的尺寸合理地限定出多个边界,以使壶底产生的气泡只能够在凹槽限定的边界内进行汇集,而凸筋能够在气泡上升碰触到凹槽边界上时使气泡产生破裂或使气泡与壶体底部脱离,这样便能够通过合理设置凹槽的尺寸,以合理限定壶体的底部产生的气泡的尺寸及限定气泡的汇集区域、气泡的汇集形状,以达到精确控制产生的气泡的大小和控制气泡汇集区域、气泡的汇集形状的目的,进而便能够防止电水壶在加热过程中产生的气泡过大以及避免壶体产生的气泡凌乱、气泡汇集毫无规律等情况的发生,从而一方面既能够通过控制气泡的大小合理限制产品的噪音,实现对产品噪音的精准控制,又能够通过减小产生的气泡的大小,以使壶体内的水能够与壶体底部充分接触,进而增强产品的传热效率,以提高产品的加热效率。另一方面能够通过凸筋与凹槽限定气 泡的汇集区域,从而可以从整体上控制多个气泡的汇集规律及气泡汇集形成的形状或图案,以提升液体加热过程用户的使用体验满意度。此外,通过减小产生的气泡的大小还能够使壶体底部的受热更加均匀,因而可防止出现壶体的底部因气泡的隔离而导致壶体的局部受热严重,从而出现壶体的局部温度过高,进而可降低温控器早跳的风险。此外,由于气泡只能够在凹槽内产生,因此,将凹槽设置在不同位置,便能够使气泡在不同的位置处产生,这样便能够通过凹槽的设置位置合理限定气泡产生的位置,从而便可合理设置凹糟和凸筋在壶底上的形状,比如将凹槽设置成螺旋形,多个同心环形等,以使气泡的产生位置也相应地呈现出不同的形状,比如螺旋形,同心环形等,这样壶体产生的气泡在壶体内上升的过程中便能够对应形成与凹糟一致的形状,这样便能够通过凹槽的形状合理地限定出气泡在上升过程中的形状,而对于透明电水壶等加热容器而言,用户可通过壶体观看到壶体内的气泡,而气泡在上升过程中能够形成与凹槽的形状一致的形状,因此,通过将凹槽设置成各种花样的形状,产品在工作时,产生的气泡便可在壶体内形成一个非常漂亮的画面,这样便可提升用户在使用产品时用户体验,以提高用户对产品的满意度。
其中,壶底与加热装置连接的面优选为金属面,即金属材质制成的面,因为金属面的导热性能较好,因而使得加热装置能够将更多的热量传递到壶底,这样便能够提高液体加热容器的加热效率。当然,壶底与加热装置连接的面也可为非金属面,比如由陶瓷材质做成的陶瓷面。其中,即可将整个壶底设置成金属的,以形成金属面,也可在其它壶底的外底部上设置一金属涂层,以形成金属面。
另外,这里重点说明一下,本申请中的凹槽是通过凸筋围成的,而凹槽是通过凸筋隔开的,即凹槽和凸筋密不可分,两者缺一不可,而凸筋的数量和形状可根据需要设置,具体地,比如,可将凸筋设置成一个或多个环形凸筋,此时,环形凸筋的内部便能够形成一凹槽,而在一个或多个环形凸筋独立设置时,一个或多个凹槽便可相互独立设置,当然,也可将多个环形凸筋相互同心设置,以形成多个同心设置的环形凹槽。在比如,还可将一个较长的凸筋呈环形地缠绕成包括内外多层且内外多层均间隔设置 的凸筋盘,比如,可将一个凸筋螺旋缠绕成螺旋筋,此时,螺旋筋便可围成一个螺旋槽。此外,这里说明一下,由于对于多个独立设置的凹槽而言,为了使凹槽之间能够连通,可在凸筋上设置缺口,但该缺口不易过大,具体地,应该不足以让凹槽内的气泡穿越或通过该缺口,而与相邻的凹槽内的气泡合并成大气泡。比如,可在相邻的两个凹槽A和凹槽B之间设置缺口,那么该缺口的尺寸应该使得凹槽A内的气泡不能够通过该缺口而与凹槽B内汇合成一个大气泡,即这里,凸筋和凹槽能够合理地限定出气泡产生的边界,以使多个气泡之间不能够在汇集成更大的气泡。
另外,根据本发明上述实施例提供的液体加热容器还具有如下附加技术特征:
在上述技术方案中,优选地,液体加热容器还包括:第一降噪涂层,所述第一降噪涂层至少设置在所述凹槽的内底面上。
在该些技术方案中,通过在凹槽的内底面上和/或内侧面上设置第一降噪涂层,能够通过第一降噪涂层降低产品的噪音,具体地,比如可在壶底上设置疏水涂层,这样可利用疏水涂层的疏水特性,使得壶体底壁产生的气泡不易从壶体的底部脱离,这样就使得壶体产生的小而密集的小气泡能够在壶体的底壁上的凹槽中汇集成一个大气泡,而汇集成大气泡后,大气泡中的热量与水中的热量较为一致,因而使得大气泡能够在露出水面后再破裂,这样便可防止气泡在水中破裂而产生较大噪音。此外,疏水涂层使小而密集的小气泡汇集成一个大气泡后,便可有效减少小气泡的数量,减少小气泡在水中的破裂,因而也可进一步降低噪音。
当然,在其它方案中,也可不设置降噪涂层,此时,可通过其它的方式使壶体底部能够产生较大的气泡或者通过其它方式,比如改变加热装置的结构,改变加热方式,或者改变加热参数等方式使小而密集的气泡能够汇集成大气泡。
在上述任一技术方案中,优选地,所述凸筋的顶部与所述凹槽的底部之间的最大高度差h1大于所述第一降噪涂层的厚度t1。
在该些技术方案中,凸筋的顶部与凹槽的底部之间的最大高度差h1大于第一降噪涂层的厚度t1,即是说凸筋高出第一降噪涂层设置,这样才使 得凸筋能够露出第一降噪涂层,从而使得凸筋和凹槽能够对第一降噪涂层上产生的气泡的边界进行有效限定,反之,若凸筋的顶部与凹槽的底部之间的最大高度差h1小于或等于第一降噪涂层的厚度t1,这样凸筋隐藏安装在第一降噪涂层内,使得凸筋和凹槽无法对第一降噪涂层上产品的气泡进行边界限定。
在上述任一技术方案中,优选地,所述凸筋的顶部与所述凹槽的底部之间的最大高度差为h1,其中,0.03mm≤h1≤2mm,或0.1mm≤h1≤1.0mm,或0.1mm≤h1≤0.5mm。
在该些技术方案中,凸筋的顶部与凹槽的底部之间的最大高度差不易过大,因为过大会导致凸筋不好加工,浪费材料而导致成本高,且会导致壶体的底壁凹凸的太严重,从而不好清洗。因此,优选地可将凸筋的顶部与凹槽的底部之间的高度差h1设置在0.03mm至2mm之间,以使凸筋既好加工又能够降低成本,且还能够使产品比较好清洗。
进一步,优选地,0.1mm≤h1≤1.0mm,或0.1mm≤h1≤0.5mm,这样可将凸筋的顶部与壶底之间的最大高度差h1进一步设置在0.1mm至1mm之间或设置在0.1mm至0.5mm之间,比如0.2mm至0.5mm之间,当然,凸筋的顶部与壶底之间的最大高度差h1也可设置在0.5mm至1mm之间。
在上述任一技术方案中,优选地,所述凹槽的宽度为a,3mm≤a≤10mm或5mm≤a≤8mm,或0.1mm≤a≤1.0mm。
在该些技术方案中,可将任意相邻两个凹槽之间的宽度a设置在3mm至10mm之间,或进一步优选将任意相邻两个凹槽之间的宽度a设置在5mm至8mm之间。此外,也可将凸筋的宽度设置的较大,而将凹槽的宽度设置的较小,此时,凹槽的宽度a可设置在0.1mm至1.0mm之间。而通过限定凹槽的宽度能够合理地限定多个凹槽围成的空间大小,以合理限定气泡的尺寸,以使产生的气泡的尺寸比较适中,从而有效降低产品的噪音。
在上述任一技术方案中,优选地,所述凸筋的宽度为e,所述凹槽的宽度为a,其中,0.1mm≤e≤1.0mm,3mm≤a≤10mm或5mm≤a≤8mm;或0.1mm≤a≤1.0mm,3mm≤e≤10mm或5mm≤e≤8mm。
在该些技术方案中,在壶底上设置有凸筋和凹槽时,可优选将凸筋的 宽度e设置在0.1mm至1.0mm之间,此时,可将凹槽的宽度a设置在3mm至10mm之间,或进一步优选将凹槽的宽度a设置在5mm至8mm之间,这样能够合理地限定凸筋和凹槽之间的空间,以合理限定气泡的尺寸,以使产生的气泡的尺寸比较适中,从而有效降低产品的噪音。此外,也可将凸筋的宽度设置的较大,而将凹槽的宽度设置的较小,此时,凸筋的宽度e可优选设置在3mm至10mm之间,或进一步优选地在5mm至8mm之间,而凹槽的宽度a可设置在0.1mm至1.0mm之间。当然,在凸筋由正多边形制成时,凸筋的宽度e也可设置在0.1mm至5.0mm之间。
在上述任一技术方案中,优选地,所述凸筋与所述第一降噪涂层之间的高度差为h2,其中,0mm<h2≤1mm,或0.05mm≤h2≤0.5mm,或0.1mm≤h2≤0.3mm。
在该些技术方案中,可将凸筋与第一降噪涂层之间的高度差h2设置在大于0mm小于等于1mm之间,比如,0mm与0.5mm之间,或进一步优选设置在0.05mm与0.5mm之间或0.1mm与0.3mm之间,比如0.2mm,这样使得凸筋能够高于第一降噪涂层一定距离,从而使得凸筋能够形成凹槽,以在第一降噪涂层的周围限定出气泡的边界,以合理限定气泡的尺寸。
在上述任一技术方案中,优选地,所述第一降噪涂层的厚度为t1,其中,10μm≤t1≤100μm,或15μm≤t1≤70μm,或20μm≤t1≤50μm。
在该些技术方案中,可合理设置第一降噪涂层的厚度,以使第一降噪涂层即能够具有较好的降噪性能,又能够使第一降噪涂层不至于过厚而导致成本增加。因此,优选地,可将第一降噪涂层的厚度t1设置在10μm至100μm之间,进一步优选地,可将第一降噪涂层的厚度t1设置在15μm至70μm之间,比如15μm至50μm之间,或20μm至50μm之间,比如40μm。
在上述任一技术方案中,优选地,所述第一降噪涂层为疏水涂层。
在该些技术方案中,第一降噪涂层为疏水涂层,这样可利用疏水涂层的疏水特性,使得壶体底壁产生的气泡不易从壶体的底部脱离,这样就使得壶体产生的小而密集的小气泡能够在壶体的底壁上的凹槽内汇集成一个大气泡,而汇集成大气泡后,大气泡中的热量与水中的热量较为一致,因而使得大气泡能够在露出水面后再破裂,这样便可防止气泡在水中破裂而 产生较大噪音。此外,疏水涂层使小而密集的小气泡汇集成一个大气泡后,便可有效减少小气泡的数量,减少小气泡在水中的破裂,因而也可进一步降低噪音。具体地,比如可通过硅涂层或氟涂层等来进行降噪处理,因为,硅涂层或氟涂层等来进行降噪处理的方式比较常见且比较成熟,因而易于实施。此外,该种降噪方式,疏水涂层能够使气泡在壶底上的凹槽内汇集变大,凹槽能够准确地限定气泡的最大尺寸,而凸筋又能够使气泡及时破裂或从壶底脱离,这样便能够将疏水涂层与凸筋和凹槽结合在一起使用,以准确地控制气泡的大小,从而能够大幅度降低噪音,改善降噪效果。
在上述任一技术方案中,优选地,所述凸筋上设置有第二降噪涂层。
在该些技术方案中,通过在凸筋上设置第二降噪涂层,使得整个壶底的凹槽和凸筋上均覆盖有一层降噪涂层,这样便能够进一步降低产品的噪音。其中,优选地,可将第一降噪涂层和第二降噪涂层的材质设置为相同材质的涂层,这样在具体加工时,可将第一降噪涂层和第二降噪涂层一起加工成型,从而能够提高降噪涂层的加工速度,降低降噪涂层的加工难度。
在上述任一技术方案中,优选地,所述第一降噪涂层与所述第二降噪涂层的厚度一致,或所述第二降噪涂层的厚度为t2,其中,10μm≤t2≤100μm,或15μm≤t2≤70μm,或20μm≤t2≤50μm。
在该些技术方案中,第一降噪涂层与第二降噪涂层的厚度一致能够使第一降噪涂层和第二降噪涂层能够一体加工成型。具体地,可将第二降噪涂层的厚度t2设置在10μm至100μm之间,进一步优选地,可将第二降噪涂层的厚度t2设置在15μm至70μm之间或20μm至50μm之间,比如40μm。
进一步,优选地,所述第二降噪涂层为疏水涂层。
在该些技术方案中,可优选通过疏水涂层,比如硅涂层或氟涂层等来进行降噪处理,因为,通过疏水涂层,比如硅涂层或氟涂层等来进行降噪处理的方式比较常见且比较成熟,因而易于实施。此外,该种降噪方式,能够与凸筋结合在一起使用,从而能够大幅度降低噪音,改善降噪效果。
在上述任一技术方案中,优选地,所述凹槽上的所述第一降噪涂层为一个连续性的涂层,或所述凹槽上的所述第一降噪涂层包括多个相互断开的涂层片段;和/或所述凹槽上的所述第一降噪涂层与所述凸筋上的所述第 二降噪涂层为一体式结构。
在该些技术方案中,凸筋之间的第一降噪涂层为一个连续性的涂层,即是说凸筋之间的第一降噪涂层不间断设置,也就是说凸筋之间的第一降噪涂层为一体式结构,这样能够使第一降噪涂层之间相互牵制,因而可防止降噪涂层脱落。此外,所有的第一降噪涂层连续设置,也即不间断设置也能够使第一降噪涂层的加工更加便利。当然,凸筋之间的第一降噪涂层也可相互独立设置成被多个凸筋隔离设置的多个涂层片段,以使凸筋之间的第一降噪涂层之间能够相互断开设置,也即不连续设置。而在凹槽的内底面和/或内侧面上设置有第一降噪涂层,且凸筋上设置有第二降噪涂层时,可优选将第一降噪涂层和第二降噪涂层设置为一体式结构,这样能够使所有的降噪涂层一起加工而成,且被设置为连续而不断开的结构,因而能够降低降噪涂层的加工难度,减少加工成本。
在上述任一技术方案中,优选地,所述第一降噪涂层的接触角为θ,其中,90°≤θ≤150°,或95°≤θ≤110°,和/或所述第二降噪涂层的接触角为θ,其中,90°≤θ≤150°,或95°≤θ≤110°。
在该些技术方案中,通过将第一降噪涂层和/第二降噪涂层的接触角θ设置在90°到150°之间,进一步设置在95°到110°之间,能够合理设置降噪涂层对气泡的吸附力,从而能够使气泡更不易从壶底脱离,这样便使得壶底产生的小而密集的气泡能够在壶底汇集成大气泡,进而便可合理地限定气泡的尺寸,以合理控制噪音。
在上述任一技术方案中,优选地,所述加热装置包括:导热盘,设置在所述壶底的外表面上;发热管,设置在所述导热盘远离所述壶底的一面上;其中,所述凸筋和所述凹槽在所述壶底上形成一区域,所述发热管在所述壶底上的投影位于所述区域内。
在该些技术方案中,加热装置包括导热盘和发热管,其中,导热盘用于进行导热,而发热管用于具体加热导热盘进而加热壶底。而凸筋和凹槽在壶底上形成一区域,也即凸筋和凹槽设置在该区域内,此时,一方面可将区域设置为环形,即将凸筋和凹槽分布在一个环形区域内,当然,也可将凸筋和凹槽从壶底中心开始向外分布。而发热管在壶底上的投影位于区 域内,比如,在区域设置为环形时,发热管在壶底上的投影应位于环形区域的内轮廓线和外轮廓线内,而在区域从壶底中心开始向外分布时,发热管在壶底上的投影应位于区域的外轮廓线内,此时,区域的内轮廓线为一个点,且优选与壶底的中心对齐,这样使得凸筋和凹槽的设置区域能够完全覆盖在发热管的安装区域上,而设置发热管的部位处,气泡会比较集中,因而对应所有的发热管的安装区域均设置凸筋和凹槽能够进一步降低噪音。
具体地,比如在多个凸筋位于一圆环形区域内时,圆环形区域的内径的D1应该小于发热管的内径D3,而圆环形区域的外径的D2应该大于等于发热管的外径D4。
其中,优选地,导热盘为铝盘,而发热管可为铝管或铜管。
在上述任一技术方案中,优选地,所述发热管与所述导热盘接触的面积为A,所述凸筋的外表面的总面积之和为B,所述壶底的内表面的面积为C,其中,A≤B≤C,和/或0.01≤B/C≤0.2,或0.02≤B/C≤0.1,或0.03≤B/C≤0.07。
在该些技术方案中,多个凸筋的外表面的总面积之和B大于等于发热管与导热盘接触的面积A小于等于壶底的内表面的面积为C,这样能够使凸筋的面积比较适中,因而能够进一步降低噪音。其中,具体地,可将多个凸筋的外表面的总面积之和B与壶底的内表面的面积C之比设置在0.01与0.2之间,进一步地可将多个凸筋的外表面的总面积之和B与壶底的内表面的面积C之比设置在0.02与0.1之间,更进一步地,可将多个凸筋的外表面的总面积之和B与壶底的内表面的面积C之比设置在0.03与0.07之间。
在上述任一技术方案中,优选地,所述凹槽的内侧面与所述凹槽的内底面之间的夹角为α,其中,90°≤α≤130°。
在该些技术方案中,可优选将凸筋的侧面垂直设置,以使凸筋的侧面与壶底的内表面之间的夹角为90°,此时,凹槽的内侧面与凹槽的内底面之间的夹角α也为90°,当然,也可将凸筋设置成上尖下宽的结构,比如三角形或梯形,此时,可使凸筋的侧面与壶底的内表面之间夹角大于90°,进而 使得凹槽的内侧面与凹槽的内底面之间的夹角α也能够大于90°,但优选地,可将凸筋的侧面与壶底的内表面之间的夹角设置在大于等于90°小于等于130°的范围内,这样便可将凹槽的内侧面与凹槽的内底面之间的夹角α设置在大于等于90°小于等于130°的范围内。
在上述任一技术方案中,优选地,所述凸筋的纵截面的形状为三角形或圆弧形、或梯形。
在该些技术方案中,凸筋的纵截面的形状可根据实际需要设置成三角形或圆弧形、或梯形等任意形状,在此不做具体限定。
在上述任一技术方案中,优选地,凸筋在壶底上通过缠绕成包括内外多层且内外多层相互间隔设置的凸筋盘,比如凸筋在壶底上缠绕呈螺旋形的凸筋盘。
在上述任一技术方案中,优选地,所述凸筋包括呈螺旋形地设置在所述壶底上的螺旋形凸筋,所述凹槽包括由所述螺旋形凸筋形成的螺旋形凹槽。
在该些技术方案中,可在壶底上设置一个螺旋形凸筋,以便能够在壶底上形成一个螺旋形凹槽,这样便可通过螺旋形凹槽和螺旋形凸筋来限定出气泡产生的边界,以限定出气泡的尺寸。而螺旋形的设置,一方面使得凸筋和凹槽的设置比较有规律,因而能够使凸筋和凹槽在壶底上分布的更加均匀。另一方面使得所有凸筋能够连接为一体,及使得所有凹槽能够连接为一体,因而使得凸筋和凹槽能够更便利地进行加工。同时,螺旋形凹槽能够使气泡在上升过程中呈螺旋形,即能够使气泡在上升过程中形成特定的螺旋形,从而在壶体为透明时,用户便可观看到壶体内的气泡在上升过程中呈螺旋形,进而便可提高用户使用体验。
在上述任一技术方案中,优选地,凸筋为环形凸筋,比如,凸筋为多个相互独立设置的多边形凸筋或圆形凸筋或者其它不规则形状的环形的凸筋,具体而言,环形凸筋可包括多个呈同心设置的第一环形凸筋,这样多个第一环形凸筋能够形成同心环凸筋。当然环形凸筋还可包括多个相互不内套的第二环形凸筋。
在上述任一技术方案中,优选地,所述凸筋包括由多个第一环形凸筋 呈同心设置的同心环凸筋,所述凹槽包括由多个同心环凸筋形成的环形凹槽和最内层的第一环形凸筋形成的第一凹槽。
在该些技术方案中,也可在壶底上同心设置多个第一环形凸筋,以在壶底上形成一个同心环凸筋,此时,同心环形凸筋的内外层的凸筋之间能够形成一环形凹槽,而最内层的凸筋便可形成一个普通的凹槽,比如第一凹槽。该种设置,通过同心环同心排列,使得凸筋和凹槽的设置比较有规律,因而能够使凸筋和凹槽在壶底上分布的更加均匀。同时,同心环凸筋能够使气泡在上升过程中呈同心环形,即能够使气泡在上升过程中形成特定的同心环形,从而在壶体为透明时,用户便可观看到壶体内的气泡在上升过程中呈同心环形,进而便可提高用户使用体验。
在上述任一技术方案中,优选地,所述凸筋包括多个呈S形设置的S形凸筋,所述凹槽包括由相邻两个所述S形凸筋形成的S形凹槽。
在该些技术方案中,也可在壶底上设置多个S形凸筋,以通过多个S形凸筋形成多个S形凹槽。同时,S形凹槽能够使气泡在上升过程中呈S形,即能够使气泡在上升过程中形成特定的S形,从而在壶体为透明时,用户便可观看到壶体内的气泡在上升过程中呈S形,进而便可提高用户使用体验。
在上述任一技术方案中,优选地,所述凸筋包括多个第二环形凸筋,多个所述第二环形凸筋在所述壶底的内表面上均位于另一所述第二环形凸筋外,多个所述第二环形凸筋相互连接,或多个所述第二环形凸筋相互间隔设置,所述凹槽包括在每一所述第二环形凸筋的内部区域内形成的第二凹槽。
在该些技术方案中,多个第二环形凸筋在壶底的内表面上均位于另一第二环形凸筋外,使得多个第二环形凸筋相互不内套,这样便能够通过第二环形凸筋的内壁面来围成一第二凹槽,此时,即相当于将一个凸筋的中部掏空以额外形成第二凹槽。该种设置,一个凸筋便能够形成一个第二凹槽,且第二凹槽的大小完全可通过第二环形凸筋来确定,因而通过第二环形凸筋便可准确地限定出第二凹槽的大小,从而即可准确的限定出产生气泡的边界,以准确地限定出气泡的尺寸。此外,该种设置,能够通过第二 环形凸筋的内部围成第二凹槽,因而相比于实心凸筋而言,能够使凸筋的宽度更窄,因而能够使产品的成本更低。
其中,多个第二环形凸筋即可相互连接,也可相互独立设置,但优选地,多个第二环形凸筋相互连接,且多个第二环形凸筋优选为多边形设置,这样使得所有的第二环形凸筋的所有边均能够与另一个第二环形凸筋连接,这样便能够最大限度地减少多个第二环形凸筋之间的间距,以便能够在壶底上形成更多的第二凹槽。
在上述任一技术方案中,优选地,所述凸筋包括多个第二环形凸筋时,所述第二凹槽上设置有连通口。
在该些技术方案中,在凸筋包括多个第二环形凸筋时,可在第二环形凸筋上设置一个缺口,这样便能够使相邻两个凹槽之间能够形成一个连通口,以使每一第二环形凸筋围成的第二凹槽能够与该第二环形凸筋之外的区域连通,这就使得多个第二环形凸筋之间的第一降噪涂层不会被第二环形凸筋隔开,从而便能够将第一降噪涂层设置成一体,从而在加工时,可将第一降噪涂层一体加工成型,以降低加工难度,提高第一降噪涂层的加工速度。其中,连通口的数量和宽度可任一设置。
在上述任一技术方案中,优选地,所述凸筋包括多个第二环形凸筋时,所述多个第二环形凸筋包括正多边形凸筋,每一所述正多边形凸筋的内部均形成一正多边形凹槽,所述正多边形凹槽的正多边形的边数为m,其中,3≤m≤10,或5≤m≤7。
在该些技术方案中,可优选将多个第二环形凸筋中的每一凸筋均设置为正多边形凸筋,比如正五边形、正六边形或其它正多边形,但优选地,正多边形凸筋的边数m优选在3-10之间,进一步地,m可设置在5-7之间,这样使得第二环形凸筋的边数不至于过多,从而使得第二环形凸筋的结构较为简单,因而能够降低第二环形凸筋的加工难度。
其中,优选地,多个所述正多边形凸筋之间没有设置间隙,该种设置使得所有的第二环形凸筋的所有边均能够与另一个第二环形凸筋连接,这样便能够最大限度地减少多个第二环形凸筋之间的间距,以便能够在壶底上形成更多的第二凹槽。
其中,第二环形凸筋还可为圆形或椭圆形或者是其它不规则形状,比如云朵形。
在上述任一技术方案中,优选地,所述凸筋包括呈螺旋形地设置在所述壶底上的螺旋形凸筋时,所述壶底的内表面上从所述螺旋形凸筋的中部至所述螺旋形凸筋的边缘还设置有第一连接筋,所述第一连接筋的宽度为b1,其中,0.1mm≤b1≤5mm,或0.1mm≤b1≤1.0mm,或0.2mm≤b1≤0.5mm;所述凸筋包括由多个第一环形凸筋呈同心设置的同心环凸筋时,所述壶底的内表面上从所述同心环凸筋的中部至所述同心环凸筋的边缘还设置有第二连接筋,所述第二连接筋的宽度为b2,其中,0.1mm≤b2≤5mm,或0.1mm≤b2≤1.0mm,或0.2mm≤b2≤0.5mm。
在该些技术方案中,在凸筋包括螺旋形凸筋时,可在螺旋形凸筋的径向方向上设置第一连接筋,以使内外层的凸筋能够通过第一连接筋相互连接,这样便能够提高螺旋形凸筋之间的连接强度。其中,第一连接筋的宽度可优选与螺旋形凸筋的宽度一致,比如第一连接筋的宽度b1可优选设置在0.1mm至5mm之间,或进一步设置在0.5mm至1mm之间,第一连接筋的高度可优选设置在0.1mm至1mm之间,更进一步地,可设置在0.2mm至0.5mm之间。其中,所述第一连接筋的数量为多个,比如2个或4个,这样能够从多个方向上对螺旋形凸筋进行加强。同理,在凸筋包括同心环凸筋时,可在同心环凸筋的径向方向上设置第二连接筋,以使内外层的凸筋能够通过第二连接筋相互连接,这样便能够提高同心环凸筋之间的连接强度。其中,第二连接筋的宽度可优选与同心环凸筋的宽度一致,比如第二连接筋的宽度b2可优选设置在0.1mm至5mm之间,或进一步设置在0.5mm至1mm之间,第二连接筋的高度可优选设置在0.1mm至1mm之间,更进一步地,可设置在0.2mm至0.5mm之间。其中,所述第二连接的筋的数量为多个,比如2个或4个,这样能够从多个方向上对同心环凸筋进行加强。
在上述任一技术方案中,优选地,凸筋之间能够形成的最大内接圆的直径为d,其中,3mm≤d≤10mm,或5mm≤d≤8mm。
在该些技术方案中,凸筋之间能够形成的最大内接圆的直径为d,这 里最大内接圆的定义为凸筋的轨迹能够形成最大的内接圆的直径,比如,在凸筋包括多个第二环形凸筋时,比如凸筋包括多个多边形凸筋或多个圆形凸筋时,最大内接圆为能够在该第二环形凸筋包围的空间内画出的最大的圆,而在凸筋包括螺旋形凸筋和多个第一环形凸筋同心设置的同心环凸筋时,最大内接圆为内外相邻两层凸筋之间能够形成的最大圆,这里说明一下,在壶底的中部没有设置凸筋时,此时,最内层的凸筋围成的区域的大小不受上述最大内接圆的限定,即凸筋在壶底的中部可形成较大的空余空间,该空余空间的大小可根据实际需要进行设定,但优选地该空余空间的外边缘的边界线应该位于发热管的内径的内侧。而通过将最大内接圆的直径d设置在3mm-10mm之间,或进一步设置在5mm-8mm之间,能够合理地限定出凸筋的围成的边界的大小,以准确地限定出凹槽的大小,从而能够合理限定出气泡产生的大小,以合理限定气泡的尺寸,从而可降低产品的噪音。
在上述任一技术方案中,优选地,所述凹槽的内底面和所述凹槽的内侧面上均设置有所述第一降噪涂层。
在该些技术方案中,通过在凹槽的内底面和凹槽的内侧面上均设置第一降噪涂层,使得凹槽的整个内表面上均能够覆盖有降噪涂层,从而能够进一步增强凹槽的降噪性能,以进一步降低噪音。
在上述任一技术方案中,优选地,所述凸筋通过CNC加工而成,或所述凸筋通过激光雕刻而成,或所述凸筋通过蚀刻工艺加工而成、或所述凸筋通过拉伸冲压工艺加工而成。
在该些技术方案中,凸筋可通过多种加工方式加工而成,具体地,比如通过CNC加工而成或通过激光雕刻而成或通过蚀刻工艺加工而成或通过拉伸冲压工艺加工而成。但优选地,可通过拉伸冲压工艺加工而成,这样能够使凸筋的加工更加简单。
在上述任一技术方案中,优选地,所述壶体为不锈钢制成,这样使得壶体具有较好的强度且不易生锈。
其中,优选地,液体加热容器还包括:外壳,所述壶体设置在所述外壳内,所述加热装置设置在所述外壳内,所述壶体的底部;底座,设置在 所述外壳外,所述外壳能够拆卸地安装在所述底座上,能够为加热装置等供电以及对外壳、壶体进行支撑。
在该些技术方案中,可通过底座来为产品供电,而外壳用于对壶体进行保温以及隐藏保护。
其中,优选地,液体加热容器还包括:手柄,设置在所述外壳上;壶盖,盖装在所述壶体的壶口上,用于打开或关闭壶体的壶口。
在上述任一技术方案中,优选地,液体加热容器为电水壶,这样便可通过该电水壶进行烧水。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明的一个实施例提供的液体加热容器的结构示意图;
图2是本发明的一个实施例提供的液体加热容器的另一结构示意图;
图3是本发明的一个实施例提供的液体加热容器的第一个局部结构示意图;
图4是图3中的A处的局部放大结构示意图;
图5是本发明的一个实施例提供的液体加热容器的第二个局部结构示意图;
图6是图5中的B处的局部放大结构示意图;
图7是本发明的一个实施例提供的液体加热容器的第三个局部结构示意图;
图8是图7中的C处的局部放大结构示意图;
图9是本发明的一个实施例提供的液体加热容器的第四个局部结构示意图;
图10是图9中的D处的局部放大结构示意图;
图11是本发明的一个实施例提供的液体加热容器的加热装置的结构示意 图;
图12是本发明的一个实施例提供的液体加热容器的一局部放大结构示意图;
图13是本发明的一个实施例提供的液体加热容器的另一局部放大结构示意图;
图14是本发明的一个实施例提供的液体加热容器的又一局部放大结构示意图;
图15是本发明的一个实施例提供的液体加热容器的第五个局部结构示意图;
图16是本发明的一个实施例提供的液体加热容器的第六个局部结构示意图;
图17是本发明的一个实施例提供的液体加热容器的壶底的结构示意图;
图18是图17中的E处的局部放大结构示意图;
图19是本发明的另一个实施例提供的液体加热容器的壶底的结构示意图;
图20是图19中的F处的局部放大结构示意图;
图21是本发明的又一个实施例提供的液体加热容器的壶底的结构示意图;
图22是本发明的再一个实施例提供的液体加热容器的壶底的结构示意图;
图23是本发明的第五个实施例提供的液体加热容器的壶底的结构示意图;
图24是本发明的第六个实施例提供的液体加热容器的壶底的结构示意图。
其中,图1至图24中的附图标记与部件名称之间的对应关系为:
1壶体,12壶底,120凹槽,1200 S形凹槽,1202螺旋形凹槽,1204环形凹槽,1206第一凹槽,1208第二凹槽,122凸筋,1222螺旋形凸筋,1224第一环形凸筋,1226第二环形凸筋,1228 S形凸筋,124第一连接筋,14第一降噪涂层,16第二降噪涂层,2加热装置,22导热盘,24发热管,3外壳, 4底座,5手柄,6壶盖。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图24描述根据本发明一些实施例提供的液体加热容器。
如图1至图24所示,本发明第一方面的实施例提供了一种液体加热容器,液体加热容器包括壶体1和加热装置2,壶体1包括壶底12,壶底12上形成有凸筋122和凹槽120,凹槽120由凸筋122围成;加热装置2位于壶底12的外表面上,用于加热壶体1,壶底12与加热装置2连接的面为金属面。
根据本发明第一方面的实施例提供的液体加热容器,包括壶体1和加热装置2,其中,壶体1用于盛装水,加热装置2用于加热壶体1,以加热壶体1内的水。而通过在壶底12上设置凸筋122,并通过凸筋122在壶体1上围成凹槽,使得凸筋122能够作为凹槽120的边界,从而能够通过凸筋120的形状、大小来限定出凹槽的形状和大小,这样能够在壶底上12通过凹槽120的尺寸合理地限定出多个边界,以使壶底12产生的气泡只能够在凹槽120限定的边界内进行汇集,而凸筋122能够在气泡上升碰触到凹槽120边界上时使气泡产生破裂或使气泡与壶体1底部脱离,这样便能够通过合理设置凹槽120的尺寸,以合理限定壶体1的底部产生的气泡的尺寸及限定气泡的汇集区域、气泡的汇集形状,以达到精确控制产生的气泡的大小和控制气泡汇集区域、气泡汇集形状的目的,进而便能够防止电水壶在加热过程中产生的气泡过大以及避免壶体产生的气泡凌乱、气泡汇集毫无规律等情况的发生,从而一方面既能够通过控制气泡的大小合理限制产品的噪音,实现对产品噪音的精准控制,又能够通过减小产生的气泡的大 小,以使壶体1内的水能够与壶体1底部充分接触,进而增强产品的传热效率,以提高产品的加热效率。另一方面能够通过凸筋122与凹槽120限定气泡的汇集区域,从而可以从整体上控制多个气泡的汇集规律及气泡汇集形成的形状或图案,以提升液体加热过程用户的使用体验满意度。此外,通过减小产生的气泡的大小还能够使壶体1底部的受热更加均匀,因而可防止出现壶体1的底部因气泡的隔离而导致壶体1的局部受热严重,从而出现壶体1的局部温度过高,进而可降低温控器早跳的风险。此外,疏水涂层使小而密集的小气泡汇集成一个大气泡后,便可有效减少小气泡的数量,减少小气泡在水中的破裂,因而也可进一步降低噪音。此外,由于气泡只能够在凹槽120内产生,因此,将凹槽120设置在不同位置,便能够使气泡在不同的位置处产生,这样便能够通过凹槽120的设置位置合理限定气泡产生的位置,从而便可合理设置凹糟和凸筋122在壶底上的形状,比如将凹槽120设置成螺旋形,多个同心环形等,以使气泡的产生位置也相应地呈现出不同的形状,比如螺旋形,同心环形等,这样壶体1产生的气泡在壶体1内上升的过程中便能够对应形成与凹糟120一致的形状,这样便能够通过凹槽120的形状合理地限定出气泡在上升过程中的形状,而对于透明电水壶等加热容器而言,用户可通过壶体1观看到壶体1内的气泡,而气泡在上升过程中能够形成与凹槽120的形状一致的形状,因此,通过将凹槽120设置成各种花样的形状,产品在工作时,产生的气泡便可在壶体1内形成一个非常漂亮的画面,这样便可提升用户在使用该产品时的用户体验,以提高用户对产品的满意度。
其中,壶底12与加热装置2连接的面优选为金属面,即金属材质制成的面,因为金属面的导热性能较好,因而使得加热装置2能够将更多的热量传递到壶底12,这样便能够提高液体加热容器的加热效率。当然,壶底12与加热装置2连接的面也可为非金属面,比如由陶瓷材质做成的陶瓷面。其中,即可将整个壶底12设置成金属的,以形成金属面,也可在其它壶底12的外底部上设置一金属涂层,以形成金属面。
另外,这里重点说明一下,本申请中的凹槽120是通过凸筋122围成的,而凹槽120是通过凸筋122隔开的,即凹槽120和凸筋122密不可分, 两者缺一不可,而凸筋122的数量和形状可根据需要设置,具体地,比如,可将凸筋122设置成一个或多个环形凸筋,此时,环形凸筋的内部便能够形成一凹槽120,而在一个或多个环形凸筋独立设置时,一个或多个凹槽120便可相互独立设置,当然,也可将多个环形凸筋相互同心设置,以形成多个同心设置的环形凹槽。在比如,还可将一个较长的凸筋122呈环形地缠绕成包括内外多层且内外多层均间隔设置的凸筋盘,比如,可将一个凸筋122螺旋缠绕成螺旋筋,此时,螺旋筋便可围成一个螺旋槽。此外,这里说明一下,由于对于多个独立设置的凹槽120而言,为了使凹槽120之间能够连通,可在凸筋122上设置缺口,但该缺口不易过大,具体地,应该不足以让凹槽120内的气泡穿越或通过该缺口,而与相邻的凹槽120内的气泡合并成大气泡。比如,可在相邻的两个凹槽A和凹槽B之间设置缺口,那么该缺口的尺寸应该使得凹槽A内的气泡不能够通过该缺口而与凹槽B内的气泡汇合成一个大气泡,即这里,凸筋122和凹槽120能够合理地限定出气泡产生的边界,以使多个气泡之间不能够在汇集成更大的气泡。
在上述任一实施例中,优选地,如图5和图6所示,液体加热容器还包括:第一降噪涂层14,第一降噪涂层14至少设置在凹槽120的内底面上。
在该实施例中,通过在凹槽120的内底面上和/或内侧面上设置第一降噪涂层14,能够通过第一降噪涂层14降低产品的噪音,具体地,比如可在壶底12上设置疏水涂层,这样可利用疏水涂层的疏水特性,使得壶体1底壁产生的气泡不易从壶体1的底部脱离,这样就使得壶体1产生的小而密集的小气泡能够在壶体1的底壁上的凹槽120中汇集成一个大气泡,而汇集成大气泡后,大气泡中的热量与水中的热量较为一致,因而使得大气泡能够在露出水面后再破裂,这样便可防止气泡在水中破裂而产生较大噪音。此外,疏水涂层使小而密集的小气泡汇集成一个大气泡后,便可有效减少小气泡的数量,减少小气泡在水中的破裂,因而也可进一步降低噪音。
当然,在其它方案中,也可不设置降噪涂层,此时,可通过其它的方式使壶体1的底部能够产生较大的气泡或者通过其它方式,比如改变加热 装置2的结构,改变加热方式,或者改变加热参数等方式使小而密集的气泡能够汇集成大气泡。
在上述任一实施例中,优选地,如图3和图4所示,凸筋122的顶部与凹槽120的底部之间的最大高度差h1大于第一降噪涂层14的厚度t1。
在该些实施例中,凸筋122的顶部与凹槽120的底部之间的最大高度差h1大于第一降噪涂层14的厚度t1,即是说凸筋122高出第一降噪涂层14设置,这样才使得凸筋122能够露出第一降噪涂层14,从而使得凸筋122和凹槽120能够对第一降噪涂层14上产生的气泡的边界进行有效限定,反之,若凸筋122的顶部与凹槽120的底部之间的最大高度差h1小于或等于第一降噪涂层14的厚度t1,这样凸筋122隐藏安装在第一降噪涂层14内,使得凸筋122和凹槽120无法对第一降噪涂层14上产品的气泡进行边界限定。
在上述任一实施例中,优选地,如图3和图4所示,凸筋122的顶部与凹槽120的底部之间的最大高度差为h1,其中,0.03mm≤h1≤2mm,或0.1mm≤h1≤1.0mm,或0.1mm≤h1≤0.5mm。
在该些实施例中,凸筋122的顶部与凹槽120的底部之间的最大高度差不易过大,因为过大会导致凸筋122不好加工,浪费材料而导致成本高,且会导致壶体1的底壁凹凸的太严重,从而不好清洗。因此,优选地可将凸筋122的顶部与凹槽120的底部之间的高度差h1设置在0.03mm至2mm之间,以使凸筋122既好加工又能够降低成本,且还能够使产品比较好清洗。
进一步,优选地,0.1mm≤h1≤1.0mm,或0.1mm≤h1≤0.5mm,这样可将凸筋122的顶部与壶底12之间的最大高度差h1进一步设置在0.1mm至1mm之间或设置在0.1mm至0.5mm之间,比如0.2mm至0.5mm之间,当然,凸筋122的顶部与壶底12之间的最大高度差h1也可设置在0.5mm至1mm之间。
在上述任一实施例中,优选地,如图4和图10所示,凹槽120的宽度为a,3mm≤a≤10mm或5mm≤a≤8mm,或0.1mm≤a≤1.0mm。
在该些实施例中,可将任意相邻两个凹槽120之间的宽度a设置在3mm 至10mm之间,或进一步优选将任意相邻两个凹槽120之间的宽度a设置在5mm至8mm之间。此外,也可将凸筋122的宽度设置的较大,而将凹槽120的宽度设置的较小,此时,凹槽120的宽度a可设置在0.1mm至1.0mm之间。而通过限定凹槽120的宽度能够合理地限定多个凹槽120围成的空间大小,以合理限定气泡的尺寸,以使产生的气泡的尺寸比较适中,从而有效降低产品的噪音。
在上述任一实施例中,优选地,如图4和图10所示,凸筋122的宽度为e,凹槽120的宽度为a,其中,0.1mm≤e≤1.0mm,3mm≤a≤10mm或5mm≤a≤8mm;或0.1mm≤a≤1.0mm,3mm≤e≤10mm或5mm≤e≤8mm。
在该些实施例中,在壶底12上设置有凸筋122和凹槽120时,可优选将凸筋122的宽度e设置在0.1mm至1.0mm之间,此时,可将凹槽120的宽度a设置在3mm至10mm之间,或进一步优选将凹槽120的宽度a设置在5mm至8mm之间,这样能够合理地限定凸筋122和凹槽120之间的空间,以合理限定气泡的尺寸,以使产生的气泡的尺寸比较适中,从而有效降低产品的噪音。此外,也可将凸筋122的宽度设置的较大,而将凹槽120的宽度设置的较小,此时,凸筋122的宽度e可优选设置在3mm至10mm之间,或进一步优选地在5mm至8mm之间,而凹槽120的宽度a可设置在0.1mm至1.0mm之间。当然,在凸筋122由正多边形制成时,凸筋122的宽度e也可设置在0.1mm至5.0mm之间。
在上述任一实施例中,优选地,如图6所示,凸筋122与第一降噪涂层14之间的高度差为h2,其中,0mm<h2≤1mm,或0.05mm≤h2≤0.5mm,或0.1mm≤h2≤0.3mm。
在该些实施例中,可将凸筋122与第一降噪涂层14之间的高度差h2设置在大于0mm小于等于1mm之间,比如,0mm与0.5mm之间,或进一步优选设置在0.05mm与0.5mm之间或0.1mm与0.3mm之间,比如0.2mm,这样使得凸筋122能够高于第一降噪涂层14一定距离,从而使得凸筋122能够形成凹槽120,以在第一降噪涂层14的周围限定出气泡的边界,以合理限定气泡的尺寸。
在上述任一实施例中,优选地,如图5和图6所示,第一降噪涂层14 的厚度为t1,其中,10μm≤t1≤100μm,或15μm≤t1≤70μm,或20μm≤t1≤50μm。
在该些实施例中,可合理设置第一降噪涂层14的厚度,以使第一降噪涂层14即能够具有较好的降噪性能,又能够使第一降噪涂层14不至于过厚而导致成本增加。因此,优选地,可将第一降噪涂层14的厚度t1设置在10μm至100μm之间,进一步优选地,可将第一降噪涂层14的厚度t1设置在15μm至70μm之间,比如15μm至50μm之间,或20μm至50μm之间,比如40μm。
在上述任一实施例中,优选地,第一降噪涂层14为疏水涂层。
在该些实施例中,第一降噪涂层14为疏水涂层,这样可利用疏水涂层的疏水特性,使得壶体1底壁产生的气泡不易从壶体1的底部脱离,这样就使得壶体1产生的小而密集的小气泡能够在壶体1的底壁上的凹槽120内汇集成一个大气泡,而汇集成大气泡后,大气泡中的热量与水中的热量较为一致,因而使得大气泡能够在露出水面后再破裂,这样便可防止气泡在水中破裂而产生较大噪音。此外,疏水涂层使小而密集的小气泡汇集成一个大气泡后,便可有效减少小气泡的数量,减少小气泡在水中的破裂,因而也可进一步降低噪音。具体地,比如可通过硅涂层或氟涂层等来进行降噪处理,因为,硅涂层或氟涂层等来进行降噪处理的方式比较常见且比较成熟,因而易于实施。此外,该种降噪方式,疏水涂层能够使气泡在壶底12上的凹槽120内汇集变大,凹槽120能够准确地限定气泡的最大尺寸,而凸筋122又能够使气泡及时破裂或从壶底12脱离,这样便能够将疏水涂层与凸筋122和凹槽120结合在一起使用,以准确地控制气泡的大小,从而能够大幅度降低噪音,改善降噪效果。
在上述任一实施例中,优选地,如图7和图8所示,凸筋122上设置有第二降噪涂层16。
在该些实施例中,通过在凸筋122上设置第二降噪涂层16,使得整个壶底12的凹槽120和凸筋122上均覆盖有一层降噪涂层,这样便能够进一步降低产品的噪音。其中,优选地,可将第一降噪涂层14和第二降噪涂层16的材质设置为相同材质的涂层,这样在具体加工时,可将第一降噪涂层14和第二降噪涂层16一起加工成型,从而能够提高降噪涂层的加工速度, 降低降噪涂层的加工难度。
在上述任一实施例中,优选地,如图7和图8所示,第一降噪涂层14与第二降噪涂层16的厚度一致,或第二降噪涂层16的厚度为t2,其中,10μm≤t2≤100μm,或15μm≤t2≤70μm,或20μm≤t2≤50μm。
在该些实施例中,第一降噪涂层14与第二降噪涂层16的厚度一致能够使第一降噪涂层14和第二降噪涂层16能够一体加工成型。具体地,可将第二降噪涂层16的厚度t2设置在10μm至100μm之间,进一步优选地,可将第二降噪涂层16的厚度t2设置在15μm至70μm之间或20μm至50μm之间,比如40μm。
进一步,优选地,第二降噪涂层16为疏水涂层。
在该些实施例中,可优选通过疏水涂层,比如硅涂层或氟涂层等来进行降噪处理,因为,通过疏水涂层,比如硅涂层或氟涂层等来进行降噪处理的方式比较常见且比较成熟,因而易于实施。此外,该种降噪方式,能够与凸筋122结合在一起使用,从而能够大幅度降低噪音,改善降噪效果。
在上述任一实施例中,优选地,如图5至图8所示,凹槽120上的第一降噪涂层14为一个连续性的涂层,或凹槽120上的第一降噪涂层14包括多个相互断开的涂层片段;和/或凹槽120上的第一降噪涂层14与凸筋122上的第二降噪涂层16为一体式结构。
在该些实施例中,凸筋122之间的第一降噪涂层14为一个连续性的涂层,即是说凸筋122之间的第一降噪涂层14不间断设置,也就是说凸筋122之间的第一降噪涂层14为一体式结构,这样能够使第一降噪涂层14之间相互牵制,因而可防止降噪涂层脱落。此外,所有的第一降噪涂层14连续设置,也即不间断设置也能够使第一降噪涂层14的加工更加便利。当然,凸筋122之间的第一降噪涂层14也可相互独立设置成被多个凸筋122隔离设置的多个涂层片段,以使凸筋122之间的第一降噪涂层14之间能够相互断开设置,也即不连续设置。而在凹槽120的内底面和/或内侧面上设置有第一降噪涂层14,且凸筋122上设置有第二降噪涂层16时,可优选将第一降噪涂层14和第二降噪涂层16设置为一体式结构,这样能够使所有的降噪涂层一起加工而成,且被设置为连续而不断开的结构,因而能够 降低降噪涂层的加工难度,减少加工成本。
在上述任一实施例中,优选地,第一降噪涂层14的接触角为θ,其中,90°≤θ≤150°,或95°≤θ≤110°,和/或第二降噪涂层16的接触角为θ,其中,90°≤θ≤150°,或95°≤θ≤110°。
在该些实施例中,通过将第一降噪涂层14和/第二降噪涂层16的接触角θ设置在90°到150°之间,进一步设置在95°到110°之间,能够合理设置降噪涂层对气泡的吸附力,从而能够使气泡更不易从壶底12脱离,这样便使得壶底12产生的小而密集的气泡能够在壶底12汇集成大气泡,进而便可合理地限定气泡的尺寸,以合理控制噪音。
在上述任一实施例中,优选地,如图3至图11所示,加热装置2包括:导热盘22,设置在壶底12的外表面上;发热管24,设置在导热盘22远离壶底12的一面上;其中,凸筋122和凹槽120在壶底12上形成一区域,发热管24在壶底12上的投影位于区域内。
在该些实施例中,加热装置2包括导热盘22和发热管24,其中,导热盘22用于进行导热,而发热管24用于具体加热导热盘22进而加热壶底12。而凸筋122和凹槽120在壶底12上形成一区域,也即凸筋122和凹槽120设置在该区域内,此时,一方面可将区域设置为环形,即将凸筋122和凹槽120分布在一个环形区域内,当然,也可将凸筋122和凹槽120从壶底12中心开始向外分布。而发热管24在壶底12上的投影位于区域内,比如,在区域设置为环形时,发热管24在壶底12上的投影应位于环形区域的内轮廓线和外轮廓线内,而在区域从壶底12中心开始向外分布时,发热管24在壶底12上的投影应位于区域的外轮廓线内,此时,区域的内轮廓线为一个点,且优选与壶底12的中心对齐,这样使得凸筋122和凹槽120的设置区域能够完全覆盖在发热管24的安装区域上,而设置发热管24的部位处,气泡会比较集中,因而对应所有的发热管24的安装区域均设置凸筋122和凹槽120能够进一步降低噪音。
具体地,如图15和图16所示,在多个凸筋122位于一圆环形区域内时,圆环形区域的内径的D1应该小于发热管24的内径D3,而圆环形区域的外径的D2应该大于等于发热管24的外径D4。
其中,优选地,导热盘22为铝盘,而发热管可为铝管或铜管。
在上述任一实施例中,优选地,如图11所示,发热管24与导热盘22接触的面积为A,凸筋122的外表面的总面积之和为B,壶底12的内表面的面积为C,其中,A≤B≤C,和/或0.01≤B/C≤0.2,或0.02≤B/C≤0.1,或0.03≤B/C≤0.07。
在该些实施例中,多个凸筋122的外表面的总面积之和B大于等于发热管24与导热盘22接触的面积A小于等于壶底12的内表面的面积为C,这样能够使凸筋122的面积比较适中,因而能够进一步降低噪音。其中,具体地,可将多个凸筋122的外表面的总面积之和B与壶底12的内表面的面积C之比设置在0.01与0.2之间,进一步地可将多个凸筋122的外表面的总面积之和B与壶底12的内表面的面积C之比设置在0.02与0.1之间,更进一步地,可将多个凸筋122的外表面的总面积之和B与壶底12的内表面的面积C之比设置在0.03与0.07之间。
在上述任一实施例中,优选地,如图12至图14所示,凹槽120的内侧面与凹槽120的内底面之间的夹角为α,其中,90°≤α≤130°。
在该些实施例中,可优选将凸筋122的侧面垂直设置,以使凸筋122的侧面与壶底12的内表面之间的夹角为90°,此时,凹槽120的内侧面与凹槽120的内底面之间的夹角α也为90°,当然,也可将凸筋122设置成上尖下宽的结构,比如三角形或梯形,此时,可使凸筋122的侧面与壶底12的内表面之间夹角大于90°,进而使得凹槽120的内侧面与凹槽120的内底面之间的夹角α也能够大于90°,但优选地,可将凸筋122的侧面与壶底12的内表面之间的夹角设置在大于等于90°小于等于130°的范围内,这样便可将凹槽120的内侧面与凹槽120的内底面之间的夹角α设置在大于等于90°小于等于130°的范围内。
在上述任一实施例中,优选地,如图16至图23所示,凸筋122的纵截面的形状为三角形或圆弧形、或梯形。
在该些实施例中,凸筋122的纵截面的形状可根据实际需要设置成三角形或圆弧形、或梯形等任意形状,在此不做具体限定。
在上述任一实施例中,优选地,凸筋122在壶底12上通过缠绕成包括 内外多层且内外多层相互间隔设置的凸筋盘,比如凸筋122在壶底上缠绕呈螺旋形的凸筋盘。
在上述任一实施例中,优选地,如图22和图24所示,凸筋122包括呈螺旋形地设置在壶底12上的螺旋形凸筋1222,凹槽120包括由螺旋形凸筋1222形成的螺旋形凹槽1202。
在该些实施例中,可在壶底12上设置一个螺旋形凸筋1222,以便能够在壶底12上形成一个螺旋形凹槽1202,这样便可通过螺旋形凹槽1202和螺旋形凸筋1222来限定出气泡产生的边界,以限定出气泡的尺寸。而螺旋形的设置,一方面使得凸筋122和凹槽120的设置比较有规律,因而能够使凸筋122和凹槽120在壶底12上分布的更加均匀。另一方面使得所有凸筋122能够连接为一体,及使得所有凹槽120能够连接为一体,因而使得凸筋122和凹槽120能够更便利地进行加工。同时,螺旋形凹槽1202能够使气泡在上升过程中呈螺旋形,即能够使气泡在上升过程中形成特定的螺旋形,从而在壶体1为透明时,用户便可观看到壶体1内的气泡在上升过程中呈螺旋形,进而便可提高用户使用体验。
在上述任一实施例中,优选地,凸筋122为环形凸筋,比如,凸筋122为多个相互独立设置的多边形凸筋或圆形凸筋或者其它不规则形状的环形的凸筋,具体而言,环形凸筋可包括多个呈同心设置的第一环形凸筋1224,这样多个第一环形凸筋1224能够形成同心环凸筋。当然环形凸筋还可包括多个相互不内套的第二环形凸筋1226。
在上述任一实施例中,优选地,如图16和图21所示,凸筋122包括由多个第一环形凸筋1224呈同心设置的同心环凸筋,凹槽120包括由多个同心环凸筋形成的环形凹槽1204和最内层的第一环形凸筋1224形成的第一凹槽1206。
在该些实施例中,也可在壶底12上同心设置多个第一环形凸筋1224,以在壶底12上形成一个同心环凸筋,此时,同心环形凸筋122的内外层的凸筋之间能够形成一环形凹槽1204,而最内层的凸筋便可形成一个普通的凹槽120,比如第一凹槽1206。该种设置,通过同心环同心排列,使得凸筋122和凹槽120的设置比较有规律,因而能够使凸筋122和凹槽120在 壶底12上分布的更加均匀。同时,同心环凸筋能够使气泡在上升过程中呈同心环形,即能够使气泡在上升过程中形成特定的同心环形,从而在壶体1为透明时,用户便可观看到壶体1内的气泡在上升过程中呈同心环形,进而便可提高用户使用体验。
在上述任一实施例中,优选地,如图23所示,凸筋122包括多个呈S形设置的S形凸筋1228,凹槽120包括由相邻两个S形凸筋1228形成的S形凹槽1200。
在该些实施例中,也可在壶底12上设置多个S形凸筋1228,以通过多个S形凸筋1228形成多个S形凹槽1200。同时,S形凹槽1200能够使气泡在上升过程中呈S形,即能够使气泡在上升过程中形成特定的S形,从而在壶体1为透明时,用户便可观看到壶体1内的气泡在上升过程中呈S形,进而便可提高用户使用体验。
在上述任一实施例中,优选地,如图17至图20所示,凸筋122包括多个第二环形凸筋1226,多个第二环形凸筋1226在壶底12的内表面上均位于另一第二环形凸筋1226外,多个第二环形凸筋1226相互连接,或多个第二环形凸筋1226相互间隔设置,凹槽120包括在每一第二环形凸筋1226的内部区域内形成的第二凹槽1208。
在该些实施例中,多个第二环形凸筋1226在壶底12的内表面上均位于另一第二环形凸筋1226外,使得多个第二环形凸筋1226相互不内套,这样便能够通过第二环形凸筋1226的内壁面来围成一第二凹槽1208,此时,即相当于将一个凸筋的中部掏空以额外形成第二凹槽1208。该种设置,一个凸筋便能够形成一个第二凹槽1208,且第二凹槽1208的大小完全可通过第二环形凸筋1226来确定,因而通过第二环形凸筋1226便可准确地限定出第二凹槽1208的大小,从而即可准确的限定出产生气泡的边界,以准确地限定出气泡的尺寸。此外,该种设置,能够通过第二环形凸筋1226的内部围成第二凹槽1208,因而相比于实心凸筋而言,能够使凸筋122的宽度更窄,因而能够使产品的成本更低。
其中,多个第二环形凸筋1226即可相互连接,也可相互独立设置,但优选地,多个第二环形凸筋1226相互连接,且多个第二环形凸筋1226优 选为多边形设置,这样使得所有的第二环形凸筋1226的所有边均能够与另一个第二环形凸筋1226连接,这样便能够最大限度地减少多个第二环形凸筋1226之间的间距,以便能够在壶底12上形成更多的第二凹槽1208。
在上述任一实施例中,优选地,凸筋122包括多个第二环形凸筋1226时,第二凹槽1208上设置有连通口。
在该些实施例中,在凸筋122包括多个第二环形凸筋1226时,可在第二环形凸筋1226上设置一个缺口,这样便能够使相邻两个凹槽120之间能够形成一个连通口,以使每一第二环形凸筋1226围成的第二凹槽1208能够与该第二环形凸筋1226之外的区域连通,这就使得多个第二环形凸筋1226之间的第一降噪涂层14不会被第二环形凸筋1226隔开,从而便能够将第一降噪涂层14设置成一体,从而在加工时,可将第一降噪涂层14一体加工成型,以降低加工难度,提高第一降噪涂层14的加工速度。其中,连通口的数量和宽度可任一设置。
在上述任一实施例中,优选地,如图19和图20所示,凸筋122包括多个第二环形凸筋1226时,多个第二环形凸筋1226包括正多边形凸筋,每一正多边形凸筋的内部均形成一正多边形凹槽,正多边形凹槽的正多边形的边数为m,其中,3≤m≤10,或5≤m≤7。
在该些实施例中,可优选将多个第二环形凸筋1226中的每一凸筋均设置为正多边形凸筋,比如正五边形、正六边形或其它正多边形,但优选地,正多边形凸筋的边数m优选在3-10之间,进一步地,m可设置在5-7之间,这样使得第二环形凸筋1226的边数不至于过多,从而使得第二环形凸筋1226的结构较为简单,因而能够降低第二环形凸筋1226的加工难度。
其中,优选地,如图19和图20所示,多个正多边形凸筋之间没有设置间隙,该种设置使得所有的第二环形凸筋1226的所有边均能够与另一个第二环形凸筋1226连接,这样便能够最大限度地减少多个第二环形凸筋1226之间的间距,以便能够在壶底12上形成更多的第二凹槽1208。
其中,第二环形凸筋1226还可为圆形或椭圆形或者是其它不规则形状,比如云朵形。
在上述任一实施例中,优选地,如图24所示,凸筋122包括呈螺旋形 地设置在壶底12上的螺旋形凸筋1222时,壶底12的内表面上从螺旋形凸筋1222的中部至螺旋形凸筋1222的边缘还设置有第一连接筋124,第一连接筋124的宽度为b1,其中,0.1mm≤b1≤5mm,或0.1mm≤b1≤1.0mm,或0.2mm≤b1≤0.5mm;凸筋122包括由多个第一环形凸筋1224呈同心设置的同心环凸筋时,壶底12的内表面上从同心环凸筋的中部至同心环凸筋的边缘还设置有第二连接筋,第二连接筋的宽度为b2,其中,0.1mm≤b2≤5mm,或0.1mm≤b2≤1.0mm,或0.2mm≤b2≤0.5mm。
在该些实施例中,在凸筋122包括螺旋形凸筋1222时,可在螺旋形凸筋1222的径向方向上设置第一连接筋124,以使内外层的凸筋能够通过第一连接筋124相互连接,这样便能够提高螺旋形凸筋1222之间的连接强度。其中,第一连接筋124的宽度可优选与螺旋形凸筋1222的宽度一致,比如第一连接筋124的宽度b1可优选设置在0.1mm至5mm之间,或进一步设置在0.5mm至1mm之间,第一连接筋124的高度可优选设置在0.1mm至1mm之间,更进一步地,可设置在0.2mm至0.5mm之间。其中,第一连接筋124的数量为多个,比如2个或4个,这样能够从多个方向上对螺旋形凸筋1222进行加强。同理,在凸筋122包括同心环凸筋时,可在同心环凸筋的径向方向上设置第二连接筋,以使内外层的凸筋能够通过第二连接筋相互连接,这样便能够提高同心环凸筋之间的连接强度。其中,第二连接筋的宽度可优选与同心环凸筋的宽度一致,比如第二连接筋的宽度b2可优选设置在0.1mm至5mm之间,或进一步设置在0.5mm至1mm之间,第二连接筋的高度可优选设置在0.1mm至1mm之间,更进一步地,可设置在0.2mm至0.5mm之间。其中,第二连接的筋的数量为多个,比如2个或4个,这样能够从多个方向上对同心环凸筋进行加强。
在上述任一实施例中,优选地,如图17至图23所示,凸筋122之间能够形成的最大内接圆的直径为d,其中,3mm≤d≤10mm,或5mm≤d≤8mm。
在该些实施例中,凸筋122之间能够形成的最大内接圆的直径为d,这里最大内接圆的定义为凸筋122的轨迹能够形成最大的内接圆的直径,比如,在凸筋122包括多个第二环形凸筋1226时,比如凸筋122包括多个多边形凸筋或多个圆形凸筋时,最大内接圆为能够在该第二环形凸筋1226 包围的空间内画出的最大的圆,而在凸筋122包括螺旋形凸筋1222和多个第一环形凸筋1224同心设置的同心环凸筋时,最大内接圆为内外相邻两层凸筋122之间能够形成的最大圆,这里说明一下,在壶底12的中部没有设置凸筋时,此时,最内层的凸筋围成的区域的大小不受上述最大内接圆的限定,即凸筋在壶底的中部可形成较大的空余空间,该空余空间的大小可根据实际需要进行设定,但优选地该空余空间的外边缘的边界线应该位于发热管的内径的内侧。而通过将最大内接圆的直径d设置在3mm-10mm之间,或进一步设置在5mm-8mm之间,能够合理地限定出凸筋122的围成的边界的大小,以准确地限定出凹槽120的大小,从而能够合理限定出气泡产生的大小,以合理限定气泡的尺寸,从而可降低产品的噪音。
在上述任一实施例中,优选地,凹槽120的内底面和凹槽120的内侧面上均设置有第一降噪涂层14。
在该些实施例中,通过在凹槽120的内底面和凹槽120的内侧面上均设置第一降噪涂层14,使得凹槽120的整个内表面上均能够覆盖有降噪涂层,从而能够进一步增强凹槽120的降噪性能,以进一步降低噪音。
在上述任一实施例中,优选地,凸筋122通过CNC加工而成,或凸筋122通过激光雕刻而成,或凸筋122通过蚀刻工艺加工而成、或凸筋122通过拉伸冲压工艺加工而成。
在该些实施例中,凸筋122可通过多种加工方式加工而成,具体地,比如通过CNC加工而成或通过激光雕刻而成或通过蚀刻工艺加工而成或通过拉伸冲压工艺加工而成。但优选地,可通过拉伸冲压工艺加工而成,这样能够使凸筋122的加工更加简单。
在上述任一实施例中,优选地,壶体1为不锈钢制成,这样使得壶体1具有较好的强度且不易生锈。
其中,优选地,如图1和图2所示,液体加热容器还包括:外壳3,壶体1设置在外壳3内,加热装置2设置在外壳3内,壶体1的底部;底座4,设置在外壳3外,外壳3能够拆卸地安装在底座4上,能够为加热装置2等供电以及对外壳3、壶体1进行支撑。
在该些实施例中,可通过底座4来为产品供电,而外壳3用于对壶体 1进行保温以及隐藏保护。
其中,优选地,如图1和图2所示,液体加热容器还包括:手柄5,设置在外壳3上;壶盖6,盖装在壶体1的壶口上,用于打开或关闭壶体1的壶口。
在上述任一实施例中,优选地,液体加热容器为电水壶,这样便可通过该电水壶进行烧水。
在本说明书的描述中,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性,除非另有明确的规定和限定;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种液体加热容器,其特征在于,包括:
    壶体,所述壶体包括壶底,所述壶底上形成有凸筋和凹槽,所述凹槽由所述凸筋围成;
    加热装置,位于所述壶底的外表面上,用于加热所述壶体,所述壶底与所述加热装置连接的面为金属面。
  2. 根据权利要求1所述的液体加热容器,其特征在于,还包括:
    第一降噪涂层,所述第一降噪涂层至少设置在所述凹槽的内底面上。
  3. 根据权利要求2所述的液体加热容器,其特征在于,
    所述凸筋的顶部与所述凹槽的底部之间的最大高度差h1大于所述第一降噪涂层的厚度t1。
  4. 根据权利要求1所述的液体加热容器,其特征在于,
    所述凸筋的顶部与所述凹槽的底部之间的最大高度差为h1,其中,0.03mm≤h1≤2mm,或0.1mm≤h1≤1.0mm,或0.1mm≤h1≤0.5mm。
  5. 根据权利要求1所述的液体加热容器,其特征在于,
    所述凹槽的宽度为a,3mm≤a≤10mm或5mm≤a≤8mm,或0.1mm≤a≤1.0mm;或
    所述凸筋的宽度为e,所述凹槽的宽度为a,其中,0.1mm≤e≤1.0mm,3mm≤a≤10mm或5mm≤a≤8mm;或0.1mm≤a≤1.0mm,3mm≤e≤10mm或5mm≤e≤8mm。
  6. 根据权利要求2所述的液体加热容器,其特征在于,
    所述凸筋与所述第一降噪涂层之间的高度差为h2,其中,0mm<h2≤1mm,或0.05mm≤h2≤0.5mm,或0.1mm≤h2≤0.3mm;和/或
    所述第一降噪涂层的厚度为t1,其中,10μm≤t1≤100μm,或15μm≤t1≤70μm,或20μm≤t1≤50μm;和/或
    所述第一降噪涂层为疏水涂层。
  7. 根据权利要求2所述的液体加热容器,其特征在于,
    所述凸筋上设置有第二降噪涂层。
  8. 根据权利要求7所述的液体加热容器,其特征在于,
    所述第一降噪涂层与所述第二降噪涂层的厚度一致,或所述第二降噪涂层的厚度为t2,其中,10μm≤t2≤100μm,或15μm≤t2≤70μm,或20μm≤t2≤50μm;和/或
    所述第二降噪涂层为疏水涂层。
  9. 根据权利要求7所述的液体加热容器,其特征在于,
    所述凹槽上的所述第一降噪涂层为一个连续性的涂层,或所述凹槽上的所述第一降噪涂层包括多个相互断开的涂层片段;和/或
    所述凹槽上的所述第一降噪涂层与所述凸筋上的所述第二降噪涂层为一体式结构。
  10. 根据权利要求7所述的液体加热容器,其特征在于,
    所述第一降噪涂层的接触角为θ,其中,90°≤θ≤150°,或95°≤θ≤110°,和/或所述第二降噪涂层的接触角为θ,其中,90°≤θ≤150°,或95°≤θ≤110°。
  11. 根据权利要求1所述的液体加热容器,其特征在于,所述加热装置包括:
    导热盘,设置在所述壶底的外表面上;
    发热管,设置在所述导热盘远离所述壶底的一面上;
    其中,所述凸筋和所述凹槽在所述壶底上形成一区域,所述发热管在所述壶底上的投影位于所述区域内。
  12. 根据权利要求11所述的液体加热容器,其特征在于,
    所述发热管与所述导热盘接触的面积为A,所述凸筋的外表面的总面积之和为B,所述壶底的内表面的面积为C,其中,A≤B≤C,和/或0.01≤B/C≤0.2,或0.02≤B/C≤0.1,或0.03≤B/C≤0.07。
  13. 根据权利要求1所述的液体加热容器,其特征在于,
    所述凹槽的内侧面与所述凹槽的内底面之间的夹角为α,其中,90°≤α≤130°;和/或
    所述凸筋的纵截面的形状为三角形或圆弧形、或梯形。
  14. 根据权利要求1所述的液体加热容器,其特征在于,
    所述凸筋包括呈螺旋形地设置在所述壶底上的螺旋形凸筋,所述凹槽 包括由所述螺旋形凸筋形成的螺旋形凹槽;和/或
    所述凸筋包括由多个第一环形凸筋呈同心设置的同心环凸筋,所述凹槽包括由多个同心环凸筋形成的环形凹槽和最内层的第一环形凸筋形成的第一凹槽;和/或
    所述凸筋包括多个呈S形设置的S形凸筋,所述凹槽包括由相邻两个所述S形凸筋形成的S形凹槽;和/或
    所述凸筋包括多个第二环形凸筋,多个所述第二环形凸筋在所述壶底的内表面上均位于另一所述第二环形凸筋外,多个所述第二环形凸筋相互连接,或多个所述第二环形凸筋相互间隔设置,所述凹槽包括在每一所述第二环形凸筋的内部区域内形成的第二凹槽。
  15. 根据权利要求14所述的液体加热容器,其特征在于,
    所述凸筋包括多个第二环形凸筋时,所述第二凹槽上设置有连通口;
    所述凸筋包括多个第二环形凸筋时,所述多个第二环形凸筋包括正多边形凸筋,每一所述正多边形凸筋的内部均形成一正多边形凹槽,所述正多边形凹槽的正多边形的边数为m,其中,3≤m≤10,或5≤m≤7;
    所述凸筋包括呈螺旋形地设置在所述壶底上的螺旋形凸筋时,所述壶底的内表面上从所述螺旋形凸筋的中部至所述螺旋形凸筋的边缘还设置有第一连接筋,所述第一连接筋的宽度为b1,其中,0.1mm≤b1≤5mm,或0.1mm≤b1≤1.0mm,或0.2mm≤b1≤0.5mm;
    所述凸筋包括由多个第一环形凸筋呈同心设置的同心环凸筋时,所述壶底的内表面上从所述同心环凸筋的中部至所述同心环凸筋的边缘还设置有第二连接筋,所述第二连接筋的宽度为b2,其中,0.1mm≤b2≤5mm,或0.1mm≤b2≤1.0mm,或0.2mm≤b2≤0.5mm。
  16. 根据权利要求1至15中任一项所述的液体加热容器,其特征在于,
    所述凸筋之间能够形成的最大内接圆的直径为d,其中,3mm≤d≤10mm,或5mm≤d≤8mm。
  17. 根据权利要求2和3中任一项或6至10中任一项所述的液体加热容器,其特征在于,
    所述凹槽的内底面和所述凹槽的内侧面上均设置有所述第一降噪涂 层。
  18. 根据权利要求1至15中任一项所述的液体加热容器,其特征在于,
    所述凸筋通过CNC加工而成,或所述凸筋通过激光雕刻而成,或所述凸筋通过蚀刻工艺加工而成、或所述凸筋通过拉伸冲压工艺加工而成。
PCT/CN2018/100364 2018-04-26 2018-08-14 液体加热容器 WO2019205354A1 (zh)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201820611638 2018-04-26
CN201810387554 2018-04-26
CN201810388326.4 2018-04-26
CN201810387554.X 2018-04-26
CN201820611637 2018-04-26
CN201820611637.8 2018-04-26
CN201810388326 2018-04-26
CN201820611638.2 2018-04-26
CN201810410316.6 2018-05-02
CN201820642790.7U CN208988507U (zh) 2018-04-26 2018-05-02 液体加热容器
CN201820642790.7 2018-05-02
CN201810411160.3A CN110403464A (zh) 2018-04-26 2018-05-02 液体加热容器
CN201820644243.2 2018-05-02
CN201810411160.3 2018-05-02
CN201810410316.6A CN110403463A (zh) 2018-04-26 2018-05-02 液体加热容器
CN201820644243.2U CN208988508U (zh) 2018-04-26 2018-05-02 液体加热容器

Publications (1)

Publication Number Publication Date
WO2019205354A1 true WO2019205354A1 (zh) 2019-10-31

Family

ID=68294412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100364 WO2019205354A1 (zh) 2018-04-26 2018-08-14 液体加热容器

Country Status (1)

Country Link
WO (1) WO2019205354A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4048125A4 (en) * 2020-01-13 2022-12-21 Top Electric Appliances Industrial Limited ELECTRIC KETTLE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203815243U (zh) * 2014-01-21 2014-09-10 九阳股份有限公司 一种低噪音开水加热容器
JP2015089476A (ja) * 2013-11-07 2015-05-11 ユーテック株式会社 液体加熱装置及び液体抽出装置
CN106700678A (zh) * 2017-01-13 2017-05-24 江苏省格来德净水科技有限公司 一种静音热水壶
CN206333740U (zh) * 2016-09-09 2017-07-18 广东美的生活电器制造有限公司 液体加热容器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089476A (ja) * 2013-11-07 2015-05-11 ユーテック株式会社 液体加熱装置及び液体抽出装置
CN203815243U (zh) * 2014-01-21 2014-09-10 九阳股份有限公司 一种低噪音开水加热容器
CN206333740U (zh) * 2016-09-09 2017-07-18 广东美的生活电器制造有限公司 液体加热容器
CN106700678A (zh) * 2017-01-13 2017-05-24 江苏省格来德净水科技有限公司 一种静音热水壶

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4048125A4 (en) * 2020-01-13 2022-12-21 Top Electric Appliances Industrial Limited ELECTRIC KETTLE

Similar Documents

Publication Publication Date Title
CN208048601U (zh) 内锅及烹饪设备
WO2019205354A1 (zh) 液体加热容器
CN208658885U (zh) 不粘锅及烹饪器具
CN110403461B (zh) 液体加热容器
CN110403460B (zh) 液体加热容器
JP2010099140A (ja) 調理・湯沸かし器具
CN208988508U (zh) 液体加热容器
CN214700859U (zh) 锅架及灶具
CN206080224U (zh) 用于烹饪器具的内锅和烹饪器具
CN212591589U (zh) 烹饪锅具和烹饪装置
JP2015029816A (ja) 加熱調理用内鍋及び炊飯器
CN207095036U (zh) 内胆以及液体加热器
CN209106981U (zh) 液体加热容器
CN208988507U (zh) 液体加热容器
CN203935023U (zh) 一种炒锅
CN209058879U (zh) 热盘、烹饪厨具本体和烹饪厨具
CN201542398U (zh) 一种电炒锅
CN221511594U (zh) 一种防溢锅
CN216875984U (zh) 液体加热容器
CN202122498U (zh) 防粘锅底蒸发器
CN221830440U (zh) 一种具有易清洗内胆的烹饪器具
CN207101100U (zh) 一种烹饪器具
CN205040044U (zh) 加热装置
CN207640206U (zh) 内锅及烹饪器具
CN207755004U (zh) 内锅及烹饪器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916316

Country of ref document: EP

Kind code of ref document: A1