WO2019203363A1 - アルミニウム材の抵抗スポット溶接方法 - Google Patents
アルミニウム材の抵抗スポット溶接方法 Download PDFInfo
- Publication number
- WO2019203363A1 WO2019203363A1 PCT/JP2019/016904 JP2019016904W WO2019203363A1 WO 2019203363 A1 WO2019203363 A1 WO 2019203363A1 JP 2019016904 W JP2019016904 W JP 2019016904W WO 2019203363 A1 WO2019203363 A1 WO 2019203363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nugget
- energization
- aluminum
- spot welding
- aluminum material
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/10—Spot welding; Stitch welding
- B23K11/11—Spot welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/16—Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
- B23K11/18—Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/24—Electric supply or control circuits therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Definitions
- the present invention relates to a resistance spot welding method for an aluminum material.
- Patent Document 1 discloses a technique in which a cooling time is provided after the main energization of welding and a temper energization that is weaker than the main energization current is performed after the cooling time.
- the joint strength obtained by resistance spot welding with overlapping aluminum materials increases or decreases according to the nugget diameter formed by spot welding. Therefore, in order to obtain high joint strength, the nugget diameter may be increased.However, if the nugget diameter is increased, the nugget thickness will increase at the same time, and depending on the welding conditions, the nugget will be in contact with the electrode tip. May grow. In that case, molten aluminum adheres to the electrode tip, an intermetallic compound is formed on the electrode surface, and the electrode tip shape changes. When the electrode tip shape changes, the electrode tip shape needs to be adjusted by electrode dressing in order to obtain a healthy nugget. Therefore, the frequency of dressing increases, the number of continuous hit points decreases, and the productivity decreases. In the methods described in the above-mentioned prior art documents 1 and 2, even if the nugget diameter can be increased, it is difficult to suppress the growth of the nugget in the thickness direction at the same time.
- An object of the present invention is to provide a resistance spot welding method for an aluminum material which increases the joint strength by enlarging the nugget diameter and suppresses the growth in the thickness direction of the nugget when the aluminum materials are superposed and energized. It is in.
- a pre-energization step in which a plurality of aluminum materials are stacked and sandwiched between a pair of electrodes, and a first energization is performed between the electrodes;
- a cooling step for reducing the amount of heat input to the plurality of aluminum materials for 10 to 500 ms after the preliminary energization step;
- a main energization step of performing a second energization between the pair of electrodes is performed in this order,
- the current value of the preliminary energization step is I 1
- the energization time is T 1
- the current value in the main energization process is I 2 and the energization time is T 2
- the nugget diameter can be increased to increase the joint strength, and the growth of the nugget in the thickness direction can be suppressed.
- FIG. 1 It is a schematic block diagram of the spot welder which welds an aluminum material. It is a timing chart which shows an example of the waveform of welding current.
- (A) to (C) are process explanatory views schematically showing the state from the preliminary energization process to the cooling process.
- (A), (B) is process explanatory drawing which shows the mode of the main electricity supply process after a cooling process typically. It is sectional drawing of the aluminum welded joint which shows typically the melt-solidified nugget after resistance spot welding of the aluminum material.
- (A), (B) is a reference figure which shows the nugget formation condition at the time of growing a nugget without providing a preliminary electricity supply process and a cooling process.
- (A) is a schematic shape of an R-shaped electrode
- (B) is an explanatory view showing a schematic shape of a DR-shaped electrode. It is explanatory drawing which shows the waveform of a welding current, and the cross-sectional photograph of the nugget formed by this.
- FIG. 1 is a schematic configuration diagram of a spot welder for welding an aluminum material.
- the spot welder 11 includes a pair of electrodes 13 and 15, a welding transformer unit 17 connected to the pair of electrodes 13 and 15, a control unit 19 that supplies welding power from the power supply unit 18 to the welding transformer unit 17, and And an electrode driving unit 20 that moves the pair of electrodes 13 and 15 in the axial direction.
- the controller 19 controls the current value, energization time, electrode pressure, energization timing, pressurization timing, and the like in an integrated manner.
- the spot welder 11 overlaps and sandwiches at least two plate materials of a first aluminum plate 21 and a second aluminum plate 23 which are aluminum materials between a pair of electrodes 13 and 15. And the 1st aluminum plate 21 and the 2nd aluminum plate 23 are pressurized in the plate
- FIG. In this pressurized state the welding transformer unit 17 is energized between the electrodes 13 and 15 based on a command from the control unit 19. Thereby, a nugget (spot welded portion) 25 is formed between the first aluminum plate 21 and the second aluminum plate 23 sandwiched between the electrodes 13 and 15, and the first aluminum plate 21 and the second aluminum plate 23 are integrated. An aluminum welded joint (joint) 27 is obtained.
- the present invention is not limited to joining two aluminum plates, but when joining three or more aluminum plates. Are also preferably used.
- Each of the pair of electrodes 13 and 15 includes a cooling unit inside the electrode.
- the cooling method of the cooling unit is not particularly limited, in the configuration shown in FIG. 1, the cooling pipe 33 is disposed in the concave portion 31 formed in the electrode 13 (same for 15), and the cooling medium such as water is supplied from the cooling pipe 33. Is supplied, the electrode 13 (15) is cooled.
- the aluminum material which comprises each aluminum plate in the case of using the aluminum material of the 1st aluminum plate 21 and the 2nd aluminum plate 23, and three or more sheets can use aluminum of arbitrary materials, or an aluminum alloy. Specifically, in addition to 5000 series, 6000 series, 7000 series, 2000 series, and 4000 series aluminum alloys, 3000 series and 8000 series aluminum alloys and 1000 series (pure aluminum) aluminum can be employed. Each aluminum plate may be the same material, or may be a combination of the above materials.
- the thickness of the first aluminum plate 21 and the second aluminum plate 23 is preferably 0.5 mm or more in the use of structural members such as automobile frame members, 2.0 mm or more is more preferable.
- the thickness of each aluminum plate may be equal, and either one may be thicker than the other.
- the form of the aluminum material is not limited to the above-described aluminum plate (rolled plate), and may be an extruded material, a forged material, or a cast material.
- FIG. 2 is a timing chart showing an example of a waveform of the welding current.
- the waveform of the welding current shown in FIG. 2 includes a preliminary energization step (energization time T 1 ), a cooling step (cooling time Tc), and a main energization step (energization time T 2 ).
- the pulse waveforms of the pre-energization and the main energization are rectangular, but other waveforms such as a triangular wave and a sine wave, and waveforms with down slope and up slope control may be used.
- the welding heat quantity for main energization is set higher than the welding heat quantity for pre-energization. That is, in the welding current shown in FIG. 2, the product (I 2 ⁇ T 2 ) of the current value I 2 for main energization and the energization time T 2 is the product of the current value I 1 for pre-energization and the energization time T 1. Greater than (I 1 ⁇ T 1 ).
- the pre-energization current value I 1 and the main energization current value I 2 are substantially equal. However, the current value I 1 and the current value I 2 may be different from each other. .
- the waveform of the preliminary energization and the main energization may be a continuous current or a pulse waveform composed of a single pulse or a plurality of pulses. That is, it is only necessary that the welding heat quantity of the main energization is larger than the welding heat quantity of the pre-energization, and the current value of the welding current and the shape of the current waveform are arbitrary.
- Both the pre-energization current value I 1 and the main energization current value I 2 are set in the range of 15 to 60 kA.
- the overlapping surface between the first aluminum plate 21 and the second aluminum plate 23, or in the case of three or more of the aluminum plate As long as a small nugget can be formed on each overlapping surface of the aluminum plate.
- the oxide film layer present on the overlapping surface is removed and a current that forms a new surface having a certain area or more can be passed.
- This energization is an energization for forming a nugget having a size necessary for the bonding strength, and is preferably an energization time of about 100 to 300 ms.
- the current values I 1 and I 2 and the energization times T 1 and T 2 for the preliminary energization and the main energization can be appropriately set according to the material of the aluminum material, the plate thickness, and the like.
- the cooling step cools the first nugget when a small-sized nugget (first nugget) is formed by preliminary energization.
- the current value of the cooling time Tc is 0A in which the energization between the electrodes 13 and 15 is stopped, but the current value is not necessarily 0A. If the amount of heat input to the first aluminum plate 21 and the second aluminum plate 23 can be reduced as compared with the time of preliminary energization, the current may be higher than 0A.
- the cooling time Tc is 10 to 500 ms, preferably within 100 ms, and more preferably within 60 ms.
- FIGS. 3A to 3C are process explanatory views schematically showing the state from the preliminary energization process to the cooling process.
- FIG. 3 (A) the first aluminum plate 21 and the second aluminum plate 23 sandwiched between a pair of electrodes 13 and 15, the preliminary energization current value I 1.
- the first nugget 35 in which the respective plate materials are melted is formed around the overlapping surface of the first aluminum plate 21 and the second aluminum plate 23.
- the overlapping direction of the first aluminum plate 21 and the second aluminum plate 23 is also referred to as the plate thickness direction and the nugget thickness direction (depth direction of the penetration depth).
- the nugget diameter direction the direction perpendicular to the overlapping direction and extending radially from the nugget center
- the maximum diameter in the direction orthogonal to the thickness direction of the nugget is defined as the nugget diameter. Since the thickness direction of the nugget is the same as the thickness direction of the aluminum plate, it is also referred to as the thickness direction as appropriate.
- the energization between the electrodes 13 and 15 is stopped and the heating between the first aluminum plate 21 and the second aluminum plate 23 is stopped. To do. At this time, the first aluminum plate 21 and the second aluminum plate 23 remain in contact with the electrodes 13 and 15, and the molten first nugget 35 is removed by the electrodes 13 and 15. Then, the temperature of the first aluminum plate 21 and the second aluminum plate 23 in the vicinity of the contact portions with the electrodes 13 and 15 respectively decreases, and the first nugget 35 has the electrodes 13 and 15 as shown in FIG. Coagulation proceeds from the side close to.
- the first nugget 35 is formed such that the partially solidified portion 37 is gradually formed, and the thickness (penetration depth) of the melted portion of the first nugget 35 in the thickness direction is (A) in FIG. The thickness decreases from h 0 to thickness h.
- FIG. 4A and 4B are process explanatory views schematically showing the state of the main energization process after the cooling process.
- the main energization process is started from the end of the cooling process.
- this current process as shown in FIG. 4 (A), passing a current I 2 between the electrodes 13 and 15.
- the current I 2 passes through the first aluminum plate 21 and the second aluminum plate 23, the current I 2 is more in the region 34 (in the nugget radial direction than the outer edge of the first nugget 35) rather than inside the molten first nugget 35.
- the electric resistance of the outer area is large.
- the high-temperature first nugget 35 heated by energization has an electrical resistance that is higher than that of members around the nugget, but the electrical resistance in the region 34 is higher than that. Therefore, in the main energization process, this region 34 becomes a large heat source, and the region 34 outside in the nugget radial direction from the outer edge of the first nugget 35 is strongly heated. For this reason, the growth of the first nugget 35 in the nugget radial direction is promoted preferentially over the thickness direction.
- the first nugget 35 shown in FIG. 3 (C) has a nugget diameter d (mm) of the first nugget 35 when the dimensions are measured in the thickness direction of the first aluminum plate 21 and the second aluminum plate 23.
- the ratio d / h of the penetration depth h (mm) is preferably 1.0 to 3.0. More preferably, it is 1.05 to 2.9, and still more preferably 1.2 to 2.5.
- the region 34 is preferentially heated by the current I 2 that is energized.
- the first nugget 35 grows radially outward from the outer periphery of the first nugget 35, and the growth in the plate thickness direction is compared with the nugget radial direction. To be suppressed.
- a flat second nugget 39 is formed after the main energization.
- FIG. 5 is a cross-sectional view of an aluminum welded joint 27 schematically showing the melted and solidified nugget 25 after resistance spot welding of an aluminum material.
- the diameter of the nugget 25 is defined as a nugget diameter D
- the penetration depth of the nugget 25 is defined as H
- the thickness of the first aluminum plate 21 is defined as t 1
- the thickness of the second aluminum plate 23 is defined as t 2 .
- the nugget 25 finally formed by the above resistance spot welding preferably has a dimensional ratio D / t between the nugget diameter D (mm) and the plate thickness t (mm) of 3.0 or more. More preferably, it is 3.3 or more, More preferably, it is 3.5 or more.
- the plate thickness t is the thinner one of the first aluminum plate 21 and the second aluminum plate 23.
- the nugget dimension ratio D / H between the nugget diameter D and the nugget penetration depth H of the nugget 25 is preferably 2.3 or more. More preferably, it is 2.3 to 3.4. If the nugget dimension ratio D / H is smaller than the above range, the bonding strength tends to be insufficient. Further, even if the nugget dimension ratio D / H exceeds the above range, a significant increase in bonding strength cannot be expected.
- the distance from the upper outer edge 25a of the nugget 25 to the outer side surface 21a of the first aluminum plate 21 is R 1 .
- the distances R 1 and R 2 are the distances (shortest distance) between the electrode and the nugget 25, respectively, and are preferably 18% or more of the thinner plate thickness, more preferably, whichever is thinner It is 22% or more of the plate thickness.
- the distances R 1 and R 2 are in the above range, the contact between the nugget and the electrode can be reliably prevented, the molten aluminum does not adhere to the electrode surface, and the electrode tip shape can be changed with a small number of striking points. Can be suppressed.
- the pressure applied to the first aluminum plate 21 and the second aluminum plate 23 by the electrodes 13 and 15 is constant between the start of preliminary energization and the end of main energization.
- the applied pressure is constant, the adhesion between the first aluminum plate 21 and the electrode 13 and the adhesion between the second aluminum plate 23 and the electrode 15 in the cooling period after the pre-energization become uniform. Complex control such as changing the energization timing is not necessary.
- This pressure is preferably in the range of 2 to 10 kN, and nugget formation is good.
- FIGS. 6A and 6B are reference diagrams showing the formation state of the nugget 41 when the nugget 35A is grown without providing the preliminary energization process and the cooling process.
- the outer edge of the nugget 41 may reach the outer surface of either the first aluminum plate 21 or the second aluminum plate 23. In that case, molten aluminum adheres to the electrode surface, the shape of the electrode tip changes early, and the number of consecutive hits until the next dressing decreases.
- the energization timing is divided into preliminary energization and main energization, and a cooling period is set between the pre-energization and main energization.
- the growth of the nugget in the thickness direction is suppressed. This is because the first nugget 35 formed by the preliminary energization is made thinner and flattened so that a region having a high electric resistance at the time of the main energization, that is, outside the outer edge of the first nugget 35 in the nugget radial direction. It can be estimated that the resistance heat generation in the region is larger than the resistance heat generation in the plate thickness direction. As a result, the growth of the first nugget 35 on the outer side in the nugget radial direction from the outer edge of the nugget has priority over the growth in the plate thickness direction.
- the above-described nugget 25 in which the growth in the thickness direction is suppressed is obtained by performing the preliminary energization under predetermined conditions. This is considered as follows.
- the overlapping surfaces of the stacked aluminum plates are covered with an insulating layer such as an oxide film. Therefore, by carrying out preliminary energization before the main energization, the insulating layer on the surface of the aluminum plate is broken, and a large number of joints between new surfaces are formed in a certain region on the plate surface.
- the nugget formed by melting the aluminum plate is formed in a flat shape without being excessively thick in the thickness direction of the aluminum plate. Therefore, the nugget does not reach the plate surface (electrode side) on the outer side in the thickness direction of the stacked aluminum plates. Further, it is possible to easily reduce the nugget thickness while reducing the nugget diameter without complicated control of the electrode pressing force and the welding current. Thereby, high joint intensity
- the electrodes 13 and 15 of the spot welder 11 can be electrodes having any shape such as an F shape, an R shape, a CR shape, a CF shape, and a DR shape.
- R-shaped curvature radius r 1 of the tip surface shown in (A) of FIG. 7 the radius of curvature (tip diameter) of the tip surface shown in FIG. 7 (B) is DR shape or the like r 2, the electrodes 13, 15 If the tip surface is a convex curved surface, the applied pressure can be stabilized, and the tip surface is more likely to break the oxide film on the surface of the aluminum material than a flat electrode.
- Electrode Type: Chrome copper R-shaped electrode Tip radius of curvature r 1 : 100 mm Electrode diameter (original diameter): 19 mm Interelectrode pressure: 5kN
- Table 1 shows the welding conditions and the nugget measurement results after preliminary energization when only pre-energization was performed.
- Test Examples 1-1 to 1-13 are respectively varied with the current value I 1 of the preliminary energization energization time T 1 and a.
- Table 1 collectively shows the nugget diameter d, the penetration depth h, the thickness t of the aluminum plate, the nugget size ratio d / h, and d / t in each case. Each dimension was measured from an image obtained by cutting a bonded body of aluminum plates at the nugget center position and photographing the cut surface with an optical microscope.
- the nugget size ratio d / t in the range of 1.0 to 3.0 was A, and the others were B (not applicable to Evaluation B in Test Example 1).
- the ratio d / t between the nugget diameter d (mm) and the thickness t (mm) of the aluminum plate is all in the range of 1.0 to 3.0. .
- Test Examples 1-12 and 1-13 no nugget was formed after the preliminary energization. However, when the main energization was performed in Test Example 2 shown below, growth of the nugget in the nugget radial direction was promoted, and a nugget having a favorable size in which growth in the thickness direction was suppressed was formed.
- Test Example 2 Table 2 shows the welding conditions and the nugget measurement results after the main energization when preliminary energization, cooling, and main energization were performed.
- the conditions for preliminary energization in Test Examples 2-1 to 2-13 are the same as those in Test Examples 1-1 to 1-13 shown in Table 1.
- Test Examples 2-12 and 2-13 are results obtained by performing preliminary energization under the same conditions as Test Examples 1-12 and 1-13 in which no nugget was formed, and after the cooling period. This energization was performed under constant conditions where the current value I 2 was 31 kA and the energization time T 2 was 250 ms.
- the nugget dimension ratio D / H is 2.3 or more, and A is other than B (the test example 2 does not correspond to the evaluation B).
- Test Example 3 Table 3 shows the measurement results of the nugget after the main energization when only the main energization is performed and when the preliminary energization and the main energization are performed and the cooling time is changed.
- Test Example 3-1 only the main energization was performed, and in Test Examples 3-2 to 3-7, the cooling time Tc was changed with the pre-energization and main energization conditions being constant.
- the average distance R between the nugget and the electrode is 18% or more of the plate thickness (0.4 mm or more in this embodiment), and the average distance R at which the contact between the nugget and the electrode can occur is 18% of the plate thickness. Less than 0.4 mm (less than 0.4 mm in this example).
- FIG. 8 is an explanatory diagram showing a welding current waveform of Test Examples 3-1 to 3-7 and a cross-sectional photograph of the nugget in which the nugget is formed under each condition.
- the nugget of Test Example 3-1 has an extremely large penetration depth H of 3.85 mm, and the outer periphery of the nugget reaches close to the outer plate surface (electrode side) of the aluminum plate.
- the average distance R to the outer plate surface of the plate was 0.38 mm.
- the nugget of Test Example 3-2 with a cooling time of 60 ms, the nugget thickness H was reduced to 2.57 mm compared to Test Example 3-1, and the average distance R was 1.02 mm.
- the nuggets of Test Examples 3-3 to 3-7 have a smaller penetration depth H than the nuggets of Test Example 3-1, and the average distance R is in the range of 0.95 to 1.26.
- a preliminary energization step in which a plurality of aluminum materials are overlapped and sandwiched between a pair of electrodes, and a first energization is performed between the electrodes,
- a cooling step for reducing the amount of heat input to the plurality of aluminum materials for 10 to 500 ms after the preliminary energization step;
- a main energization step of performing a second energization between the pair of electrodes is performed in this order,
- the current value of the preliminary energization process is I 1
- the energization time is T 1
- the current value in the main energization process is I 2 and the energization time is T 2
- the energization timing is divided into pre-energization and main energization, and a cooling period is provided between the pre-energization and main energization to increase the nugget diameter and increase the joint strength. Enhanced. Further, the growth of the nugget in the plate thickness direction is suppressed, and the outer edge of the nugget becomes difficult to reach the outer plate surface (electrode side) of the stacked aluminum material. Thereby, molten aluminum does not adhere to the electrode surface, it becomes unnecessary to frequently perform dressing of the electrode, and the production efficiency is improved.
- the first nugget having a ratio d / t of 1.0 to 3.0 is formed by preliminary energization, so that the first nugget in the main energization in the nugget radial direction is formed. Growth is greater than growth in the plate thickness direction.
- the second nugget obtained by growing the first nugget by the main energization step has a nugget diameter D (mm) in a direction orthogonal to the stacking direction of the aluminum material and a penetration depth H ( mm) and the dimensional ratio D / H is 2.3 or more, and the resistance spot welding method for an aluminum material according to (7).
- this resistance spot welding method for an aluminum plate the joint strength of the welded aluminum material can be increased because the dimensional ratio D / H of the second nugget is 2.3 or more.
- Electrode 21 First aluminum plate (aluminum material) 23 Second aluminum plate (aluminum material) 25 Nugget 27 Aluminum welded joint 35 First nugget 37 Partially solidified part 39 Second nugget
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Resistance Welding (AREA)
Abstract
複数のアルミニウム材を重ね合わせて一対の電極で挟み込み、前記電極間に第1の通電を行う予備通電工程と、予備通電工程後の10~500msの間、複数のアルミニウム材への入熱量を低下させる冷却工程と、冷却工程後、一対の電極間に第2の通電を行う本通電工程と、をこの順に実施する。予備通電工程の電流値をI1、通電時間をT1、本通電工程の電流値をI2、通電時間をT2としたとき、I1×T1<I2×T2の関係を満たすようにする。
Description
本発明は、アルミニウム材の抵抗スポット溶接方法に関する。
アルミニウム材は、鋼材と比較して電気抵抗が小さく熱伝導率が高いため、抵抗スポット溶接を行う際、溶接電流を鋼材の場合の約3倍、スポット溶接の電極の加圧力を約1.5倍に高めなければならない。このため、アルミニウム材の抵抗スポット溶接には、鋼材の抵抗スポット溶接の溶接条件を適用し、応用することが非常に困難であり、アルミニウム材に最適な溶接条件を新たに見出す必要がある。
アルミニウム材の抵抗スポット溶接方法の一例として、例えば特許文献1には、電極の加圧力を2段階に変化させ、この加圧力に合わせて電流値を2段階(大電流から小電流)に変化させる技術が開示されている。
また、特許文献2には、溶接の本通電後に冷却時間を設けて、冷却時間の後に本通電の電流よりも弱いテンパー通電を行う技術が開示されている。
アルミニウム材の抵抗スポット溶接方法の一例として、例えば特許文献1には、電極の加圧力を2段階に変化させ、この加圧力に合わせて電流値を2段階(大電流から小電流)に変化させる技術が開示されている。
また、特許文献2には、溶接の本通電後に冷却時間を設けて、冷却時間の後に本通電の電流よりも弱いテンパー通電を行う技術が開示されている。
アルミニウム材を重ね合わせて抵抗スポット溶接した継手強度は、スポット溶接により形成されるナゲット径に応じて増減する。そのため、高い継手強度を得るためには、ナゲット径を大きくすればよいが、ナゲット径を増加させると、ナゲット厚も同時に増加し、溶接条件によってはナゲットが電極先端部に接するほどの大きさに成長することがある。その場合、電極先端部に溶融アルミニウムが付着し、電極表面に金属間化合物が形成され、電極先端形状が変化してしまう。電極先端形状が変化した場合は、健全なナゲットを得るために電極のドレッシングにより電極先端形状を整える必要があるので、ドレッシングの頻度が多くなり、連続打点数が少なくなって生産性が低下する。
上記した先行文献1、2に記載の方法では、ナゲット径を大きくすることができても、これと同時にナゲットの厚さ方向の成長を抑制することは困難であった。
上記した先行文献1、2に記載の方法では、ナゲット径を大きくすることができても、これと同時にナゲットの厚さ方向の成長を抑制することは困難であった。
本発明の目的は、アルミニウム材を重ね合わせて通電する際に、ナゲット径を大きくして継手強度を高め、且つナゲットの厚さ方向の成長を抑制するアルミニウム材の抵抗スポット溶接方法を提供することにある。
本実施形態によれば、下記の構成が提供される。
複数のアルミニウム材を重ね合わせて一対の電極で挟み込み、前記電極間に第1の通電を行う予備通電工程と、
前記予備通電工程後の10~500msの間、前記複数のアルミニウム材への入熱量を低下させる冷却工程と、
前記冷却工程後、前記一対の電極間に第2の通電を行う本通電工程と、をこの順に実施し、
前記予備通電工程の電流値をI1、通電時間をT1
前記本通電工程の電流値をI2、通電時間をT2としたとき、
I1×T1 < I2×T2 の関係を満たすアルミニウム材の抵抗スポット溶接方法。
複数のアルミニウム材を重ね合わせて一対の電極で挟み込み、前記電極間に第1の通電を行う予備通電工程と、
前記予備通電工程後の10~500msの間、前記複数のアルミニウム材への入熱量を低下させる冷却工程と、
前記冷却工程後、前記一対の電極間に第2の通電を行う本通電工程と、をこの順に実施し、
前記予備通電工程の電流値をI1、通電時間をT1
前記本通電工程の電流値をI2、通電時間をT2としたとき、
I1×T1 < I2×T2 の関係を満たすアルミニウム材の抵抗スポット溶接方法。
本発明によれば、アルミニウム材を重ね合わせて通電する際に、ナゲット径を大きくして継手強度を高め、且つナゲットの厚さ方向の成長を抑制することができる。
以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は、アルミニウム材を溶接するスポット溶接機の概略構成図である。
スポット溶接機11は、一対の電極13,15と、一対の電極13,15に接続された溶接トランス部17と、溶接トランス部17に電源部18からの溶接電力を供給する制御部19と、一対の電極13,15を軸方向に移動させる電極駆動部20とを備える。制御部19は、電流値、通電時間、電極の加圧力、通電タイミング、加圧タイミング等を統合的に制御する。
図1は、アルミニウム材を溶接するスポット溶接機の概略構成図である。
スポット溶接機11は、一対の電極13,15と、一対の電極13,15に接続された溶接トランス部17と、溶接トランス部17に電源部18からの溶接電力を供給する制御部19と、一対の電極13,15を軸方向に移動させる電極駆動部20とを備える。制御部19は、電流値、通電時間、電極の加圧力、通電タイミング、加圧タイミング等を統合的に制御する。
スポット溶接機11は、一対の電極13,15の間に、アルミニウム材である第1アルミニウム板21と第2アルミニウム板23との少なくとも2枚の板材を重ね合わせて挟み込む。そして、電極駆動部20による電極13,15の駆動によって、第1アルミニウム板21と第2アルミニウム板23とを板厚方向に加圧する。この加圧状態で、制御部19からの指令に基づいて溶接トランス部17が電極13,15間で通電する。これにより、電極13,15に挟まれた第1アルミニウム板21と第2アルミニウム板23との間にナゲット(スポット溶接部)25が形成され、第1アルミニウム板21と第2アルミニウム板23が一体化されたアルミニウム溶接継手(接合体)27が得られる。
上記例では、2枚のアルミニウム板を接合してアルミニウム溶接継手27を得ているが、本発明は2枚のアルミニウム板を接合する場合に限らず、3枚以上のアルミニウム板を接合する場合にも好適に用いられる。
一対の電極13,15は、それぞれ電極内部に冷却部を備える。冷却部の冷却方式は特に限定されないが、図1に示す構成では、電極13(15も同様)に形成された凹部31に冷却用パイプ33が配置され、冷却用パイプ33から水等の冷却媒体が供給されることで、電極13(15)が冷却される。
<アルミニウム材>
第1アルミニウム板21及び第2アルミニウム板23のアルミニウム材、及び3枚以上用いる場合の各アルミニウム板を構成するアルミニウム材は、任意の材質のアルミニウム、又はアルミニウム合金を用いることができる。具体的には、5000系、6000系、7000系、2000系、4000系のアルミニウム合金のほか、3000系、8000系のアルミニウム合金や1000系(純アルミ)のアルミニウムを採用できる。各アルミニウム板は、同一の材質であってもよく、上記した材質を組み合わせたものであってもよい。
第1アルミニウム板21及び第2アルミニウム板23のアルミニウム材、及び3枚以上用いる場合の各アルミニウム板を構成するアルミニウム材は、任意の材質のアルミニウム、又はアルミニウム合金を用いることができる。具体的には、5000系、6000系、7000系、2000系、4000系のアルミニウム合金のほか、3000系、8000系のアルミニウム合金や1000系(純アルミ)のアルミニウムを採用できる。各アルミニウム板は、同一の材質であってもよく、上記した材質を組み合わせたものであってもよい。
第1アルミニウム板21と第2アルミニウム板23(さらに他のアルミニウム板を用いる場合はそのアルミニウム板を含む)の板厚は、自動車の骨格部材などの構造部材の用途では0.5mm以上が好ましく、2.0mm以上がより好ましい。各アルミニウム板の板厚は等しくてもよく、いずれか一方が他方より厚くてもよい。また、アルミニウム材の形態は、上記したアルミニウム板(圧延板)に限らず、押出材や鍛造材、鋳造材であってもよい。
以下、第1アルミニウム板21と第2アルミニウム板23の2枚のアルミニウム板を接合する態様を説明するが、本発明はこの態様に限定されるものではない。
<溶接条件>
制御部19は、所定のタイミングで溶接トランス部17から一対の電極13,15間に通電させる。図2は、溶接電流の波形の一例を示すタイミングチャートである。
図2に示す溶接電流の波形は、予備通電工程(通電時間T1)と、冷却工程(冷却時間Tc)と、本通電工程(通電時間T2)とを有する。予備通電と本通電のパルス波形は矩形状であるが、三角波や正弦波等の他の波形や、ダウンスロープ、アップスロープ制御された波形であってもよい。
制御部19は、所定のタイミングで溶接トランス部17から一対の電極13,15間に通電させる。図2は、溶接電流の波形の一例を示すタイミングチャートである。
図2に示す溶接電流の波形は、予備通電工程(通電時間T1)と、冷却工程(冷却時間Tc)と、本通電工程(通電時間T2)とを有する。予備通電と本通電のパルス波形は矩形状であるが、三角波や正弦波等の他の波形や、ダウンスロープ、アップスロープ制御された波形であってもよい。
本通電の溶接熱量は、予備通電の溶接熱量より高く設定される。すなわち、図2に示す溶接電流においては、本通電の電流値I2と通電時間T2との積(I2×T2)が、予備通電の電流値I1と通電時間T1との積(I1×T1)より大きい。図2に示す例では、予備通電の電流値I1と本通電の電流値I2とは略等しいが、これに限らず、電流値I1と電流値I2とは互いに異なっていてもよい。さらに、予備通電と本通電の波形は、連続した電流でもよく、単一又は複数のパルスから構成されるパルス波形でもよい。つまり、本通電の溶接熱量が予備通電の溶接熱量より大きければよく、溶接電流の電流値や電流波形の形状は任意である。
予備通電の電流値I1と本通電の電流値I2は、いずれも15~60kAの範囲で設定される。予備通電においては、電流値I1による通電で最終的なナゲットを形成するのではなく、第1アルミニウム板21と第2アルミニウム板23との重ね合わせ面に、又は3枚以上のアルミニウム板の場合はアルミニウム板の各重ね合わせ面に、小サイズのナゲットが形成できればよい。或いは、重ね合わせ面に存在する酸化皮膜層を除去して、一定面積以上の新生面を形成する電流を通電できればよい。
本通電は、接合強度に必要な大きさのナゲットを形成するための通電であり、100~300ms程度の通電時間とするのが好ましい。予備通電、本通電の電流値I1,I2や通電時間T1,T2は、アルミニウム材の材質や板厚等に合わせて、適宜設定することができる。
冷却工程は、予備通電で小サイズのナゲット(第1ナゲット)が形成された場合に、この第1ナゲットを冷却する。なお、冷却時間Tcの電流値は、図2に示す例では電極13,15間の通電を停止させた0Aであるが、必ずしも0Aでなくてもよい。予備通電時よりも第1アルミニウム板21と第2アルミニウム板23への入熱量を低下させることができれば、0Aより高い電流であってもよい。冷却時間Tcは、10~500ms、好ましくは100ms以内、さらに好ましくは60ms以内である。
<抵抗スポット溶接の手順>
次に、抵抗スポット溶接の各工程を説明する。
図3の(A)~(C)は予備通電工程から冷却工程までの様子を模式的に示す工程説明図である。
図3の(A)に示すように、一対の電極13,15に挟まれる第1アルミニウム板21と第2アルミニウム板23に、電流値I1の予備通電を行う。このとき、第1アルミニウム板21と第2アルミニウム板23との重ね合わせ面を中心として、それぞれの板材が溶融した第1ナゲット35が形成される。
次に、抵抗スポット溶接の各工程を説明する。
図3の(A)~(C)は予備通電工程から冷却工程までの様子を模式的に示す工程説明図である。
図3の(A)に示すように、一対の電極13,15に挟まれる第1アルミニウム板21と第2アルミニウム板23に、電流値I1の予備通電を行う。このとき、第1アルミニウム板21と第2アルミニウム板23との重ね合わせ面を中心として、それぞれの板材が溶融した第1ナゲット35が形成される。
以降の説明では、第1アルミニウム板21と第2アルミニウム板23との重ね方向を、板厚方向、ナゲットの厚さ方向(溶け込み深さの深さ方向)とも呼称する。ナゲットについては、上記の重ね方向に直交してナゲット中心から放射状に延びる方向をナゲット径方向とし、ナゲットの厚さ方向に直交する方向の最大径をナゲット径とする。なお、ナゲットの厚さ方向は、アルミニウム板の板厚方向と同じであるため、適宜、板厚方向とも呼称する。
予備通電後の冷却工程においては、図3の(B)に示すように、電極13,15間の通電が停止されて、第1アルミニウム板21と第2アルミニウム板23との間の加熱が停止する。このとき、第1アルミニウム板21と第2アルミニウム板23は、電極13,15と接触したままであり、溶融状態の第1ナゲット35は電極13,15によって抜熱される。すると、第1アルミニウム板21と第2アルミニウム板23は、電極13,15との接触部付近における温度がそれぞれ下がり、第1ナゲット35は、図3の(C)に示すように電極13,15に近い側から凝固が進行する。これにより、第1ナゲット35は、部分凝固部37が徐々に形成されて、第1ナゲット35の溶融部分の板厚方向の厚さ(溶け込み深さ)が図3の(A)のときの厚さh0から厚さhに減少する。
図4の(A),(B)は冷却工程後の本通電工程の様子を模式的に示す工程説明図である。
上記した冷却工程の終了時から本通電工程を開始する。本通電工程においては、図4の(A)に示すように、電極13,15間に電流I2を通電する。電流I2は、第1アルミニウム板21と第2アルミニウム板23を通過する際、溶融状態である第1ナゲット35の内部よりも、領域34(第1ナゲット35の外縁よりも更にナゲット径方向の外側の領域)の電気抵抗が大きい。
上記した冷却工程の終了時から本通電工程を開始する。本通電工程においては、図4の(A)に示すように、電極13,15間に電流I2を通電する。電流I2は、第1アルミニウム板21と第2アルミニウム板23を通過する際、溶融状態である第1ナゲット35の内部よりも、領域34(第1ナゲット35の外縁よりも更にナゲット径方向の外側の領域)の電気抵抗が大きい。
通電により加熱された高温の第1ナゲット35は、ナゲット周囲の部材よりも電気抵抗が増加するが、領域34の電気抵抗はそれ以上に大きい。そのため、本通電工程においては、この領域34が大きな発熱源となって、第1ナゲット35の外縁よりナゲット径方向の外側の領域34が強く加熱される。このため、第1ナゲット35はナゲット径方向への成長が板厚方向よりも優先的に促進される。
図3の(C)に示す第1ナゲット35は、第1アルミニウム板21、第2アルミニウム板23の板厚方向の断面で寸法測定した場合に、第1ナゲット35のナゲット径d(mm)と溶け込み深さh(mm)の比d/hを1.0~3.0とすることが好ましい。より好ましくは1.05~2.9、さらに好ましくは1.2~2.5である。
このように、本通電の電流I2により、領域34が優先的に加熱される。これによって、図4の(B)に示すように、第1ナゲット35は、特に第1ナゲット35の外周縁から外側に向けて放射状に成長し、板厚方向への成長はナゲット径方向と比較して抑制される。その結果、本通電後に偏平状の第2ナゲット39が形成される。
<ナゲットの寸法>
図5はアルミニウム材の抵抗スポット溶接後における溶融凝固したナゲット25を模式的に示すアルミニウム溶接継手27の断面図である。
ここで、ナゲット25の直径をナゲット径D、ナゲット25の溶け込み深さをH、第1アルミニウム板21の板厚をt1、第2アルミニウム板23の板厚をt2とする。
図5はアルミニウム材の抵抗スポット溶接後における溶融凝固したナゲット25を模式的に示すアルミニウム溶接継手27の断面図である。
ここで、ナゲット25の直径をナゲット径D、ナゲット25の溶け込み深さをH、第1アルミニウム板21の板厚をt1、第2アルミニウム板23の板厚をt2とする。
上記の抵抗スポット溶接により最終的に形成されるナゲット25は、ナゲット径D(mm)と板厚t(mm)との寸法比D/tが3.0以上となることが好ましい。より好ましくは、3.3以上、さらに好ましくは、3.5以上である。ここで、板厚tは、第1アルミニウム板21と第2アルミニウム板23のうち、いずれか薄い方の板厚である。この寸法比D/tにすることで、アルミニウム溶接継手27の接合強度(引張せん断強度、十字引張強度)を十分に高められる。
また、ナゲット25のナゲット径Dとナゲット溶け込み深さHのナゲット寸法比D/Hは、2.3以上が好ましい。より好ましくは、2.3~3.4である。ナゲット寸法比D/Hが上記範囲より小さいと、接合強度が不足しやすくなる。また、ナゲット寸法比D/Hが上記範囲を超えても接合強度の大幅な増加は望めない。
さらに、第1アルミニウム板21と第2アルミニウム板23の板厚方向に関して、ナゲット25の図中上方の外縁25aから第1アルミニウム板21の外側面21aまでの距離をR1、ナゲット25の図中下方の外縁25bから第2アルミニウム板23の外側面23aまでの距離をR2とする。この場合、距離R1,R2は、それぞれ電極とナゲット25との間隔(最短距離)であり、いずれか薄い方の板厚の18%以上であることが好ましく、より好ましくは、いずれか薄い方の板厚の22%以上である。距離R1,R2が上記範囲であることで、ナゲットと電極との接触を確実に防止でき、電極表面に溶融アルミニウムが付着することがなく、少ない打点数で電極先端形状が変化することを抑制できる。
<電極の加圧力>
予備通電開始から本通電終了までの間は、電極13,15により第1アルミニウム板21と第2アルミニウム板23に負荷する加圧力を一定にすることが好ましい。加圧力を一定にすることで、予備通電後の冷却期間における第1アルミニウム板21と電極13との密着性、及び第2アルミニウム板23と電極15との密着性がそれぞれ均一となり、電流値や通電タイミングを変更する等の複雑な制御が不要となる。この加圧力は2~10kNの範囲が好ましく、ナゲットの形成が良好となる。
予備通電開始から本通電終了までの間は、電極13,15により第1アルミニウム板21と第2アルミニウム板23に負荷する加圧力を一定にすることが好ましい。加圧力を一定にすることで、予備通電後の冷却期間における第1アルミニウム板21と電極13との密着性、及び第2アルミニウム板23と電極15との密着性がそれぞれ均一となり、電流値や通電タイミングを変更する等の複雑な制御が不要となる。この加圧力は2~10kNの範囲が好ましく、ナゲットの形成が良好となる。
一方、電極13,15に単一パルス(本通電)のみ通電した場合、形成されるナゲットは上記した寸法比にはなりにくい。図6の(A),(B)は、予備通電工程と冷却工程を設けずにナゲット35Aを成長させた場合のナゲット41の形成状況を示す参考図である。
図6の(A)に示すように、第1アルミニウム板21と第2アルミニウム板23を挟む一対の電極13,15に溶接電流を流すと、第1アルミニウム板21と第2アルミニウム板23との間には、前述した図3の(A)に示す第1ナゲット35と同様のナゲット35Aが形成される。ナゲット35Aの形成後、冷却期間を設けずにそのまま通電を続けると、ナゲット35Aは、図6の(B)に示すようにナゲット径方向に成長すると同時に板厚方向にも抑制されることなく成長するため、板厚方向の厚みが大きいナゲット41となる。
厚肉のナゲット41が形成されると、ナゲット41の外縁が第1アルミニウム板21,第2アルミニウム板23のいずれかの外側表面に達することがある。その場合、電極表面に溶融アルミニウムが付着して、電極先端形状が早期に変化し、次回のドレッシングまでの連続打点数が減少する。
上記のように冷却工程を設けない場合と比較して、図3~図5に示すように、通電タイミングを予備通電と本通電とに分割し、予備通電と本通電との間に冷却期間を設けると、ナゲットの板厚方向への成長が抑制される。これは、予備通電で形成される第1ナゲット35を、より薄く偏平な形状にすることで、本通電時において電気抵抗の高い領域、つまり、第1ナゲット35外縁よりもナゲット径方向の外側の領域における抵抗発熱が、板厚方向の抵抗発熱よりも大きくなるためと推定できる。その結果、第1ナゲット35は、ナゲット外縁よりナゲット径方向外側への成長が、板厚方向への成長よりも優先的になる。
また、予備通電において第1ナゲット35が形成されなくても、所定の条件で予備通電をすることで上記した板厚方向への成長が抑制されたナゲット25が得られる。これは次のように考えられる。
重ね合わせた複数枚のアルミニウム板の、互いの板面同士の重ね合わせ面は、酸化膜等の絶縁層で覆われている。そこで、本通電前に予備通電を実施することで、アルミニウム板表面の絶縁層が破壊され、板表面に多数の新生面同士の接合部が一定領域に形成される。
この状態で本通電を実施すると、新生面接合領域の周囲に形成された僅かな隙間(空間、又は破壊されずに残存した絶縁層)による電気抵抗の高い部分で発熱が促進されるため、新生面接合領域からナゲット径方向への成長が促進される。一方、板厚方向へのナゲットの成長は、本通電の開始時に第1ナゲット35が形成されていないため、板厚方向と比較してナゲット径方向の成長が大きくなる。
いずれの場合でも、複数枚のアルミニウム板を抵抗スポット溶接する際に、アルミニウム板の溶融により形成されるナゲットが、アルミニウム板の板厚方向に過大な厚さとならず偏平状に形成される。そのため、ナゲットが、重ねられたアルミニウム板の板厚方向外側の板面(電極側)まで達することがない。また、ナゲット径を大きくしつつ、ナゲット厚さを小さく抑制することが、電極の加圧力と溶接電流の複雑な制御をしなくても簡単に実現できる。これにより、抵抗スポット溶接されたアルミニウム溶接部において溶接欠陥を生じさせることなく、高い継手強度を確保することができる。
なお、スポット溶接機11(図1参照)の電極13,15は、F形、R形、CR形、CF形、DR形等の任意の形状の電極を使用することができる。図7の(A)に示す先端面の曲率半径がr1のR形、図7の(B)に示す先端面の曲率半径(先端径)がr2のDR形等、電極13,15の先端面が凸状の曲面であれば、加圧力を安定させることができ、先端面が平面の電極よりもアルミニウム材表面の酸化皮膜を破壊しやすくなるため好ましい。
次に、本発明に係るアルミニウム材の抵抗スポット溶接方法の実施例を説明する。
<実験条件>
(アルミニウム板)
材質:A5182材(Al-Mg系アルミニウム合金)
板厚t:2.3mm
<実験条件>
(アルミニウム板)
材質:A5182材(Al-Mg系アルミニウム合金)
板厚t:2.3mm
(電極)
種別:クロム銅 R形電極
先端曲率半径r1:100mm
電極直径(元径):19mm
電極間加圧力:5kN
種別:クロム銅 R形電極
先端曲率半径r1:100mm
電極直径(元径):19mm
電極間加圧力:5kN
<実験結果>
(試験例1)
予備通電のみ実施した場合の各溶接条件と予備通電後のナゲットの測定結果を表1に示す。
試験例1-1~1-13は、予備通電の電流値I1と通電時間T1とをそれぞれ変化させている。表1には、それぞれの場合のナゲット径d、溶け込み深さh、アルミニウム板の板厚t、ナゲット寸法比d/h、d/tをそれぞれ纏めて示している。各寸法は、アルミニウム板の接合体をナゲット中心位置で切断し、その切断面を光学顕微鏡で撮影した画像から測定した。評価欄は、ナゲット寸法比d/tが1.0~3.0の範囲のものをA、これ以外をBとした(試験例1では評価Bの該当なし)。
(試験例1)
予備通電のみ実施した場合の各溶接条件と予備通電後のナゲットの測定結果を表1に示す。
試験例1-1~1-13は、予備通電の電流値I1と通電時間T1とをそれぞれ変化させている。表1には、それぞれの場合のナゲット径d、溶け込み深さh、アルミニウム板の板厚t、ナゲット寸法比d/h、d/tをそれぞれ纏めて示している。各寸法は、アルミニウム板の接合体をナゲット中心位置で切断し、その切断面を光学顕微鏡で撮影した画像から測定した。評価欄は、ナゲット寸法比d/tが1.0~3.0の範囲のものをA、これ以外をBとした(試験例1では評価Bの該当なし)。
試験例1-1~1-11のナゲットは、ナゲット径d(mm)とアルミニウム板の厚さt(mm)の比d/tがいずれも1.0~3.0の範囲に収まっている。
試験例1-12,1-13では、予備通電を行った後にナゲットが形成されなかった。しかし、次に示す試験例2で本通電を実施すると、ナゲットのナゲット径方向の成長が促進され、板厚方向の成長が抑制された良好なサイズのナゲットが形成された。
試験例1-12,1-13では、予備通電を行った後にナゲットが形成されなかった。しかし、次に示す試験例2で本通電を実施すると、ナゲットのナゲット径方向の成長が促進され、板厚方向の成長が抑制された良好なサイズのナゲットが形成された。
(試験例2)
予備通電、冷却、本通電を実施した場合の、各溶接条件と本通電後のナゲットの測定結果を表2に示す。
試験例2-1~2-13の予備通電の条件は、表1に示す試験例1―1~1-13の場合と同様である。試験例2-12,2-13は、ナゲットが形成されなかった試験例1-12,1-13と同様の条件で予備通電を行い、冷却期間の後、本通電を実施した結果である。本通電は、電流値I2が31kA、通電時間T2が250msの一定条件とした。評価欄は、ナゲット寸法比D/Hが2.3以上であるものをA、これ以外をBとした(試験例2では評価Bの該当なし)。
予備通電、冷却、本通電を実施した場合の、各溶接条件と本通電後のナゲットの測定結果を表2に示す。
試験例2-1~2-13の予備通電の条件は、表1に示す試験例1―1~1-13の場合と同様である。試験例2-12,2-13は、ナゲットが形成されなかった試験例1-12,1-13と同様の条件で予備通電を行い、冷却期間の後、本通電を実施した結果である。本通電は、電流値I2が31kA、通電時間T2が250msの一定条件とした。評価欄は、ナゲット寸法比D/Hが2.3以上であるものをA、これ以外をBとした(試験例2では評価Bの該当なし)。
試験例2-1~2-11は、いずれもナゲット寸法比D/Hが2.3以上であった。また、ナゲット厚さHとアルミニウム板の板厚tから換算したアルミニウム板の外側板面からナゲットまでの平均距離R(=t-H/2)は、いずれも板厚の18%以上(本実施例では0.4mm以上)であり、ナゲットと電極との接触は生じていない。
(試験例3)
本通電のみ実施した場合と、予備通電、本通電とも実施して冷却時間を変化させた場合の、本通電後のナゲットの測定結果を表3に示す。
試験例3-1は、本通電のみ実施し、試験例3-2~3-7は、予備通電、及び本通電の条件を一定として、冷却時間Tcを変化させた。評価欄は、ナゲットと電極までの平均距離Rが板厚の18%以上(本実施例では0.4mm以上)をA,ナゲットと電極との接触が生じ得る平均距離Rが板厚の18%未満(本実施例では0.4mm未満)の場合をBとした。
本通電のみ実施した場合と、予備通電、本通電とも実施して冷却時間を変化させた場合の、本通電後のナゲットの測定結果を表3に示す。
試験例3-1は、本通電のみ実施し、試験例3-2~3-7は、予備通電、及び本通電の条件を一定として、冷却時間Tcを変化させた。評価欄は、ナゲットと電極までの平均距離Rが板厚の18%以上(本実施例では0.4mm以上)をA,ナゲットと電極との接触が生じ得る平均距離Rが板厚の18%未満(本実施例では0.4mm未満)の場合をBとした。
図8は試験例3-1~3-7の溶接電流の波形と、各々の条件でナゲットを形成したナゲットの断面写真を示す説明図である。
表3及び図8に示すように、試験例3-1のナゲットは溶け込み深さHが3.85mmと極端に大きく、ナゲット外周縁がアルミニウム板の外側板面(電極側)近くまで達し、アルミニウム板の外側板面までの平均距離Rが0.38mmであった。
表3及び図8に示すように、試験例3-1のナゲットは溶け込み深さHが3.85mmと極端に大きく、ナゲット外周縁がアルミニウム板の外側板面(電極側)近くまで達し、アルミニウム板の外側板面までの平均距離Rが0.38mmであった。
一方、冷却時間が60msの試験例3-2のナゲットは、試験例3-1と比較してナゲット厚さHが2.57mmに減少して、平均距離Rが1.02mmとなった。試験例3-3~3-7のナゲットも同様に試験例3-1のナゲットよりも溶け込み深さHが小さくなって、平均距離Rが0.95~1.26の範囲となった。
以上より、冷却時間が30ms未満の場合、ナゲット径Dや溶け込み深さHが格段に大きくなり、平均距離Rが小さくなった。この場合、本通電後のナゲットが電極と接触する可能性が高くなることがわかる。
このように、予備通電を実施することにより、本通電のみ実施する場合と比較して、ナゲットの板厚方向への成長が抑制された。
本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
以上の通り、本明細書には次の事項が開示されている。
(1) 複数のアルミニウム材を重ね合わせて一対の電極で挟み込み、前記電極間に第1の通電を行う予備通電工程と、
前記予備通電工程後の10~500msの間、前記複数のアルミニウム材への入熱量を低下させる冷却工程と、
前記冷却工程後、前記一対の電極間に第2の通電を行う本通電工程と、をこの順に実施し、
前記予備通電工程の電流値をI1、通電時間をT1
前記本通電工程の電流値をI2、通電時間をT2としたとき、
I1×T1 < I2×T2 の関係を満たすアルミニウム材の抵抗スポット溶接方法。
このアルミニウム材の抵抗スポット溶接方法によれば、通電タイミングを予備通電と本通電とに分割し、予備通電と本通電との間に冷却期間を設けることにより、ナゲット径を大きくして継手強度を高められる。また、ナゲットの板厚方向への成長が抑制され、ナゲットの外縁が、重ねられたアルミニウム材の外側の板面(電極側)に到達し難くなる。これにより、電極表面に溶融アルミニウムが付着せず、電極のドレッシングを頻繁に実施する必要がなくなり、生産効率が向上する。
(1) 複数のアルミニウム材を重ね合わせて一対の電極で挟み込み、前記電極間に第1の通電を行う予備通電工程と、
前記予備通電工程後の10~500msの間、前記複数のアルミニウム材への入熱量を低下させる冷却工程と、
前記冷却工程後、前記一対の電極間に第2の通電を行う本通電工程と、をこの順に実施し、
前記予備通電工程の電流値をI1、通電時間をT1
前記本通電工程の電流値をI2、通電時間をT2としたとき、
I1×T1 < I2×T2 の関係を満たすアルミニウム材の抵抗スポット溶接方法。
このアルミニウム材の抵抗スポット溶接方法によれば、通電タイミングを予備通電と本通電とに分割し、予備通電と本通電との間に冷却期間を設けることにより、ナゲット径を大きくして継手強度を高められる。また、ナゲットの板厚方向への成長が抑制され、ナゲットの外縁が、重ねられたアルミニウム材の外側の板面(電極側)に到達し難くなる。これにより、電極表面に溶融アルミニウムが付着せず、電極のドレッシングを頻繁に実施する必要がなくなり、生産効率が向上する。
(2) 前記予備通電工程により第1ナゲットを形成し、前記冷却工程後の前記本通電工程により、前記第1ナゲットを前記アルミニウム材の重ね方向に直交する厚さ方向へ優先的に成長させるアルミニウム材の抵抗スポット溶接方法であって、
前記第1ナゲットの前記アルミニウム材の重ね方向の断面で測定した第1ナゲット径d(mm)と前記アルミニウム材の厚さt(mm)の比d/tを1.0~3.0とする(1)に記載のアルミニウム材の抵抗スポット溶接方法。
このアルミニウム材の抵抗スポット溶接方法によれば、予備通電によって比d/tが1.0~3.0の第1ナゲットが形成されることで、本通電における第1ナゲットのナゲット径方向への成長が、板厚方向への成長と比較して大きくなる。
前記第1ナゲットの前記アルミニウム材の重ね方向の断面で測定した第1ナゲット径d(mm)と前記アルミニウム材の厚さt(mm)の比d/tを1.0~3.0とする(1)に記載のアルミニウム材の抵抗スポット溶接方法。
このアルミニウム材の抵抗スポット溶接方法によれば、予備通電によって比d/tが1.0~3.0の第1ナゲットが形成されることで、本通電における第1ナゲットのナゲット径方向への成長が、板厚方向への成長と比較して大きくなる。
(3) 前記予備通電工程の電流値I1は、15~60kAである(1)又は(2)に記載のアルミニウム材の抵抗スポット溶接方法。
このアルミニウム材の抵抗スポット溶接方法によれば、第1アルミニウム材と第2アルミニウム材との接合面からの発熱を促進して、効率よく偏平な形状の第1ナゲット又は新生面接合領域を形成できる。
このアルミニウム材の抵抗スポット溶接方法によれば、第1アルミニウム材と第2アルミニウム材との接合面からの発熱を促進して、効率よく偏平な形状の第1ナゲット又は新生面接合領域を形成できる。
(4) 前記本通電工程の電流値I2は、15~60kAである(1)~(3)のいずれか一つに記載のアルミニウム材の抵抗スポット溶接方法。
このアルミニウム材の抵抗スポット溶接方法によれば、第1ナゲット周囲の第1アルミニウム材と第2アルミニウム材との接合面からの発熱を促進して、効率よく偏平な形状の第2ナゲットを形成できる。
このアルミニウム材の抵抗スポット溶接方法によれば、第1ナゲット周囲の第1アルミニウム材と第2アルミニウム材との接合面からの発熱を促進して、効率よく偏平な形状の第2ナゲットを形成できる。
(5) 前記冷却工程は、前記予備通電工程後に100ms以内の冷却時間で行う(1)~(4)のいずれか一つに記載のアルミニウム材の抵抗スポット溶接方法。
このアルミニウム材の抵抗スポット溶接方法によれば、100ms以内の短い時間で冷却工程を行うため、生産性が向上する。
このアルミニウム材の抵抗スポット溶接方法によれば、100ms以内の短い時間で冷却工程を行うため、生産性が向上する。
(6) 前記冷却工程は、前記予備通電工程後に60ms以内の冷却時間で行う(5)に記載のアルミニウム材の抵抗スポット溶接方法。
このアルミニウム材の抵抗スポット溶接方法によれば、冷却工程によって第1ナゲットの溶融部分における厚さ減少量がより適正となり、第1ナゲットは、重ね方向の成長が抑制されながら、重ね方向に直交する方向に大きく成長する。これにより、第2ナゲットを、必要とされる大きなナゲット径まで安定して成長させることができる。
このアルミニウム材の抵抗スポット溶接方法によれば、冷却工程によって第1ナゲットの溶融部分における厚さ減少量がより適正となり、第1ナゲットは、重ね方向の成長が抑制されながら、重ね方向に直交する方向に大きく成長する。これにより、第2ナゲットを、必要とされる大きなナゲット径まで安定して成長させることができる。
(7) 前記一対の電極の前記複数のアルミニウム材を挟み込む加圧力が2~10kNである(1)~(6)のいずれか一つに記載のアルミニウム材の抵抗スポット溶接方法。
このアルミニウム材の抵抗スポット溶接方法によれば、本発明で特定した通電条件との組み合わせにより偏平な形状のナゲットを形成することができる。
このアルミニウム材の抵抗スポット溶接方法によれば、本発明で特定した通電条件との組み合わせにより偏平な形状のナゲットを形成することができる。
(8) 前記第1ナゲットを前記本通電工程によって成長させた第2ナゲットは、前記アルミニウム材の重ね方向に直交する方向のナゲット径D(mm)と、前記第2ナゲットの溶け込み深さH(mm)との寸法比D/Hが2.3以上である(7)に記載のアルミニウム材の抵抗スポット溶接方法。
このアルミニウム板の抵抗スポット溶接方法によれば、第2ナゲットの寸法比D/Hが2.3以上であることで、溶接したアルミニウム材の継手強度を高めることができる。
このアルミニウム板の抵抗スポット溶接方法によれば、第2ナゲットの寸法比D/Hが2.3以上であることで、溶接したアルミニウム材の継手強度を高めることができる。
(9) 前記一対の電極に、R形又はDR形の電極を用いる(1)~(8)のいずれか一つに記載のアルミニウム材の抵抗スポット溶接方法。
このアルミニウム材の抵抗スポット溶接方法によれば、先端面が曲面形状であることで、安定した加圧ができ、先端面が平面である場合と比較して、アルミニウム材表面の新生面をより安定して形成できる。
このアルミニウム材の抵抗スポット溶接方法によれば、先端面が曲面形状であることで、安定した加圧ができ、先端面が平面である場合と比較して、アルミニウム材表面の新生面をより安定して形成できる。
なお、本出願は、2018年4月20日出願の日本特許出願(特願2018-81780)に基づくものであり、その内容は本出願の中に参照として援用される。
13,15 電極
21 第1アルミニウム板(アルミニウム材)
23 第2アルミニウム板(アルミニウム材)
25 ナゲット
27 アルミニウム溶接継手(接合体)
35 第1ナゲット
37 部分凝固部
39 第2ナゲット
21 第1アルミニウム板(アルミニウム材)
23 第2アルミニウム板(アルミニウム材)
25 ナゲット
27 アルミニウム溶接継手(接合体)
35 第1ナゲット
37 部分凝固部
39 第2ナゲット
Claims (10)
- 複数のアルミニウム材を重ね合わせて一対の電極で挟み込み、前記電極間に第1の通電を行う予備通電工程と、
前記予備通電工程後の10~500msの間、前記複数のアルミニウム材への入熱量を低下させる冷却工程と、
前記冷却工程後、前記一対の電極間に第2の通電を行う本通電工程と、をこの順に実施し、
前記予備通電工程の電流値をI1、通電時間をT1
前記本通電工程の電流値をI2、通電時間をT2としたとき、
I1×T1 < I2×T2 の関係を満たすアルミニウム材の抵抗スポット溶接方法。 - 前記予備通電工程により第1ナゲットを形成し、前記冷却工程後の前記本通電工程により、前記第1ナゲットを前記アルミニウム材の重ね方向に直交する厚さ方向へ優先的に成長させるアルミニウム材の抵抗スポット溶接方法であって、
前記第1ナゲットの前記アルミニウム材の重ね方向の断面で測定した第1ナゲット径d(mm)と前記アルミニウム材の厚さt(mm)の比d/tを1.0~3.0とする請求項1に記載のアルミニウム材の抵抗スポット溶接方法。 - 前記予備通電工程の電流値I1は、15~60kAである請求項1に記載のアルミニウム材の抵抗スポット溶接方法。
- 前記本通電工程の電流値I2は、15~60kAである請求項1に記載のアルミニウム材の抵抗スポット溶接方法。
- 前記冷却工程は、前記予備通電工程後に100ms以内の冷却時間で行う請求項1に記載のアルミニウム材の抵抗スポット溶接方法。
- 前記冷却工程は、前記予備通電工程後に60ms以内の冷却時間で行う請求項5に記載のアルミニウム材の抵抗スポット溶接方法。
- 前記一対の電極の前記複数のアルミニウム材を挟み込む加圧力が2~10kNである請求項1に記載のアルミニウム材の抵抗スポット溶接方法。
- 前記一対の電極の前記複数のアルミニウム材を挟み込む加圧力が2~10kNである請求項2に記載のアルミニウム材の抵抗スポット溶接方法。
- 前記第1ナゲットを前記本通電工程によって成長させた第2ナゲットは、前記アルミニウム材の重ね方向に直交する方向のナゲット径D(mm)と、前記第2ナゲットの溶け込み深さH(mm)との寸法比D/Hが2.3以上である請求項8に記載のアルミニウム材の抵抗スポット溶接方法。
- 前記一対の電極に、R形又はDR形の電極を用いる請求項1~請求項9のいずれか一項に記載のアルミニウム材の抵抗スポット溶接方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-081780 | 2018-04-20 | ||
JP2018081780A JP7076703B2 (ja) | 2018-04-20 | 2018-04-20 | アルミニウム材の抵抗スポット溶接方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203363A1 true WO2019203363A1 (ja) | 2019-10-24 |
Family
ID=68238928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/016904 WO2019203363A1 (ja) | 2018-04-20 | 2019-04-19 | アルミニウム材の抵抗スポット溶接方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7076703B2 (ja) |
WO (1) | WO2019203363A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023130792A1 (en) * | 2022-01-05 | 2023-07-13 | Novelis Inc. | Systems and methods for improving aluminum resistance spot welding |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7564013B2 (ja) | 2021-02-19 | 2024-10-08 | 株式会社神戸製鋼所 | アルミニウム材のスポット溶接方法及びアルミニウム材の接合方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05383A (ja) * | 1991-06-13 | 1993-01-08 | Kawasaki Steel Corp | アルミニウム合金板のスポツト溶接方法 |
JPH10193132A (ja) * | 1996-11-13 | 1998-07-28 | Toyota Central Res & Dev Lab Inc | アルミニウム合金製部材のスポット溶接方法 |
JPH10244379A (ja) * | 1997-03-03 | 1998-09-14 | Nissan Motor Co Ltd | アルミニウム系被溶接材料の抵抗スポット溶接用電極 |
JP2004098107A (ja) * | 2002-09-06 | 2004-04-02 | Kobe Steel Ltd | アルミニウム系材の抵抗スポット溶接方法 |
WO2017142828A1 (en) * | 2016-02-15 | 2017-08-24 | Novelis Inc. | Method for improving quality of aluminum resistance spot welding |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11504796B2 (en) * | 2013-10-04 | 2022-11-22 | Jfe Steel Corporation | Resistance spot welding method |
-
2018
- 2018-04-20 JP JP2018081780A patent/JP7076703B2/ja active Active
-
2019
- 2019-04-19 WO PCT/JP2019/016904 patent/WO2019203363A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05383A (ja) * | 1991-06-13 | 1993-01-08 | Kawasaki Steel Corp | アルミニウム合金板のスポツト溶接方法 |
JPH10193132A (ja) * | 1996-11-13 | 1998-07-28 | Toyota Central Res & Dev Lab Inc | アルミニウム合金製部材のスポット溶接方法 |
JPH10244379A (ja) * | 1997-03-03 | 1998-09-14 | Nissan Motor Co Ltd | アルミニウム系被溶接材料の抵抗スポット溶接用電極 |
JP2004098107A (ja) * | 2002-09-06 | 2004-04-02 | Kobe Steel Ltd | アルミニウム系材の抵抗スポット溶接方法 |
WO2017142828A1 (en) * | 2016-02-15 | 2017-08-24 | Novelis Inc. | Method for improving quality of aluminum resistance spot welding |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023130792A1 (en) * | 2022-01-05 | 2023-07-13 | Novelis Inc. | Systems and methods for improving aluminum resistance spot welding |
Also Published As
Publication number | Publication date |
---|---|
JP2019188418A (ja) | 2019-10-31 |
JP7076703B2 (ja) | 2022-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3228414B1 (en) | Resistance spot welding method | |
JP6963282B2 (ja) | アルミニウム材の抵抗スポット溶接継手、及びアルミニウム材の抵抗スポット溶接方法 | |
CN106001886A (zh) | 利于不同金属点焊的锥形电流 | |
WO2009123330A1 (ja) | 高密度エネルギービームで接合した溶接鋼管およびその製造方法 | |
WO2019203363A1 (ja) | アルミニウム材の抵抗スポット溶接方法 | |
JP2009291827A (ja) | 抵抗溶接方法及び溶接構造体 | |
JP2013078793A (ja) | 接合方法及び接合部品 | |
US20200108468A1 (en) | Hybrid ultrasonic and resistance spot welding system | |
CN110834139B (zh) | 一种电阻点焊异种金属的方法 | |
EP1149654A2 (en) | Electrode geometry design for optimized aluminium resistance spot welding | |
JP6078960B2 (ja) | インダイレクトスポット溶接方法 | |
US20230226637A1 (en) | Resistance spot welding method of aluminum material, control device of resistance spot welding of aluminum material, and resistance spot welding machine | |
JP2024059021A (ja) | アルミニウム材の抵抗スポット溶接方法 | |
KR101077995B1 (ko) | 초음파 용접방법 | |
JP5597370B2 (ja) | 金網の接合方法 | |
JP7564013B2 (ja) | アルミニウム材のスポット溶接方法及びアルミニウム材の接合方法 | |
JP6811063B2 (ja) | 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法 | |
WO2024161777A1 (ja) | 金属材の接合方法及び金属接合体 | |
JP7176270B2 (ja) | 容器用溶接缶の製造方法 | |
JP2003251470A (ja) | 鋼板の抵抗スポット溶接方法 | |
JP6794006B2 (ja) | 抵抗スポット溶接継手、抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法 | |
JP6020345B2 (ja) | 溶接方法 | |
CN116135398A (zh) | 改善方法、焊接方法、加工系统、控制装置、程序产品 | |
JPH11114684A (ja) | β型チタン合金溶接管及びその製造方法 | |
JPS60152377A (ja) | 薄物鋼帯コイル材のコイル継ぎ方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19788485 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19788485 Country of ref document: EP Kind code of ref document: A1 |