WO2019204983A1 - 一种多投影面拼接的光学系统 - Google Patents

一种多投影面拼接的光学系统 Download PDF

Info

Publication number
WO2019204983A1
WO2019204983A1 PCT/CN2018/084257 CN2018084257W WO2019204983A1 WO 2019204983 A1 WO2019204983 A1 WO 2019204983A1 CN 2018084257 W CN2018084257 W CN 2018084257W WO 2019204983 A1 WO2019204983 A1 WO 2019204983A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
optical system
mirror
dlp
spatial light
Prior art date
Application number
PCT/CN2018/084257
Other languages
English (en)
French (fr)
Inventor
方绚莱
普拉莫威廉
张志飞
葛琦
彭博方
Original Assignee
深圳摩方新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳摩方新材科技有限公司 filed Critical 深圳摩方新材科技有限公司
Priority to PCT/CN2018/084257 priority Critical patent/WO2019204983A1/zh
Publication of WO2019204983A1 publication Critical patent/WO2019204983A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • the invention belongs to the technical field of 3D printing, in particular to an optical system with multi-projection surface splicing.
  • the optical system can be used for micro-nano processing based on digital lithography, for large-format high-precision 3D printing, for large-format high-resolution digital projection display.
  • DLP-Digital Light Processing based projection technology has many applications, such as 3D printing technology, maskless lithography technology and digital projection display technology.
  • the projected area is determined by the spatial light modulator (including but not limited to DMD, LCD, LCOS) and the magnification of the projection lens.
  • the resolution (total number of pixels) of various spatial light modulators is generally not more than 5 million, and the magnification of the projection objective lens is too large, resulting in a decrease in the fineness of the projection surface, which cannot meet the technical requirements of related applications, and when the magnification is small, the magnification is small. , the projected area does not meet the technical needs. Therefore, it is necessary to splicing the projection surface.
  • the invention provides an optical system for multi-projection surface splicing, using multiple DLP systems for simultaneous projection, and using mirrors to achieve seamless (sub-pixel) splicing of multiple projection surfaces.
  • the present invention is implemented as follows:
  • An optical system for splicing multiple projection surfaces comprising a light source, a mirror, an object surface and at least two DLP systems, wherein the DLP systems are symmetrically disposed on both sides of the mirror, and the patterns projected by the light source respectively pass through The DLP system and the mirror are respectively imaged on the object surface, and the position of the mirror is adjusted so that the respective projection surfaces are seamlessly spliced on the object surface.
  • the operation method of the present invention is: firstly dividing the projection surface of the target into an appropriate size decomposition screen, projecting each decomposition image through a light source to each DLP system, and then combining the two through the mirror, and finally projecting on the object surface, through By precisely adjusting the position of the mirror, the projected image of the projection can be seamlessly spliced on the object surface.
  • the number of light source elements can be the same as the number of DLP systems, ensuring the accuracy of the projection surface. By setting the number of light sources and DLP systems, in principle, seamless splicing of multiple projection surfaces can be achieved.
  • the DLP system includes a spatial light modulator and a projection objective, the pattern projected by the light source being first incident on the projection objective through the spatial light modulator.
  • the spatial light modulator comprises a DMD, an LCD and an LCOS.
  • the projection objective is disposed between the spatial light modulator and the mirror or between the mirror and the object surface.
  • the position of the projection objective can be set according to product design requirements.
  • the projection objective lens is a projection exposure objective lens
  • the projection exposure objective lens is disposed between the mirror and the object surface.
  • the projection exposure objective lens is disposed between the mirror and the object surface, and the projection surface of the two symmetrical DLP systems can be exposed by the same projection exposure objective lens.
  • an illumination system is also provided between the light source and the DLP optical system.
  • the mirror comprises a triangular prism.
  • the triangular prism is a 45° reflective triangular prism.
  • the invention has the beneficial effects that the present invention utilizes the reflection effect of the mirror to realize the seamless splicing of the projection surfaces of the plurality of DLP systems on the object surface, and solves the projection pixel precision and the projection size. contradiction.
  • 1 is a first multi-projection surface splicing optical system provided by the present invention.
  • FIG. 2 is a second multi-projection surface splicing optical system provided by the present invention.
  • 3 is a third multi-projection surface splicing optical system provided by the present invention.
  • FIG. 4 is a fourth multi-projection surface splicing optical system provided by the present invention.
  • FIG. 5 is a fifth multi-projection surface splicing optical system provided by the present invention.
  • FIG. 6 is a first multi-projection surface splicing optical system provided by the present invention.
  • the operation method of the following embodiment is: first dividing the projection surface of the target into an appropriate size decomposition screen, projecting each decomposition image into each DLP system through a light source, and then combining the two by two mirrors, and finally projecting on the object surface.
  • the number of light source elements can be the same as the number of DLP systems, ensuring the accuracy of the projection surface.
  • the number of DLP systems is at least two, including a spatial light modulator and a projection objective, respectively.
  • the multi-projection surface is spliced by using the reflected light of the spatial light modulator.
  • a multi-projection surface splicing optical system As shown in FIG. 1 , a multi-projection surface splicing optical system, a left side light source 1, a left side illumination system 2, a left side spatial light modulator 3, a left side projection objective lens 4 and a right side light source 11, and a right side illumination system 21.
  • the right spatial light modulator 31 and the right projection objective lens 41 are symmetrically disposed at both ends of the mirror 5, and the left and right sides of the mirror 5 are projected on the object surface 6.
  • the mirror is preferably a triangular prism, further preferably a 45° reflective triangular prism, or other forms of prism, as long as the seam of the projection surface is controlled by controlling the mirror.
  • the spatial light modulators include, but are not limited to, DMD, LCD, and LCOS.
  • the light emitted by the left side light source 1 passes through the left side illumination system 2, is incident on the left side spatial light modulator 3, and the incident light is reflected by the left side spatial light modulator 3, and passes through the left side projection objective lens. 4.
  • the light emitted from the left projection objective lens 4 passes through the mirror 5, is reflected by the mirror 5, and is incident on the object surface 6.
  • the right side light source 1-1, the right side illumination system 2-1, the right side spatial light modulator 3-1, the right side projection objective lens 4-1, and the like are similar to the left side, and both are axially symmetric with respect to the mirror 5. In this way, the patterns on the left and right sides are imaged on the object surface 6, and the position of the mirror 5 is precisely adjusted, thereby accurately splicing the projection surfaces on the object surface.
  • FIG. 1 only shows two symmetrically arranged DLP systems. In fact, according to the requirements of projection pixel precision and projection size, a plurality of two-two symmetric DLP systems and corresponding light sources and illumination systems can be provided.
  • Embodiment 2 differs from Embodiment 1 in that the splicing of the multi-projection surface is performed by the incident light of the spatial light modulator.
  • the light emitted by the left side light source 1 passes through the left side illumination system 2, is incident on the left side spatial light modulator 3, and the incident light passes through the left side spatial light modulator 3, and passes through the left side projection objective lens 4.
  • the light emitted from the left projection objective lens 4 passes through the mirror 5, is reflected by the mirror 5, and is incident on the object surface 6.
  • the right side light source 1-1, the right side illumination system 2-1, the right side spatial light modulator 3-1, the right side projection objective lens 4-1, and the like are similar to the left side, and both are axially symmetric with respect to the mirror 5. In this way, the patterns on the left and right sides are imaged on the object surface 6, and the position of the mirror 5 is precisely adjusted, thereby accurately splicing the projection surfaces on the object surface.
  • the difference between the third embodiment and the first and second embodiments is that the projection objective lens in the first embodiment and the second embodiment is adjusted from between the spatial light modulator and the mirror to the mirror and the object surface, as shown in the figure. 3.
  • Figure 4 shows.
  • Embodiment 4 The difference between Embodiment 4 and Embodiment 3 is that the projection objective lens in Embodiment 3 is preferably a projection exposure objective lens 7, and the projection exposure objective lens 7 is provided between the mirror and the object surface.
  • the projection exposure objective lens 7 is disposed between the mirror and the object surface, and the projection image of the two symmetrical DLP systems can be exposed by the same projection exposure objective lens 7, as shown in FIGS. 5 and 6. Show.
  • the invention does not need to impose strict requirements on the performance of the optical component such as the resolution of the spatial light modulator and the magnification of the projection objective lens, and the seamless splicing of the projection surfaces of the plurality of DLP systems can be realized by utilizing the reflection effect of the mirror.
  • the contradiction between the precision of the projected pixel and the size of the projected image is solved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种多投影面拼接的光学系统,包括光源(1,11)、反射镜(5)、物面(6)和至少两个DLP系统,DLP系统两两对称设置在反射镜(5)两侧,光源(1,11)投影的图案分别经过各DLP系统和反射镜(5)后分别成像于物面(6)上,调整反射镜(5)的位置使各个投影面在物面(6)上无缝拼接,从而解决了投影像素精度与投影幅面大小的矛盾。

Description

一种多投影面拼接的光学系统 技术领域
本发明属于3D打印技术领域,尤其是一种多投影面拼接的光学系统。该光学系统能够用于基于数字光刻技术的微纳加工制造,用于大幅面高精度的3D打印,用于大幅面高分辨率的数字投影显示等。
背景技术
目前基于数字光处理(DLP-Digital Light Processing)的投影技术有多项应用,比如3D打印技术,无掩膜光刻技术以及数字投影显示技术。
目前基于数字光处理的多种应用方案均涉及投影面积问题。投影面积是由空间光调制器(包括但不仅限于DMD、LCD、LCOS)以及投影镜头的放大倍率决定。现有各种空间光调制器的分辨率(总像素数)一般不大于500万,而投影物镜的放大倍率过大会造成投影面的精细度降低,不能满足相关应用的技术需求,放大倍率较小时,则造成投影面积不能满足技术需求。因此,需要对投影面进行拼接。
技术问题
在此处键入技术问题描述段落。
技术解决方案
本发明提出一种多投影面拼接的光学系统,使用多个DLP系统同时投影,并使用反射镜实现多个投影面的无缝(亚像素)拼接。
本发明是这样实现的:
一种多投影面拼接的光学系统,包括光源、反射镜、物面和至少两个DLP系统,所述DLP系统两两对称设置在所述反射镜两侧,所述光源投影的图案分别经过各DLP系统和所述反射镜后分别成像于物面上,调整反射镜的位置使各个投影面在物面上无缝拼接。
本发明的操作方法是:先将目标的投影面分割成适合大小的分解画面,将各分解画面通过光源投影至各DLP系统,再两两通过反射镜组合起来,最终投影在物面上,通过精确调整反射镜的位置,可以使投影的分解画面在物面上无缝拼接起来。其中,光源元件的个数可以与DLP系统的个数相同,保证投影面的精度。通过设置光源和DLP系统的个数,原则上可以实现多个投影面的无缝拼接。
作为发明的进一步改进,所述DLP系统包括空间光调制器和投影物镜,所述光源投影的图案先经过空间光调制器再入射投影物镜。
作为发明的进一步改进,所述空间光调制器包括DMD、LCD和LCOS。
作为发明的进一步改进,所述投影物镜设在所述空间光调制器与反射镜之间,或者设在所述反射镜与物面之间。投影物镜的位置可以根据产品设计要求进行设置。
作为发明的进一步改进,所述投影物镜为投影曝光物镜,所述投影曝光物镜设在所述反射镜与物面之间。当需要获得投影曝光画面时候,将投影曝光物镜设在反射镜与物面之间,可以通过同一个投影曝光物镜实现两个对称的DLP系统的投影面的曝光。
作为发明的进一步改进,所述光源和DLP光学系统之间还设有照明系统。
作为发明的进一步改进,所述反射镜包括三角棱镜。
作为发明的进一步改进,所述三角棱镜为45°反射三角棱镜。
有益效果
与现有技术相比,本发明的有益效果是:本发明利用反射镜的反射作用,实现多个DLP系统的投影面在物面上的无缝拼接,解决了投影像素精度与投影幅面大小的矛盾。
附图说明
图1是本发明提供的第一种多投影面拼接的光学系统。
图2是本发明提供的第二种多投影面拼接的光学系统。
图3是本发明提供的第三种多投影面拼接的光学系统。
图4是本发明提供的第四种多投影面拼接的光学系统。
图5是本发明提供的第五种多投影面拼接的光学系统。
图6是本发明提供的第种种多投影面拼接的光学系统。
附图说明:1-左侧光源,2-左侧照明系统,3-左侧空间光调制器、4-左侧投影物镜,11-右侧光源,21-右侧照明系统,31-右侧空间光调制器,41-右侧投影物镜,5-反射镜,6-物面,7-投影曝光物镜。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面结合附图及具体实施例对本发明进一步说明。
下述实施例的操作方法是:先将目标的投影面分割成适合大小的分解画面,将各分解画面通过光源投影至各DLP系统,再两两通过反射镜组合起来,最终投影在物面上,通过精确调整反射镜的位置,可以使投影的分解画面无缝拼接起来。其中,光源元件的个数可以与DLP系统的个数相同,保证投影面的精度。通过设置光源和DLP系统的个数,原则上可以实现多个投影面的无缝拼接。
实施例1
实施例1中,DLP系统的个数至少为2个,分别包括空间光调制器与投影物镜,本实施例利用空间光调制器的反射光进行多投影面的拼接。
如图1所示的一种多投影面拼接的光学系统,左侧光源1、左侧照明系统2、左侧空间光调制器3、左侧投影物镜4与右侧光源11、右侧照明系统21、右侧空间光调制器31、右侧投影物镜41两两对称设在反射镜5的两端,反射镜5左右两侧的画面投影在物面6上。
所述反射镜优选为三角棱镜,进一步优选为45°反射三角棱镜,也可以是其他形式的棱镜,只要最终实现通过控制反射镜来控制投影面的拼缝。
所述空间光调制器包括但不限于DMD、LCD和LCOS。
如图1所示,左侧光源1发出的光经过左侧照明系统2之后,入射在左侧空间光调制器3上,入射光经过左侧空间光调制器3反射后,经过左侧投影物镜4,左侧投影物镜4的出射光经过反射镜5,经反射镜5反射后入射投影在物面6上。右侧光源1-1、右侧照明系统2-1、右侧空间光调制器3-1、右侧投影物镜4-1等与左侧类似,两者关于反射镜5成轴对称结构。通过这种方式将左右两侧的图案成像在物面6上,通过精确调整控制反射镜5的位置,进而精确实现物面上各投影面的拼接。
图1仅仅示出了两个对称设置的DLP系统,事实上,根据投影像素精度与投影幅面大小的要求,可以设置多个两两对称的DLP系统和对应的光源、照明系统。
实施例2
实施例2与实施例1的区别在于,利用空间光调制器的入射光进行多投影面的拼接。
如图2所示,左侧光源1发出的光经过左侧照明系统2之后,入射在左侧空间光调制器3上,入射光通过左侧空间光调制器3后,经过左侧投影物镜4,左侧投影物镜4的出射光经过反射镜5,经反射镜5反射后入射投影在物面6上。右侧光源1-1、右侧照明系统2-1、右侧空间光调制器3-1、右侧投影物镜4-1等与左侧类似,两者关于反射镜5成轴对称结构。通过这种方式将左右两侧的图案成像在物面6上,通过精确调整控制反射镜5的位置,进而精确实现物面上各投影面的拼接。
实施例3
实施例3与实施例1、2的区别点在于,将实施例1、实施例2中的投影物镜,从空间光调制器和反射镜之间,调整到反射镜和物面之间,如图3、图4所示。采用实施例1-3的技术方案,投影物镜所在的位置可以根据需要进行调节,使本发明的光学系统设置过程更加灵活。
实施例4
实施例4与实施例3的区别点在于,将实施例3中的投影物镜优选为投影曝光物镜7,所述投影曝光物镜7设在所述反射镜与物面之间。当需要获得投影曝光画面时候,将投影曝光物镜7设在反射镜与物面之间,可以通过同一个投影曝光物镜7实现两个对称的DLP系统的投影画面的曝光,如图5、6所示。
本发明无需对空间光调制器的分辨率、投影物镜的放大倍率等光学元件的性能提出严苛的要求,通过利用反射镜的反射作用,即可实现多个DLP系统的投影面的无缝拼接,解决了投影像素精度与投影幅面大小的矛盾。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (8)

  1. 一种多投影面拼接的光学系统,其特征在于,包括光源、反射镜、物面和至少两个DLP系统,所述DLP系统两两对称设置在所述反射镜两侧,所述光源投影的图案分别经过各DLP系统和所述反射镜后分别成像于物面上,调整反射镜的位置使各个投影面在物面上无缝拼接。
  2. 根据权利要求1所述的多投影面拼接的光学系统,其特征在于,所述DLP系统包括空间光调制器和投影物镜,所述光源投影的图案先经过空间光调制器再入射投影物镜。
  3. 根据权利要求2所述的多投影面拼接的光学系统,其特征在于,所述空间光调制器包括DMD、LCD和LCOS。
  4. 根据权利要求2所述的多投影面拼接的光学系统,其特征在于,所述投影物镜设在所述空间光调制器与反射镜之间,或者设在所述反射镜与物面之间。
  5. 根据权利要求3所述的多投影拼接的光学系统,其特征在于,所述投影物镜为投影曝光物镜,所述投影曝光物镜设在所述反射镜与物面之间。
  6. 根据权利要求1所述的多投影面拼接的光学系统,其特征在于,所述光源和DLP光学系统之间还设有照明系统。
  7. 根据权利要求1所述的多投影面拼接的光学系统,其特征在于,所述反射镜包括三角棱镜。
  8. 根据权利要求7所述的多投影面拼接的光学系统,其特征在于,所述三角棱镜为45 反射三角棱镜。
PCT/CN2018/084257 2018-04-24 2018-04-24 一种多投影面拼接的光学系统 WO2019204983A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/084257 WO2019204983A1 (zh) 2018-04-24 2018-04-24 一种多投影面拼接的光学系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/084257 WO2019204983A1 (zh) 2018-04-24 2018-04-24 一种多投影面拼接的光学系统

Publications (1)

Publication Number Publication Date
WO2019204983A1 true WO2019204983A1 (zh) 2019-10-31

Family

ID=68293735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084257 WO2019204983A1 (zh) 2018-04-24 2018-04-24 一种多投影面拼接的光学系统

Country Status (1)

Country Link
WO (1) WO2019204983A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060139579A1 (en) * 2004-12-28 2006-06-29 Makoto Kasahara Video projector for dome screen
CN105700282A (zh) * 2016-04-28 2016-06-22 南京先进激光技术研究院 背投装置
CN106842779A (zh) * 2017-01-24 2017-06-13 深圳晗竣雅科技有限公司 多片dmd共同成像提高投影图片分辨率的方法
CN107340679A (zh) * 2017-01-24 2017-11-10 深圳晗竣雅科技有限公司 通过反射镜摆动多次成像提高投影图片分辨率的方法
CN107390458A (zh) * 2017-09-07 2017-11-24 山东乐讯光电有限公司 一种高清晰度投影装置
CN108663886A (zh) * 2018-04-24 2018-10-16 深圳摩方新材科技有限公司 一种多投影面拼接的光学系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060139579A1 (en) * 2004-12-28 2006-06-29 Makoto Kasahara Video projector for dome screen
CN105700282A (zh) * 2016-04-28 2016-06-22 南京先进激光技术研究院 背投装置
CN106842779A (zh) * 2017-01-24 2017-06-13 深圳晗竣雅科技有限公司 多片dmd共同成像提高投影图片分辨率的方法
CN107340679A (zh) * 2017-01-24 2017-11-10 深圳晗竣雅科技有限公司 通过反射镜摆动多次成像提高投影图片分辨率的方法
CN107390458A (zh) * 2017-09-07 2017-11-24 山东乐讯光电有限公司 一种高清晰度投影装置
CN108663886A (zh) * 2018-04-24 2018-10-16 深圳摩方新材科技有限公司 一种多投影面拼接的光学系统

Similar Documents

Publication Publication Date Title
CN108663886A (zh) 一种多投影面拼接的光学系统
US20110222024A1 (en) Illumination system for projection display
JP2867529B2 (ja) 投写型表示装置
JP2010217877A (ja) 露光装置、露光方法、およびデバイス製造方法
JP4932342B2 (ja) 照明光学系および投写型表示装置
US6943850B2 (en) Optical apparatus and projection type display apparatus for reducing a physical distance between a light source and a display
TW202004322A (zh) 圖像顯示裝置、投射光學系統及圖像顯示系統
US7796339B2 (en) Image display apparatus and projector
TWI357986B (en) Optical system for stereo projection
JP5428346B2 (ja) 照明装置及びこれを備えるプロジェクター
EP1281996A1 (en) Zoom lens device, optical device comprising the same, and projector
JP2016054230A (ja) 投影露光装置及び露光方法
WO2019204983A1 (zh) 一种多投影面拼接的光学系统
JP2005266765A (ja) プロジェクタ
JP2014170186A (ja) 投射光学系およびプロジェクタ
JP7342854B2 (ja) 画像表示装置
JP2010197630A (ja) 投影光学系、露光装置、およびデバイス製造方法
JP2007121693A (ja) プロジェクタ
JP2007333773A (ja) プロジェクタ
JP4902441B2 (ja) 照明装置および投写型映像表示装置
CN113348403B (zh) 投影仪和用于提高投影光强度的方法
JP2023087214A (ja) プロジェクター
JP2009086400A (ja) プロジェクタ
JP5266619B2 (ja) プロジェクタ
US20110063583A1 (en) Illumination optical system and projection display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.03.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916824

Country of ref document: EP

Kind code of ref document: A1