WO2019203078A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2019203078A1
WO2019203078A1 PCT/JP2019/015549 JP2019015549W WO2019203078A1 WO 2019203078 A1 WO2019203078 A1 WO 2019203078A1 JP 2019015549 W JP2019015549 W JP 2019015549W WO 2019203078 A1 WO2019203078 A1 WO 2019203078A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
activated
emitting device
component
Prior art date
Application number
PCT/JP2019/015549
Other languages
English (en)
French (fr)
Inventor
大塩 祥三
達也 奥野
岳志 阿部
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020514099A priority Critical patent/JP7016034B2/ja
Publication of WO2019203078A1 publication Critical patent/WO2019203078A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a light emitting device.
  • a Ce 3+ activated phosphor that emits ultrashort afterglow fluorescence is preferably used in order to suppress saturation of fluorescence output accompanying an increase in the power density of laser light.
  • the output saturation of the phosphor accompanying the increase in the power density of the laser beam is also referred to as a phosphor droop phenomenon.
  • a Ce 3+ activated phosphor that emits green (blue green or green) fluorescence and a Ce 3+ activated warm phosphor that emits warm (orange or red) fluorescence are combined. It has been disclosed that high color rendering illumination light with little fluorescence output saturation can be realized.
  • An object of the present invention is to provide a light emitting device capable of emitting high output light with little fluorescence output saturation and a large proportion of red fluorescent component even in a light emitting device that excites a phosphor with blue laser light. Is to provide.
  • a light-emitting device includes a blue light source that emits a laser beam having a maximum intensity within a wavelength range of 440 nm to less than 480 nm, and fluorescence within a wavelength range of 580 nm to less than 610 nm.
  • the Ce 3+ activated orange phosphor is directly irradiated, and the scattered light of the laser beam directly irradiated on the Ce 3+ activated orange phosphor is applied. Irradiate Eu 2+ activated red phosphor.
  • FIG. 1 is a schematic diagram illustrating an example of a light emitting device according to the first embodiment.
  • 1A is a perspective view of the light emitting device
  • FIG. 1B is a cross-sectional view taken along the line II of FIG. 1A.
  • FIG. 2 is a cross-sectional view showing an example of the light emitting device according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating an example of a light emitting device according to the second embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a light emitting device according to the third embodiment. 4A is a perspective view of the light emitting device, and FIG. 4B is a cross-sectional view taken along line IV-IV in FIG. 4A.
  • FIG. 5 is a schematic diagram illustrating an example of a light emitting device according to the third embodiment.
  • 5A is a perspective view of the light emitting device
  • FIG. 5B is a cross-sectional view taken along the line VV in FIG. 5A.
  • FIG. 6 is a cross-sectional view illustrating an example of the light emitting device according to the third embodiment.
  • FIG. 7 is a graph showing a spectral distribution of output light emitted from the light emitting device of Example 1.
  • FIG. 8 is a graph showing a spectral distribution of output light emitted from the light emitting device of Example 2.
  • FIG. 9 is a graph showing the spectral distribution of output light emitted from the light emitting device of Example 3.
  • the light emitting device of this embodiment includes a blue light source that emits blue laser light, a Ce 3+ activated orange phosphor having a fluorescence peak in a wavelength range of 580 nm to less than 610 nm, and a fluorescence in a wavelength range of 610 nm to less than 660 nm. And an Eu 2+ activated red phosphor having a peak.
  • the light-emitting device A includes a blue light source 1 that emits blue laser light 100, a Ce 3+ activated orange phosphor that emits orange fluorescence, and Eu 2+ that emits red fluorescence. And a structure 2A that holds the active red phosphor.
  • Blue light source 1 is a light emitting element that emits blue laser light 100.
  • a blue light source 1 is not particularly limited.
  • a laser diode such as a surface emitting laser diode can be used.
  • an inorganic or organic electroluminescent element can also be used.
  • the laser light 100 emitted from the blue light source 1 preferably has a maximum intensity within a wavelength region of 440 nm or more and less than 480 nm, preferably 445 nm or more and less than 470 nm. This makes it possible to efficiently excite the Ce 3+ activated orange phosphor.
  • the laser beam has a maximum intensity within the above wavelength range, the laser beam becomes blue light with good visibility, and not only as excitation light of the phosphor but also as output light of the light emitting device. Can be used.
  • the specific numerical value of the light density in the laser beam 100 is not specifically limited, For example, it is preferable that it is 3 W / mm ⁇ 2 > or more and less than 100 W / mm ⁇ 2 >.
  • the light density of the laser light 100 is 3 W / mm 2 or more, the difference from the LED illumination becomes clear, so that a light emitting device with high value as a differentiated product can be obtained.
  • the light density in the laser beam 100 is less than 100 W / mm 2 , a light emitting device that generates less heat due to energy loss of the wavelength converter can be obtained.
  • the maximum value of the light density of the laser beam 100 preferable for general illumination is 3 W / mm 2 or more and less than 20 W / mm 2 .
  • the maximum value of the light density of the laser beam 100 preferable for an endoscope is 10 W / mm 2 or more and less than 50 W / mm 2 .
  • the maximum value of the light density of the laser beam 100 preferable for a projector is 40 W / mm 2 or more and less than 100 W / mm 2 .
  • the light emitting device A shown in FIG. 1 includes a structure 2A that holds a Ce 3+ activated orange phosphor and an Eu 2+ activated red phosphor inside.
  • the structure 2A includes a bottom wall 3, a right side wall 4, a left side wall 5, a front side wall 6, and a rear side wall 7, and has a substantially rectangular parallelepiped support when viewed from the outside.
  • the structure 2 ⁇ / b> A has an internal space that is partitioned by the bottom wall 3, the right side wall 4, the left side wall 5, the front side wall 6, and the rear side wall 7. Since the upper surface of the structure 2A is opened, the laser light 100 is irradiated to the internal space.
  • a first wavelength converter 10 containing Ce 3+ activated orange phosphor is held on the upper surface 3a of the bottom wall 3 in the internal space of the structure 2A. Further, a second wavelength converter 20 containing Eu 2+ activated red phosphor is held on the inner surfaces of the right side wall 4, the left side wall 5, the front side wall 6 and the rear side wall 7. That is, as shown in FIG. 1, the first wavelength converter 10 containing Ce 3+ activated orange phosphor has a plate shape or a film shape, and is fixed to the bottom wall 3 as a support. It is preferable.
  • the second wavelength conversion body 20 containing Eu 2+ activated red phosphor also has a plate shape or a film shape, and the right side wall 4, the left side wall 5, the front side wall 6, and the rear side wall, which are supports. 7 is preferably fixed. Thereby, the shape of the 1st wavelength converter 10 and the 2nd wavelength converter 20 is stabilized, and it becomes possible to wavelength-convert the laser beam 100 efficiently.
  • the light emitting device of this embodiment is preferably the light emitting device A having a structure called a reflection type shown in FIG. 1 or the light emitting device B having a structure called a transmission type shown in FIG.
  • the reflective light emitting device A emits output light in a direction in which the laser light 100 is reflected by the first wavelength converter 10 including Ce 3+ activated orange phosphor.
  • the transmissive light emitting device the laser light 100 emits output light in a direction that transmits the first wavelength converter 10 including the Ce 3+ activated orange phosphor.
  • the reflective light emitting device A shown in FIG. 1 it is preferable to use a light reflecting substrate having a light reflecting function as the support (bottom wall 3).
  • a light reflecting substrate As a support of the reflection type light emitting device A, the laser light 100 is reflected by the first wavelength converter 10 and / or the bottom wall 3 as described later, and the second light is reflected by the reflected light. It becomes possible to excite the wavelength converter 20 efficiently.
  • the light reflecting substrate is preferably a substrate that can reflect at least the laser beam 100, and for example, a metal substrate is preferably used.
  • the transmissive light emitting device B shown in FIG. 2 it is preferable to use a translucent substrate having a translucent function as the support (bottom wall 3A).
  • a translucent substrate As a support of the transmissive light emitting device B, the laser light 100 is scattered by the first wavelength converter 10 and the second wavelength converter 20 is scattered by the scattered light, as will be described later. It becomes possible to excite efficiently.
  • the translucent substrate is preferably a substrate that can transmit at least the laser beam 100, and for example, a substrate made of sapphire is preferably used.
  • the wavelength converter fixed with the support body is called a wavelength conversion member, and will be distinguished from a wavelength converter.
  • the light emitting device of this embodiment forms a structure that emits fluorescence by appropriately combining the first wavelength converter 10 and the second wavelength converter 20 in both the reflection type and the transmission type.
  • the first wavelength converter 10 includes at least a Ce 3+ activated orange phosphor having a fluorescence peak in a wavelength range of 580 nm to less than 610 nm, preferably 590 nm to less than 610 nm.
  • the second wavelength converter 20 includes at least an Eu 2+ activated red phosphor having a fluorescence peak in a wavelength range of 610 nm to less than 660 nm, preferably 620 nm to less than 650 nm.
  • the Ce 3+ activated orange phosphor included in the first wavelength converter 10 and the Eu 2+ activated red phosphor included in the second wavelength converter 20 are both laser beams. Excited by the blue light component 100 has.
  • the Ce 3+ activated orange phosphor and Eu 2+ activated red phosphor convert the wavelength of the absorbed blue light component into an orange light component 110 and a red light component 120, respectively.
  • the light emitting device can emit output light including the laser light 100, the orange light component 110, and the red light component 120, which are blue light components.
  • the first wavelength converter 10 is a wavelength converter that is directly irradiated with the laser light 100 emitted from the blue light source 1.
  • the second wavelength converter 20 is a wavelength converter that is not directly irradiated with the laser light 100 emitted from the blue light source 1.
  • the “wavelength converter that is directly irradiated with laser light” refers to a wavelength converter that is irradiated with the laser light 100 first (first).
  • the laser light 100 emitted from the blue light source 1 passes through the internal space of the structure 2 ⁇ / b> A and reaches the first wavelength converter 10.
  • a part of the laser beam 100 is absorbed by the Ce 3+ activated orange phosphor included in the first wavelength converter 10 and converted into the orange light component 110.
  • a part of the laser beam 100 is reflected by the surface 10 a of the first wavelength converter 10 and / or the upper surface 3 a of the bottom wall 3.
  • the reflected laser beam 100 reaches the second wavelength converter 20 held by the right side wall 4, the left side wall 5, the front side wall 6 and the rear side wall 7.
  • a part of the laser beam 100 is absorbed by the Eu 2+ activated red phosphor contained in the second wavelength converter 20 and converted into the red light component 120.
  • a part of the laser light 100 reflected by the first wavelength converter 10 and / or the bottom wall 3 is absorbed by the Eu 2+ activated red phosphor, but a part of the laser light 100 is second wavelength converted. Reflected by the body 20 and / or the right side wall 4, the left side wall 5, the front side wall 6 and the rear side wall 7.
  • the laser light 100 emitted from the blue light source 1 passes through the bottom wall 3A of the structure 2B and reaches the first wavelength converter 10.
  • a part of the laser beam 100 is absorbed by the Ce 3+ activated orange phosphor included in the first wavelength converter 10 and converted into the orange light component 110.
  • a part of the laser beam 100 is scattered by particles of the Ce 3+ activated orange phosphor while passing through the first wavelength converter 10.
  • the scattered laser light 100 reaches the second wavelength converter 20 held by the right side wall 4, the left side wall 5, the front side wall 6 and the rear side wall 7.
  • a part of the laser beam 100 is absorbed by the Eu 2+ activated red phosphor contained in the second wavelength converter 20 and converted into the red light component 120.
  • a part of the laser light 100 scattered by the first wavelength converter 10 is absorbed by the Eu 2+ activated red phosphor, but a part of the laser light 100 is the second wavelength converter 20 and / or the right side. Reflected by the wall 4, the left side wall 5, the front side wall 6 and the rear side wall 7.
  • the first wavelength converter 10 is directly irradiated with the laser light 100.
  • the second wavelength converter 20 is not directly irradiated with the laser light 100 but is irradiated with the laser light 100 reflected and / or scattered by the first wavelength converter 10 and / or the bottom wall 3. .
  • Ce 3+ contained in the phosphor is an emission center having the shortest emission lifetime (10 ⁇ 8 to 10 ⁇ 7 s) among the rare earth ions, and therefore, the Ce 3+ activated phosphor is in an excited state.
  • the electron energy of the phosphor is relaxed in a very short time.
  • the Ce 3+ activated phosphor the electron energy of the phosphor in the excited state can be relaxed in a very short time even under high density excitation by laser light irradiation. Therefore, by using a Ce 3+ activated orange phosphor as the phosphor contained in the first wavelength converter 10, emission saturation can be suppressed.
  • the light emission saturation is a light output saturation phenomenon caused by an increase in the number of electronically excited states.
  • the stable valence of rare earth ions is trivalent
  • Ce 3+ is a luminescent center having a stable trivalent valence.
  • the Ce 3+ activated phosphor has high long-term reliability, since even if the phosphor generates heat due to high-density excitation by laser light irradiation, the phosphor crystal is hardly altered by oxidation.
  • the Eu 2+ activated red phosphor can convert the blue light component of the laser light 100 into the red light component 120 with high efficiency, but may saturate light emission when directly irradiated with the laser light. is there. Further, if the phosphor by high density excitation by laser light irradiation generates heat, Eu 2+ -activated phosphors, Eu 2+ in the phosphor is oxidized to Eu 3+, there is a possibility that phosphor crystals alteration.
  • the laser beam 100 is directly irradiated to the Ce 3+ activated orange phosphor without directly irradiating the Eu 2+ activated red phosphor, and the laser directly irradiated to the Ce 3+ activated orange phosphor.
  • the scattered light of light 100 is applied to the Eu 2+ activated red phosphor.
  • the Ce 3+ activated orange phosphor substantially free from the problem of fluorescence output saturation is excited by the laser light 100
  • the Eu 2+ activated red phosphor having the problem of fluorescence output saturation is scattered by the scattered light of the laser light 100. It becomes a structure excited by. That is, the Eu 2+ activated red phosphor is excited with low density light. Therefore, it is possible to obtain a light emitting device that emits light with a warm color light component, that is, with a small amount of orange and red fluorescence output saturation and a large proportion of the red light component.
  • the above-described "the laser beam 100 without directly irradiated Eu 2+ -activated red phosphor, the Ce 3+ -activated orange phosphor directly irradiated” The laser beam 100, Eu 2+ -activated red phosphor It means that the Ce 3+ activated orange phosphor is irradiated before.
  • the Ce 3+ activated orange phosphor may be a phosphor that generates more heat due to irradiation with excitation light (laser light 100) than Eu 2+ activated red phosphor. That is, the Ce 3+ activated orange phosphor may be a phosphor that generates heat upon irradiation with excitation light (laser light 100).
  • Ce 3+ -activated orange phosphor when the temperature quenching than Eu 2+ -activated red phosphor is large, the temperature rise of the wavelength converter, the wavelength conversion efficiency of Ce 3+ -activated orange phosphor is significantly reduced It begins to generate heat.
  • Ce 3+ activated orange phosphor generates more heat due to excitation light irradiation than Eu 2+ activated red phosphor.
  • the temperature quenching of the Ce 3+ activated orange phosphor is large, the Eu 2+ activated red phosphor is excited by the scattered light of the laser light 100, and thus the temperature of the Eu 2+ activated red phosphor. Quenching can be suppressed and the proportion of the red light component can be increased.
  • the Eu 2+ activated red phosphor is not arranged on the optical axis of the laser beam 100 that directly irradiates the Ce 3+ activated orange phosphor.
  • the Ce 3+ activated orange phosphor is arranged on a straight line connecting the centers of the blue light sources 1, but the Eu 2+ activated red phosphor is not arranged.
  • the Eu 2+ activated red phosphor can be excited by the sufficiently scattered low-density laser light 100. Therefore, it is possible to easily reduce the saturation of the fluorescence output with respect to the Eu 2+ activated red phosphor and to enhance the red light component emitted from the red phosphor.
  • the Ce 3+ activated orange phosphor contained in the first wavelength converter 10 preferably has a garnet-type crystal structure. Since a phosphor having a garnet-type crystal structure can be easily manufactured by an orthodox manufacturing method, a light emitting device suitable for industrial production can be obtained.
  • a phosphor having a garnet-type crystal structure for example, Lu 2 CaMg 2 (SiO 4 ) 3 activated by Ce 3+ can be used.
  • a solid solution activated by Ce 3+ and using Lu 2 CaMg 2 (SiO 4 ) 3 as an end component can be used.
  • the Ce 3+ activated orange phosphor included in the first wavelength converter 10 may be a phosphor having no garnet-type crystal structure.
  • the Ce 3+ -activated orange phosphor having no crystal structure of the garnet-type for example, La 3 Si 6 N 11: Ce 3+, CaAlSiN 3: such Ce 3+, a nitride-based compounds activated with Ce 3+ Can be mentioned.
  • the Eu 2+ activated red phosphor contained in the second wavelength converter 20 is preferably a nitride compound.
  • Red phosphors made of nitride compounds have a high practical track record as research for LED lighting has progressed. Therefore, by using a red phosphor made of a nitride compound, a light emitting device with excellent reliability can be obtained.
  • Eu 2+ activated red phosphors as nitride compounds include alkaline earth metal nitride silicates, alkaline earth metal nitride aluminosilicates, alkaline earth metal oxynitride silicates activated with Eu 2+. And alkaline earth metal oxynitride aluminosilicates.
  • Eu 2+ activated red phosphors include AE 2 Si 5 N 8 , AE 2 (Si, Al) 5 (N, O) 8 , AEAlSiN 3 , AE (activated by Eu 2+ ).
  • the AE is an alkaline earth metal and is at least one element selected from the group consisting of Ca, Sr and Ba.
  • the Ce 3+ activated orange phosphor is a particle group, and the average particle size of the Ce 3+ activated orange phosphor is preferably 1 ⁇ m or more and less than 15 ⁇ m.
  • the average particle diameter of the Ce 3+ activated orange phosphor is more preferably 2 ⁇ m or more and less than 10 ⁇ m, and further preferably 3 ⁇ m or more and less than 8 ⁇ m.
  • the Ce 3+ activated orange phosphor is a particle group composed of a plurality of particles, and the average particle diameter of the phosphor is within the above range, whereby the irradiation surface of the laser light 100 in the first wavelength converter 10 ( The number of irregularities per unit area of the surface 10a) increases.
  • the number of phosphor particles per unit depth in the first wavelength converter 10 also increases. Therefore, the laser light 100 is easily scattered by the first wavelength converter 10, and the degree of scattering of the laser light 100 is increased. As a result, the first wavelength converter 10 can generate scattered laser light having a low light density. Therefore, even when the intense laser beam 100 is irradiated on the Ce 3+ activated orange phosphor, the Eu 2+ activated red phosphor is unlikely to cause saturation of the fluorescence output. It is possible to achieve output.
  • the average particle diameter of the phosphor can be determined by observing the wavelength converter with a scanning electron microscope and measuring the particle diameter of a plurality of phosphors.
  • the Ce 3+ activated orange phosphor is a particle group, and the average particle diameter of the Ce 3+ activated orange phosphor is preferably 15 ⁇ m or more and less than 50 ⁇ m.
  • the average particle size of the Ce 3+ activated orange phosphor is preferably 20 ⁇ m or more and less than 40 ⁇ m, and preferably 25 ⁇ m or more and less than 35 ⁇ m.
  • the Ce 3+ activated orange phosphor is a particle group composed of a plurality of particles, and the average particle diameter of the phosphor is within the above range, so that the Ce 3+ activated orange fluorescence in the first wavelength converter 10 is obtained.
  • the body absorbs the laser beam 100 efficiently. And since the blue light absorbed by the orange phosphor is converted into orange light, the ratio of the blue fluorescent component is suppressed, the ratio of the orange and red fluorescent components is large, and the low color temperature suitable for lighting applications. It becomes easy to obtain the output light.
  • Ce 3+ activated orange phosphor and Eu 2+ activated red phosphor are particle groups, and the average particle diameter of Eu 2+ activated red phosphor is that of Ce 3+ activated orange phosphor. It is preferably larger than the average particle size. At this time, the average particle size of the Ce 3+ activated orange phosphor is preferably 1 ⁇ m or more and less than 15 ⁇ m.
  • the second wavelength converter 20 including the Eu 2+ activated red phosphor efficiently absorbs the blue laser light 100, and the laser light 100 absorbed by the wavelength converter is converted into red light. .
  • the first wavelength converter 10 including the Ce 3+ activated orange phosphor does not absorb the laser light 100 so much and the fluorescent component converted into orange light is small. Therefore, the ratio of the blue and orange fluorescent components is suppressed, the ratio of the red fluorescent components is large, and it becomes easy to obtain output light with a low color temperature suitable for lighting applications.
  • the light absorption rate of the second wavelength conversion body 20 at the wavelength of the laser light 100 is the light absorption rate of the first wavelength conversion body 10 at the wavelength. Bigger than.
  • the output light preferably includes a first light component, a second light component, and a third light component.
  • the first light component is the laser light 100 emitted from the blue light source 1
  • the second light component is the fluorescent component (orange light component 110) emitted from the Ce 3+ activated orange phosphor
  • the third light component Is a fluorescent component (red light component 120) emitted by the Eu 2+ activated red phosphor.
  • the fluorescence spectrum composed of the mixed component of the second light component (orange light component 110) and the third light component (red light component 120) preferably has a fluorescence peak in the wavelength range of more than 600 nm and less than 640 nm.
  • the fluorescence spectrum more preferably has a fluorescence peak in a wavelength range of more than 610 nm and less than 640 nm.
  • the wavelength difference between the fluorescence peak wavelength of the second light component (orange light component 110) and the fluorescence peak wavelength of the third light component (red light component 120) is preferably less than 50 nm. Further, the wavelength difference is preferably less than 40 nm, and more preferably less than 30 nm. Thereby, the difference in color tone between the second light component (orange light component 110) and the third light component (red light component 120) is reduced. Therefore, even if the accuracy of the positional relationship between the first wavelength converter 10 that emits the second light component and the second wavelength converter 20 that emits the third light component decreases, the second light component and It becomes a light-emitting device in which it is difficult to determine the color tone difference of the third light component. Such a light-emitting device is advantageous in terms of industrial production because its output characteristics are not easily affected by variations in accuracy of the device configuration.
  • the Ce 3+ activated orange phosphor is contained in the first wavelength converter 10.
  • the Ce 3+ activated orange phosphor preferably constitutes a wavelength converter made of only an inorganic compound. That is, it is preferable that the first wavelength converter 10 including the Ce 3+ activated orange phosphor is made of only an inorganic compound.
  • the 1st wavelength converter 10 turns into a wavelength converter excellent in the thermal conductivity advantageous for the thermal radiation of fluorescent substance. Therefore, it is possible to use a Ce 3+ activated orange phosphor that has some anxiety in terms of temperature quenching.
  • a 1st wavelength converter 10 does not contain an organic component, it suppresses that an organic component burns with the heat generated when it excites with a high-density light, a wavelength converter is colored, and output falls. be able to.
  • any phosphor directly irradiated with the laser beam 100 constitutes a wavelength converter made of only an inorganic compound. That is, it is preferable that the wavelength converter including the phosphor directly irradiated on the laser beam 100 is made of only an inorganic compound. Thereby, the wavelength converter irradiated with the laser beam 100 is excellent in thermal conductivity advantageous for heat dissipation of the phosphor. As a result, since the phosphor can be excited using the high-power laser beam 100, a light-emitting device that can easily increase the output can be obtained. In addition, since there is no risk of the wavelength converter being burnt, it becomes possible to irradiate a laser beam having a relatively high energy density, and it becomes possible to increase the output of the light emitting device.
  • a wavelength converter made of an inorganic compound a phosphor single crystal, a phosphor sintered body, a phosphor green compact, a structure in which phosphor particles are sealed with glass, a binder made of an inorganic compound At least one selected from the group consisting of a structure in which phosphor particles are bonded with an agent and / or fine particles, and a composite formed by fusing phosphor and a compound can be used.
  • complex which combines these and another fluorescent substance particle can be used.
  • An example of the composite formed by fusing a phosphor and a compound is a composite formed by fusing a phosphor and alumina.
  • the phosphor that is not directly irradiated with the laser beam 100 preferably constitutes a wavelength converter together with the resin material.
  • the second wavelength converter 20 that is not directly irradiated with the laser beam 100 is preferably a wavelength converter formed by sealing Eu 2+ activated red phosphor with a resin material. Since a wavelength converter obtained by sealing with a resin material is relatively easy to manufacture, a desired wavelength converter can be manufactured at low cost.
  • a resin material transparent organic materials, such as a silicone resin, can be used, for example.
  • the light emitting devices A and B of the present embodiment include the blue light source 1 that emits the laser light 100 having the maximum intensity within the wavelength range of 440 nm or more and less than 480 nm.
  • the light emitting devices A and B further include a Ce 3+ activated orange phosphor having a fluorescence peak in a wavelength range of 580 nm or more and less than 610 nm, and an Eu 2+ activated red fluorescence having a fluorescence peak in a wavelength range of 610 nm or more and less than 660 nm.
  • a Ce 3+ activated orange phosphor having a fluorescence peak in a wavelength range of 580 nm or more and less than 610 nm
  • an Eu 2+ activated red fluorescence having a fluorescence peak in a wavelength range of 610 nm or more and less than 660 nm.
  • the laser beam 100 was directly irradiated to the Ce 3+ activated orange phosphor without directly irradiating the Eu 2+ activated red phosphor, and directly irradiated to the Ce 3+ activated orange phosphor.
  • the scattered light of the laser beam 100 is irradiated to the Eu 2+ activated red phosphor.
  • the Ce 3+ activated orange phosphor is directly excited by the laser light 100, and the Eu 2+ activated red phosphor is excited by the scattered light of the laser light 100. That is, the Eu 2+ activated red phosphor is excited with light having a low energy density formed by scattering of the laser light 100. Therefore, it is possible to obtain a light emitting device that emits light in which the warm color light component has a small fluorescence output saturation and the ratio of the red light component is large.
  • a lens for condensing the laser light 100 emitted from the blue light source 1 on the first wavelength converter 10 is disposed between the blue light source 1 and the structures 2A and 2B. It may be interposed. Further, an optical transmission line for transmitting and condensing the laser light 100 emitted from the blue light source 1 to the first wavelength converter 10 is interposed between the blue light source 1 and the structures 2A and 2B. May be.
  • the optical transmission path for example, an optical fiber can be used.
  • the output light is preferably used as illumination light. Thereby, it becomes a light-emitting device with high industrial utility value and much demand.
  • the light-emitting devices A and B are devices for any one of outdoor lighting, store lighting, dimming system, facility lighting, marine lighting, and endoscopes.
  • a light-emitting device using IoT or AI that has made remarkable progress in technology in recent years can also be used.
  • the light emitting device of this embodiment includes a blue light source 1, a Ce 3+ activated orange phosphor, and an Eu 2+ activated red phosphor. Therefore, the light-emitting device includes a first light component (laser light 100 that is a blue light component), a second light component (orange light component 110), and a third light component (red light component 120). Including output light can be emitted.
  • the output light further includes a fourth light component 130 having a fluorescence peak in a wavelength range of 480 nm or more and less than 580 nm in addition to the first to third light components.
  • the output light preferably further includes a fourth light component 130 having a fluorescence peak in a wavelength range of 490 nm or more and less than 560 nm, more preferably 500 nm or more and less than 540 nm.
  • the output light of the light emitting device includes a blue light component of the laser light 100, an orange light component emitted from the Ce 3+ activated orange phosphor, a red light component emitted from the Eu 2+ activated red phosphor, and a green light ( Blue-green to green to yellow).
  • the output light of the light emitting device becomes white light. That is, the light emitting device can output white light by additive color mixture of blue light, green light, and red light. Therefore, it is possible to obtain a light emitting device that emits output light for illumination use with high industrial utility value.
  • the fourth light component 130 can be laser light or fluorescence. However, it is preferable that the fourth light component 130 is fluorescence emitted by the phosphor. In this case, since the fourth light component 130 can be easily obtained, the light emitting device is advantageous for industrial production.
  • the phosphor emitting the fourth light component 130 absorbs blue light and converts it into the fourth light component 130. Further, it is more preferable that the phosphor emitting the fourth light component 130 absorbs the laser light 100 emitted from the blue light source 1 and converts it into the fourth light component 130. In this case, a light source other than the blue light source 1 is not required to excite the fourth light component 130, and the fourth light component 130 can be obtained using the laser light 100 emitted from the blue light source. Therefore, the configuration of the light emitting device can be simplified.
  • Examples of the phosphor P that emits the fourth light component 130 include phosphors for LED illumination. Specifically, examples of the phosphor P include (1) Ce 3+ activated phosphor, (2) Eu 2+ activated phosphor, and (3) Mn 4+ activated phosphor.
  • Ce 3+ activated phosphor As the phosphor P that emits the fourth light component 130, a phosphor having a compound having a garnet-type crystal structure as a base material can be exemplified.
  • the compound having a garnet-type crystal structure include aluminate, silicate, and aluminosilicate.
  • Examples of such phosphor P include Lu 3 Ga 2 (AlO 4 ) 3 : Ce 3+ , Lu 3 Al 2 (AlO 4 ) 3 : Ce 3+ , Y 3 Ga 2 (AlO 4 ) 3 : Ce 3+ , Y 3 Al 2 (AlO 4 ) 3 : Ce 3+ , (Y, Gd) 3 Al 2 (AlO 4 ) 3 : Ce 3+ , Ca 3 Sc 2 (SiO 4 ) 3 : Ce 3+ , (Lu, Ca) 3 ( At least one selected from the group consisting of Al, Mg) 2 ((Al, Si) O 4 ) 3 : Ce 3+ can be used.
  • Examples of the phosphor P that emits the fourth light component 130 include phosphors based on nitrides or oxynitrides containing rare earth elements or alkaline earth metals.
  • a phosphor P for example, La 3 Si 6 N 11 : Ce 3+ (low Ce 3+ activation type), CaAlSiN 3 : Ce 3+ , Ca (Al, Si) 2 (N, O) 3 : At least one selected from the group consisting of Ce 3+ can be used.
  • a phosphor having an alkaline earth metal orthosilicate as a base material can be exemplified.
  • a phosphor P for example, (Ba, Sr) 2 SiO 4 : Eu 2+ can be used.
  • Examples of the phosphor P that emits the fourth light component 130 include phosphors based on an oxynitride containing an alkaline earth metal.
  • a phosphor P for example, at least one of SrSi 2 O 2 N 2 : Eu 2+ and Ba 3 Si 6 O 12 N 2 : Eu 2+ can be used.
  • the phosphor P that emits the fourth light component 130 includes a phosphor having a fluoride containing an alkali metal as a base material.
  • a phosphor P for example, K 2 SiF 6 : Mn 4+ can be used.
  • the phosphor P that emits the fourth light component is a Ce 3+ activated phosphor, and is on the optical axis of the laser beam 100 that directly irradiates the Ce 3+ activated orange phosphor. It is preferable that they are arranged.
  • the phosphor P that emits the fourth light component can be included in the first wavelength converter 10. Or it can be set as the structure which hold
  • the phosphor P By making the phosphor P a Ce 3+ activated phosphor that does not easily saturate even when directly excited by the laser beam 100, the phosphor P is mixed with the Ce 3+ activated orange phosphor that directly irradiates the laser beam 100. Can do. Further, by making the phosphor P a Ce 3+ activated phosphor, the phosphor P can be used in the vicinity of the Ce 3+ activated orange phosphor, or the laser beam transmitted through the first wavelength converter 10 can be used. It is also possible to excite the phosphor P with scattered light. That is, by using a Ce 3+ activated phosphor as the phosphor P, the phosphor P can be excited with high-density light by the laser light 100. In addition, since the degree of freedom of light source design increases, the output ratio of the fourth light component 130 can be increased.
  • the phosphor P that emits the fourth light component is not disposed on the optical axis of the laser beam that directly irradiates the Ce 3+ activated orange phosphor.
  • phosphors are formed on part of the inner surfaces of the right side wall 4, the left side wall 5, the front side wall 6, and the rear side wall 7 constituting the substantially rectangular parallelepiped structure 2 ⁇ / b> C. It can be set as the structure by which the 3rd wavelength converter 30 containing P is hold
  • the Ce 3+ activated orange phosphor and the phosphor P are inevitably arranged with a space therebetween. For this reason, the configuration is such that adverse effects due to mutual interference of fluorescence characteristics, which occur when different types of phosphors are mixed, are less likely to occur. In other words, the fluorescent component emitted from the phosphor P is absorbed by the Ce 3+ activated orange phosphor, so that adverse effects such as a change in spectrum shape are unlikely to occur.
  • the light emitting device of the present embodiment further includes the fourth light component 130 whose output light has a fluorescence peak in the wavelength range of 480 nm or more and less than 580 nm in addition to the first to third light components. It is out. Accordingly, the light emitting device includes the first light component (laser light 100 which is a blue light component), the second light component (orange light component 110), the third light component (red light component 120), and the fourth light component. It becomes possible to emit the output light in which the light component 130 of additive color is additively mixed. 3 is a reflection type, it may be a transmission type.
  • the structures 2A and 2B used in the light emitting devices A and B of the first embodiment and the structure 2C used in the light emitting device C of the second embodiment are the bottom wall 3 and 3A, the right side wall 4, the left side wall 5, and the front It consists of a side wall 6 and a rear side wall 7, and has a substantially rectangular parallelepiped support when viewed from the outside.
  • the shape of the support used in the light emitting device of the present embodiment is not limited to such a substantially rectangular parallelepiped shape.
  • FIG. 4 shows a modification of the transmissive light emitting device.
  • the structure 2 ⁇ / b> D has a support body including a bottom wall 3 ⁇ / b> A, a right side wall 4, a front side wall 6, and a rear side wall 7.
  • the bottom wall 3A holds the first wavelength converter 10 containing Ce 3+ activated orange phosphor
  • the right side wall 4 the front side wall 6 and the rear side wall 7 contain Eu 2+ activated red phosphor.
  • the second wavelength converter 20 is held. That is, the structure 2D is configured by removing the left side wall 5 from the structure 2B used in the light emitting device B of the first embodiment.
  • the structure 2D includes three second wavelength converters 20. ing. That is, in the structure 2D, the number of the second wavelength converters 20 is an odd number. When the number of the second wavelength converters 20 held in the structure of the light emitting device is an odd number, it is possible to emit output light having different color tone and intensity depending on the emission direction. Therefore, a light emitting device having high value as a differentiated product can be obtained.
  • 4 is a transmissive type, it may be a reflective type.
  • the structure 2 ⁇ / b> D has a support body including a bottom wall 3 ⁇ / b> A, a right side wall 4, a front side wall 6, and a rear side wall 7.
  • the present invention is not limited to this mode, and the right side wall 4 is excluded from the structure 2D, and the structure has a substantially U-shaped support body including the bottom wall 3A, the front side wall 6, and the rear side wall 7. It may be.
  • the aspect which has the substantially L-shaped support body which consists of bottom wall 3A and the front side wall 6 except the right side wall 4 and the rear side wall 7 from the structure 2D may be sufficient.
  • FIG. 5 shows a modification of the reflective light emitting device.
  • a light-emitting device E shown in FIG. 5 includes a structure 2 ⁇ / b> E including a support body including a bottom wall 3, a right side wall 4, a left side wall 5, a front side wall 6, and a rear side wall 7.
  • the structure 2E has a substantially quadrangular frustum shape when viewed from the outside, and has a support body whose upper surface is open.
  • the first wavelength converter 10 containing Ce 3+ activated orange phosphor is held on the bottom wall 3.
  • the right side wall 4, the left side wall 5, the front side wall 6 and the rear side wall 7 include a second wavelength converter 20 containing Eu 2+ activated red phosphor and a third wavelength converter 30 containing the phosphor P. Is held.
  • the light emitting device E since the structure 2E has a substantially quadrangular pyramid shape and the upper surface is wide open, the light emitting device E includes the second wavelength converter 20 and the third wavelength converter 30. It becomes possible to emit output light containing a relatively large amount of fluorescent component.
  • FIG. 6 shows a modification of the transmissive light emitting device.
  • the light emitting device F shown in FIG. 6 has a structure in which the second wavelength converter 20 is arranged in parallel with the first wavelength converter 10. That is, the first wavelength converter 10 is held by a support (bottom wall 3A) made of a light-transmitting substrate, and the second wavelength converter 20 is also held by a support 8 made of a light-transmitting substrate. Yes. And the wavelength conversion member provided with the 1st wavelength conversion body 10 and the wavelength conversion member provided with the 2nd wavelength conversion body 20 have the structure arrange
  • the Ce 3+ activated orange phosphor and the Eu 2+ activated red phosphor are Both are arranged on the optical axis of the laser beam 100.
  • the laser light 100 emitted from the blue light source 1 passes through the bottom wall 3A of the structure 2F and reaches the first wavelength converter 10. At this time, a part of the laser beam 100 is absorbed by the Ce 3+ activated orange phosphor included in the first wavelength converter 10 and converted into the orange light component 110. Further, a part of the laser beam 100 is scattered by particles of the Ce 3+ activated orange phosphor while passing through the first wavelength converter 10. The scattered laser light 100 reaches the second wavelength converter 20 held by the support 8. At this time, a part of the laser beam 100 is absorbed by the Eu 2+ activated red phosphor contained in the second wavelength converter 20 and converted into the red light component 120. Then, output light in which the laser light 100, the orange light component 110, and the red light component 120 are additively mixed is emitted upward.
  • the first wavelength converter 10 and the second wavelength converter 20 are arranged substantially in parallel as in the light emitting device F, not only the device can be easily downsized but also the red color tone in the emission direction. It becomes possible to emit output light with a small difference.
  • the first wavelength converter 10 and the second wavelength converter 20 face each other, and are between the first wavelength converter 10 and the second wavelength converter 20. There are voids. However, it is not limited to such an embodiment, and the first wavelength converter 10 and the second wavelength converter 20 may be in contact with each other.
  • Example 1 In Example 1, a reflective light-emitting device similar to that shown in FIG. 1 was produced.
  • Lu 2 CaMg 2 (SiO 4 ) 3 Ce 3+
  • the fluorescence peak wavelength of approximately 600 nm, using a commercially available average particle diameter measured by a microscope of about 18 [mu] m.
  • the nano-particles material: magnesium fluoride, an average particle diameter ⁇ 20 nm
  • concentration of 8 mass% was used for the nanoparticle as a binder.
  • a metal substrate (material: aluminum, size: length 20 mm, width 20 mm, thickness 0.5 mm) serving as a support for the first wavelength converter was prepared.
  • a Kapton (registered trademark) tape is attached to the metal substrate in advance so as to surround the outer edge portion of one side of the metal substrate, and the height of the metal substrate is approximately A recess having a width of 10 mm, a width of about 10 mm, and a depth of about 0.1 mm was produced.
  • the above-mentioned mixed dispersion was dropped into a recess formed on the metal substrate, and a coating film of the mixed dispersion was formed by a wet coating technique (bar coater). Then, by drying for 60 minutes at 100 ° C.
  • the coating film formed on the metal substrate Lu 2 CaMg 2 (SiO 4 ) 3: Ce 3+ first wavelength conversion comprising a fluorescent nanoparticles (magnesium fluoride) Got the body.
  • the obtained 1st wavelength converter was a film
  • the 1st wavelength conversion member which has the structure where the thick film-form 1st wavelength converter was fixed on the metal substrate used as a support body was obtained by peeling the Kapton tape affixed on the metal substrate.
  • the cross section of the obtained 1st wavelength converter was observed with the electron microscope.
  • the particles of Lu 2 CaMg 2 (SiO 4 ) 3 : Ce 3+ phosphor and metal substrate, and the particles of Lu 2 CaMg 2 (SiO 4 ) 3 : Ce 3+ phosphor are nanoparticles or an assembly of the nanoparticles. It was found that the structure was fixed through the body.
  • the above-mentioned mixed dispersion was dropped into the depression of the same metal substrate as in Example 1, and a coating film of the mixed dispersion was formed by a wet coating technique (bar coater). Then, by drying 60 minutes coating film formed on the metal substrate at 100 °C, (Sr, Ca) AlSiN 3: the Eu 2+ phosphor and the second wavelength converter made of nanoparticles (magnesium fluoride) Obtained.
  • the second wavelength converter was an inorganic compound film made of (Sr, Ca) AlSiN 3 : Eu 2+ phosphor and nanoparticles (magnesium fluoride), and the film thickness was about 50 ⁇ m.
  • the 2nd wavelength conversion member which has the structure where the thick film-like 2nd wavelength converter was fixed on the metal substrate used as a support body by peeling the Kapton tape stuck on the metal substrate was obtained.
  • the cross section of the obtained 2nd wavelength converter was observed with the electron microscope.
  • (Sr, Ca) AlSiN 3 : Eu 2+ phosphor and metal substrate, and (Sr, Ca) AlSiN 3 : Eu 2+ phosphor particles are nanoparticles. Or it turned out that it is the structure fixed through the aggregate
  • the fluorescence peak wavelength of the (Sr, Ca) AlSiN 3 : Eu 2+ phosphor is about 625 nm
  • the fluorescence peak wavelength of the Lu 2 CaMg 2 (SiO 4 ) 3 : Ce 3+ phosphor is about 600 nm. Therefore, the difference in fluorescence peak wavelength between the Lu 2 CaMg 2 (SiO 4 ) 3 : Ce 3+ phosphor and the (Sr, Ca) AlSiN 3 : Eu 2+ phosphor is about 25 nm.
  • the structure of the wavelength conversion member was produced by combining the obtained first wavelength conversion member and the second wavelength conversion member. Specifically, two second wavelength conversion members were assembled on opposite edges of one first wavelength conversion member so that the second wavelength conversion body faces each other. And the adhesive agent was apply
  • the light emitting device of Example 1 was manufactured with a simple configuration in which the above structure and the semiconductor laser element were combined.
  • the first wavelength converter was directly irradiated with blue laser light from a direction directly in front of the first wavelength converter in the structure.
  • the optical axis of the laser light from the semiconductor laser element was adjusted so that the blue laser light directly irradiates the first wavelength converter without directly irradiating the second wavelength converter.
  • the peak wavelength of the laser beam was 444 nm, and the light energy density applied to the first wavelength converter was 5 W / mm 2 .
  • the laser spot diameter at this time was about 1 mm (0.5 mm or more and less than 1.5 mm).
  • FIG. 7A shows a spectral distribution of output light emitted from the structure by laser light irradiation.
  • FIG. 7B shows the spectral distribution of the output light emitted when the first wavelength conversion member, that is, the structure not having the second wavelength conversion member is irradiated with laser light. Is shown.
  • the intensity of the output light was made uniform using an integrating sphere ( ⁇ about 30 cm), and the color tone of the output light was made uniform.
  • the homogenized and homogenized output light was extracted through a light guide fiber attached to a part of the integrating sphere.
  • the spectral distribution of the extracted output light was measured using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., product name: MCPD-8000).
  • the output light of the light emitting device of Example 1 has a fluorescence peak of 615 nm. Therefore, it can be seen that the light emitting device of Example 1 emits a red fluorescent component having a fluorescent peak in the red wavelength region. Moreover, it turns out that the light-emitting device of Example 1 emits the fluorescence spectrum with many red fluorescence components rather than the fluorescence spectrum which the 1st wavelength conversion member emits ((b) of FIG. 7).
  • the output light of the light emitting device of Example 1 includes Lu 2 CaMg 2 (SiO 4 ) 3 : Ce 3+ orange fluorescent component, (Sr, Ca) AlSiN 3 : Eu 2+ red fluorescent component, and Becomes a fluorescent component.
  • Lu 2 CaMg 2 (SiO 4 ) 3 Ce 3+ orange fluorescent component
  • (Sr, Ca) AlSiN 3 Eu 2+ red fluorescent component
  • the light emitting device of the present example directly irradiates only Ce 3+ activated orange phosphor that is not easily saturated with fluorescent light, with high light density laser light, and Eu 2+ activated red phosphor that is easily saturated with fluorescent output. Do not irradiate directly. Therefore, it turns out that the output saturation of a red fluorescence component can be suppressed.
  • Example 2 In Example 2, a transmissive light-emitting device similar to that shown in FIG. 6 was produced.
  • the first wavelength converter and the second wavelength are the same as in Example 1 except that the substrate serving as the support for the first wavelength converter and the second wavelength converter is changed to a translucent substrate.
  • the converter, the 1st wavelength conversion member, and the 2nd wavelength conversion member were produced.
  • the light-transmitting substrate is made of sapphire and has a size of 20 mm in length, 20 mm in width, and 0.7 mm in thickness.
  • the number of the first wavelength conversion member and the second wavelength conversion member is one each.
  • the structure of the wavelength conversion member was produced by combining the first wavelength conversion member and the second wavelength conversion member. Specifically, first, as shown in FIG. 6, the surface of the first wavelength conversion member in the first wavelength conversion member and the surface of the second wavelength conversion member in the second wavelength conversion member have a space. They were placed so as to face each other. Next, the structure of Example 2 was produced by fixing the translucent substrate of the first wavelength conversion member and the translucent substrate of the second wavelength conversion member using a fixture.
  • Example 2 the light emitting device of Example 2 was manufactured with a simple configuration combining the structure of Example 2 and the semiconductor laser element.
  • the first wavelength conversion body was directly irradiated with blue laser light from the translucent substrate side of the first wavelength conversion member in the structure described above.
  • the optical axis of the laser beam from the semiconductor laser element was adjusted so that the first wavelength converter was irradiated from a direction substantially perpendicular to the substrate surface of the translucent substrate.
  • the same semiconductor laser element as in Example 1 was used, and the optical energy density and laser spot diameter of the laser were adjusted so as to be substantially the same level as in Example 1.
  • the spectral distribution of the output light was evaluated by the same method as in Example 1.
  • FIG. 8 shows the spectral distribution of the output light emitted from the structure of Example 2 by laser light irradiation.
  • FIG. 8B shows the spectral distribution of the output light emitted when the first wavelength conversion member, that is, the structure not having the second wavelength conversion member is irradiated with laser light. Is shown.
  • FIG. 8C shows the spectral distribution of the output light according to the first embodiment. The spectral distribution shown in FIG. 8 is normalized by the fluorescence peak intensity so that subtle differences in the spectral distribution can be easily distinguished.
  • the output light of the light emitting device of Example 2 has a fluorescence peak of 616 nm. Therefore, it can be seen that the light emitting device of Example 2 emits a red fluorescent component having a fluorescent peak in the red wavelength region. Moreover, it turns out that the light-emitting device of Example 2 emits the fluorescence spectrum with the ratio of a red fluorescence component larger than the fluorescence spectrum which the 1st wavelength conversion member emits ((b) of FIG. 8).
  • the output light of the light-emitting device of Example 2 includes Lu 2 CaMg 2 (SiO 4 ) 3 : Ce 3+ orange fluorescent component, (Sr, Ca) AlSiN 3 : Eu 2+ red fluorescent component, and Becomes a fluorescent component. Also according to this example, it was possible to obtain output light with a high proportion of the red fluorescent component despite not directly irradiating the Eu 2+ activated red phosphor, which is likely to saturate the fluorescent output, with high light density laser light. .
  • the spectral distribution of Example 2 is a fluorescent component in a wide wavelength range from 550 nm to less than 600 nm ranging from green to yellow to orange. There was a tendency for the strength of to become relatively small. This means that the light emitting device of Example 2 emits output light with a smaller proportion of at least a green light component than that of Example 1. In addition, the light emitting device of Example 2 emits output light having a higher proportion of red fluorescent component than that of Example 1.
  • Example 3 In Example 3, a reflective light-emitting device similar to that shown in FIG. 3 was produced.
  • the above-mentioned mixed dispersion was dropped into the depression of the same metal substrate as in Example 1, and a coating film of the mixed dispersion was formed by a wet coating technique (bar coater). Then, by drying for 60 minutes at 100 ° C.
  • the coating film formed on the metal substrate Y 3 Al 2 (AlO 4 ) 3: Ce 3+ third wavelength conversion comprising a fluorescent nanoparticles (magnesium fluoride) Got the body.
  • the third wavelength converter was an inorganic compound film composed of Y 3 Al 2 (AlO 4 ) 3 : Ce 3+ phosphor and nanoparticles (magnesium fluoride), and the film thickness was about 50 ⁇ m.
  • the third wavelength conversion member having a structure in which the thick third wavelength converter was fixed on the metal substrate to be the support was obtained by peeling off the Kapton tape attached to the metal substrate.
  • the first wavelength conversion member and the second wavelength conversion member were the same as those in Example 1.
  • the number of the first wavelength conversion member is one, and the number of the second wavelength conversion member and the third wavelength conversion member are both two.
  • the structure of the wavelength conversion member was produced by combining the 1st wavelength conversion member, the 2nd wavelength conversion member, and the 3rd wavelength conversion member. Specifically, two second wavelength conversion members were assembled on opposite edges of one first wavelength conversion member so that the second wavelength conversion body faces each other. And the adhesive agent was apply
  • Example 3 has a metal substrate of the second wavelength conversion member and a metal substrate of the third wavelength conversion member with respect to the metal substrate of the first wavelength conversion member. , Both have a structure assembled so as to be vertical.
  • the light emitting device of Example 3 was manufactured with a simple configuration combining the above-described structure and the semiconductor laser element.
  • the first wavelength converter was directly irradiated with blue laser light from the direction directly in front of the first wavelength converter in the above structure.
  • the light of the laser light from the semiconductor laser element is so irradiated that the blue laser light directly irradiates the first wavelength converter without directly irradiating the second wavelength converter and the third wavelength converter.
  • the axis was adjusted.
  • the same semiconductor laser element as in Example 1 was used, and the light energy density and laser spot diameter of the laser were adjusted to be substantially the same level as in Example 1.
  • the spectral distribution of the output light was evaluated by the same method as in Example 1.
  • FIG. 9 is a spectral distribution of the output light emitted from the structure of Example 3 by laser light irradiation.
  • FIG. 9B shows that the first wavelength conversion member, that is, the structure that does not have the second wavelength conversion member and the third wavelength conversion member is emitted when irradiated with laser light.
  • the spectral distribution of the output light is shown.
  • FIG. 9C shows the spectral distribution of the output light of the first embodiment.
  • the spectral distribution shown in FIG. 9 is normalized by the fluorescence peak intensity so that subtle differences in the spectral distribution can be easily distinguished.
  • the output light of the light emitting device of Example 3 has a fluorescence peak of 612 nm. Therefore, it can be seen that the light emitting device of Example 3 emits a red fluorescent component having a fluorescent peak in the red wavelength region. Moreover, it turns out that the light-emitting device of Example 3 emits a fluorescence spectrum having a higher ratio of the red fluorescence component than the fluorescence spectrum ((b) of FIG. 9) emitted by the first wavelength conversion member.
  • the output light of the light emitting device of Example 3 includes Lu 2 CaMg 2 (SiO 4 ) 3 : Ce 3+ orange component, (Sr, Ca) AlSiN 3 : Eu 2+ red component, and Y 3 Al. 2 (AlO 4 ) 3 : a fluorescent component obtained by mixing a yellowish green component of Ce 3+ . Also according to this example, it is possible to obtain a red fluorescent component having a high proportion of red fluorescent component, even though the Eu 2+ activated red phosphor that easily saturates the fluorescence output is not directly irradiated with high-density laser light. It was.
  • the spectral distribution of Example 3 is a fluorescent component in a wide wavelength range from 500 nm to less than 612 nm and extending from green to yellow to orange.
  • the strength of the steel showed a tendency to become relatively large.
  • the light emitting device of Example 3 has a higher proportion of at least the green fluorescent component than Example 1.
  • the light emitting device of Example 3 has a higher proportion of not only the red fluorescent component but also the green fluorescent component as compared with Example 1, which means that it emits output light preferable for illumination.
  • high-density laser light is directly irradiated only on Ce 3+ activated orange phosphor that is less likely to saturate the fluorescence output, and directly irradiated on Eu 2+ activated red phosphor that is more likely to saturate the fluorescence output. do not do. Therefore, it turns out that the output saturation of a red fluorescence component can be suppressed.
  • a light-emitting device capable of emitting high-output light with little fluorescence output saturation and a large proportion of red fluorescent component even for a light-emitting device that excites a phosphor with blue laser light. can do.

Abstract

発光装置(A)は、440nm以上480nm未満の波長範囲内に強度最大値を持つレーザー光(100)を放つ青色光源(1)と、580nm以上610nm未満の波長範囲内に蛍光ピークを持つCe3+付活橙色蛍光体と、610nm以上660nm未満の波長範囲内に蛍光ピークを持つEu2+付活赤色蛍光体とを備える。そして、レーザー光を、Eu2+付活赤色蛍光体に直接照射することなく、Ce3+付活橙色蛍光体に直接照射し、Ce3+付活橙色蛍光体に直接照射されたレーザー光の散乱光をEu2+付活赤色蛍光体に照射する。

Description

発光装置
 本発明は、発光装置に関する。
 従来より、蛍光体と、当該蛍光体を励起するレーザー光とを組み合わせてなる発光装置が知られている。そして、当該発光装置は、固体照明の小型化及び高出力化を可能にする装置として期待されている。
 このような発光装置では、レーザー光のパワー密度の増加に伴う蛍光出力の飽和を抑制するために、超短残光性の蛍光を放つCe3+付活蛍光体が好ましく用いられる。なお、レーザー光のパワー密度の増加に伴う、蛍光体の出力飽和は、蛍光体のドループ現象とも言われている。そして特許文献1では、緑色系(青緑色または緑色)の蛍光を放つCe3+付活蛍光体と、暖色系(橙色または赤色)の蛍光を放つCe3+付活暖色蛍光体とを組み合わせることにより、蛍光出力飽和が少ない高演色性の照明光を実現できることが開示されている。
国際公開第2016/092743号
 しかしながら、レーザー光とCe3+付活暖色蛍光体とを組み合わせてなる従来の発光装置は、赤色蛍光成分の割合が多い高出力光を得ることが困難であった。これは、青色光で高効率に励起することが可能なCe3+付活暖色蛍光体は、蛍光波長の長波長化に伴い、温度消光が大きくなることに起因する。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、青色レーザー光で蛍光体を励起するタイプの発光装置であっても、蛍光出力飽和が少なく、赤色蛍光成分の割合が多い高出力光を放つことが可能な発光装置を提供することにある。
 上記課題を解決するために、本発明の態様に係る発光装置は、440nm以上480nm未満の波長範囲内に強度最大値を持つレーザー光を放つ青色光源と、580nm以上610nm未満の波長範囲内に蛍光ピークを持つCe3+付活橙色蛍光体と、610nm以上660nm未満の波長範囲内に蛍光ピークを持つEu2+付活赤色蛍光体と、を備える。そして、レーザー光を、Eu2+付活赤色蛍光体に直接照射することなく、Ce3+付活橙色蛍光体に直接照射し、Ce3+付活橙色蛍光体に直接照射されたレーザー光の散乱光をEu2+付活赤色蛍光体に照射する。
図1は、第一実施形態に係る発光装置の例を示す概略図である。図1(a)は発光装置の斜視図であり、図1(b)は図1(a)のI-I線に沿った断面図である。 図2は、第一実施形態に係る発光装置の例を示す断面図である。 図3は、第二実施形態に係る発光装置の例を示す断面図である。 図4は、第三実施形態に係る発光装置の例を示す概略図である。図4(a)は発光装置の斜視図であり、図4(b)は図4(a)のIV-IV線に沿った断面図である。 図5は、第三実施形態に係る発光装置の例を示す概略図である。図5(a)は発光装置の斜視図であり、図5(b)は図5(a)のV-V線に沿った断面図である。 図6は、第三実施形態に係る発光装置の例を示す断面図である。 図7は、実施例1の発光装置から放出された出力光の分光分布を示すグラフである。 図8は、実施例2の発光装置から放出された出力光の分光分布を示すグラフである。 図9は、実施例3の発光装置から放出された出力光の分光分布を示すグラフである。
 以下、本実施形態について、図面を参照しながら説明する。なお、以下に説明する実施形態は、いずれも本実施形態の好ましい具体例を示すものである。したがって、以下の実施形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、あくまで一例であって、本実施形態を限定する趣旨ではない。なお、図1乃至図6は模式図であり、必ずしも厳密に図示されたものではない。また、図1乃至図6において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略又は簡略化する。
[第一実施形態]
 本実施形態の発光装置は、青色のレーザー光を放つ青色光源と、580nm以上610nm未満の波長範囲内に蛍光ピークを持つCe3+付活橙色蛍光体と、610nm以上660nm未満の波長範囲内に蛍光ピークを持つEu2+付活赤色蛍光体とを備えている。具体的には、図1に示すように、発光装置Aは、青色のレーザー光100を放つ青色光源1と、橙色の蛍光を放つCe3+付活橙色蛍光体及び赤色の蛍光を放つEu2+付活赤色蛍光体を保持する構造体2Aとを有している。
 青色光源1は、青色のレーザー光100を放射する発光素子である。このような青色光源1は特に限定されないが、例えば、面発光レーザーダイオード等のレーザーダイオードを用いることができる。また、青色光源1としては、無機または有機のエレクトロルミネッセンス素子を用いることもできる。
 青色光源1が発するレーザー光100は、440nm以上480nm未満、好ましくは445nm以上470nm未満の波長領域内に強度最大値を有することが好ましい。これにより、Ce3+付活橙色蛍光体を効率よく励起することが可能となる。また、レーザー光が上記波長領域内に強度最大値を有する場合には、レーザー光が視認性のよい青色光になり、蛍光体の励起光としてだけでなく、発光装置の出力光としても無駄なく利用することができる。
 レーザー光100における光密度の具体的な数値は特に限定されないが、例えば3W/mm以上100W/mm未満であることが好ましい。レーザー光100の光密度が3W/mm以上の場合には、LED照明との違いが明瞭となるため、差別化商品としての価値が高い発光装置を得ることができる。レーザー光100における光密度が100W/mm未満の場合には、波長変換体のエネルギー損失に起因する発熱が低い発光装置を得ることができる。
 なお、一般照明用として好ましいレーザー光100の光密度の最大値は、3W/mm以上20W/mm未満である。内視鏡用として好ましいレーザー光100の光密度の最大値は、10W/mm以上50W/mm未満である。プロジェクタ用として好ましいレーザー光100の光密度の最大値は、40W/mm以上100W/mm未満である。
 図1に示す発光装置Aは、Ce3+付活橙色蛍光体及びEu2+付活赤色蛍光体を内部に保持する構造体2Aを備えている。具体的には、構造体2Aは、底壁3、右側壁4、左側壁5、前側壁6及び後側壁7からなり、外観視した場合に略直方体状の支持体を有している。また、構造体2Aは、底壁3、右側壁4、左側壁5、前側壁6及び後側壁7により仕切られてなる内部空間を有している。構造体2Aは上面が開口していることから、当該内部空間にレーザー光100が照射される。
 構造体2Aの内部空間における底壁3の上面3aには、Ce3+付活橙色蛍光体を含有する第一の波長変換体10が保持されている。さらに、右側壁4、左側壁5、前側壁6及び後側壁7の内面には、Eu2+付活赤色蛍光体を含有する第二の波長変換体20が保持されている。つまり、図1に示すように、Ce3+付活橙色蛍光体を含有する第一の波長変換体10は、形状が板状又はフィルム状であり、支持体である底壁3に固定されていることが好ましい。同様に、Eu2+付活赤色蛍光体を含有する第二の波長変換体20も、形状が板状又はフィルム状であり、支持体である右側壁4、左側壁5、前側壁6及び後側壁7に固定されていることが好ましい。これにより、第一の波長変換体10及び第二の波長変換体20の形状が安定化し、効率的にレーザー光100を波長変換することが可能となる。
 本実施形態の発光装置は、図1に示す反射型と呼ばれる構造を持つ発光装置A、又は、図2に示す透過型と呼ばれる構造を持つ発光装置Bであることが好ましい。反射型の発光装置Aは、レーザー光100が、Ce3+付活橙色蛍光体を含む第一の波長変換体10によって反射される方向に出力光を放つ。一方、透過型の発光装置では、レーザー光100が、Ce3+付活橙色蛍光体を含む第一の波長変換体10を透過する方向に出力光を放つ。
 図1に示す反射型の発光装置Aの場合、支持体(底壁3)としては、光反射の機能を持つ光反射基板を用いることが好ましい。反射型の発光装置Aの支持体として光反射基板を用いることにより、後述するように、レーザー光100が第一の波長変換体10及び/又は底壁3により反射し、反射光により第二の波長変換体20を効率的に励起することが可能となる。光反射基板は、少なくともレーザー光100を反射できる基板であることが好ましく、例えば金属基板を用いることが好ましい。
 図2に示す透過型の発光装置Bの場合、支持体(底壁3A)としては、透光性の機能を持つ透光性基板を用いることが好ましい。透過型の発光装置Bの支持体として透光性基板を用いることにより、後述するように、レーザー光100が第一の波長変換体10により散乱し、散乱光により第二の波長変換体20を効率的に励起することが可能となる。透光性基板は、少なくともレーザー光100を透光できる基板であることが好ましく、例えばサファイアからなる基板を用いることが好ましい。
 なお、本明細書では、支持体によって固定された波長変換体を波長変換部材といい、波長変換体と区別することにする。
 本実施形態の発光装置は、反射型と透過型のいずれの場合も、第一の波長変換体10と第二の波長変換体20とを適宜組み合わせることによって、蛍光を放つ構造体を形成する。
 第一の波長変換体10は、580nm以上610nm未満、好ましくは590nm以上610nm未満の波長範囲内に蛍光ピークを持つCe3+付活橙色蛍光体を少なくとも含んでいる。また、第二の波長変換体20は、610nm以上660nm未満、好ましくは620nm以上650nm未満の波長範囲内に蛍光ピークを持つEu2+付活赤色蛍光体を少なくとも含んでいる。
 本実施形態の発光装置において、第一の波長変換体10に含まれるCe3+付活橙色蛍光体と、第二の波長変換体20に含まれるEu2+付活赤色蛍光体は、いずれもレーザー光100が持つ青色光成分によって励起される。そして、Ce3+付活橙色蛍光体とEu2+付活赤色蛍光体は、吸収した青色光成分を各々橙色光成分110と赤色光成分120に波長変換する。これにより発光装置は、青色光成分であるレーザー光100と橙色光成分110と赤色光成分120とを含む出力光を放つことができる。
 本実施形態の発光装置において、第一の波長変換体10は、青色光源1から放出されるレーザー光100が直接照射される波長変換体である。また、第二の波長変換体20は、青色光源1から放出されるレーザー光100が直接照射されない波長変換体である。なお、本明細書における「レーザー光が直接照射される波長変換体」は、レーザー光100が最初に(真っ先に)照射される波長変換体をいう。
 具体的には、図1に示す発光装置Aでは、青色光源1から放出されたレーザー光100は、構造体2Aの内部空間を通過し、第一の波長変換体10に到達する。この際、レーザー光100の一部は第一の波長変換体10に含まれるCe3+付活橙色蛍光体に吸収され、橙色光成分110に変換される。また、レーザー光100の一部は第一の波長変換体10の表面10a及び/又は底壁3の上面3aにより反射する。反射したレーザー光100は、右側壁4、左側壁5、前側壁6及び後側壁7により保持されている第二の波長変換体20に到達する。この際、レーザー光100の一部は第二の波長変換体20に含まれるEu2+付活赤色蛍光体に吸収され、赤色光成分120に変換される。
 なお、第一の波長変換体10及び/又は底壁3で反射したレーザー光100の一部はEu2+付活赤色蛍光体に吸収されるが、レーザー光100の一部は第二の波長変換体20並びに/又は右側壁4、左側壁5、前側壁6及び後側壁7で反射する。
 同様に、図2に示す発光装置Bでは、青色光源1から放出されたレーザー光100は、構造体2Bの底壁3Aを通過し、第一の波長変換体10に到達する。この際、レーザー光100の一部は第一の波長変換体10に含まれるCe3+付活橙色蛍光体に吸収され、橙色光成分110に変換される。また、レーザー光100の一部は第一の波長変換体10を透過しつつ、Ce3+付活橙色蛍光体の粒子により散乱する。散乱したレーザー光100は、右側壁4、左側壁5、前側壁6及び後側壁7により保持されている第二の波長変換体20に到達する。この際、レーザー光100の一部は第二の波長変換体20に含まれるEu2+付活赤色蛍光体に吸収され、赤色光成分120に変換される。
 なお、第一の波長変換体10で散乱したレーザー光100の一部はEu2+付活赤色蛍光体に吸収されるが、レーザー光100の一部は第二の波長変換体20並びに/又は右側壁4、左側壁5、前側壁6及び後側壁7で反射する。
 このように、本実施形態の発光装置A,Bにおいて、第一の波長変換体10は、レーザー光100が直接照射される。これに対して、第二の波長変換体20は、レーザー光100が直接照射されず、第一の波長変換体10及び/又は底壁3により反射及び/又は散乱したレーザー光100が照射される。
 ここで、蛍光体に含まれるCe3+は希土類イオンの中で最も短い発光寿命(10-8~10-7s)を持つ発光中心であるため、Ce3+付活蛍光体では、励起状態にある蛍光体の電子エネルギーが極短時間で緩和される。このため、Ce3+付活蛍光体では、レーザー光照射による高密度励起下でも、励起状態にある蛍光体の電子エネルギーを極短時間で緩和することができる。したがって、第一の波長変換体10に含まれる蛍光体としてCe3+付活橙色蛍光体を用いることにより、発光飽和を抑制することができる。なお、発光飽和は、電子励起状態の数の増大による光出力の飽和現象である。
 また、希土類イオンの安定な価数は三価であり、Ce3+は安定な三価の価数を持つ発光中心である。このため、Ce3+付活蛍光体は、レーザー光照射による高密度励起によって蛍光体が発熱したとしても、酸化による蛍光体結晶の変質も生じ難く、長期信頼性が高い。
 これに対して、Eu2+付活赤色蛍光体は、レーザー光100の青色光成分を高効率に赤色光成分120に変換することができるものの、レーザー光が直接照射されると発光飽和する場合がある。また、レーザー光照射による高密度励起によって蛍光体が発熱した場合、Eu2+付活蛍光体は、蛍光体中のEu2+がEu3+へ酸化し、蛍光体結晶が変質する可能性がある。
 そのため、上記発光装置では、レーザー光100をEu2+付活赤色蛍光体に直接照射することなく、Ce3+付活橙色蛍光体に直接照射し、Ce3+付活橙色蛍光体に直接照射されたレーザー光100の散乱光をEu2+付活赤色蛍光体に照射している。これにより、蛍光出力飽和の課題を実質的に抱えないCe3+付活橙色蛍光体をレーザー光100で励起し、蛍光出力飽和の課題を抱えるEu2+付活赤色蛍光体をレーザー光100の散乱光で励起する構造になる。つまり、Eu2+付活赤色蛍光体を低密度の光で励起する構造になる。そのため、暖色系の光成分、つまり橙色及び赤色の蛍光出力飽和が少なく、かつ、赤色光成分の割合が多い光を放つ発光装置を得ることができる。
 なお、上述の「レーザー光100をEu2+付活赤色蛍光体に直接照射することなく、Ce3+付活橙色蛍光体を直接照射する」とは、レーザー光100が、Eu2+付活赤色蛍光体よりも先にCe3+付活橙色蛍光体に照射されることを意味する。
 Ce3+付活橙色蛍光体は、Eu2+付活赤色蛍光体よりも、励起光(レーザー光100)の照射によって生じる熱が大きい蛍光体であってもよい。つまり、Ce3+付活橙色蛍光体は、励起光(レーザー光100)の照射によって発熱する蛍光体であってもよい。例えば、Ce3+付活橙色蛍光体は、Eu2+付活赤色蛍光体よりも温度消光が大きい場合、波長変換体の温度上昇によって、Ce3+付活橙色蛍光体の波長変換効率が大きく低下して発熱するようになる。この結果、Ce3+付活橙色蛍光体は、Eu2+付活赤色蛍光体よりも、励起光の照射によって生じる熱が大きくなる。しかしながら、Ce3+付活橙色蛍光体の温度消光が大きい場合であっても、レーザー光100の散乱光によりEu2+付活赤色蛍光体を励起しているため、Eu2+付活赤色蛍光体の温度消光を抑制して、赤色光成分の割合を高い状態にすることができる。
 図1及び図2に示すように、発光装置A,Bにおいて、Eu2+付活赤色蛍光体は、Ce3+付活橙色蛍光体を直接照射するレーザー光100の光軸上に配置されていないことが好ましい。つまり、青色光源1の中心を連ねる直線上にCe3+付活橙色蛍光体は配置されているが、Eu2+付活赤色蛍光体は配置されていないことが好ましい。これにより、蛍光出力飽和の課題を抱えるEu2+付活赤色蛍光体に、高光密度のレーザー光100が照射される恐れが少なくなる。さらに、十分に散乱された低密度のレーザー光100により、Eu2+付活赤色蛍光体を励起することができる。そのため、Eu2+付活赤色蛍光体に対する蛍光出力飽和の軽減と、当該赤色蛍光体から放出される赤色光成分の増強を容易にすることが可能となる。
 第一の波長変換体10に含まれるCe3+付活橙色蛍光体は、ガーネット型の結晶構造を持つことが好ましい。ガーネット型の結晶構造を持つ蛍光体は、オーソドックスな製法で容易に製造できるので、工業生産に適する発光装置を得ることが可能となる。ガーネット型の結晶構造を持つCe3+付活橙色蛍光体としては、例えば、Ce3+で付活されたLuCaMg(SiOを用いることができる。また、Ce3+付活橙色蛍光体としては、Ce3+で付活され、LuCaMg(SiOを端成分としてなる固溶体を用いることができる。
 第一の波長変換体10に含まれるCe3+付活橙色蛍光体は、ガーネット型の結晶構造を持たない蛍光体であってもよい。ガーネット型の結晶構造を持たないCe3+付活橙色蛍光体としては、例えば、LaSi11:Ce3+、CaAlSiN:Ce3+など、Ce3+で付活された窒化物系の化合物を挙げることができる。
 第二の波長変換体20に含まれるEu2+付活赤色蛍光体は、窒化物系化合物であることが好ましい。窒化物系化合物からなる赤色蛍光体は、LED照明用としての研究が進み、高い実用実績を持つ。そのため、窒化物系化合物からなる赤色蛍光体を用いることによって、信頼性に優れる発光装置を得ることができる。
 窒化物系化合物としてのEu2+付活赤色蛍光体としては、例えば、Eu2+で付活されたアルカリ土類金属窒化珪酸塩、アルカリ土類金属窒化アルミノ珪酸塩、アルカリ土類金属酸窒化珪酸塩、アルカリ土類金属酸窒化アルミノ珪酸塩などを挙げることができる。
具体的には、Eu2+付活赤色蛍光体としては、Eu2+で付活された、AESi、AE(Si,Al)(N,O)、AEAlSiN、AE(Al,Si)(N,O)、AEAlSi、AE(Al,Si)(N,O)などを挙げることができる。なお、前記AEは、アルカリ土類金属であり、Ca、Sr及びBaからなる群より選ばれる少なくとも一つの元素である。
 本実施形態の発光装置において、Ce3+付活橙色蛍光体は粒子群であり、Ce3+付活橙色蛍光体の平均粒子径は1μm以上15μm未満であることが好ましい。また、Ce3+付活橙色蛍光体の平均粒子径は、2μm以上10μm未満であることがより好ましく、3μm以上8μm未満であることがさらに好ましい。Ce3+付活橙色蛍光体が、複数の粒子からなる粒子群であり、当該蛍光体の平均粒子径が上記範囲内であることにより、第一の波長変換体10におけるレーザー光100の照射面(表面10a)の単位面積当たりの凹凸数が増加する。また、第一の波長変換体10における単位深さあたりの蛍光体粒子の数も増加する。そのため、第一の波長変換体10によりレーザー光100が散乱しやすくなり、レーザー光100の散乱の度合いが大きくなる。その結果、第一の波長変換体10によって、光密度が小さな散乱レーザー光を生成することができる。そのため、強いレーザー光100をCe3+付活橙色蛍光体に照射した場合であっても、Eu2+付活赤色蛍光体が蛍光出力飽和を引き起こすまでに至り難い構成となることから、発光装置の高出力化を図ることが可能となる。
 なお、本明細書において、蛍光体の平均粒子径は、波長変換体を走査型電子顕微鏡で観察し、複数の蛍光体の粒子径を測定することにより、求めることができる。
 本実施形態の発光装置において、Ce3+付活橙色蛍光体は粒子群であり、Ce3+付活橙色蛍光体の平均粒子径は15μm以上50μm未満であることも好ましい。また、Ce3+付活橙色蛍光体の平均粒子径は、20μm以上40μm未満であることも好ましく、25μm以上35μm未満であることも好ましい。Ce3+付活橙色蛍光体が、複数の粒子からなる粒子群であり、当該蛍光体の平均粒子径が上記範囲内であることにより、第一の波長変換体10中のCe3+付活橙色蛍光体がレーザー光100を効率よく吸収する。そして、当該橙色蛍光体に吸収された青色光は橙色光に変換されることになるので、青色蛍光成分の割合を抑え、橙色や赤色の蛍光成分の割合が多い、照明用途に適する低色温度の出力光を得ることが容易となる。
 本実施形態の発光装置において、Ce3+付活橙色蛍光体及びEu2+付活赤色蛍光体は粒子群であり、Eu2+付活赤色蛍光体の平均粒子径は、Ce3+付活橙色蛍光体の平均粒子径よりも大きいことが好ましい。この際、Ce3+付活橙色蛍光体の平均粒子径が1μm以上15μm未満であることが好ましい。これにより、Eu2+付活赤色蛍光体を含む第二の波長変換体20は、青色のレーザー光100を効率よく吸収し、当該波長変換体に吸収されたレーザー光100は赤色光に変換される。一方で、Ce3+付活橙色蛍光体を含む第一の波長変換体10は、レーザー光100をさほど吸収せず、橙色光に変換される蛍光成分は少ないものになる。そのため、青色と橙色の蛍光成分の割合を抑制して、赤色の蛍光成分の割合が多く、照明用途に適する低色温度の出力光を得ることが容易となる。
 視点を変えると、照明用途に適する本実施形態の発光装置は、レーザー光100の波長における第二の波長変換体20の光吸収率が、当該波長における第一の波長変換体10の光吸収率よりも大きくなる。
 本実施形態の発光装置A,Bにおいて、出力光は、第一の光成分と第二の光成分と第三の光成分とを含むことが好ましい。そして、第一の光成分は青色光源1が放つレーザー光100であり、第二の光成分はCe3+付活橙色蛍光体が放つ蛍光成分(橙色光成分110)であり、第三の光成分はEu2+付活赤色蛍光体が放つ蛍光成分(赤色光成分120)である。これにより、青色光成分と暖色光成分を少なくとも含む、需要の多い出力光を放つ発光装置を得ることができる。
 第二の光成分(橙色光成分110)と第三の光成分(赤色光成分120)の混合成分からなる蛍光スペクトルは、600nmを超え640nm未満の波長範囲内に蛍光ピークを持つことが好ましい。また、当該蛍光スペクトルは、610nmを超え640nm未満の波長範囲内に蛍光ピークを持つことがより好ましい。これにより、出力光が、赤味の強い蛍光成分を放つようになるので、高い演色性を示す照明光、特に平均演色評価数Raや特殊演色評価数R9が高い照明光を得ることが可能となる。
 第二の光成分(橙色光成分110)の蛍光ピーク波長と、第三の光成分(赤色光成分120)の蛍光ピーク波長との波長差は、50nm未満であることが好ましい。また、当該波長差は、40nm未満であることが好ましく、30nm未満であることがより好ましい。これにより、第二の光成分(橙色光成分110)と第三の光成分(赤色光成分120)の色調の差異が小さくなる。そのため、仮に、第二の光成分を放つ第一の波長変換体10と第三の光成分を放つ第二の波長変換体20の位置関係の精度が低下しても、第二の光成分と第三の光成分の色調差を判別し難い発光装置となる。このような発光装置は、出力特性が装置構成の精度ばらつきによる影響を受け難いことから、工業生産の面で有利なものになる。
 上述のように、Ce3+付活橙色蛍光体は、第一の波長変換体10に含有されている。ここで、Ce3+付活橙色蛍光体は、無機化合物のみからなる波長変換体を構成することが好ましい。つまり、Ce3+付活橙色蛍光体を含む第一の波長変換体10は、無機化合物のみからなることが好ましい。これにより、第一の波長変換体10は、蛍光体の放熱に有利な熱伝導性に優れる波長変換体になる。そのため、温度消光の面で若干の不安を抱えるCe3+付活橙色蛍光体も使用することが可能となる。また、このような第一の波長変換体10は有機成分を含まないので、高密度光で励起したときの発生熱によって有機成分が焦げて波長変換体が着色し、出力低下することを抑制することができる。
 また、レーザー光100に直接照射される蛍光体はいずれも、無機化合物のみからなる波長変換体を構成することが好ましい。つまり、レーザー光100に直接照射される蛍光体を含む波長変換体は、無機化合物のみからなることが好ましい。これにより、レーザー光100が照射される波長変換体は、蛍光体の放熱に有利な熱伝導性に優れるものになる。その結果、高出力のレーザー光100を利用して蛍光体を励起できるようになることから、高出力化しやすい発光装置を得ることができる。また、波長変換体が焦げる恐れが無くなるので、比較的高いエネルギー密度のレーザー光を照射できるようにもなり、発光装置の高出力化を図ることが可能となる。
 ここで、無機化合物からなる波長変換体としては、蛍光体の単結晶、蛍光体の焼結体、蛍光体の圧粉体、蛍光体粒子をガラス封止した構造物、無機化合物からなる結着剤及び/又は微粒子で蛍光体粒子を接合した構造物、蛍光体と化合物を融着させてなる複合体からなる群より選ばれる少なくとも一つを用いることができる。また、波長変換体としては、これらと他の蛍光体粒子と組み合わせてなる複合体を用いることができる。なお、蛍光体と化合物を融着させてなる複合体としては、蛍光体とアルミナを融着させてなる複合体を挙げることができる。
 一方、レーザー光100に直接照射されない蛍光体は、樹脂材料と共に波長変換体を構成することが好ましい。具体的には、レーザー光100が直接照射されない第二の波長変換体20は、Eu2+付活赤色蛍光体を樹脂材料で封止してなる波長変換体であることが好ましい。樹脂材料で封止することにより得られる波長変換体は製造が比較的容易であるため、所望の波長変換体を安価に製造することができる。なお、樹脂材料としては、例えば、シリコーン樹脂などの透明有機材料を用いることができる。
 このように、本実施形態の発光装置A,Bは、440nm以上480nm未満の波長範囲内に強度最大値を持つレーザー光100を放つ青色光源1を備える。発光装置A,Bは、さらに、580nm以上610nm未満の波長範囲内に蛍光ピークを持つCe3+付活橙色蛍光体と、610nm以上660nm未満の波長範囲内に蛍光ピークを持つEu2+付活赤色蛍光体とを備える。発光装置A,Bでは、レーザー光100を、Eu2+付活赤色蛍光体に直接照射することなく、Ce3+付活橙色蛍光体に直接照射し、Ce3+付活橙色蛍光体に直接照射されたレーザー光100の散乱光を、Eu2+付活赤色蛍光体に照射する。これにより、Ce3+付活橙色蛍光体をレーザー光100で直接励起し、Eu2+付活赤色蛍光体をレーザー光100の散乱光で励起する。つまり、Eu2+付活赤色蛍光体を、レーザー光100が散乱してなる低エネルギー密度の光で励起する。そのため、暖色系の光成分の蛍光出力飽和が少なく、かつ、赤色光成分の割合が多い光を放つ発光装置を得ることができる。
 なお、発光装置A,Bにおいて、青色光源1と構造体2A,2Bとの間には、青色光源1から放射されたレーザー光100を第一の波長変換体10に集光するためのレンズを介在させてもよい。また、青色光源1と構造体2A,2Bとの間には、青色光源1から放射されたレーザー光100を第一の波長変換体10に伝送して集光するための光伝送路を介在させてもよい。光伝送路としては、例えば光ファイバーを用いることができる。
 発光装置A,Bにおいて、出力光は、照明光として利用されることが好ましい。これにより、産業上の利用価値が高く需要が多い発光装置となる。なお、発光装置A,Bは、屋外照明、店舗照明、調光システム、施設照明、海洋照明、及び内視鏡のいずれかの用途向けの装置であることが好ましい。また、当然のことながら、近年、技術の進展が目覚しいIoT又はAIを利用した発光装置とすることもできる。
[第二実施形態]
 次に、第二実施形態に係る発光装置について、図面に基づき詳細に説明する。なお、第一実施形態の発光装置A,Bと同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態の発光装置は、第一実施形態と同様に、青色光源1と、Ce3+付活橙色蛍光体と、Eu2+付活赤色蛍光体とを備えている。そのため、当該発光装置は、第一の光成分(青色光成分であるレーザー光100)と、第二の光成分(橙色光成分110)と、第三の光成分(赤色光成分120)とを含む出力光を放つことができる。
 ここで、本実施形態の発光装置において、出力光は、第一乃至第三の光成分に加えて、480nm以上580nm未満の波長範囲内に蛍光ピークを持つ第四の光成分130をさらに含むことが好ましい。また、出力光は、490nm以上560nm未満、より好ましくは500nm以上540nm未満の波長範囲内に蛍光ピークを持つ第四の光成分130をさらに含むことが好ましい。これにより、発光装置の出力光は、レーザー光100の青色光成分と、Ce3+付活橙色蛍光体が放つ橙色光成分と、Eu2+付活赤色蛍光体が放つ赤色光成分と、緑色系(青緑~緑~黄色)の光成分とを含むものとなる。これにより、発光装置の出力光は白色光となる。つまり、発光装置は、青色光と緑色系光と赤色系光の加法混色による白色光を出力することができるものになる。そのため、産業上の利用価値が高い照明用途の出力光を放つ発光装置を得ることができる。
 第四の光成分130は、レーザー光又は蛍光とすることができる。ただ、第四の光成分130は、蛍光体が放つ蛍光であることが好ましい。この場合には、第四の光成分130を得ることが容易になることから、工業生産する上で有利な発光装置となる。
 第四の光成分130を放つ蛍光体は、青色光を吸収して第四の光成分130に変換することが好ましい。また、第四の光成分130を放つ蛍光体は、青色光源1から発せられるレーザー光100を吸収して第四の光成分130に変換することがより好ましい。この場合、第四の光成分130を励起させるために青色光源1以外の光源を必要とせず、青色光源が放つレーザー光100を利用して第四の光成分130を得ることができる。そのため、発光装置の構成を単純化することが可能となる。
 第四の光成分130を放つ蛍光体Pとしては、LED照明用の蛍光体を挙げることができる。具体的には、蛍光体Pとしては、(1)Ce3+付活蛍光体、(2)Eu2+付活蛍光体、(3)Mn4+付活蛍光体を挙げることができる。
(1)Ce3+付活蛍光体
 第四の光成分130を放つ蛍光体Pとしては、ガーネット型の結晶構造を持つ化合物を母体とする蛍光体を挙げることができる。また、ガーネット型の結晶構造を持つ化合物としては、アルミン酸塩、珪酸塩、アルミノ珪酸塩などを挙げることができる。このような蛍光体Pとしては、例えば、LuGa(AlO:Ce3+、LuAl(AlO:Ce3+、YGa(AlO:Ce3+、YAl(AlO:Ce3+、(Y,Gd)Al(AlO:Ce3+、CaSc(SiO:Ce3+、(Lu,Ca)(Al,Mg)((Al,Si)O:Ce3+からなる群より選ばれる少なくとも一つを用いることができる。
 また、第四の光成分130を放つ蛍光体Pとしては、希土類元素又はアルカリ土類金属を含む窒化物又は酸窒化物を母体とする蛍光体を挙げることができる。このような蛍光体Pとしては、例えば、LaSi11:Ce3+(低Ce3+付活量タイプ)、CaAlSiN:Ce3+、Ca(Al,Si)(N,O):Ce3+からなる群より選ばれる少なくとも一つを用いることができる。
(2)Eu2+付活蛍光体
 第四の光成分130を放つ蛍光体Pとしては、アルカリ土類金属オルト珪酸塩を母体とする蛍光体を挙げることができる。このような蛍光体Pとしては、例えば、(Ba,Sr)SiO:Eu2+を用いることができる。
 また、第四の光成分130を放つ蛍光体Pとしては、アルカリ土類金属を含む酸窒化物を母体とする蛍光体を挙げることができる。このような蛍光体Pとしては、例えば、SrSi:Eu2+及びBaSi12:Eu2+の少なくとも一方を用いることができる。
(3)Mn4+付活蛍光体
 第四の光成分130を放つ蛍光体Pとしては、アルカリ金属を含むフッ化物を母体とする蛍光体を挙げることができる。このような蛍光体Pとしては、例えば、KSiF:Mn4+を用いることができる。
 本実施形態の発光装置において、第四の光成分を放つ蛍光体Pは、Ce3+付活蛍光体であり、かつ、Ce3+付活橙色蛍光体を直接照射するレーザー光100の光軸上に配置されていることが好ましい。具体的には、図1に示す発光装置Aにおいて、第四の光成分を放つ蛍光体Pは、第一の波長変換体10に含まれる構成とすることができる。または、蛍光体Pを含む第三の波長変換体30を、支持体である底壁3の上面3aに保持する構成とすることができる。蛍光体Pを、レーザー光100で直接励起しても出力飽和し難いCe3+付活蛍光体にすることにより、レーザー光100を直接照射するCe3+付活橙色蛍光体と混合して利用することができる。また、蛍光体PをCe3+付活蛍光体にすることにより、蛍光体PをCe3+付活橙色蛍光体に近接させて利用することや、第一の波長変換体10を透過したレーザー光の散乱光で蛍光体Pを励起することもできる。つまり、蛍光体PとしてCe3+付活蛍光体を用いることで、レーザー光100により蛍光体Pを高密度光で励起することが可能となる。また、光源設計の自由度が増加するため、第四の光成分130の出力割合を高めることが可能となる。
 本実施形態の発光装置において、第四の光成分を放つ蛍光体Pは、Ce3+付活橙色蛍光体を直接照射するレーザー光の光軸上に配置されていないことも好ましい。具体的には、図3に示す発光装置Cのように、略直方体状の構造体2Cを構成する右側壁4、左側壁5、前側壁6、後側壁7の内面の一部に、蛍光体Pを含む第三の波長変換体30が保持されている構成とすることができる。これにより、蛍光出力飽和の課題を抱える蛍光体を蛍光体Pとして利用できるため、蛍光体Pの材料選択の幅が広がり、出力光のスペクトル設計を容易にすることが可能となる。
 また、Ce3+付活橙色蛍光体と蛍光体Pとが、必然的に空間を隔てて配置される構成となる。そのため、異種蛍光体を混合したときなどに生じる、蛍光特性の相互干渉による悪影響が生じ難い構成になる。つまり、蛍光体Pが放つ蛍光成分が、Ce3+付活橙色蛍光体に吸収されることによってスペクトル形状が変化するなどの悪影響が生じ難い構成になる。
 このように、本実施形態の発光装置は、出力光が、第一乃至第三の光成分に加えて、480nm以上580nm未満の波長範囲内に蛍光ピークを持つ第四の光成分130をさらに含んでいる。これにより、発光装置は、第一の光成分(青色光成分であるレーザー光100)、第二の光成分(橙色光成分110)、第三の光成分(赤色光成分120)、及び第四の光成分130が加法混色された出力光を放つことが可能となる。なお、図3の発光装置は反射型となっているが、透過型であってもよい。
[第三実施形態]
 次に、第三実施形態に係る発光装置について、図面に基づき詳細に説明する。なお、第一実施形態の発光装置A,B及び第二実施形態の発光装置Cと同一構成には同一符号を付し、重複する説明は省略する。
 第一実施形態の発光装置A,Bで用いられる構造体2A,2B及び第二実施形態の発光装置Cで用いられる構造体2Cは、底壁3,3A、右側壁4、左側壁5、前側壁6及び後側壁7からなり、外観視した場合に略直方体状の支持体を有している。しかしながら、本実施形態の発光装置に用いられる支持体の形状は、このような略直方体状に限定されない。
 図4では、透過型の発光装置の変形例を示している。図4に示す発光装置Dにおいて、構造体2Dは、底壁3A、右側壁4、前側壁6及び後側壁7からなる支持体を有している。そして、底壁3AにはCe3+付活橙色蛍光体を含有する第一の波長変換体10が保持され、右側壁4、前側壁6及び後側壁7にはEu2+付活赤色蛍光体を含有する第二の波長変換体20が保持されている。つまり、構造体2Dは、第一実施形態の発光装置Bで用いられている構造体2Bから左側壁5を除いた構成となっている。
 このような発光装置Dにおいて、第二の波長変換体20は右側壁4、前側壁6及び後側壁7に保持されているため、構造体2Dは三枚の第二の波長変換体20を備えている。つまり、構造体2Dでは、第二の波長変換体20の数が奇数となっている。発光装置の構造体に保持されている第二の波長変換体20の数が奇数の場合には、出射方向によって色調や強度が異なる出力光を放つことができる。そのため、差別化商品としての価値が高い発光装置を得ることができる。なお、図4の発光装置は透過型となっているが、反射型であってもよい。
 また、図4に示す発光装置Dにおいて、構造体2Dは、底壁3A、右側壁4、前側壁6及び後側壁7からなる支持体を有している。しかしながら、このような態様に限定されず、構造体2Dから右側壁4を除き、構造体が底壁3A、前側壁6及び後側壁7からなる略U字状の支持体を有している態様であってもよい。また、構造体2Dから右側壁4及び後側壁7を除き、構造体が底壁3A及び前側壁6からなる略L字状の支持体を有している態様であってもよい。
 図5では、反射型の発光装置の変形例を示している。図5に示す発光装置Eは、底壁3、右側壁4、左側壁5、前側壁6及び後側壁7からなる支持体を備えた構造体2Eを備えている。そして、構造体2Eは、外観視した場合に略四角錐台状であり、上面が開口した支持体を有している。
 構造体2Eにおいて、底壁3にはCe3+付活橙色蛍光体を含有する第一の波長変換体10が保持されている。さらに、右側壁4、左側壁5、前側壁6及び後側壁7には、Eu2+付活赤色蛍光体を含有する第二の波長変換体20及び蛍光体Pを含む第三の波長変換体30が保持されている。このように、構造体2Eが略四角錐台状の形状を有し、上面が広く開口していることにより、発光装置Eは、第二の波長変換体20や第三の波長変換体30が放つ蛍光成分を比較的多く含む出力光を放つことが可能となる。
 図6では、透過型の発光装置の変形例を示している。図6に示す発光装置Fは、第二の波長変換体20が、第一の波長変換体10と平行に配置された構造を持つ。つまり、第一の波長変換体10は透光性基板からなる支持体(底壁3A)に保持されており、第二の波長変換体20も透光性基板からなる支持体8に保持されている。そして、第一の波長変換体10を備えた波長変換部材と、第二の波長変換体20を備えた波長変換部材とが略平行に配置された構造を有している。この際、第一の波長変換体10と第二の波長変換体20は互いに対向しており、第一の波長変換体10と第二の波長変換体20との間には空隙が存在する。
 なお、図6に示す発光装置Fでは、第一の波長変換体10と第二の波長変換体20は対向していることから、Ce3+付活橙色蛍光体及びEu2+付活赤色蛍光体は共に、レーザー光100の光軸上に配置されている。
 発光装置Fでは、青色光源1から放出されたレーザー光100は、構造体2Fの底壁3Aを通過し、第一の波長変換体10に到達する。この際、レーザー光100の一部は第一の波長変換体10に含まれるCe3+付活橙色蛍光体に吸収され、橙色光成分110に変換される。また、レーザー光100の一部は第一の波長変換体10を透過しつつ、Ce3+付活橙色蛍光体の粒子により散乱する。散乱したレーザー光100は、支持体8により保持されている第二の波長変換体20に到達する。この際、レーザー光100の一部は第二の波長変換体20に含まれるEu2+付活赤色蛍光体に吸収され、赤色光成分120に変換される。そして、レーザー光100、橙色光成分110及び赤色光成分120が加法混色された出力光が、上方に向けて出射される。
 発光装置Fのように、第一の波長変換体10と第二の波長変換体20とを略平行に配置することにより、装置の小型化が容易になるだけでなく、出射方向における赤色の色調差が小さな出力光を放つことが可能となる。
 なお、図6に示す発光装置Fでは、第一の波長変換体10と第二の波長変換体20は互いに対向し、第一の波長変換体10と第二の波長変換体20との間には空隙が存在する。しかしながら、このような態様に限定されず、第一の波長変換体10と第二の波長変換体20は接触していてもよい。
 以下、本実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。
[実施例1]
 実施例1では、図1と同様の、反射型の発光装置を作製した。
 (第一の波長変換部材の作製)
 Ce3+付活橙色蛍光体として、LuCaMg(SiO:Ce3+を使用した。なお、LuCaMg(SiO:Ce3+は、蛍光ピーク波長が約600nmであり、顕微鏡で測定した平均粒子径が約18μmである市販品を用いた。
 Ce3+付活橙色蛍光体の粒子と基板、及び、Ce3+付活橙色蛍光体の粒子同士を結着する結着剤として、ナノ粒子(材質:フッ化マグネシウム、平均粒子径≒20nm)を使用した。なお、結着剤としてのナノ粒子は、当該ナノ粒子をジブチルエーテル中に8質量%の濃度で分散させた状態のナノ粒子分散液を使用した。
 まず、前記ナノ粒子分散液1.6g中に、粒子状のLuCaMg(SiO:Ce3+蛍光体を6.2g投入し、スターラーで混合した。これにより、LuCaMg(SiO:Ce3+蛍光体とナノ粒子とを混合した混合分散液を準備した。
 さらに、第一の波長変換体の支持体となる金属基板(材質:アルミニウム、大きさ:縦20mm、横20mm、厚さ0.5mm)を準備した。なお、第一の波長変換体の作製に際して、金属基板には、予め金属基板の片面の外縁部を囲うようにカプトン(登録商標)のテープを張り付け、テープの段差を利用して、縦が約10mm、横が約10mm、深さが約0.1mmの窪みを作製した。
 次に、金属基板に作製した窪みに、上述の混合分散液を滴下し、ウエットコーティング技術(バーコーター)によって、前記混合分散液の塗布膜を形成した。そして、金属基板上に形成した塗布膜を100℃で60分間乾燥させることによって、LuCaMg(SiO:Ce3+蛍光体とナノ粒子(フッ化マグネシウム)からなる第一の波長変換体を得た。なお、得られた第一の波長変換体は無機化合物からなる膜であり、膜厚は約100μmであった。
 その後、金属基板に貼り付けたカプトンテープを剥がすことによって、支持体となる金属基板上に、厚膜状の第一の波長変換体が固着した構造を持つ第一の波長変換部材を得た。なお、得られた第一の波長変換体の断面を電子顕微鏡で観察した。その結果、LuCaMg(SiO:Ce3+蛍光体と金属基板、及び、LuCaMg(SiO:Ce3+蛍光体の粒子同士が、ナノ粒子又は当該ナノ粒子の集合体を介して固着された構造体になっていることが分かった。
 (第二の波長変換部材の作製)
 Eu2+付活赤色蛍光体として、(Sr,Ca)AlSiN:Eu2+を使用した。なお、(Sr,Ca)AlSiN:Eu2+は、蛍光ピーク波長が約625nmであり、顕微鏡で測定した平均粒子径が約17μmである市販品を用いた。
 まず、実施例1と同じナノ粒子分散液6g中に、粒子状の(Sr,Ca)AlSiN:Eu2+蛍光体を5g投入し、スターラーで混合した。これにより、(Sr,Ca)AlSiN:Eu2+蛍光体とナノ粒子とを混合した混合分散液を準備した。
 次に、実施例1と同じ金属基板の窪みに、上述の混合分散液を滴下し、ウエットコーティング技術(バーコーター)によって、前記混合分散液の塗布膜を形成した。そして、金属基板上に形成した塗布膜を100℃で60分間乾燥させることによって、(Sr,Ca)AlSiN:Eu2+蛍光体とナノ粒子(フッ化マグネシウム)からなる第二の波長変換体を得た。なお、第二の波長変換体は、(Sr,Ca)AlSiN:Eu2+蛍光体とナノ粒子(フッ化マグネシウム)からなる無機化合物の膜であり、膜厚は約50μmであった。
 その後、金属基板に貼り付けたカプトンテープを剥がすことによって、支持体となる金属基板上に、厚膜状の第二の波長変換体が固着した構造を持つ第二の波長変換部材を得た。なお、得られた第二の波長変換体の断面を電子顕微鏡で観察した。その結果、第一の波長変換体と同様に、(Sr,Ca)AlSiN:Eu2+蛍光体と金属基板、及び、(Sr,Ca)AlSiN:Eu2+蛍光体の粒子同士が、ナノ粒子又は当該ナノ粒子の集合体を介して固着された構造体になっていることが分かった。
 ここで、(Sr,Ca)AlSiN:Eu2+蛍光体の蛍光ピーク波長は約625nmであり、LuCaMg(SiO:Ce3+蛍光体の蛍光ピーク波長は約600nmである。そのため、LuCaMg(SiO:Ce3+蛍光体と(Sr,Ca)AlSiN:Eu2+蛍光体との蛍光ピーク波長の差は、約25nmである。
 得られた第一の波長変換部材と第二の波長変換部材を組み合わせることにより、波長変換部材の構造体を作製した。具体的には、一枚の第一の波長変換部材における対向する縁部に、二枚の第二の波長変換部材を、第二の波長変換体が対面するように組み付けた。そして、第一の波長変換部材の金属基板と第二の波長変換部材の金属基板とが接触している部分に接着剤を塗布し、これらを接着した。これによって、図1(b)に示すような、略U字型の構造体を作製した。つまり、図1(a)に示す構造体において、前側壁と後側壁を除いた状態のものを作製した。なお、実施例1の構造体は、図1(b)に示すように、第一の波長変換部材の金属基板に対して、第二の波長変換部材の金属基板が垂直となるように組み付けられた構造を持つ。
 なお、説明の都合上、詳細は省略するが、上述の構造体と半導体レーザー素子とを組み合わせる簡易な構成によって、実施例1の発光装置を作製した。
 次に、上述の構造体における第一の波長変換体の真正面となる方向から、青色レーザー光を第一の波長変換体に直接照射した。この際、青色レーザー光が、第二の波長変換体を直接照射することなく、第一の波長変換体を直接照射するように、半導体レーザー素子からのレーザー光の光軸を調整した。なお、レーザー光のピーク波長は444nmであり、第一の波長変換体に照射する光エネルギー密度は5W/mmとした。また、このときのレーザースポット径は、約1mm(0.5mm以上1.5mm未満)であった。
 図7の(a)は、レーザー光照射によって、前記構造体から放出された出力光の分光分布を示している。比較のために、図7の(b)には、第一の波長変換部材、つまり、第二の波長変換部材を持たない構造体にレーザー光を照射したときに放出された出力光の分光分布を示している。
 なお、出力光の分光分布の評価では、積分球(φ約30cm)を利用して出力光の強度を均一化するとともに、出力光の色調を均質化した。次に、均一化及び均質化がなされた出力光を、積分球の一部へ取り付けた導光ファイバーを通じて取り出した。そして、取り出した出力光の分光分布を、分光光度計(大塚電子株式会社製、製品名:MCPD-8000)を用いて測定した。
 図7の(a)に示すように、実施例1の発光装置の出力光は、蛍光ピークが615nmである。そのため、実施例1の発光装置は、赤色の波長領域に蛍光ピークを持つ赤色蛍光成分を放つことが分かる。また、実施例1の発光装置は、第一の波長変換部材が放つ蛍光スペクトル(図7の(b))よりも、赤色蛍光成分が多い蛍光スペクトルを放つことが分かる。
 このように、実施例1の発光装置の出力光は、LuCaMg(SiO:Ce3+の橙色の蛍光成分と、(Sr,Ca)AlSiN:Eu2+の赤色の蛍光成分とを混合した蛍光成分となる。そして、本例によれば、高光密度のレーザー光を、蛍光出力飽和しやすいEu2+付活赤色蛍光体に直接照射しないにも関わらず、赤色の蛍光成分割合が多い出力光を得ることができた。
 その一方で、本例の発光装置は、高光密度のレーザー光を、蛍光出力飽和しにくいCe3+付活橙色蛍光体にのみ直接照射し、蛍光出力飽和しやすいEu2+付活赤色蛍光体には直接照射しない。そのため、赤色蛍光成分の出力飽和を抑制できることが分かる。
[実施例2]
 実施例2では、図6と同様の、透過型の発光装置を作製した。
 第一の波長変換体及び第二の波長変換体の支持体となる基板を透光性基板に変更したこと以外は、実施例1と同様にして、第一の波長変換体、第二の波長変換体、第一の波長変換部材及び第二の波長変換部材を作製した。透光性基板は、材質がサファイアであり、大きさが縦20mm、横20mm、厚さ0.7mmのものを使用した。なお、第一の波長変換部材と第二の波長変換部材の個数は、各々一つとした。
 そして、第一の波長変換部材と第二の波長変換部材を組み合わせることにより、波長変換部材の構造体を作製した。具体的には、まず、図6に示すように、第一の波長変換部材における第一の波長変換体の表面と、第二の波長変換部材における第二の波長変換体の表面とが空間を隔てて対向するように配置した。次に、第一の波長変換部材の透光性基板と第二の波長変換部材の透光性基板を、固定具を利用して固定することで、実施例2の構造体を作製した。
 なお、説明の都合上、詳細は省略するが、実施例2の構造体と半導体レーザー素子とを組み合わせる簡易な構成によって、実施例2の発光装置を作製した。
 次に、上述の構造体における第一の波長変換部材の透光性基板側から、青色レーザー光を第一の波長変換体に直接照射した。この際、透光性基板の基板面に対してほぼ垂直方向から第一の波長変換体に照射するように、半導体レーザー素子からのレーザー光の光軸を調整した。なお、半導体レーザー素子は実施例1と同じものを使用し、レーザーの光エネルギー密度及びレーザースポット径なども、実施例1と実質的に同じ水準となるように調整した。そして、実施例1と同様の方法で、出力光の分光分布を評価した。
 図8の(a)は、レーザー光照射によって、実施例2の構造体から放出された出力光の分光分布である。比較のために、図8の(b)には、第一の波長変換部材、つまり、第二の波長変換部材を持たない構造体にレーザー光を照射したときに放出された出力光の分光分布を示している。図8の(c)には、実施例1の出力光の分光分布を示している。そして、図8に示す分光分布は、分光分布の微妙な違いを判別しやすいように、各々の蛍光ピーク強度で規格化している。
 図8の(a)に示すように、実施例2の発光装置の出力光は、蛍光ピークが616nmである。そのため、実施例2の発光装置は、赤色の波長領域に蛍光ピークを持つ赤色蛍光成分を放つことが分かる。また、実施例2の発光装置は、第一の波長変換部材が放つ蛍光スペクトル(図8の(b))よりも、赤色蛍光成分の割合が多い蛍光スペクトルを放つことが分かる。
 このように、実施例2の発光装置の出力光は、LuCaMg(SiO:Ce3+の橙色の蛍光成分と、(Sr,Ca)AlSiN:Eu2+の赤色の蛍光成分とを混合した蛍光成分となる。そして、本例によっても、高光密度のレーザー光を、蛍光出力飽和しやすいEu2+付活赤色蛍光体に直接照射しないにも関わらず、赤色の蛍光成分割合が多い出力光を得ることができた。
 その一方で、実施例1の分光分布(図8の(c))と比較すると、実施例2の分光分布は、550nm以上600nm未満の、緑~黄~橙に亘る広い波長範囲において、蛍光成分の強度が相対的に小さくなる傾向を示した。このことは、実施例2の発光装置の方が、実施例1と比べて、少なくとも緑色の光成分の割合が少ない出力光を放つことを意味する。また、実施例2の発光装置の方が、実施例1と比べて、赤色蛍光成分の割合が多い出力光を放つことを意味する。
[実施例3]
 実施例3では、図3と同様の、反射型の発光装置を作製した。
 (第三の波長変換部材の作製)
 Ce3+付活緑色蛍光体として、YAl(AlO:Ce3+を使用した。なお、YAl(AlO:Ce3+は、蛍光ピーク波長が約555nmであり、顕微鏡で測定した平均粒子径が約18μmである市販品を用いた。
 まず、実施例1と同じナノ粒子分散液1.6g中に、粒子状のYAl(AlO:Ce3+蛍光体を6.2g投入し、スターラーで混合した。これにより、YAl(AlO:Ce3+蛍光体とナノ粒子とを混合した混合分散液を準備した。
 次に、実施例1と同じ金属基板の窪みに、上述の混合分散液を滴下し、ウエットコーティング技術(バーコーター)によって、前記混合分散液の塗布膜を形成した。そして、金属基板上に形成した塗布膜を100℃で60分間乾燥させることによって、YAl(AlO:Ce3+蛍光体とナノ粒子(フッ化マグネシウム)からなる第三の波長変換体を得た。なお、第三の波長変換体は、YAl(AlO:Ce3+蛍光体とナノ粒子(フッ化マグネシウム)からなる無機化合物の膜であり、膜厚は約50μmであった。
 その後、金属基板に貼り付けたカプトンテープを剥がすことによって、支持体となる金属基板上に、厚膜状の第三の波長変換体が固着した構造を持つ第三の波長変換部材を得た。
 第一の波長変換部材及び第二の波長変換部材は、実施例1と同じものを使用した。なお、第一の波長変換部材の個数は一つとし、第二の波長変換部材及び第三の波長変換部材の個数はいずれも二つとした。
 そして、第一の波長変換部材と第二の波長変換部材と第三の波長変換部材を組み合わせることにより、波長変換部材の構造体を作製した。具体的には、一枚の第一の波長変換部材における対向する縁部に、二枚の第二の波長変換部材を、第二の波長変換体が対面するように組み付けた。そして、第一の波長変換部材の金属基板と第二の波長変換部材の金属基板とが接触している部分に接着剤を塗布し、これらを接着した。
 さらに、第一の波長変換部材における第二の波長変換部材を接着していない対向する縁部に、二枚の第三の波長変換部材を、第三の波長変換体が対面するように組み付けた。そして、第一の波長変換部材の金属基板と第三の波長変換部材の金属基板とが接触している部分に接着剤を塗布し、これらを接着した。なお、実施例3の構造体は、図3に示すように、第一の波長変換部材の金属基板に対して、第二の波長変換部材の金属基板及び第三の波長変換部材の金属基板が、いずれも垂直となるように組み付けられた構造を持つ。
 なお、説明の都合上、詳細は省略するが、上述の構造体と半導体レーザー素子とを組み合わせる簡易な構成によって、実施例3の発光装置を作製した。
 次に、上述の構造体における第一の波長変換体の真正面となる方向から、青色レーザー光を第一の波長変換体に直接照射した。この際、青色レーザー光が、第二の波長変換体及び第三の波長変換体を直接照射することなく、第一の波長変換体を直接照射するように、半導体レーザー素子からのレーザー光の光軸を調整した。なお、半導体レーザー素子は実施例1と同じものを使用し、レーザーの光エネルギー密度やレーザースポット径なども、実施例1と実質的に同じ水準になるように調整した。そして、実施例1と同様の方法で、出力光の分光分布を評価した。
 図9の(a)は、レーザー光照射によって、実施例3の構造体から放出された出力光の分光分布である。比較のために、図9の(b)には、第一の波長変換部材、つまり、第二の波長変換部材及び第三の波長変換部材を持たない構造体にレーザー光を照射したときに放出された出力光の分光分布を示している。図9の(c)には、実施例1の出力光の分光分布を示している。そして、図9に示す分光分布は、分光分布の微妙な違いを判別しやすいように、各々の蛍光ピーク強度で規格化している。
 図9の(a)に示すように、実施例3の発光装置の出力光は、蛍光ピークが612nmである。そのため、実施例3の発光装置は、赤色の波長領域に蛍光ピークを持つ赤色蛍光成分を放つことが分かる。また、実施例3の発光装置は、第一の波長変換部材が放つ蛍光スペクトル(図9の(b))よりも、赤色蛍光成分の割合が多い蛍光スペクトルを放つことが分かる。
 このように、実施例3の発光装置の出力光は、LuCaMg(SiO:Ce3+の橙色成分と、(Sr,Ca)AlSiN:Eu2+の赤色成分と、YAl(AlO:Ce3+の黄緑色成分とを混合した蛍光成分となる。そして、本例によっても、高光密度のレーザー光を、蛍光出力飽和しやすいEu2+付活赤色蛍光体に直接照射しないにも関わらず、赤色の蛍光成分割合が多い赤色蛍光成分を得ることができた。
 その一方で、実施例1の分光分布(図9の(c))と比較すると、実施例3の分光分布は、500nm以上612nm未満の、緑~黄~橙に亘る広い波長範囲において、蛍光成分の強度が相対的に大きくなる傾向を示した。このことは、実施例3の発光装置の方が、実施例1と比べて、少なくとも緑色蛍光成分の割合が多いことを意味する。また、実施例3の発光装置の方が、実施例1と比べて、赤色蛍光成分だけでなく緑色蛍光成分の割合も多く、照明用として好ましい出力光を放つことを意味する。
 このように、本実施例でも、高光密度のレーザー光を、蛍光出力飽和しにくいCe3+付活橙色蛍光体にのみ直接照射し、蛍光出力飽和しやすいEu2+付活赤色蛍光体には直接照射しない。そのため、赤色蛍光成分の出力飽和を抑制できることが分かる。
 以上、本実施形態を実施例によって説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。
 特願2018-080465号(出願日:2018年4月19日)の全内容は、ここに援用される。
 本開示によれば、青色レーザー光で蛍光体を励起するタイプの発光装置であっても、蛍光出力飽和が少なく、赤色蛍光成分の割合が多い高出力光を放つことが可能な発光装置を提供することができる。
 A,B,C,D,E,F 発光装置
 1 青色光源
 100 レーザー光(第一の光成分)
 110 橙色光成分(第二の光成分)
 120 赤色光成分(第三の光成分)
 130 第四の光成分

Claims (13)

  1.  440nm以上480nm未満の波長範囲内に強度最大値を持つレーザー光を放つ青色光源と、
     580nm以上610nm未満の波長範囲内に蛍光ピークを持つCe3+付活橙色蛍光体と、
     610nm以上660nm未満の波長範囲内に蛍光ピークを持つEu2+付活赤色蛍光体と、
     を備え、
     前記レーザー光を、前記Eu2+付活赤色蛍光体に直接照射することなく、前記Ce3+付活橙色蛍光体に直接照射し、
     前記Ce3+付活橙色蛍光体に直接照射された前記レーザー光の散乱光を、前記Eu2+付活赤色蛍光体に照射する、発光装置。
  2.  前記Eu2+付活赤色蛍光体は、前記Ce3+付活橙色蛍光体を直接照射する前記レーザー光の光軸上に配置されていない、請求項1に記載の発光装置。
  3.  前記Ce3+付活橙色蛍光体はガーネット型の結晶構造を持つ、請求項1又は2に記載の発光装置。
  4.  前記Eu2+付活赤色蛍光体は窒化物系化合物である、請求項1乃至3のいずれか一項に記載の発光装置。
  5.  出力光は、第一の光成分と第二の光成分と第三の光成分とを含み、
     前記第一の光成分は前記青色光源が放つ前記レーザー光であり、前記第二の光成分は前記Ce3+付活橙色蛍光体が放つ蛍光成分であり、前記第三の光成分は前記Eu2+付活赤色蛍光体が放つ蛍光成分である、請求項1乃至4のいずれか一項に記載の発光装置。
  6.  前記第二の光成分と前記第三の光成分との混合成分からなる蛍光スペクトルは、600nmを超え640nm未満の波長範囲内に蛍光ピークを持つ、請求項5に記載の発光装置。
  7.  前記出力光は、480nm以上580nm未満の波長範囲内に蛍光ピークを持つ第四の光成分をさらに含む、請求項5又は6に記載の発光装置。
  8.  前記出力光は白色光である、請求項7に記載の発光装置。
  9.  前記第四の光成分は蛍光体が放つ蛍光であり、
     前記第四の光成分を放つ蛍光体は、前記レーザー光を吸収して前記第四の光成分に変換する、請求項7又は8に記載の発光装置。
  10.  前記第四の光成分を放つ蛍光体は、Ce3+付活蛍光体であり、かつ、前記Ce3+付活橙色蛍光体を直接照射するレーザー光の光軸上に配置されている、請求項9に記載の発光装置。
  11.  前記第四の光成分を放つ蛍光体は、前記Ce3+付活橙色蛍光体を直接照射する前記レーザー光の光軸上に配置されていない、請求項9に記載の発光装置。
  12.  前記Ce3+付活橙色蛍光体は、無機化合物のみからなる波長変換体を構成する、請求項1乃至11のいずれか一項に記載の発光装置。
  13.  出力光は照明光として利用される、請求項1乃至12のいずれか一項に記載の発光装置。
PCT/JP2019/015549 2018-04-19 2019-04-10 発光装置 WO2019203078A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020514099A JP7016034B2 (ja) 2018-04-19 2019-04-10 発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-080465 2018-04-19
JP2018080465 2018-04-19

Publications (1)

Publication Number Publication Date
WO2019203078A1 true WO2019203078A1 (ja) 2019-10-24

Family

ID=68239543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015549 WO2019203078A1 (ja) 2018-04-19 2019-04-10 発光装置

Country Status (2)

Country Link
JP (1) JP7016034B2 (ja)
WO (1) WO2019203078A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187224A (ja) * 2013-03-25 2014-10-02 Stanley Electric Co Ltd 半導体発光装置
US20150092391A1 (en) * 2012-06-18 2015-04-02 Osram Gmbh Device for supplying electromagnetic radiation
JP2015122447A (ja) * 2013-12-24 2015-07-02 シャープ株式会社 発光装置および照明装置
WO2016092743A1 (ja) * 2014-12-12 2016-06-16 パナソニックIpマネジメント株式会社 発光装置
JP2017198982A (ja) * 2016-04-20 2017-11-02 パナソニックIpマネジメント株式会社 波長変換部材、光源、及び車両用ヘッドランプ
WO2018008283A1 (ja) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 ファイバー光源、内視鏡および内視鏡システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354626B2 (ja) * 2015-03-09 2018-07-11 豊田合成株式会社 発光装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150092391A1 (en) * 2012-06-18 2015-04-02 Osram Gmbh Device for supplying electromagnetic radiation
JP2014187224A (ja) * 2013-03-25 2014-10-02 Stanley Electric Co Ltd 半導体発光装置
JP2015122447A (ja) * 2013-12-24 2015-07-02 シャープ株式会社 発光装置および照明装置
WO2016092743A1 (ja) * 2014-12-12 2016-06-16 パナソニックIpマネジメント株式会社 発光装置
JP2017198982A (ja) * 2016-04-20 2017-11-02 パナソニックIpマネジメント株式会社 波長変換部材、光源、及び車両用ヘッドランプ
WO2018008283A1 (ja) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 ファイバー光源、内視鏡および内視鏡システム

Also Published As

Publication number Publication date
JPWO2019203078A1 (ja) 2021-06-17
JP7016034B2 (ja) 2022-02-04

Similar Documents

Publication Publication Date Title
JP5919968B2 (ja) 波長変換部材及び発光デバイス
WO2017073054A1 (ja) 発光装置
WO2018225424A1 (ja) 波長変換体及びその製造方法、並びに波長変換体を用いた発光装置
JP6986523B2 (ja) 光変換デバイス
JP6631855B2 (ja) 発光装置
JP7022914B2 (ja) 発光装置
JP2014175096A (ja) 照明装置
JP6751922B2 (ja) 発光装置
WO2019203078A1 (ja) 発光装置
JP6266796B2 (ja) 発光装置、照明装置、スポットライト、車両用前照灯、および内視鏡
JP7113356B2 (ja) 発光装置
JP7117504B2 (ja) 発光装置
JP7162202B2 (ja) 波長変換部材を用いた白色光出力デバイス
JP2013214629A (ja) 波長変換部材及び発光デバイス
JPWO2020066839A1 (ja) 暖色複合蛍光体、波長変換体及び発光装置
CN117597545A (zh) 集成固态光源和磷光体模块
JP2013157166A (ja) 光源装置および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19787769

Country of ref document: EP

Kind code of ref document: A1