WO2019203309A1 - 画像処理方法、プログラム、画像処理装置、及び眼科システム - Google Patents

画像処理方法、プログラム、画像処理装置、及び眼科システム Download PDF

Info

Publication number
WO2019203309A1
WO2019203309A1 PCT/JP2019/016652 JP2019016652W WO2019203309A1 WO 2019203309 A1 WO2019203309 A1 WO 2019203309A1 JP 2019016652 W JP2019016652 W JP 2019016652W WO 2019203309 A1 WO2019203309 A1 WO 2019203309A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
image processing
blood vessel
choroidal
fundus
Prior art date
Application number
PCT/JP2019/016652
Other languages
English (en)
French (fr)
Inventor
泰士 田邉
真梨子 廣川
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to DE112019002021.8T priority Critical patent/DE112019002021T5/de
Priority to JP2020514436A priority patent/JP7279711B2/ja
Priority to CN201980025842.3A priority patent/CN112004457B/zh
Priority to CN202410689901.XA priority patent/CN118505665A/zh
Publication of WO2019203309A1 publication Critical patent/WO2019203309A1/ja
Priority to US17/071,583 priority patent/US20210022606A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1241Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes specially adapted for observation of ocular blood flow, e.g. by fluorescein angiography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1025Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic

Definitions

  • the technology of the present disclosure relates to an image processing method, a program, an image processing apparatus, and an ophthalmic system.
  • JP-A-8-71045 discloses a technique for displaying arteries and veins of choroidal blood vessels in different colors.
  • the image processing method includes a step of analyzing a choroidal vascular structure from a fundus image and a step of detecting a vortex vein position based on the vascular structure.
  • the image processing apparatus includes an image processing unit that analyzes a choroidal vascular structure from a fundus image and detects a vortex vein position based on the vascular structure.
  • the program according to the third aspect of the technology of the present disclosure causes a computer to execute the image processing method according to the first aspect.
  • An ophthalmic system includes a server including an image processing unit that analyzes a choroidal vascular structure from a fundus image and detects a vortex vein position based on the vascular structure; And a viewer for displaying a vortex vein position superimposed fundus image in which a mark indicating the vortex vein position is superimposed and displayed.
  • the image processing method includes a step of generating a choroidal blood vessel image and a step of analyzing the choroidal blood vessel image and detecting a position of the vortex vein.
  • An image processing apparatus includes an image processing unit that generates a choroidal blood vessel image, analyzes the choroidal blood vessel image and detects a position of the vortex vein, and a mark indicating the position of the vortex vein
  • a display control unit that generates a vortex vein position superimposed fundus image superimposed on the choroidal vascular image; and an output unit that outputs the vortex vein position superimposed fundus image.
  • FIG. 1 is a block diagram of an ophthalmic system 100.
  • FIG. 1 is a schematic configuration diagram showing an overall configuration of an ophthalmologic apparatus 110.
  • FIG. 4 is a block diagram of an electrical configuration of a management server 140.
  • FIG. 3 is a block diagram of functions of a CPU 162 of a management server 140.
  • FIG. It is a flowchart of an image processing program. It is a flowchart of a 1st VV candidate detection processing program. It is a flowchart of the 2nd VV candidate detection processing program. It is a figure which shows a choroidal blood vessel image. It is a figure which shows the image which superimposed and displayed the position of VV verified as VV on the fundus image.
  • FIG. 15B is a second graph created by performing processing for integrating pixel values in the R direction for each ⁇ direction in FIG. 14A or FIG. 15A, with the horizontal axis representing ⁇ and the vertical axis representing accumulated pixel values.
  • FIG. 15B is a third graph in which the process of integrating pixel values in the R direction is performed for each ⁇ direction in FIG. 14A or FIG. 15A and the horizontal axis is ⁇ and the vertical axis is the integrated pixel value. It is a figure which shows the display screen 300 of choroidal blood vessel analysis mode.
  • SLO scanning laser ophthalmoscope
  • an ophthalmic system 100 includes an ophthalmologic apparatus 110, an axial length measuring device 120, a management server apparatus (hereinafter referred to as “management server”) 140, and an image display apparatus (hereinafter referred to as “image viewer”). 150).
  • the ophthalmologic apparatus 110 acquires a fundus image.
  • the axial length measuring device 120 measures the axial length of the patient.
  • the management server 140 stores a plurality of fundus images and axial lengths obtained by photographing the fundus of a plurality of patients by the ophthalmologic apparatus 110 in correspondence with the patient ID.
  • the image viewer 150 displays the fundus image acquired by the management server 140.
  • the management server 140 is an example of a “server” in the technology of the present disclosure.
  • the image viewer 150 is an example of the “viewer” of the technology of the present disclosure.
  • the ophthalmologic apparatus 110, the axial length measuring device 120, the management server 140, and the image viewer 150 are connected to each other via the network 130.
  • ophthalmologic equipment examination equipment such as optical coherence tomography (OCT) measurement, visual field measurement, and intraocular pressure measurement
  • OCT optical coherence tomography
  • diagnostic support apparatus that performs image analysis using artificial intelligence are connected via the network 130 to the ophthalmologic apparatus 110, It may be connected to the axial length measuring device 120, the management server 140, and the image viewer 150.
  • the ophthalmologic apparatus 110 includes a control unit 20, a display / operation unit 30, and an SLO unit 40, and images the posterior eye portion (fundus) of the eye 12 to be examined. Further, an OCT unit (not shown) for acquiring fundus OCT data may be provided.
  • the control unit 20 includes a CPU 22, a memory 24, a communication interface (I / F) 26, and the like.
  • the display / operation unit 30 is a graphic user interface that displays an image obtained by shooting and accepts various instructions including an instruction for shooting, and includes an input / instruction device 34 such as a display 32 and a touch panel. Yes.
  • the SLO unit 40 includes a light source 42 for G light (green light: wavelength 530 nm), a light source 44 for R light (red light: wavelength 650 nm), and a light source 46 for IR light (infrared light (near infrared light): wavelength 800 nm). ing.
  • the light sources 42, 44, 46 emit respective lights as instructed by the control unit 20.
  • the SLO unit 40 includes optical systems 50, 52, 54, and 56 that guide light reflected from or transmitted through the light sources 42, 44, and 46 to one optical path.
  • the optical systems 50 and 56 are mirrors, and the optical systems 52 and 54 are beam splitters.
  • the G light is reflected by the optical systems 50 and 54, the R light is transmitted through the optical systems 52 and 54, and the IR light is reflected by the optical systems 52 and 56 and guided to one optical path.
  • the SLO unit 40 includes a wide-angle optical system 80 that scans light from the light sources 42, 44, and 46 across the posterior segment (fundus) of the eye 12 to be examined in a two-dimensional manner.
  • the SLO unit 40 includes a beam splitter 58 that reflects G light and transmits other light than the G light in the light from the posterior segment (fundus) of the eye 12 to be examined.
  • the SLO unit 40 includes a beam splitter 60 that reflects R light and transmits light other than the R light out of the light transmitted through the beam splitter 58.
  • the SLO unit 40 includes a beam splitter 62 that reflects IR light out of the light transmitted through the beam splitter 60.
  • the SLO unit 40 detects the G light detecting element 72 that detects the G light reflected by the beam splitter 58, the R light detecting element 74 that detects the R light reflected by the beam splitter 60, and the IR light reflected by the beam splitter 62.
  • IR light detecting element 76 is provided.
  • the wide-angle optical system 80 includes an X-direction scanning device 82 composed of a polygon mirror that scans light from the light sources 42, 44, and 46 in the X direction, and a Y-direction scanning device 84 composed of a galvanometer mirror that scans in the Y direction. And an optical system 86 that includes a slit mirror and an elliptical mirror (not shown) and makes the scanned light have a wide angle.
  • the fundus viewing angle (FOV: Field of View) can be set larger than that of the conventional technique, and a fundus region wider than that of the conventional technique can be imaged.
  • the external light irradiation angle from the outside of the subject eye 12 is approximately 120 degrees (substantially by irradiating the fundus of the subject eye 12 with scanning light with the center O of the eyeball of the subject eye 12 as a reference position).
  • a wide fundus region of about 200 degrees (with an internal light irradiation angle that can be photographed) can be photographed.
  • the optical system 86 may have a configuration using a plurality of lens groups instead of the slit mirror and the elliptical mirror.
  • Each scanning device of the X direction scanning device 82 and the Y direction scanning device 84 may use a two-dimensional scanner configured using a MEMS mirror.
  • the horizontal direction is the “X direction”
  • the vertical direction to the horizontal plane is the “Y direction”
  • the center of the pupil of the anterior eye portion of the eye 12 to be tested is connected to the center of the eyeball.
  • Let the direction be the “Z direction”. Therefore, the X direction, the Y direction, and the Z direction are perpendicular to each other.
  • a color fundus image is obtained by photographing the fundus of the eye 12 simultaneously with G light and R light. More specifically, the control unit 20 controls the light sources 42 and 44 so as to emit light simultaneously, and the G light and the R light are scanned by the wide-angle optical system 80 over the fundus of the eye 12 to be examined. The G light reflected from the fundus of the eye 12 to be examined is detected by the G light detection element 72, and image data of the second fundus image (G color fundus image) is generated by the CPU 22 of the ophthalmologic apparatus 110.
  • the R light reflected from the fundus of the eye 12 to be examined is detected by the R light detection element 74, and image data of the first fundus image (R color fundus image) is generated by the CPU 22 of the ophthalmologic apparatus 110.
  • image data of the IR fundus image is generated by the CPU 22 of the ophthalmologic apparatus 110.
  • the CPU 22 of the ophthalmologic apparatus 110 mixes the first fundus image (R color fundus image) and the second fundus image (G color fundus image) at a predetermined ratio and displays them on the display 32 as a color fundus image.
  • a first fundus image (R color fundus image), a second fundus image (G color fundus image), or an IR fundus image may be displayed.
  • the image data of the first fundus image (R color fundus image), the image data of the second fundus image (G color fundus image), and the image data of the IR fundus image are sent from the ophthalmic apparatus 110 to the management server 140 via the communication IF 166. Is done.
  • Various fundus images are used to generate choroidal blood vessel images.
  • the 1 has two modes, a first mode and a second mode, for measuring the axial length, which is the length of the eye 12 in the axial direction (Z direction).
  • a first mode after light from a light source (not shown) is guided to the eye 12 to be examined, interference light between the reflected light from the fundus and the reflected light from the cornea is received, and an interference signal indicating the received interference light is generated. Based on this, the axial length is measured.
  • the second mode is a mode for measuring the axial length using an ultrasonic wave (not shown).
  • the axial length measuring device 120 transmits the axial length measured in the first mode or the second mode to the management server 140.
  • the axial length may be measured in the first mode and the second mode, and in this case, the average of the axial length measured in both modes is transmitted to the management server 140 as the axial length.
  • the axial length is stored as patient information in the management server 140 as one of patient data, and is also used for fundus image analysis.
  • the management server 140 includes a control unit 160 and a display / operation unit 170.
  • the control unit 160 includes a computer including a CPU 162, a memory 164 as a storage device, a communication interface (I / F) 166, and the like.
  • the memory 164 stores an image processing program.
  • the display / operation unit 170 is a graphic user interface that displays images and accepts various instructions, and includes a display 172 and an input / instruction device 174 such as a touch panel.
  • the image processing program has an image processing function, a display control function, and a processing function.
  • the CPU 162 executes the image processing program having these functions, the CPU 162 functions as an image processing unit 182, a display control unit 184, and a processing unit 186, as shown in FIG.
  • the CPU 162 of the management server 140 executes the image processing program, thereby realizing the image processing method shown in the flowchart of FIG.
  • the image processing program is executed when the management server 140 generates a choroidal blood vessel image based on the image data of the fundus image captured by the ophthalmologic apparatus 110.
  • the choroidal blood vessel image is generated as follows.
  • the eye structure is such that the vitreous body is covered with a plurality of layers having different structures.
  • the plurality of layers include the retina, choroid, and sclera from the innermost side to the outer side on the vitreous side.
  • the R light passes through the retina and reaches the choroid. Therefore, the first fundus image (R color fundus image) includes information on blood vessels (retinal blood vessels) existing in the retina and information on blood vessels (choroidal blood vessels) existing in the choroid.
  • G light reaches only the retina. Therefore, the second fundus image (G color fundus image) includes only information on blood vessels (retinal blood vessels) existing in the retina.
  • the image processing unit 182 of the management server 140 extracts retinal blood vessels from the second fundus image (G color fundus image) by performing black hat filter processing on the second fundus image (G color fundus image). Next, the image processing unit 182 removes retinal blood vessels from the first fundus image (R color fundus image) through inpainting processing using the retinal blood vessels extracted from the second fundus image (G color fundus image). . That is, processing for filling the retinal blood vessel structure of the first fundus image (R color fundus image) to the same value as the surrounding pixels is performed using the position information of the retinal blood vessels extracted from the second fundus image (G color fundus image). .
  • the image processing unit 182 performs an adaptive histogram equalization process (CLAHE, Contrast Limited Adaptive Equalization) on the image data of the first fundus image (R color fundus image) from which the retinal blood vessel has been removed, thereby performing the first operation.
  • CLAHE Contrast Limited Adaptive Equalization
  • choroidal blood vessels are emphasized.
  • the generated choroidal blood vessel image is stored in the memory 164.
  • a choroidal blood vessel image is generated from the first fundus image (R color fundus image) and the second fundus image (G color fundus image), but the image processing unit 182 includes the first fundus image (R color fundus image).
  • a choroidal vascular image may be generated using an R fundus image or an IR fundus image taken with IR light.
  • the disclosure of Japanese Patent Application No. 2018-052246 filed on March 20, 2018 regarding the method of generating a choroid fundus image is incorporated herein by reference in its entirety.
  • the image processing unit 182 reads a choroidal blood vessel image (see FIG. 8) from the memory 164 in step 202 of FIG.
  • step 204 the image processing unit 182 detects a vortex vein (Vortex Vein (hereinafter referred to as “VV”)) candidate in the choroidal blood vessel image.
  • VV Vortex Vein
  • the vortex vein VV is an outflow path of blood flow that has flowed into the choroid, and there are 4 to 6 in the vicinity of the posterior pole of the equator of the eyeball.
  • step 206 the image processing unit 182 performs a VV identification process (details will be described later) for calculating an identification probability indicating whether the VV candidate is a VV and setting an identification flag (VV flag / non-VV flag) for the VV candidate. Execute. Details of the processing in step 206 will be described later.
  • the image processing unit 182 identifies the number of VVs and identifies a VV arrangement pattern (arrangement of a plurality of VVs).
  • the VV arrangement pattern is information indicating where the plurality of VV positions are arranged on the fundus.
  • 246N1, 246N2, 246N3, and 246N4 indicate frames for specifying the VV position.
  • the processing unit 186 includes the number of VVs, position information of the VV (coordinates indicating the VV position in the choroidal blood vessel image, and coordinates for each VV are stored), a VV arrangement pattern, and an identification flag (VV Flag / non-VV flag) and data including the identification probability are stored in the memory 164. These data are used to create a display screen in the choroid analysis mode described later.
  • step 204 the VV detected in the first VV candidate detection process shown in FIG.
  • FIG. 6 shows a flowchart of the first VV candidate detection processing program.
  • the image processing unit 182 obtains the blood vessel traveling direction of each pixel in the choroidal blood vessel image. Specifically, the image processing unit 182 repeats the following process for all pixels. That is, the image processing unit 182 sets a region (cell) composed of a plurality of surrounding pixels centering on the pixel. Then, the luminance gradient direction in each pixel of the cell (indicated by an angle of 0 ° to less than 180 °, where 0 ° is defined as the direction of a straight line (horizontal line)) is a pixel around the calculation target pixel. Based on the luminance value of. This gradient direction calculation is performed for all pixels in the cell.
  • the width of each bin is 20 degrees
  • the width of one bin of the histogram corresponds to 20 degrees
  • the 0 degree bin has the number of pixels (count value) in the cell having gradient directions of 0 degrees or more and less than 10 degrees and 170 degrees or more and less than 180 degrees. Is set.
  • the number of pixels (count value) in the cell having a gradient direction of 10 degrees or more and less than 30 degrees is set.
  • bin count values of 40 degrees, 60 degrees, 80 degrees, 100 degrees, 120 degrees, 140 degrees, and 160 degrees are also set. Since the number of bins in the histogram is 9, the blood vessel traveling direction of the pixel is defined by one of nine types of directions. Note that the resolution in the blood vessel traveling direction can be increased by reducing the width of the bins and increasing the number of bins.
  • the count value in each bin (vertical axis of the histogram) is normalized, and a histogram for the analysis point is created.
  • the image processing unit 182 specifies the blood vessel traveling direction of the analysis point from the histogram. Specifically, the bin having the smallest count value (assuming 60 degrees) is identified, and 60 degrees that is the gradient direction of the identified bin is identified as the blood vessel traveling direction of the pixel.
  • the gradient direction with the smallest count is the blood vessel running direction for the following reason.
  • the luminance gradient is small in the blood vessel traveling direction, while the luminance gradient is large in the other directions (for example, the luminance difference is large between blood vessels and other than blood vessels). Therefore, if a histogram of the luminance gradient of each pixel is created, the bin count value with respect to the blood vessel running direction is reduced.
  • a histogram is created for each pixel in the choroidal blood vessel image, and the blood vessel traveling direction of each pixel is calculated.
  • the calculated blood vessel running direction of each pixel is stored in the memory 164.
  • the blood vessel traveling direction is an example of the “choroidal vascular structure” in the technology of the present disclosure.
  • step 228, the image processing unit 182 acquires the blood vessel traveling direction at the first position (any one of the L positions), moves the virtual particles by a predetermined distance along the acquired blood vessel traveling direction, and the moved position. Then, the blood vessel traveling direction is acquired again, and the virtual particles are moved by a predetermined distance along the acquired blood vessel traveling direction. In this way, the movement of a predetermined distance along the blood vessel traveling direction is repeated for a preset number of movements.
  • the above processing is executed at all L positions. A point where a predetermined number or more of virtual particles are gathered at the time when the set number of movements is performed for all L virtual particles is determined as a VV candidate.
  • the VV candidate position is stored in the memory 164 as the first VV candidate.
  • FIG. 7 shows a flowchart of the second VV candidate detection processing program.
  • step 234 the image processing unit 182 binarizes the choroidal blood vessel image with a predetermined threshold value, and creates a binarized image shown in FIG.
  • step 236 the image processing unit 182 converts the binarized image into a line image having a width of 1 pixel as shown in FIG.
  • step 2308 the image processing unit 182 identifies blood vessel intersections at which lines intersect, blood vessel branch points at which lines branch, and blood vessel feature points having a characteristic pattern in the line image.
  • FIG. 12 is a white spot distribution diagram, in which blood vessel intersections, blood vessel branch points, and blood vessel feature points are displayed as white points. This white point is set as a VV candidate position.
  • the blood vessel intersection, the blood vessel branch point, and the blood vessel feature point are examples of the “choroidal blood vessel structure” in the technique of the present disclosure.
  • the VV identification process is a process for confirming whether or not the VV candidate detected in step 204 in FIG. 5 is a VV.
  • the image processing unit 182 sets an identification number n for identifying each of the plurality of VV candidates to 1, and in step 254, the image processing unit 182 determines the VV candidate identified by the identification number n. Select.
  • the image processing unit 182 calculates the feature amount of the choroidal vascular image around the VV candidate position using Log-Polar conversion for the VV candidate identified by the identification number n. Specifically, first, image data of a predetermined region including the VV candidate n position is extracted from the choroidal blood vessel image. An image of a predetermined area centered on the pixel corresponding to the VV candidate position is extracted, and Log-Polar conversion is performed on the extracted image.
  • the choroidal blood vessels are running radially around the VV candidate position in the image of the predetermined region including the VV candidate position. That is, as shown in FIG. 14A, the blood vessel has converged to a predetermined position (VV candidate position).
  • VV candidate position VV candidate position
  • one striped pattern Z1 can be formed as shown in FIG. 14B (the pixel value of the striped pattern area is brighter than the other areas).
  • the width of the stripe pattern appearance area is L1
  • the position of the center of the stripe pattern on the ⁇ axis is ⁇ 1.
  • Such a striped pattern feature is defined as being unimodal as shown in FIG. 16A.
  • the image of the predetermined area including the VV candidate position is an image having a plurality of oblique lines, and the blood vessels do not converge.
  • two striped patterns Z2 and Z3 can be formed as shown in FIG. 15B.
  • the width of the appearance area of the stripe pattern Z2 (width in the ⁇ direction) is L2, and similarly the width of the appearance area of the stripe pattern Z3 is L3 (L2 ⁇ L1, L3 ⁇ L1).
  • the positions of the center position of the striped pattern on the ⁇ axis are ⁇ 2 and ⁇ 3, respectively.
  • Such a striped pattern feature is defined as multimodal as shown in FIG. 16C. Note that the bimodality shown in FIG.
  • the Log-Polar transformed image is analyzed to calculate a feature quantity indicating whether it is unimodal or multimodal.
  • Processing for integrating pixel values in the R direction for each ⁇ direction in FIG. 14A or FIG. 15A is performed, and as shown in FIGS. 16A to 16C, a graph is created with the horizontal axis as ⁇ and the vertical axis as the integrated pixel value.
  • a physical quantity representing the shape of this graph is used as a feature quantity.
  • the case where the number of mountains as shown in FIG. 16A is one is unimodal
  • the case where the number of mountains as shown in FIG. 16B is two
  • the number of mountains as shown in FIG. 16C is three or more.
  • One case is called multimodality. For example, the number of peaks, the position on the ⁇ -axis corresponding to the peak of each peak, the width of each peak, and the like are used as feature amounts.
  • the image processing unit 182 calculates the identification probability of the VV candidate based on the feature amount.
  • the image in which the choroidal blood vessels are traveling radially from the center position as shown in FIG. 14A shows unimodality by Log-Polar conversion. Becomes higher.
  • an image composed of diagonal lines as shown in FIG. 15A exhibits multimodality by Log-Polar conversion, and thus the identification probability is low.
  • the identification probability can be obtained by analyzing the graph shapes of FIGS. 16A to 16C which are feature amounts.
  • the image processing unit 182 determines whether or not the obtained identification probability is larger than a reference probability (a probability indicating a threshold, for example, a probability of 50%).
  • step 262 the image processing unit 182 identifies that the VV candidate identified by the identification number n is VV, and VV corresponding to n VV flag information indicating that If it is determined that the identification probability is smaller than the reference probability, the image processing unit 182 identifies in step 264 that the VV candidate identified by the identification number n is not a VV, and VV corresponding to n Non-VV flag information indicating that it is not.
  • step 266 the image processing unit 182 determines whether or not the above processing (steps 254 to 266) has been completed for all VV candidates by determining whether or not the identification number n is the total number N of VV candidates. To do. If it is not determined that the above processing (steps 254 to 266) has been completed for all VV candidates, the image processing unit 182 increments the identification number n by 1 in step 268. Thereafter, the VV identification process returns to step 254. When it is determined that the above processing (steps 254 to 266) has been completed for all VV candidates, the VV identification processing ends.
  • the management server 140 has content data (image data and various data) to be displayed on the following choroidal blood vessel analysis mode screen.
  • image data of a fundus image (first fundus image (R color fundus image) and second fundus image (G color fundus image)) is transmitted from the ophthalmic apparatus 110 to the management server 140 for management.
  • the server 140 has image data of fundus images (first fundus image (R color fundus image) and second fundus image (G color fundus image)).
  • the management server 140 includes image data of the choroidal blood vessel image (see FIG. 8), image data of the image (see FIG. 10) in which the position of the VV verified as VV is superimposed on the fundus image, the position of the VV, the number of VVs, It has VV arrangement pattern data.
  • the patient's personal information is input to the ophthalmologic apparatus 110.
  • the personal information includes the patient ID, name, age, visual acuity, and the like.
  • information indicating whether the eye for photographing the fundus is the right eye or the left eye is also input.
  • the photographing date and time is also input.
  • personal information, right eye / left eye information, and shooting date / time data are transmitted from the ophthalmic apparatus 110 to the management server 140.
  • the management server 140 has personal information, right eye / left eye information, and shooting date / time data.
  • the axial length of the patient is measured by the axial length measuring device 120, and the data of the axial length of the patient corresponding to the patient ID is also transmitted from the axial length measuring device 120 to the management server 140 for management.
  • the server 140 has data on the axial length.
  • the management server 140 has content data to be displayed on the above choroidal blood vessel analysis mode screen.
  • the ophthalmologist When an ophthalmologist diagnoses a patient, he or she makes a diagnosis while looking at the display screen of the choroidal blood vessel analysis mode displayed on the image viewer 150. In that case, the ophthalmologist transmits a display request for the choroidal blood vessel analysis mode screen via the image viewer 150 to the management server 140 through a menu screen (not shown).
  • the display control unit 184 of the management server 140 that has received the request creates a display screen of the choroidal blood vessel analysis mode in the image viewer 150 using the content data of the designated patient ID, and the processing unit 186 Send image data.
  • the processing unit 186 is an example of the “output unit” of the technology of the present disclosure.
  • the image viewer 150 that has received the image data of the choroidal vessel analysis mode display screen displays the choroidal vessel analysis mode display screen 300 shown in FIG. 17 on the display of the image viewer 150.
  • the display screen 300 in the choroidal blood vessel analysis mode shown in FIG. 17 will be described.
  • the choroidal blood vessel analysis mode display screen 300 includes a personal information display field 302 for displaying personal information of a patient, an image display field 320, and a choroid analysis tool display field 330.
  • the personal information display field 302 includes a patient ID display field 304, a patient name display field 306, an age display field 308, an axial length display field 310, a visual acuity display field 312, and a patient selection icon 314.
  • Each information is displayed in a patient ID display field 304, a patient name display field 306, an age display field 308, an axial length display field 310, and a visual acuity display field 312.
  • the patient selection icon 314 is clicked, a patient list is displayed on the display 172 of the image viewer 150, and a user (such as an ophthalmologist) is selected for analysis.
  • the image display column 320 includes an imaging date display column 322N1, a right eye information display column 324R, a left eye information display column 324L, an RG image display column 326, a choroidal blood vessel image display column 328, and an information display column 342.
  • the RG image is composed of the first fundus image (R color fundus image) and the second fundus image (G color fundus image) at a predetermined ratio (for example, 1: 1) of each pixel value. It is an image obtained by this.
  • the choroid analysis tool display field 330 includes a plurality of choroid analysis tools that instruct the image viewer 150 to perform processing, such as a vortex vein position icon 332, a symmetry icon 334, a blood vessel diameter icon 336, and a vortex vein / macular / papillae icon 338. , And a choroid analysis report icon 340.
  • the vortex vein position icon 332 instructs to specify the vortex vein position.
  • Symmetry icon 334 indicates that the symmetry of the vortex vein is to be analyzed.
  • the blood vessel diameter icon 336 instructs to execute a tool for analyzing the diameter of the choroid blood vessel.
  • the vortex vein / macular / papillae icon 338 directs analysis of the location between the vortex vein, the macula, and the optic disc.
  • the choroid analysis report icon 340 instructs to display the choroid analysis report.
  • An icon or button for instructing generation of an image to be described later is displayed on the display screen to be described later of the image viewer 150.
  • a user such as an ophthalmologist
  • clicks an icon or the like an instruction signal corresponding to the clicked icon or the like is transmitted from the image viewer 150 to the management server 140.
  • the management server 140 that has received the instruction signal from the image viewer 150 generates an image corresponding to the instruction signal, and transmits the image data of the generated image to the image viewer 150.
  • the image viewer 150 that has received the image data from the management server 140 displays an image on the display 172 based on the received image data.
  • the display screen generation processing in the management server 140 is performed by a display screen generation program operating on the CPU 162.
  • the display screen is changed to a display screen for displaying information related to the vortex vein shown in FIG.
  • the image viewer 150 sets the position of VV on the RG image in the RG image display field 326 and the choroidal blood vessel image in the choroidal blood vessel image display field 328 based on the position of VV.
  • ⁇ (rectangles) 326S and 328S with the center are displayed.
  • only the RG image or the choroidal blood vessel image may be displayed, and ⁇ (rectangle) may be displayed on the displayed image based on the position of VV.
  • the choroidal blood vessel images in which ⁇ (rectangles) 326S and 328S are displayed in the choroidal blood vessel image display field 328 are examples of the “vortex vein position superimposed fundus image” of the technique of the present disclosure. It is an example of the “mark” of the technology of the present disclosure.
  • the image viewer 150 displays the number of VVs of 3 and the type of VV arrangement type A in the information display column 342 based on the number of VVs and the VV position pattern.
  • an identification probability display icon 346 and an enlarged icon 348 are displayed.
  • the VV arrangement pattern may be estimated in consideration of not only the number and position of the actually detected vortex veins (VV) but also a portion that is hidden behind the eyelid and is not photographed.
  • the display screen is changed to reflect the identification probability for each VV shown in FIG. As illustrated in FIG. 19, the image viewer 150 displays identification probabilities (for example, 95%, 80%, and 50%) that the VV candidate is VV in ⁇ (rectangles) 326S and 328S.
  • the image viewer 150 additionally displays in the information display field 342 the number of VVs is 3 and the text “calculate identification probability based on Log-Polar processing result”.
  • the position of the vortex vein is detected from the choroidal blood vessel image, and the mark indicating the position of the vortex vein is superimposed and displayed on the choroidal blood vessel image.
  • an ultra wide-angle UWF-SLO image in the range of 200 degrees or more from the center of the eyeball can be obtained by an SLO unit using a wide-angle optical system.
  • the UWF-SLO image it is possible to detect eddy veins existing near the equator of the eyeball.
  • the feature amount calculation (step 256 in FIG. 13) in the above embodiment may be determined by AI (Artificial Intelligence). You may make it identify the striped pattern which is not explicit in forms, such as a hidden layer structure, using methods, such as deep learning.
  • AI Artificial Intelligence
  • the management server 140 executes the image processing program shown in FIG. 5 in advance, but the technology of the present disclosure is not limited to this. For example, it may be as follows.
  • the management server 140 executes steps 202 and 204 of the image processing program of FIG. 5 to display the display screen of FIG.
  • the identification probability display icon 346 is clicked, the image viewer 150 transmits a command for calculating the identification probability to the management server 140.
  • the management server 140 executes steps 206 and 208 in FIG. 5 to display the display screen in FIG.
  • the ophthalmologic apparatus 110 acquires a fundus image having an internal light irradiation angle of about 200 degrees.
  • the technique of the present disclosure is not limited to this, and may be a fundus image captured by an ophthalmologic apparatus having an internal irradiation angle of 100 degrees or less, or may be applied to a montage image obtained by combining a plurality of fundus images. .
  • the fundus image is captured by the ophthalmologic apparatus 110 including the SLO imaging unit.
  • the fundus image may be obtained by a fundus camera capable of capturing choroidal blood vessels, or an image obtained by OCT angiography is also disclosed in the present disclosure. The technique may be applied.
  • the management server 140 executes the image processing program.
  • the technology of the present disclosure is not limited to this.
  • the ophthalmologic apparatus 110 or the image viewer 150 may execute the image processing program.
  • the ophthalmologic system 100 including the ophthalmologic apparatus 110, the axial length measuring device 120, the management server 140, and the image viewer 150 has been described as an example, but the technology of the present disclosure is not limited thereto.
  • the ocular axial length measuring device 120 may be omitted, and the ophthalmic apparatus 110 may further have the function of the axial axial length measuring device 120.
  • the ophthalmologic apparatus 110 may further have at least one function of the management server 140 and the image viewer 150.
  • the management server 140 can be omitted.
  • the image processing program is executed by the ophthalmologic apparatus 110 or the image viewer 150.
  • the image viewer 150 can be omitted.
  • the management server 140 may be omitted, and the image viewer 150 may execute the function of the management server 140.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Eye Examination Apparatus (AREA)
  • Image Processing (AREA)

Abstract

眼底画像から渦静脈位置を検出する。 画像処理方法は、眼底画像から脈絡膜血管構造を解析するステップと、脈絡膜血管構造に基づいて、渦静脈位置を検出するステップとを有する。

Description

画像処理方法、プログラム、画像処理装置、及び眼科システム
 本開示の技術は、画像処理方法、プログラム、画像処理装置、及び眼科システムに関する。
 特開平8-71045号公報には、脈絡膜血管の動脈と静脈を異なる色で表示する技術が開示されている。
 本開示の技術の第1の態様の画像処理方法は、眼底画像から脈絡膜血管構造を解析するステップと、前記血管構造に基づいて、渦静脈位置を検出するステップと、を含む。
 本開示の技術の第2の態様の画像処理装置は、眼底画像から脈絡膜血管構造を解析し、前記血管構造に基づいて、渦静脈位置を検出する画像処理部を有する。
 本開示の技術の第3の態様のプログラムは、コンピュータに、第1の態様の画像処理方法を実行させる。
 本開示の技術の第4の態様の眼科システムは、眼底画像から脈絡膜血管構造を解析し、前記血管構造に基づいて、渦静脈位置を検出する画像処理部を含むサーバと、前記眼底画像上に、前記渦静脈位置を示すマークを重畳表示した渦静脈位置重畳眼底画像を表示するビューワと、を備えている。
 本開示の技術の第5の態様の画像処理方法は、脈絡膜血管画像を生成するステップと、前記脈絡膜血管画像を解析し、渦静脈の位置を検出するステップと、を含む。
 本開示の技術の第6の態様の画像処理装置は、脈絡膜血管画像を生成し、前記脈絡膜血管画像を解析し渦静脈の位置を検出する画像処理部と、前記渦静脈の位置を示すマークを前記脈絡膜血管画像に重畳した渦静脈位置重畳眼底画像を生成する表示制御部と、渦静脈位置重畳眼底画像を出力する出力部と、を備える。
眼科システム100のブロック図である。 眼科装置110の全体構成を示す概略構成図である。 管理サーバ140の電気系の構成のブロック図である。 管理サーバ140のCPU162の機能のブロック図である。 画像処理プログラムのフローチャートである。 第1のVV候補検出処理プログラムのフローチャートである。 第2のVV候補検出処理プログラムのフローチャートである。 脈絡膜血管画像を示す図である。 VVとして検証されたVVの位置を眼底画像に重畳表示した画像を示す図である。 脈絡膜血管画像の2値化画像を示す図である。 2値化画像の線画像を示す図である。 脈絡膜血管の分岐点を示す図である。 VV識別処理プログラムのフローチャートである。 VVの様子を示す図である。 VVの場合のLog-Polar処理結果を示す図である。 VVでない様子を示す図である。 VVでない場合のLog-Polar処理結果を示す図である。 図14Aあるいは図15Aのθ方向毎にR方向の画素値を積算する処理を行い、横軸をθ、縦軸を積算画素値として作成した第1のグラフである。 図14Aあるいは図15Aのθ方向毎にR方向の画素値を積算する処理を行い、横軸をθ、縦軸を積算画素値として作成した第2のグラフである。 図14Aあるいは図15Aのθ方向毎にR方向の画素値を積算する処理を行い、横軸をθ、縦軸を積算画素値として作成した第3のグラフである。 脈絡膜血管解析モードの表示画面300を示す図である。 図17の表示画面で、渦静脈位置アイコン332をクリックされた場合に表示される表示画面である。 図18の表示画面で、識別確率表示アイコン346がクリックされた場合に表示される表示画面である。 図18の表示画面で、拡大アイコン348がクリックされた場合に表示される表示画面である。
 以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、以下では、説明の便宜上、走査型レーザ検眼鏡(Scanning Laser Ophthalmoscope)を「SLO」と称する。
 図1を参照して、眼科システム100の構成を説明する。図1に示すように、眼科システム100は、眼科装置110と、眼軸長測定器120と、管理サーバ装置(以下、「管理サーバ」という)140と、画像表示装置(以下、「画像ビューワ」という)150と、を備えている。眼科装置110は、眼底画像を取得する。眼軸長測定器120は、患者の眼軸長を測定する。管理サーバ140は、眼科装置110によって複数の患者の眼底が撮影されることにより得られた複数の眼底画像及び眼軸長を、患者のIDに対応して記憶する。画像ビューワ150は、管理サーバ140により取得した眼底画像を表示する。
 管理サーバ140は、本開示の技術の「サーバ」の一例である。画像ビューワ150は、本開示の技術の「ビューワ」の一例である。
 眼科装置110、眼軸長測定器120、管理サーバ140、画像ビューワ150は、ネットワーク130を介して、相互に接続されている。
 なお、他の眼科機器(OCT(Optical Coherence Tomography)測定、視野測定、眼圧測定などの検査機器)や人工知能を用いた画像解析を行う診断支援装置がネットワーク130を介して、眼科装置110、眼軸長測定器120、管理サーバ140、及び画像ビューワ150に接続されていてもよい。
 次に、図2を参照して、眼科装置110の構成を説明する。図2に示すように、眼科装置110は、制御ユニット20、表示/操作ユニット30、及びSLOユニット40を備え、被検眼12の後眼部(眼底)を撮影する。さらに、眼底のOCTデータを取得する図示せぬOCTユニットを備えていてもよい。
 制御ユニット20は、CPU22、メモリ24、及び通信インターフェース(I/F)26等を備えている。表示/操作ユニット30は、撮影されて得られた画像を表示したり、撮影の指示を含む各種指示を受け付けたりするグラフィックユーザインターフェースであり、ディスプレイ32及びタッチパネルなどの入力/指示デバイス34を備えている。
 SLOユニット40は、G光(緑色光:波長530nm)の光源42、R光(赤色光:波長650nm)の光源44、IR光(赤外線(近赤外光):波長800nm)の光源46を備えている。光源42、44、46は、制御ユニット20により命令されて、各光を発する。
 SLOユニット40は、光源42、44、46からの光を、反射又は透過して1つの光路に導く光学系50、52、54、56を備えている。光学系50、56は、ミラーであり、光学系52、54は、ビームスプリッタ―である。G光は、光学系50、54で反射し、R光は、光学系52、54を透過し、IR光は、光学系52、56で反射して、それぞれ1つの光路に導かれる。
 SLOユニット40は、光源42、44、46からの光を、被検眼12の後眼部(眼底)に渡って、2次元状に走査する広角光学系80を備えている。SLOユニット40は、被検眼12の後眼部(眼底)からの光の内、G光を反射し且つG光以外を透過するビームスプリッタ58を備えている。SLOユニット40は、ビームスプリッタ58を透過した光の内、R光を反射し且つR光以外を透過するビームスプリッタ60を備えている。SLOユニット40は、ビームスプリッタ60を透過した光の内、IR光を反射するビームスプリッタ62を備えている。SLOユニット40は、ビームスプリッタ58により反射したG光を検出するG光検出素子72、ビームスプリッタ60により反射したR光を検出するR光検出素子74、及びビームスプリッタ62により反射したIR光を検出するIR光検出素子76を備えている。
 広角光学系80は、光源42、44、46からの光を、X方向に走査するポリゴンミラーで構成されたX方向走査装置82、Y方向に走査するガルバノミラーで構成されたY方向走査装置84、及び、図示しないスリットミラーおよび楕円鏡を含み、走査された光を、広角にする光学系86を備えている。光学系86により、眼底の視野角(FOV:Field of View)を従来の技術より大きな角度とし、従来の技術より広範囲の眼底領域を撮影することができる。具体的には、被検眼12の外部からの外部光照射角で約120度(被検眼12の眼球の中心Oを基準位置として、被検眼12の眼底が走査光により照射されることで実質的に撮影可能な内部光照射角で、200度程度)の広範囲の眼底領域を撮影することができる。光学系86は、スリットミラーおよび楕円鏡に代えて、複数のレンズ群を用いた構成でもよい。X方向走査装置82及びY方向走査装置84の各走査装置はMEMSミラーを用いて構成された二次元スキャナを用いてもよい。
 光学系86としてスリットミラーおよび楕円鏡を含むシステムを用いる場合には、国際出願PCT/JP2014/084619や国際出願PCT/JP2014/084630に記載された楕円鏡を用いたシステムを用いる構成でもよい。2014年12月26日に国際出願された国際出願PCT/JP2014/084619(国際公開WO2016/103484)の開示及び2014年12月26日に国際出願された国際出願PCT/JP2014/084630(国際公開WO2016/103489)の開示の各々は、その全体が参照により本明細書に取り込まれる。
 なお、眼科装置110が水平面に設置された場合の水平方向を「X方向」、水平面に対する垂直方向を「Y方向」とし、被検眼12の前眼部の瞳孔の中心と眼球の中心とを結ぶ方向を「Z方向」とする。従って、X方向、Y方向、およびZ方向は互いに垂直である。
 カラー眼底画像は、G光及びR光で同時に被検眼12の眼底が撮影されることにより、得られる。より詳細には、制御ユニット20が、同時に発光するように光源42、44を制御し、被検眼12の眼底に渡って、広角光学系80によりG光及びR光が走査される。そして、被検眼12の眼底から反射されたG光がG光検出素子72により検出され、第2眼底画像(G色眼底画像)の画像データが眼科装置110のCPU22により生成される。同様に、被検眼12の眼底から反射されたR光がR光検出素子74により検出され、第1眼底画像(R色眼底画像)の画像データが、眼科装置110のCPU22により生成される。また、IR光が照射された場合は、被検眼12の眼底から反射されたIR光がIR光検出素子76により検出され、IR眼底画像の画像データが眼科装置110のCPU22により生成される。
 眼科装置110のCPU22により、第1眼底画像(R色眼底画像)と第2眼底画像(G色眼底画像)とを所定の比率で混合し、カラー眼底画像として、ディスプレイ32に表示する。なお、カラー眼底画像ではなく、第1眼底画像(R色眼底画像)、第2眼底画像(G色眼底画像)、あるいは、IR眼底画像を表示するようにしてもよい。
 第1眼底画像(R色眼底画像)の画像データ、第2眼底画像(G色眼底画像)の画像データ、IR眼底画像の画像データは、通信IF166を介して眼科装置110から管理サーバ140へ送付される。各種眼底画像は脈絡膜血管画像の生成に利用される。
 図1の眼軸長測定器120は、被検眼12の眼軸方向(Z方向)の長さである眼軸長を測定する第1のモードと第2のモードとの2つのモードを有する。第1のモードは、図示しない光源からの光を被検眼12に導光した後、眼底からの反射光と角膜からの反射光との干渉光を受光し、受光した干渉光を示す干渉信号に基づいて眼軸長を測定する。第2のモードは、図示しない超音波を用いて眼軸長を測定するモードである。眼軸長測定器120は、第1のモード又は第2のモードにより測定された眼軸長を管理サーバ140に送信する。第1のモード及び第2のモードにより眼軸長を測定してもよく、この場合には、双方のモードで測定された眼軸長の平均を眼軸長として管理サーバ140に送信する。眼軸長は患者のデータの一つとして管理サーバ140に患者情報として保存されるとともに、眼底画像解析にも利用される。
 次に、図3を参照して、管理サーバ140の構成を説明する。図3に示すように、管理サーバ140は、制御ユニット160、及び表示/操作ユニット170を備えている。制御ユニット160は、CPU162を含むコンピュータ、記憶装置であるメモリ164、及び通信インターフェース(I/F)166等を備えている。なお、メモリ164には、画像処理プログラムが記憶されている。表示/操作ユニット170は、画像を表示したり、各種指示を受け付けたりするグラフィックユーザインターフェースであり、ディスプレイ172及びタッチパネルなどの入力/指示デバイス174を備えている。
 画像ビューワ150の構成は、管理サーバ140と同様であるので、その説明を省略する。
 次に、図4を参照して、管理サーバ140のCPU162が画像処理プログラムを実行することで実現される各種機能について説明する。画像処理プログラムは、画像処理機能、表示制御機能、及び処理機能を備えている。CPU162がこの各機能を有する画像処理プログラムを実行することで、CPU162は、図4に示すように、画像処理部182、表示制御部184、及び処理部186として機能する。
 次に、図5を用いて、管理サーバ140による画像処理を詳細に説明する。管理サーバ140のCPU162が画像処理プログラムを実行することで、図5のフローチャートに示された画像処理方法が実現される。
 画像処理プログラムは、管理サーバ140が、眼科装置110で撮影された眼底画像の画像データに基づいて脈絡膜血管画像を生成した時に実行される。
 脈絡膜血管画像は以下のようにして生成される。
 まず、第1眼底画像(R色眼底画像)と第2眼底画像(G色眼底画像)とに含まれる情報を説明する。
 眼の構造は、硝子体を、構造が異なる複数の層が覆うようになっている。複数の層には、硝子体側の最も内側から外側に、網膜、脈絡膜、強膜が含まれる。R光は、網膜を通過して脈絡膜まで到達する。よって、第1眼底画像(R色眼底画像)には、網膜に存在する血管(網膜血管)の情報と脈絡膜に存在する血管(脈絡膜血管)の情報とが含まれる。これに対し、G光は、網膜までしか到達しない。よって、第2眼底画像(G色眼底画像)には、網膜に存在する血管(網膜血管)の情報のみが含まれる。
 管理サーバ140の画像処理部182は、ブラックハットフィルタ処理を第2眼底画像(G色眼底画像)に施すことにより、第2眼底画像(G色眼底画像)から網膜血管を抽出する。次に、画像処理部182は、第1眼底画像(R色眼底画像)から、第2眼底画像(G色眼底画像)から抽出した網膜血管を用いてインペインティング処理により、網膜血管を除去する。つまり、第2眼底画像(G色眼底画像)から抽出された網膜血管の位置情報を用いて第1眼底画像(R色眼底画像)の網膜血管構造を周囲の画素と同じ値に塗りつぶす処理を行う。そして、画像処理部182は、網膜血管が除去された第1眼底画像(R色眼底画像)の画像データに対し、適応ヒストグラム均等化処理(CLAHE、Contrast Limited Adaptive Histogram Equalization)を施すことにより、第1眼底画像(R色眼底画像)において、脈絡膜血管を強調する。これにより、図8に示す脈絡膜血管画像が得られる。生成された脈絡膜血管画像はメモリ164に記憶される。
 また、第1眼底画像(R色眼底画像)と第2眼底画像(G色眼底画像)から脈絡膜血管画像を生成しているが、画像処理部182は、第1眼底画像(R色眼底画像)R色眼底画像あるはIR光で撮影されたIR眼底画像を用いて脈絡膜血管画像を生成してもよい。脈絡膜眼底画像を生成する方法について、2018年3月20日に出願された特願2018-052246の開示は、その全体が参照により、本明細書に取り込まれる。
 画像処理プログラムがスタートすると、図5のステップ202で、画像処理部182は、脈絡膜血管画像(図8参照)をメモリ164から読み出す。
 ステップ204で、画像処理部182は、脈絡膜血管画像において渦静脈(Vortex Vein(以下、「VV」という))候補を検出する。ステップ204の処理の詳細は後述する。ここで、渦静脈VVとは、脈絡膜に流れ込んだ血流の流出路であり、眼球の赤道部の後極寄りに4から6個存在する。
 ステップ206で、画像処理部182は、VV候補に対し、VV候補がVVなのかを示す識別確率を算出し識別フラグ(VVフラグ/非VVフラグ)を設定するVV識別処理(詳細は後述)を実行する。ステップ206の処理の詳細は後述する。
 ステップ208で、画像処理部182は、VVの個数を特定するとともに、VV配置パターン(複数のVVの配置(configuration))を特定する。VV配置パターンとは、複数のVV位置が眼底上にどのような位置に配置しているのかを示す情報である。VVが4つの場合は、脈絡膜血管画像においては図9に示すように四隅にVVが存在する場合が多い。図9において、246N1、246N2、246N3、246N4はVV位置を特定するための枠を示している。
 ステップ210で、処理部186は、VVの個数、VVの位置情報(脈絡膜血管画像におけるVV位置を示す座標であり、それぞれのVVごとの座標が保存される)、VV配置パターン、識別フラグ(VVフラグ/非VVフラグ)、識別確率を含むデータをメモリ164に保存する。これらのデータは後述する脈絡膜解析モードの表示画面の作成に用いられる。
 次に、ステップ204の処理の詳細を説明する。ステップ204の処理としては、図6に示す第1のVV候補検出処理で検出されたVVをVV候補とする。図6には、第1のVV候補検出処理プログラムのフローチャートが示されている。
 ステップ224で、画像処理部182は、脈絡膜血管画像における各画素の血管走行方向を求める。具体的には、画像処理部182は、全ての画素に対して、下記の処理を繰り返す。即ち、画像処理部182は、画素を中心とした周囲の複数の画素で構成される領域(セル)を設定する。そして、セルの各画素における輝度の勾配方向(0度以上から180度未満の角度で示される。なお、0度は直線(水平線)の方向と定義する。)を、計算対象画素の周囲の画素の輝度値に基づいて計算する。この勾配方向の計算をセル内のすべての画素に対して行う。
 次に、勾配方向が0度、20度、40度、60度、80度、100度、120度、140度、160度の9つのビン(各ビンの幅が20度)があるヒストグラムを作成するため、各ビンに対応する勾配方向のセル内の画素数をカウントする。ヒストグラムの1つのビンの幅は20度に相当し、0度のビンには、0度以上10度未満と170度以上180度未満の勾配方向を持つ、セル内の画素数(カウント値)が設定される。20度のビンは、10度以上30度未満の勾配方向を持つ、セル内の画素数(カウント値)が設定される。同様に、40度、60度、80度、100度、120度、140度、160度のビンのカウント値も設定される。ヒストグラムのビンの数が9であるので、画素の血管走行方向は9種類の方向の何れかで定義される。なお、ビンの幅を狭くし、ビンの数を多くすることにより、血管走行方向の分解能を上げることができる。各ビンにおけるカウント値(ヒストグラムの縦軸)は規格化がなされ、解析点に対するヒストグラムが作成される。
 次に、画像処理部182は、ヒストグラムから、解析点の血管走行方向を特定する。具体的には、最もカウント値の小さい角度(60度であるとする)のビンを特定し、特定されたビンの勾配方向である60度を画素の血管走行方向と特定する。なお、最もカウントが少なかった勾配方向が血管走行方向であるとなるのは、次の理由からである。血管走行方向には輝度勾配が小さく、一方、それ以外の方向には輝度勾配が大きい(例えば、血管と血管以外のものでは輝度の差が大きい)。したがって、各画素の輝度勾配のヒストグラムを作成すると、血管走行方向に対するビンのカウント値が少なくなる。同様にして、脈絡膜血管画像における各画素に対してヒストグラムを作成し、各画素の血管走行方向を算出する。算出された各画素の血管走行方向はメモリ164に記憶される。
 なお、血管走行方向は、本開示の技術の「脈絡膜血管構造」の一例である。
 ステップ226で、画像処理部182は、脈絡膜血管画像上に等間隔に、縦方向にM個、横方向にN個、合計L個の仮想の粒子の初期位置を設定する。例えば、M=10、N=50、であり、合計L=500個の初期位置を設定する。
 ステップ228で、画像処理部182は、最初の位置(L個の何れか)の血管走行方向を取得し、取得した血管走行方向に沿って所定距離だけ、仮想の粒子を移動させ、移動した位置において、再度、血管走行方向を取得し、取得した血管走行方向に沿って所定距離だけ、仮想の粒子を移動させる。このように血管走行方向に沿って所定距離移動させることを予め設定した移動回数、繰り返す。
 以上の処理を、L個の全ての位置において実行する。L個すべての仮想の粒子に対して設定した移動回数行った時点で、仮想の粒子が一定個数以上集まっている点をVV候補とする。VV候補位置は、第1のVV候補としてメモリ164に記憶される。
 図6で説明した第1のVV候補検出処理に変えて、図7に示す第2のVV候補検出処理を用いてもよい。図7には、第2のVV候補検出処理プログラムのフローチャートが示されている。
 ステップ234で、画像処理部182は、脈絡膜血管画像を、所定の閾値で、2値化し、図10に示す2値化画像を作成する。ステップ236で、画像処理部182は、2値化画像に対し細線化処理を施すことにより、図11に示す幅が1ピクセルの線画像に変換して、太さ情報を消去する。
 ステップ238で、画像処理部182は、線画像において、図12に示すように、線が交差する血管交差点、線が分岐する血管分岐点、特徴的なパターンを有する血管特徴点を特定する。図12は白点分布図であり、血管交差点、血管分岐点、血管特徴点が白点で表示されている。この白点をVV候補位置とする。
 なお、血管交差点、血管分岐点、血管特徴点は、本開示の技術の「脈絡膜血管構造」の一例である。
 次に、図13を参照して、図5のステップ206のVV識別処理を説明する。VV識別処理は、図5のステップ204で検出されたVV候補がVVであるか確かめる処理である。図13のステップ252で、画像処理部182は、複数のVV候補の各々を識別する識別番号nを1にセットし、ステップ254で、画像処理部182は、識別番号nにより識別されるVV候補を選択する。
 ステップ256で、画像処理部182は、識別番号nにより識別されるVV候補について、Log-Polar変換を用いて、VV候補位置周辺の脈絡膜血管画像の特徴量を算出する。具体的には、まず、VV候補n位置を含む所定領域の画像データを脈絡膜血管画像から抽出する。VV候補位置に相当する画素を中心とした所定領域の画像を抽出し、抽出された画像に対してLog-Polar変換を行う。
 VV候補nが真のVVであれば、VV候補位置を含む所定領域の画像は、VV候補位置を中心として放射状に脈絡膜血管が走行している。つまり、図14Aに示すように、血管が所定位置(VV候補位置)に収束している。このような放射状に血管が走行している画像をLog-Polar変換すると、図14Bのように縞模様Z1が1つできる(縞模様の領域の画素値は他の領域より明るい値を示す)。縞模様の出現領域の幅(縞模様のθ方向の幅)はL1となり、縞模様の中心のθ軸上の位置はθ1となる。このような縞模様の特徴を、図16Aに示す単峰性であると定義する。
 これに対し、VV候補が真のVVでなければ、図15Aに示すように、VV候補位置を含む所定領域の画像は、斜めの線が複数ある画像となり、血管は収束しない。このような斜め線からなる画像をLog-Polar変換すると、図15Bのように縞模様Z2と縞模様Z3が2つできる。縞模様Z2の出現領域の幅(θ方向の幅)はL2、同様に縞模様Z3の出現領域の幅はL3(L2<L1、L3<L1)となる。縞模様の中心位置のθ軸上の位置はそれぞれ、θ2とθ3となる。このような縞模様の特徴を、図16Cに示す多峰性であると定義する。なお、図16Bに示す双峰性の場合もある。
 本ステップ256では、Log-Polar変換された画像を解析し単峰性であるか多峰性であるかを示す特徴量を算出する。図14Aあるいは図15Aのθ方向毎にR方向の画素値を積算する処理を行い、図16Aから図16Cに示すように、横軸をθ、縦軸を積算画素値としたグラフを作成する。このグラフの形状を表す物理量を特徴量とする。図16Aのような山の数が1つである場合を単峰性、図16Bのような山の数が2つである場合を双峰性、図16Cのような山の数が3以上である場合を多峰性という。例えば、山の数、各山のピークに対応するθ軸上の位置、各山の幅などを特徴量とする。
 ステップ258で、画像処理部182は、この特徴量に基づいて、VV候補の識別確率を算出する。VV候補の識別確率は、上記特徴量により定まる。例えば、山の数をn、各山のピークに対応するθ軸上の位置をθ、各山の幅をWとすると、VV候補の識別確率Pは、n、θ、Wの関数f(n、θ、W)で表される。即ち、
P=f(n、θ、W)
である。
 上述したように、図14Aのような中心位置から放射状に脈絡膜血管が走行している画像は、Log-Polar変換により単峰性を示すことから、特徴量が単峰性を示す場合は識別確率が高くなる。また、図15Aのような斜め線からなる画像は、Log-Polar変換により多峰性を示すことから、識別確率は低くなる。また、同じ単峰性でも鋭い山の形状(山の幅が狭い)であれば緩やかな山形状(山の幅が広い)より識別確率は高くなる。よって、特徴量である図16Aから図16Cのグラフ形状を解析することにより、識別確率を求めることができる。
 ステップ260で、画像処理部182は、求められた識別確率が基準確率(閾値を示す確率であり、例えば確率50%)より大きいか否かを判断する。
 識別確率が基準確率より大きいと判断された場合には、ステップ262で、画像処理部182は、識別番号nにより識別されるVV候補は、VVであると識別して、nに対応してVVであることを示すVVフラグ情報を付与する。識別確率が基準確率より小さいと判断された場合には、ステップ264で、画像処理部182は、識別番号nにより識別されるVV候補は、VVではないと識別して、nに対応してVVでないことを示す非VVフラグ情報を付与する。
 ステップ266で、画像処理部182は、識別番号nが、VV候補の総数Nか否かを判断することにより、全VV候補について以上の処理(ステップ254から266)が終了したか否かを判断する。全VV候補について以上の処理(ステップ254から266)が終了したと判断されなかった場合、ステップ268で、画像処理部182は、識別番号nを1インクリメントする。その後、VV識別処理はステップ254に戻る。全VV候補について以上の処理(ステップ254から266)が終了したと判断された場合、VV識別処理は終了する。
(画像ビューワ150による脈絡膜血管解析モード)
 次に、脈絡膜血管解析モードの表示画面のデータについて説明する。管理サーバ140は、以下の脈絡膜血管解析モード画面に表示させるコンテンツデータ(画像データや各種データ)を有する。
 まず、上記のように、眼科装置110から管理サーバ140には、眼底画像(第1眼底画像(R色眼底画像)及び第2眼底画像(G色眼底画像))の画像データが送信され、管理サーバ140は、眼底画像(第1眼底画像(R色眼底画像)及び第2眼底画像(G色眼底画像))の画像データを有する。管理サーバ140は、脈絡膜血管画像(図8参照)の画像データ、VVとして検証されたVVの位置を眼底画像に重畳表示した画像(図10参照)の画像データ、VVの位置、VVの個数、VV配置パターンのデータを有する。
 また、患者の眼底が撮影される際には、眼科装置110には、患者の個人情報が入力される。個人情報には、患者のID、氏名、年齢、及び視力等が含まれる。また、患者の眼底が撮影される際には、眼底が撮影される眼は、右眼なのか左眼を示す情報も入力される。更に、患者の眼底が撮影される際には、撮影日時も入力される。眼科装置110から管理サーバ140には、個人情報、右眼・左眼の情報、及び、撮影日時のデータが送信される。管理サーバ140は、個人情報、右眼・左眼の情報、及び、撮影日時のデータを有する。
 更に、眼軸長測定器120により患者の眼軸長が測定され、管理サーバ140には、眼軸長測定器120から、患者IDに対応して患者の眼軸長のデータも送信され、管理サーバ140は、眼軸長のデータを有する。
 以上のように管理サーバ140は、以上の脈絡膜血管解析モード画面に表示させるためのコンテンツデータを有する。
 眼科医が、患者を診断する際に、画像ビューワ150に表示された絡膜血管解析モードの表示画面を見ながら診断を行う。その場合、眼科医は画像ビューワ150を介して、脈絡膜血管解析モード画面の表示要求を図示せぬメニュー画面を通じて管理サーバ140に送信する。当該要求を受信した管理サーバ140の表示制御部184は、画像ビューワ150に、指定された患者IDのコンテンツデータを用いて、脈絡膜血管解析モードの表示画面を作成し、処理部186は、表示画面の画像データを送信する。
 なお、処理部186は、本開示の技術の「出力部」の一例である。
 脈絡膜血管解析モードの表示画面の画像データを受信した画像ビューワ150は、図17に示す脈絡膜血管解析モードの表示画面300を、画像ビューワ150のディスプレイに表示する。
 ここで、図17に示す脈絡膜血管解析モードの表示画面300を説明する。図17に示すように、脈絡膜血管解析モードの表示画面300は、患者の個人情報を表示する個人情報表示欄302、画像表示欄320、及び脈絡膜解析ツール表示欄330を有する。
 個人情報表示欄302は、患者ID表示欄304、患者氏名表示欄306、年齢表示欄308、眼軸長表示欄310、視力表示欄312、及び患者選択アイコン314を有する。患者ID表示欄304、患者氏名表示欄306、年齢表示欄308、眼軸長表示欄310、及び視力表示欄312に、各情報を表示する。なお、患者選択アイコン314がクリックされると、患者一覧を画像ビューワ150のディスプレイ172に表示し、解析する患者をユーザ(眼科医など)に選択させる。
 画像表示欄320は、撮影日付表示欄322N1、右眼情報表示欄324R、左眼情報表示欄324L、RG画像表示欄326、脈絡膜血管画像表示欄328、及び情報表示欄342を有する。なお、RG画像は、第1眼底画像(R色眼底画像)と第2眼底画像(G色眼底画像)とを、各画素値の大きさを所定の割合(例えば、1:1)で合成することにより得られる画像である。
 脈絡膜解析ツール表示欄330は、画像ビューワ150に対して処理を指示する複数の脈絡膜解析ツール、例えば、渦静脈位置アイコン332、対称性アイコン334、血管径アイコン336、渦静脈・黄斑/乳頭アイコン338、及び脈絡膜解析レポートアイコン
340を備える。渦静脈位置アイコン332は、渦静脈位置を特定することを指示する。対称性アイコン334は、渦静脈の対称性を解析することを指示する。血管径アイコン336は、脈絡血管の径を解析するツールを実行することを指示する。渦静脈・黄斑/乳頭
アイコン338は、渦静脈、黄斑、及び視神経乳頭の間の位置を解析することを指示する。脈絡膜解析レポートアイコン340は、脈絡膜解析レポートを表示することを指示する。
 画像ビューワ150の後述する表示画面には、後述する画像を生成することを指示するためのアイコンやボタンが表示されている。ビューワ150のユーザ(眼科医など)がアイコン等をクリックすると、画像ビューワ150から管理サーバ140に、クリックされたアイコン等に対応する指示信号が送信される。画像ビューワ150からの指示信号を受信した管理サーバ140は、指示信号に対応する画像を生成し、生成した画像の画像データを画像ビューワ150に送信する。管理サーバ140から画像データを受信した画像ビューワ150は、受信した画像データに基づいて画像をディスプレイ172に表示する。管理サーバ140での表示画面の生成処理は、CPU162で動作する表示画面生成プログラムによって行われる。
 図17に示す例は、患者ID:123456により識別される患者の右眼の眼底が(324Rのアイコンが点灯)、撮影日が2016年1月1日に撮影された場合のRG画像及び脈絡膜血管画像が表示される。
 図17の脈絡膜解析ツール表示欄330における渦静脈位置アイコン332がクリックされると、図18に示される渦静脈に関する情報を表示する表示画面に変更される。図18に示すように、画像ビューワ150は、VVの位置に基づいて、RG画像表示欄326の中のRG画像と、脈絡膜血管画像表示欄328の中の脈絡膜血管画像とに、VVの位置を中心とした□(矩形)326S、328Sを表示する。なお、図17では、RG画像又は脈絡膜血管画像のみを表示し、VVの位置に基づいて、□(矩形)を、表示された画像に表示してもよい。
 脈絡膜血管画像表示欄328における□(矩形)326S、328Sが表示された脈絡膜血管画像は、本開示の技術の「渦静脈位置重畳眼底画像」の一例であり、□(矩形)326S、328Sは、本開示の技術の「マーク」の一例である。
 また、画像ビューワ150は、VVの個数、VV位置パターンに基づいて、情報表示欄342に、VVの個数が3、VV配置パターンがタイプAを表示する。画像表示欄320には、識別確率表示アイコン346、及び拡大アイコン348が表示される。VV配置パターンは実際に検出された渦静脈(VV)の個数と位置だけでなく、瞼に隠れて撮影されていない部分も考慮して推測されるようにしてもよい。
 識別確率表示アイコン346がクリックされると、図19に示すVVごとに識別確率が反映された表示画面に変更される。図19に示すように、画像ビューワ150は、□(矩形)326S、328Sに、VV候補がVVであることの識別確率(例えば、95%、80%、50%)を表示する。画像ビューワ150は、情報表示欄342に、VVの個数が3であると共に、『Log-Polar処理結果に基づいて、識別確率を算出』というテキストを追加表示する。
 図18の表示画面において、拡大アイコン348がクリックされると、VVを含む領域が拡大された表示画面を表示する。図20に示すように、画像ビューワ150は、□(矩形)328Sがクリックされると、クリックされたVVの部分の拡大画像を、RG画像表示欄326に代えて表示する。
 以上説明したように本実施の形態では、脈絡膜血管画像から渦静脈(VV)位置を検出し、渦静脈位置を示すマークを脈絡膜血管画像上に重畳表示している。
 また、広角光学系を用いたSLOユニットにより、眼球中心からの角度で200度以上の範囲の超広角のUWF-SLO画像を得ることができる。UWF-SLO画像を用いることにより、眼球の赤道付近に存在する渦静脈を検出することができる。
 次に、本開示の技術の種々の変形例を説明する。
<第1の変形例>
 上記実施の形態における図6に示す第1のVV候補検出処理、及び図7に示す第2のVV候補検出処理では、計算負荷低減のため、脈絡膜血管画像全体ではなく、統計的に渦静脈(VV)が存在する確率の高い領域を検出対象領域とするようにしてもよい。
<第2の変形例>
 上記実施の形態における特徴量の算出(図13のステップ256)をAI(Artificial Intelligence)で決定してもよい。深層学習などの方法を用い隠れ層構造などの形で明示的ではない縞模様を特定するようにしてもよい。
<第3の変形例>
 上記実施の形態では、管理サーバ140が、予め図5に示す画像処理プログラムを実行しているが、本開示の技術はこれに限定されない。例えば、次のようにしてもよい。図17に示す渦静脈位置アイコン332がクリックされた場合に、画像ビューワ150が管理サーバ140に渦静脈位置検出の命令を送信する。これに応じて管理サーバ140が、図5の画像処理プログラムのステップ202、204を実行して、図18の表示画面を表示する。更に、識別確率表示アイコン346がクリックされた場合に、画像ビューワ150が管理サーバ140に識別確率を算出する命令を送信する。これに応じて管理サーバ140が、図5のステップ206、208を実行して、図19の表示画面を表示する。
<第4の変形例>
 上記実施の形態では、眼科装置110により内部光照射角が200度程度の眼底画像を取得する例を説明した。本開示の技術はこれに限定されず、内部照射角で100度以下の眼科装置で撮影された眼底画像でもよいし、眼底画像を複数合成したモンタージュ画像でも本開示の技術を適用してもよい。
<第5の変形例>
 上記実施の形態では、SLO撮影ユニットを備えた眼科装置110により眼底画像を撮影しているが、脈絡膜血管を撮影できる眼底カメラによる眼底画像でもよいし、OCTアンジオグラフィーにより得られた画像でも本開示の技術を適用してもよい。
<第6の変形例>
 上記実施の形態では、管理サーバ140が画像処理プログラムを実行する。本開示の技術はこれに限定されない。例えば、眼科装置110又は画像ビューワ150が画像処理プログラムを実行するようにしてもよい。
<第7の変形例>
 上記実施の形態では、眼科装置110、眼軸長測定器120、管理サーバ140、及び画像ビューワ150を備えた眼科システム100を例として説明したが、本開示の技術はこれに限定されない。例えば、第1の例として、眼軸長測定器120を省略し、眼科装置110が、眼軸長測定器120の機能を更に有してもよい。また、第2の例として、眼科装置110が、管理サーバ140及び画像ビューワ150の少なくとも一方の機能を更に有してもよい。例えば、眼科装置110が管理サーバ140の機能を有する場合、管理サーバ140を省略することができる。この場合、画像処理プログラムは、眼科装置110又は画像ビューワ150が実行する。また、眼科装置110が画像ビューワ150の機能を有する場合、画像ビューワ150を省略することができる。第3の例として、管理サーバ140を省略し、画像ビューワ150が管理サーバ140の機能を実行するようにしてもよい。
<その他の変形例>
 上記実施の形態で説明したデータ処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。
 また、上記実施の形態では、コンピュータを利用したソフトウェア構成によりデータ処理が実現される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA(Field-Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)等のハードウェア構成のみによって、データ処理が実行されるようにしてもよい。データ処理のうちの一部の処理がソフトウェア構成により実行され、残りの処理がハードウェア構成によって実行されるようにしてもよい。

Claims (19)

  1.  眼底画像から脈絡膜血管構造を解析するステップと、
     前記脈絡膜血管構造に基づいて、渦静脈位置を検出するステップと、
     を含む画像処理方法。
  2.  前記眼底画像上に、前記渦静脈位置を示すマークを重畳表示した渦静脈位置重畳眼底画像を作成するステップを含むことを特徴とする請求項1に記載の画像処理方法。
  3.  前記脈絡膜血管構造を解析するステップは、
     血管走行方向を解析するステップを含むことを特徴とする請求項1または2に記載の画像処理方法。
  4.  前記脈絡膜血管構造を解析するステップは、
     血管分岐点あるいは血管特徴点を解析するステップを含むことを特徴とする請求項1または2に記載の画像処理方法。
  5.  前記眼底画像は、脈絡膜血管が強調された脈絡膜血管画像であることを特徴とする請求項1から4の何れか1項に記載の画像処理方法。
  6.  検出された渦静脈の個数を特定することを特徴とする請求項1から5の何れか1項に記載の画像処理方法。
  7.  眼底画像から脈絡膜血管構造を解析し、前記脈絡膜血管構造に基づいて、渦静脈位置を検出する画像処理部を有する画像処理装置。
  8.  前記画像処理部は、
     前記眼底画像上に、前記渦静脈位置を示すマークを重畳表示した渦静脈位置重畳眼底画像を作成する、ことを特徴とする請求項7に記載の画像処理装置。
  9.  前記渦静脈位置重畳眼底画像に基づく画像信号を出力する出力部をさらに有する請求項8に記載の画像処理装置。
  10.  コンピュータに、請求項1から請求項6の何れか1項に記載の画像処理方法を実行させるためのプログラム。
  11.  眼底画像から脈絡膜血管構造を解析し、前記脈絡膜血管構造に基づいて、渦静脈位置を検出する画像処理部を含むサーバと、
     前記眼底画像上に、前記渦静脈位置を示すマークを重畳表示した渦静脈位置重畳眼底画像を表示するビューワと、
     を備えた眼科システム。
  12.  さらに被検者の眼底画像を取得する眼科装置と、を有する請求項11に記載の眼科システム。
  13.  前記サーバと前記ビューワはネットワークで接続されていることを特徴とする請求項11又は請求項12に記載の眼科システム。
  14.  前記サーバ、前記ビューワ、及び前記眼科装置はネットワークで接続されていることを特徴とする請求項12に記載の眼科システム。
  15.  脈絡膜血管画像を生成するステップと、
     前記脈絡膜血管画像を解析し、渦静脈の位置を検出するステップと、
     を含む画像処理方法。
  16. 前記渦静脈の位置を示すマークを前記脈絡膜血管画像に重畳した渦静脈位置重畳眼底画像を生成するステップをさらに含むことを特徴とする請求項15に記載の画像処理方法。
  17. 前記脈絡膜血管画像は、超広角の眼底画像を画像処理することにより得られた画像であることを特徴とする請求項15または16の画像処理方法。
  18. 前記脈絡膜血管画像は、赤色光で撮影された第1眼底画像と緑色光で撮影された第2眼底画像とに基づいて生成された画像であることを特徴とする請求項15または16の画像処理方法。
  19.  脈絡膜血管画像を生成し、前記脈絡膜血管画像を解析し渦静脈の位置を検出する画像処理部と、
    前記渦静脈の位置を示すマークを前記脈絡膜血管画像に重畳した渦静脈位置重畳眼底画像を生成する表示制御部と、
     渦静脈位置重畳眼底画像を出力する出力部と、
    を備えた画像処理装置。
PCT/JP2019/016652 2018-04-18 2019-04-18 画像処理方法、プログラム、画像処理装置、及び眼科システム WO2019203309A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112019002021.8T DE112019002021T5 (de) 2018-04-18 2019-04-18 Bildverarbeitungsverfahren, Programm, Bildverarbeitungsvorrichtung und ophthalmologisches System
JP2020514436A JP7279711B2 (ja) 2018-04-18 2019-04-18 画像処理方法、プログラム、画像処理装置、及び眼科システム
CN201980025842.3A CN112004457B (zh) 2018-04-18 2019-04-18 图像处理方法、程序、图像处理装置及眼科系统
CN202410689901.XA CN118505665A (zh) 2018-04-18 2019-04-18 图像处理方法、图像处理装置、存储介质及眼科系统
US17/071,583 US20210022606A1 (en) 2018-04-18 2020-10-15 Image processing method, program, image processing device, and ophthalmic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-080273 2018-04-18
JP2018080273 2018-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/071,583 Continuation US20210022606A1 (en) 2018-04-18 2020-10-15 Image processing method, program, image processing device, and ophthalmic system

Publications (1)

Publication Number Publication Date
WO2019203309A1 true WO2019203309A1 (ja) 2019-10-24

Family

ID=68239731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016652 WO2019203309A1 (ja) 2018-04-18 2019-04-18 画像処理方法、プログラム、画像処理装置、及び眼科システム

Country Status (5)

Country Link
US (1) US20210022606A1 (ja)
JP (3) JP7279711B2 (ja)
CN (2) CN112004457B (ja)
DE (1) DE112019002021T5 (ja)
WO (1) WO2019203309A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210295A1 (ja) * 2020-04-15 2021-10-21 株式会社ニコン 画像処理方法、画像処理装置、及びプログラム
WO2021210281A1 (ja) * 2020-04-14 2021-10-21 株式会社ニコン 画像処理方法、画像処理装置、及び画像処理プログラム
JP2021168759A (ja) * 2020-04-14 2021-10-28 株式会社ニコン 画像処理方法、画像処理装置、及び画像処理プログラム
WO2022177028A1 (ja) * 2021-02-22 2022-08-25 株式会社ニコン 画像処理方法、画像処理装置、及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019001996T5 (de) * 2018-04-18 2020-12-31 Nikon Corporation Bildverarbeitungsverfahren, Programm und Bildverarbeitungsvorrichtung
CN113344893B (zh) * 2021-06-23 2024-08-16 依未科技(北京)有限公司 一种高精度眼底动静脉识别的方法、装置、介质和设备
US12027272B2 (en) * 2021-06-24 2024-07-02 Techeverst Co., Ltd. System and method for predicting diabetic retinopathy progression

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284005A (ja) * 2007-05-15 2008-11-27 Takashi Sone 画像処理装置、画像処理システム、画像処理方法
US20130295014A1 (en) * 2012-05-01 2013-11-07 Translatum Medicus Inc. Methods for treating and diagnosing blinding eye diseases

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992277A1 (en) * 2007-05-14 2008-11-19 Institut National De La Sante Et De La Recherche Medicale (Inserm) Optical device and method for acquiring images of eye structures
JP5924955B2 (ja) * 2012-01-27 2016-05-25 キヤノン株式会社 画像処理装置、画像処理装置の制御方法、眼科装置およびプログラム
AU2013255050B2 (en) * 2012-05-01 2016-07-28 Translatum Medicus Inc. Methods for treating and diagnosing blinding eye diseases
CN103431941B (zh) * 2013-05-27 2015-02-04 宋艳萍 一种眼科激光治疗设备的黄斑回避控制方法及控制系统
JP6469387B2 (ja) * 2014-08-26 2019-02-13 株式会社トプコン 眼底解析装置
RU2569481C1 (ru) * 2014-12-25 2015-11-27 федеральное государственное бюджетное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ получения культуры клеток ретинального пигментного эпителия из глаза взрослого донора-трупа

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284005A (ja) * 2007-05-15 2008-11-27 Takashi Sone 画像処理装置、画像処理システム、画像処理方法
US20130295014A1 (en) * 2012-05-01 2013-11-07 Translatum Medicus Inc. Methods for treating and diagnosing blinding eye diseases

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIRAKATA, SHUICHIRO ET AL.: "Densitometry of Choroidal Vessels in Eyes With and Without Central Serous Chorioretinopathy by Wide-Field Indocyanine Green Angiography", AMERICAN JOURNAL OF OPHTHALMOLOGY, vol. 166, 2006, pages 103 - 111, XP029551673, DOI: 10.1016/j.ajo.2016.03.040 *
NODA TORU: "Funduscopic examination and photographing method, and future prospects, 2017 Ophtalmological Optics Tutorial Seminar for ophtalmologist, orhoptist, optical engineers", THE JAPANESE SOCIETY OF OPHTALMOLOGICAL OPTICS, JAPAN OPTOMECHATRONICS ASSOCIATION, 19 August 2017 (2017-08-19), pages 40 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210281A1 (ja) * 2020-04-14 2021-10-21 株式会社ニコン 画像処理方法、画像処理装置、及び画像処理プログラム
JP2021168759A (ja) * 2020-04-14 2021-10-28 株式会社ニコン 画像処理方法、画像処理装置、及び画像処理プログラム
JP7419946B2 (ja) 2020-04-14 2024-01-23 株式会社ニコン 画像処理方法、画像処理装置、及び画像処理プログラム
WO2021210295A1 (ja) * 2020-04-15 2021-10-21 株式会社ニコン 画像処理方法、画像処理装置、及びプログラム
WO2022177028A1 (ja) * 2021-02-22 2022-08-25 株式会社ニコン 画像処理方法、画像処理装置、及びプログラム

Also Published As

Publication number Publication date
JPWO2019203309A1 (ja) 2021-04-22
US20210022606A1 (en) 2021-01-28
JP2024138459A (ja) 2024-10-08
CN112004457B (zh) 2024-06-21
DE112019002021T5 (de) 2021-01-07
CN118505665A (zh) 2024-08-16
JP7525004B2 (ja) 2024-07-30
CN112004457A (zh) 2020-11-27
JP2023100951A (ja) 2023-07-19
JP7279711B2 (ja) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2019203309A1 (ja) 画像処理方法、プログラム、画像処理装置、及び眼科システム
JP7279712B2 (ja) 画像処理方法、プログラム、及び画像処理装置
JP7441783B2 (ja) 画像処理方法、プログラム、眼科装置、及び脈絡膜血管画像生成方法
WO2021075062A1 (ja) 画像処理方法、画像処理装置、及びプログラム
JP7521629B2 (ja) 画像処理方法、画像処理装置、画像処理プログラム、及び血管径算出装置
JP2024099765A (ja) 画像処理方法、プログラム、及び画像処理装置
JP2023158161A (ja) 画像処理方法、プログラム、画像処理装置、及び眼科システム
WO2021111840A1 (ja) 画像処理方法、画像処理装置、及びプログラム
WO2021210281A1 (ja) 画像処理方法、画像処理装置、及び画像処理プログラム
WO2021074961A1 (ja) 画像処理方法、画像処理装置、およびプログラム
WO2021074963A1 (ja) 画像処理方法、画像処理装置、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514436

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19788315

Country of ref document: EP

Kind code of ref document: A1