WO2019204050A1 - Ceramic-aluminum assembly with bonding trenches - Google Patents
Ceramic-aluminum assembly with bonding trenches Download PDFInfo
- Publication number
- WO2019204050A1 WO2019204050A1 PCT/US2019/025930 US2019025930W WO2019204050A1 WO 2019204050 A1 WO2019204050 A1 WO 2019204050A1 US 2019025930 W US2019025930 W US 2019025930W WO 2019204050 A1 WO2019204050 A1 WO 2019204050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- trench
- assembly according
- aluminum material
- assembly
- trenches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/19—Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/003—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
- C04B37/006—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
- C04B2235/945—Products containing grooves, cuts, recesses or protusions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/963—Surface properties, e.g. surface roughness
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/121—Metallic interlayers based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/345—Refractory metal oxides
- C04B2237/348—Zirconia, hafnia, zirconates or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/365—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/366—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/59—Aspects relating to the structure of the interlayer
- C04B2237/592—Aspects relating to the structure of the interlayer whereby the interlayer is not continuous, e.g. not the whole surface of the smallest substrate is covered by the interlayer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/64—Forming laminates or joined articles comprising grooves or cuts
Definitions
- the present disclosure relates generally to methods of joining objects, and more particularly to methods of joining ceramic materials and the resulting joined assemblies.
- a support pedestal typically includes a plate member for supporting a wafer thereon and a tubular shaft disposed under the plate member.
- the plate member may include a ceramic substrate and a plurality of functional elements, such as a heating element, embedded in the ceramic substrate.
- the ceramic substrate may be formed by hot pressing.
- Hot pressing is a high-pressure, low-strain process to enhance densification of powder or compacted preform at high temperature.
- the powder or the compacted preform is put into a mold, and high temperatures and pressure are applied for densification and sintering.
- the functional elements that are embedded in the ceramic substrate must withstand high heat and high pressure in the hot pressing process. Therefore, the materials for forming the functional elements are limited. Moreover, hot pressing requires high temperature and high pressure equipment, thereby increasing manufacturing costs.
- two or more ceramic substrates may be bonded together by brazing.
- the brazed joint is not without problems due to poor wettability of the ceramic materials as well as the incompatible coefficient of thermal expansion (CTE) between the brazing metals and the ceramic materials. Cracks or delamination may occur between the brazing metals and the ceramic substrates at elevated temperatures due to their significantly different thermal expansions.
- CTE coefficient of thermal expansion
- an assembly comprising a first member and a second member disposed adjacent to the first member, wherein at least one of the first member and the second member defines at least one trench.
- the assembly also comprises an aluminum material disposed within the trench and bonding the first member to the second member along adjacent faces, wherein a spacing between the first member and the second member along the adjacent faces is less than 5 pm.
- a surface roughness of the adjacent faces of the first and second members is between 5 pm and 100 nanometers.
- the trench defines at least one of a square, rectangular, arcuate, and polygonal geometry.
- the trench defines a depth and a width, and the width of the trench is between 5 and 20 times the depth of the trench.
- variations of the present disclosure further comprise a plurality of trenches that are spaced a distance apart less than 2mm. Alternatively, in other forms of the present disclosure, the plurality of trenches are parallel to each other.
- the first member and the second member are selected from the group consisting of a ceramic, aluminum nitride (AIN), alumina, zirconia, and silicon carbide (SiC).
- each of the first member and the second member are each aluminum nitride (AIN).
- the first member is a flat plate and the second member is at least one of a flat plate and a hollow shaft.
- the at least one trench is at least three trenches or at least five trenches.
- the aluminum material is aluminum foil.
- a method of joining an assembly comprises preparing a first member and a second member; forming at least one trench in at least one of the first member or the second member; placing a strip of solid aluminum material between the first member and the second member across the trench; bringing the first member and the second member together to contact the solid aluminum material and to form the assembly; applying a force and heat to the assembly above a melting point of the solid aluminum material such that the solid aluminum material flows into the trench; applying additional heat to the assembly at or above a wetting temperature of the member in which the trench is formed to bond the first member to the second member along adjacent faces; and cooling the assembly, wherein a spacing between the first member and the second member along the adjacent faces is less than 5 pm.
- preparing the first and second member comprises creating a surface roughness of the adjacent faces of the first and second members between 5 pm and 100 nanometers.
- the solid aluminum material is applied by a physical vapor deposition (PVD) process.
- FIG. 1 is a cross-sectional view of a joined assembly constructed in accordance with the teachings of the present disclosure
- FIG. 2 is a side view of a second member of the joined assembly of
- FIG. 1 is a diagrammatic representation of FIG. 1 ;
- FIG. 3 is an enlarged view of portion A of FIG. 2;
- FIG. 4 is a flow diagram of a method of bonding materials in accordance with the teachings of the present disclosure; [0025] FIGS. 5A to 5E depict the steps of bonding materials using the method of FIG. 4, wherein:
- FIG. 5A depicts a step of placing a solid aluminum material between a first member and a second member
- FIG. 5B depicts a step of melting solid aluminum material and causing the molten aluminum material to flow into trenches of the second member
- FIG. 5C depicts a step of pressing the first member and the second member against each other to reduce the spacing therebetween;
- FIG. 5D depicts a step of heating the assembly to a temperature above a wetting temperature so that the molten aluminum material conforms to the geometry of the trenches;
- FIG. 5E is an enlarged view of portion B of FIG. 5D;
- FIG. 6 is a schematic view of a variant of a joined assembly constructed in accordance with the teachings of the present disclosure.
- FIG. 7 is a schematic view of another variant of a joined assembly constructed in accordance with the teachings of the present disclosure.
- a joined assembly 10 constructed in accordance with the teachings of the present disclosure includes a first member 12 and a second member 14 bonded by aluminum material 16 along a periphery of the first and second members 12 and 14.
- the first member 12 and the second member 14 may be made of ceramic materials, such as aluminum nitride (AIN), alumina, zirconia, and silicon carbide (SiC).
- AIN aluminum nitride
- SiC silicon carbide
- both the first member 12 and the second member 14 may be made of aluminum nitride (AIN) and functional layers (not shown) may be disposed at the interface between the first and second members 12, 14.
- the first and second members 12, 14 in this form each have a plate configuration and define adjacent faces 18 facing each other.
- the adjacent faces 18 have a surface flatness of less than 5 pm, and a surface roughness of less than 3pm.
- the surface roughness of the adjacent faces 18 may be in the range between 100nm and 5pm.
- a spacing between the first member 12 and the second member 14 along the adjacent faces is less than 5 pm in one form of the present disclosure.
- first and second members 12 and 14 define a bonding feature 20 along its periphery and on the adjacent face 18.
- the bonding feature 20 may be in the form of one or more trenches 22 as shown.
- the aluminum material 16 is filled in the trenches 22 as described in greater detail below.
- One of the trenches 22 that is closer to a center of the second member 14 may be deeper than the other trenches 22.
- the bonding feature 20 can have any number of trenches and can be formed in the first member 12 and/or the second member 14 without departing from the scope of the present disclosure.
- the trenches 22 may take any path along each of the first and/or second members 12/14 depending on application requirements, which may be circular, sinuous, or linear, among other paths.
- the solid aluminum material 16 is depicted to show the position of the solid aluminum material 16 relative to the trenches 22 when the solid aluminum material 16 is placed between the first member 12 and the second member 14.
- the solid aluminum material 16 is placed to overlap the two outermost trenches 22.
- the deepest trench that is closer to the center of the second member 12 functions to restrict the molten aluminum material from flowing toward the center and outside the bonding area.
- the plurality of trenches 22 may be configured parallel to each other and are spaced at a distance apart less than 2mm. Making the trenches 22 closer to each other can reduce the size of the bonding area to less than 2 mm.
- a smaller bonding area has the advantages of reducing the area that needs to be heated to the wetting temperature and achieving uniform heating in the bonding area during the bonding process, which will be described in more detail below. Moreover, the smaller bonding area reduces the risk of aluminum flowing into adjacent area where functional elements such as vias, routing circuits, terminations, among others, are disposed.
- the trenches 22 are also configured limit the flow of aluminum, or other bonding material that may be used besides aluminum, in the bonding area.
- the number of the trenches 22 is at least three or at least five.
- the aspect ratio (i.e., the width/depth) of each of the trenches 22 is between 5 to 20. In other words, the width of each trench is between 5 and 20 times the depth of each trench 20.
- a shallower trench 22 contributes to a desired hermeticity of less than 10 9 mbar-l/sec.
- the width of the bonding area may be less than 3 mm.
- the depth of the trenches 22 is less than 50pm, and in one form less than 20pm to reduce thermal stress due to differences in thermal expansion between the bonding material (i.e., aluminum) and the ceramic member (i.e., AIN). When a deeper trench (e.g., larger than 100pm) is used, the trench 22 should be made wider in order to achieve the required hermeticity.
- the plurality of trenches 22 are configured to have an annular shape along the periphery of the first and second members 12, 14.
- the shape (or path) of the trenches 22 may vary according to application requirements and may further be of a varying width (rather than a constant width as illustrated herein) while remaining within the scope of the present disclosure.
- a method 50 of joining materials, particularly ceramic materials, to make the joined assembly 10 of FIG. 1 starts with preparing a first member 12 and a second member 14 with a predetermined surface roughness in adjacent faces 18 in step 52.
- the first member 12 and the second member 14 may be made of aluminum nitride (AIN), alumina, zirconia, and silicon carbide (SiC).
- the adjacent faces 18 of the first and second members each have a surface roughness between 100 nm and 5 pm.
- At least one trench 22 is formed in the adjacent face 18 of at least one of the first and second members 12, 14 in step 54.
- the first member 12 and the second member 14 are disposed adjacent each other with a solid aluminum material disposed therebetween in step 56.
- the solid aluminum material may be an aluminum foil and disposed adjacent to the at least one trench 22. This step is performed at room temperature. Alternatively, the aluminum material may be sputtered into the at least one trench 22, such as by physical vapor deposition (PVD).
- PVD physical vapor deposition
- the force is applied on the first and second members 12, 14 to press the first and second members against each other.
- the solid aluminum material is melted and the molten aluminum material flows into the trenches 22 as shown in FIG. 5B.
- the spacing between the first and second members 12 and 14 is reduced until most of the molten aluminum material is disposed in the trenches 22.
- the molten aluminum material balls up and does not conform to the geometry of the trench wall due to poor wettability of the ceramic material of the first or second members 12, 14.
- a spacing between the first member 12 and the second member 14 along the adjacent faces 18 is less than 5pm.
- the heat can be applied locally to the bonding area of the first and second members 12, 14 to reduce the risks of damaging the functional elements disposed at other areas of the first and second members 12, 14.
- step 60 additional heat is applied to the assembly at or above a wetting temperature of the first member 12 or second member 14 where the trench 22 is formed to bond the first member 12 to the second member 14 along adjacent faces 18 in step 60.
- the wetting temperature is above 850°C.
- alumina native oxide is broken in order to achieve wettability of the ceramic material. Wettability of the ceramics can be achieved when a purity of aluminum is greater than or equal to about 97%, the temperature is above about 800°C, the pressure is about 0.1 MPa to 6.5 MPa and a vacuum condition is approximately 10 3 Torr and below a vacuum level. Vacuum level and temperature are balanced to achieve wettability according to the teachings of the present disclosure.
- Wettability can be achieved at 10 3 Torr and at temperature of 1100°C, or at 10 6 Torr and at a temperature of 800°C.
- the thermal process is performed between 1 to 10 hours, the aluminum begins to diffuse into the aluminum nitride to conform to the geometry of the aluminum nitride. Therefore, the molten aluminum material is shaped to conform to the geometry of the trenches 22 as shown in FIG. 5D, even on a micro-scale, due to wetting between the molten aluminum material and the trench wall of the first member 12 or the second member 14.
- the additional heat can be applied locally to the bonding area, rather than the entire assembly, to reduce the risks of damaging the functional elements disposed at other areas of the first and second members 12, 14.
- molten aluminum material has good wettability so that aluminum can be used to bond two ceramic materials, particularly aluminum nitride (AIN) together to create a hermetic bonding therebetween.
- AIN aluminum nitride
- step 62 After the first member 12 is bonded to the second member 14, the assembly is cooled in step 62.
- a variant of a bonded assembly 70 constructed in accordance with the teachings of the present disclosure may include a first member 72 and a second member 74 bonded by an aluminum material 76 via direct surface to surface bonding without forming any trench in the first member 72 or the second member 74.
- the first and second members 72, 74 are temporarily spaced apart by shims 78 in this form prior to bonding, and the aluminum material 76 has a width greater than 2 mm to achieve hermeticity.
- FIG. 7 another variant of a joined member 90 constructed in accordance with the teachings of the present disclosure may include a first member 92, a second member 94, and an aluminum material 96 filled in a single trench of one of the first and second member 92, 94.
- the trench should have a width larger than 6 mm and the depth larger than 20 pm in order to achieve hermeticity.
- the trenches may take on any shape other than those illustrated herein, including by way of example, tapered (inwardly or outwardly), dovetail, or polygonal, among other shapes.
- the“width” of the trench as used and claimed herein refers to the maximum dimension across the trench for any given geometrical shape of the trench, such as the arcuate shape in FIG. 7.
- the trenches may further include corner radii at an intersection with a surface of the member in which the trench is formed while remaining within the scope of the present disclosure.
- the bonding method of the present disclosure ceramic materials can be relatively easily bonded. This method can be used to manufacture a ceramic pedestal in semiconductor processing, however, other applications are contemplated according to the teachings of the present disclosure. Therefore, the various functional layers may be formed on a plurality of ceramic members and then joined together by aluminum materials to form the heating plate. Accordingly, high temperature and high pressure equipment for a hot pressing operation may not be needed to form a monolith substrate, thereby reducing the manufacturing costs.
- the bonding methods according to the present disclosure involve relatively lower temperatures and relatively lower pressures.
- a wider selection of materials is available for forming the various functional layers in the ceramic substrate.
- a layered heater formed by a thick film, thin film, thermal spray, or sol-gel process may be applied on one of the first and second members before the first and second members are bonded together using the bonding method of the present disclosure.
- TiNiHf termination braze, Nickel termination plating, or Aremco® anchor paste may be applied on the first member and/or the second member before the first and second members are bonded using the method of the present disclosure.
- the bonding methods can also be used to bond a heating plate to a tubular shaft of the support pedestal to provide thermocouple pocket isolation.
- the bonding method can be used to manufacture a thin (thickness between 10 and 50 mm) flat (surface roughness less than 10pm) AIN heater assembly in a variety of applications including AIN electrostatic chuck assembly.
- a support pedestal manufactured by the bonding methods of the present disclosure allows for repair and replacement of the heating plate, thereby increasing the life of the support pedestal.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020227022478A KR102519075B1 (ko) | 2018-04-17 | 2019-04-05 | 본딩 트렌치를 갖는 세라믹-알루미늄 조립체 |
| CN201980033229.6A CN112135806A (zh) | 2018-04-17 | 2019-04-05 | 带有结合沟槽的陶瓷铝组件 |
| KR1020217042076A KR102417020B1 (ko) | 2018-04-17 | 2019-04-05 | 본딩 트렌치를 갖는 세라믹-알루미늄 조립체 |
| DE112019002005.6T DE112019002005B4 (de) | 2018-04-17 | 2019-04-05 | Keramik-aluminium-anordnung mit verbindenden gräben |
| JP2020557148A JP6924910B2 (ja) | 2018-04-17 | 2019-04-05 | 結合溝を備えたセラミック−アルミニウムアセンブリ |
| KR1020207033061A KR102343816B1 (ko) | 2018-04-17 | 2019-04-05 | 본딩 트렌치를 갖는 세라믹-알루미늄 조립체 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/955,431 US10882130B2 (en) | 2018-04-17 | 2018-04-17 | Ceramic-aluminum assembly with bonding trenches |
| US15/955,431 | 2018-04-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019204050A1 true WO2019204050A1 (en) | 2019-10-24 |
Family
ID=66248706
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2019/025930 Ceased WO2019204050A1 (en) | 2018-04-17 | 2019-04-05 | Ceramic-aluminum assembly with bonding trenches |
Country Status (7)
| Country | Link |
|---|---|
| US (3) | US10882130B2 (enExample) |
| JP (2) | JP6924910B2 (enExample) |
| KR (3) | KR102417020B1 (enExample) |
| CN (1) | CN112135806A (enExample) |
| DE (1) | DE112019002005B4 (enExample) |
| TW (1) | TWI709547B (enExample) |
| WO (1) | WO2019204050A1 (enExample) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10793772B1 (en) | 2020-03-13 | 2020-10-06 | Accelovant Technologies Corporation | Monolithic phosphor composite for sensing systems |
| US11359976B2 (en) | 2020-10-23 | 2022-06-14 | Accelovant Technologies Corporation | Multipoint surface temperature measurement system and method thereof |
| CA3137183C (en) | 2020-11-05 | 2024-02-20 | Accelovant Technologies Corporation | Optoelectronic transducer module for thermographic temperature measurements |
| CN113828954B (zh) * | 2021-10-22 | 2022-11-01 | 中国科学院空天信息创新研究院 | 金属-陶瓷封接方法、金属-陶瓷复合结构 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0726239A2 (en) * | 1995-02-09 | 1996-08-14 | Ngk Insulators, Ltd. | Joined ceramic structures and a process for the production thereof |
| US20150108203A1 (en) * | 2011-11-30 | 2015-04-23 | Component Re-Engineering Company, Inc. | Low Temperature Method For Hermetically Joining Non-Diffusing Ceramic Materials |
Family Cites Families (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0788262B2 (ja) | 1985-04-01 | 1995-09-27 | 株式会社日立製作所 | 窒化ケイ素と金属との接合方法 |
| US5234152A (en) | 1992-01-07 | 1993-08-10 | Regents Of The University Of California | Transient liquid phase ceramic bonding |
| US5240671A (en) | 1992-06-01 | 1993-08-31 | Microelectronics And Computer Technology Corporation | Method of forming recessed patterns in insulating substrates |
| AT405039B (de) * | 1996-02-08 | 1999-04-26 | Electrovac | Verbundbauteil |
| US6315188B1 (en) | 2000-06-28 | 2001-11-13 | Sandia Corporation | Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres |
| US7195693B2 (en) | 2002-06-05 | 2007-03-27 | Advanced Thermal Sciences | Lateral temperature equalizing system for large area surfaces during processing |
| US6644394B1 (en) | 2002-06-25 | 2003-11-11 | Brazeway, Inc. | Braze alloy flow-barrier |
| DE10239416B4 (de) | 2002-08-28 | 2005-03-03 | Robert Bosch Gmbh | Verfahren zur Herstellung eines aus Keramikschichten bestehenden Verbundkörpers |
| JP3935037B2 (ja) | 2002-09-30 | 2007-06-20 | Dowaホールディングス株式会社 | アルミニウム−セラミックス接合基板の製造方法 |
| JP2005022966A (ja) * | 2003-06-13 | 2005-01-27 | Tokuyama Corp | 窒化アルミニウム接合体及びその製造方法 |
| US7488543B2 (en) * | 2003-06-13 | 2009-02-10 | Tokuyama Corporation | Aluminum nitride conjugate body and method of producing the same |
| KR101108454B1 (ko) | 2004-04-05 | 2012-01-31 | 미쓰비시 마테리알 가부시키가이샤 | Al/AlN 접합체, 전력 모듈용 기판 및 전력 모듈, 그리고 Al/AlN 접합체의 제조 방법 |
| US20080314320A1 (en) | 2005-02-04 | 2008-12-25 | Component Re-Engineering Company, Inc. | Chamber Mount for High Temperature Application of AIN Heaters |
| TW200633947A (en) | 2005-02-16 | 2006-10-01 | Ngk Insulators Ltd | Joined body and manufacturing method for the same |
| US20100177454A1 (en) | 2009-01-09 | 2010-07-15 | Component Re-Engineering Company, Inc. | Electrostatic chuck with dielectric inserts |
| JP5841329B2 (ja) * | 2009-12-25 | 2016-01-13 | 株式会社日本セラテック | セラミックス接合体の製造方法 |
| CN102906051A (zh) | 2010-05-21 | 2013-01-30 | 塞拉麦泰克股份有限公司 | 陶瓷对陶瓷接合件及相关方法 |
| US8932680B2 (en) | 2011-07-29 | 2015-01-13 | Nike, Inc. | Method of manufacturing a golf ball including a blend of highly neutralized acid polymers |
| US8684256B2 (en) | 2011-11-30 | 2014-04-01 | Component Re-Engineering Company, Inc. | Method for hermetically joining plate and shaft devices including ceramic materials used in semiconductor processing |
| US8932690B2 (en) | 2011-11-30 | 2015-01-13 | Component Re-Engineering Company, Inc. | Plate and shaft device |
| US20130250471A1 (en) | 2012-03-22 | 2013-09-26 | Component Re-Engineering Company, Inc. | Compressible conductive element for use in current-carrying structure |
| US20140014710A1 (en) | 2012-06-12 | 2014-01-16 | Component Re-Engineering Compnay, Inc. | Method For Hermetically Joining Ceramic Materials Using Brazing Of Pre-Metallized Regions |
| US9984866B2 (en) | 2012-06-12 | 2018-05-29 | Component Re-Engineering Company, Inc. | Multiple zone heater |
| FR2993494B1 (fr) * | 2012-07-18 | 2014-08-22 | Herakles | Procede de brasage de pieces en materiau composite avec ancrage du joint de brasure |
| US10471531B2 (en) | 2014-12-31 | 2019-11-12 | Component Re-Engineering Company, Inc. | High temperature resistant silicon joint for the joining of ceramics |
| US9999947B2 (en) | 2015-05-01 | 2018-06-19 | Component Re-Engineering Company, Inc. | Method for repairing heaters and chucks used in semiconductor processing |
| CN108476006B (zh) | 2015-11-02 | 2022-04-15 | 沃特洛电气制造公司 | 用于高温半导体加工中夹持的静电卡盘及其制造方法 |
| CN110785837A (zh) | 2017-06-23 | 2020-02-11 | 沃特洛电气制造公司 | 高温热板基座 |
-
2018
- 2018-04-17 US US15/955,431 patent/US10882130B2/en active Active
-
2019
- 2019-04-05 DE DE112019002005.6T patent/DE112019002005B4/de active Active
- 2019-04-05 CN CN201980033229.6A patent/CN112135806A/zh active Pending
- 2019-04-05 KR KR1020217042076A patent/KR102417020B1/ko active Active
- 2019-04-05 KR KR1020227022478A patent/KR102519075B1/ko active Active
- 2019-04-05 WO PCT/US2019/025930 patent/WO2019204050A1/en not_active Ceased
- 2019-04-05 JP JP2020557148A patent/JP6924910B2/ja active Active
- 2019-04-05 KR KR1020207033061A patent/KR102343816B1/ko active Active
- 2019-04-15 TW TW108113089A patent/TWI709547B/zh active
-
2020
- 2020-03-02 US US16/805,952 patent/US20200230728A1/en not_active Abandoned
- 2020-11-09 US US17/092,529 patent/US20210078092A1/en not_active Abandoned
-
2021
- 2021-08-03 JP JP2021127045A patent/JP2021185123A/ja active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0726239A2 (en) * | 1995-02-09 | 1996-08-14 | Ngk Insulators, Ltd. | Joined ceramic structures and a process for the production thereof |
| US20150108203A1 (en) * | 2011-11-30 | 2015-04-23 | Component Re-Engineering Company, Inc. | Low Temperature Method For Hermetically Joining Non-Diffusing Ceramic Materials |
Also Published As
| Publication number | Publication date |
|---|---|
| DE112019002005B4 (de) | 2022-03-10 |
| CN112135806A (zh) | 2020-12-25 |
| DE112019002005T5 (de) | 2021-02-25 |
| KR20220098293A (ko) | 2022-07-11 |
| KR20210158426A (ko) | 2021-12-30 |
| TW201943680A (zh) | 2019-11-16 |
| JP2021185123A (ja) | 2021-12-09 |
| KR102417020B1 (ko) | 2022-07-05 |
| KR102343816B1 (ko) | 2021-12-28 |
| KR102519075B1 (ko) | 2023-04-11 |
| JP2021512845A (ja) | 2021-05-20 |
| JP6924910B2 (ja) | 2021-08-25 |
| TWI709547B (zh) | 2020-11-11 |
| US20190314918A1 (en) | 2019-10-17 |
| US20210078092A1 (en) | 2021-03-18 |
| KR20210023818A (ko) | 2021-03-04 |
| US20200230728A1 (en) | 2020-07-23 |
| US10882130B2 (en) | 2021-01-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20210078092A1 (en) | Ceramic-aluminum assembly with bonding trenches | |
| US10991616B2 (en) | High speed low temperature method for manufacturing and repairing semiconductor processing equipment and equipment produced using same | |
| TWI727105B (zh) | 半導體製造裝置用元件及其製法 | |
| US10213858B2 (en) | Multi-layer plate device | |
| JP2016503234A (ja) | 金属接合された保護層を有する基板支持アセンブリ | |
| EP4029351B1 (en) | Ceramic heater and method of forming using transient liquid phase bonding | |
| KR20130099793A (ko) | 이종접합 구조체 및 그 제조방법 | |
| JP4614868B2 (ja) | 接合体及びその製造方法 | |
| CN120690739B (zh) | 一种静电卡盘及其制造方法 | |
| KR102851853B1 (ko) | 반도체용 세라믹 히터 제조방법 | |
| KR102776423B1 (ko) | 세라믹 히팅 장치 및 그의 제조방법 | |
| TWI863153B (zh) | 低溫靜電卡盤 | |
| CN219842972U (zh) | 静电吸盘及搬运设备 | |
| JP2553865B2 (ja) | 金属−セラミック積層接合体の製造方法 | |
| JP2025147877A (ja) | 基板保持部材及びセラミックスサセプタ | |
| KR20230111430A (ko) | 세라믹 히터 및 그의 제조방법 | |
| JP2025180775A (ja) | 半導体基板処理用基台、および基板保持部材 | |
| JP2024104993A (ja) | 接合体及びSiC基質部材 | |
| JP2024084292A (ja) | 接合体 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19718974 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2020557148 Country of ref document: JP Kind code of ref document: A |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 19718974 Country of ref document: EP Kind code of ref document: A1 |