WO2019202714A1 - 絶縁電源回路 - Google Patents

絶縁電源回路 Download PDF

Info

Publication number
WO2019202714A1
WO2019202714A1 PCT/JP2018/016202 JP2018016202W WO2019202714A1 WO 2019202714 A1 WO2019202714 A1 WO 2019202714A1 JP 2018016202 W JP2018016202 W JP 2018016202W WO 2019202714 A1 WO2019202714 A1 WO 2019202714A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
output
voltage
winding
Prior art date
Application number
PCT/JP2018/016202
Other languages
English (en)
French (fr)
Inventor
孝宣 佐竹
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to PCT/JP2018/016202 priority Critical patent/WO2019202714A1/ja
Priority to US16/980,682 priority patent/US11496052B2/en
Priority to JP2020514873A priority patent/JP6909925B2/ja
Publication of WO2019202714A1 publication Critical patent/WO2019202714A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/57Arithmetic logic units [ALU], i.e. arrangements or devices for performing two or more of the operations covered by groups G06F7/483 – G06F7/556 or for performing logical operations
    • G06F7/575Basic arithmetic logic units, i.e. devices selectable to perform either addition, subtraction or one of several logical operations, using, at least partially, the same circuitry
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an insulated power supply circuit capable of changing the output voltage of each secondary winding in accordance with a load connected to a plurality of secondary windings provided on the secondary side of the insulation transformer.
  • microcomputers digital circuits typified by microcomputers (hereinafter referred to as microcomputers) are required to be capable of multi-systems at low voltage and low power consumption.
  • microcomputers In addition, in FA (Factory Automation) equipment, insulation is required in an analog input / output circuit, a digital input / output circuit, and an external interface mounted inside the equipment.
  • multiple windings are provided on the secondary side of the isolation transformer of the isolated power supply circuit, and feedback control is performed from one of them, and the other secondary side that does not perform feedback control
  • a configuration is known in which a regulator is provided in the winding.
  • a main output circuit and a sub output circuit are provided in two windings on the secondary side of the switching transformer for a high power LED and a low power LED as loads, and the main output circuit has a state transition unit and a sub output
  • a power supply device in which an open / close part is provided in a circuit (for example, see Patent Document 1) can be given.
  • the LED Light Emitting Diode
  • the LED is a so-called light emitting diode.
  • the regulator, the main output circuit, and the sub output circuit described above can be regarded as a power supply output circuit.
  • the switching control signal is used to switch the open / close state of the open / close section, and feedback control is performed on the output of the main output circuit or the sub output circuit.
  • the voltage applied to the high power LED is switched between the high level and the low level.
  • the high level is higher than the forward voltage Vf
  • the low level is lower than the forward voltage Vf.
  • the output voltage of the secondary winding of the switching transformer that does not perform feedback control varies depending on the load condition connected to each secondary winding. For example, feedback control is performed on one of the two secondary windings to increase the load connected to the secondary winding. In such a case, the output voltage of the other secondary winding that does not perform feedback control rises.
  • the regulator input voltage and output voltage exceed the specified values. It is necessary to ensure the potential difference. For example, when a switching regulator is used as the type of regulator, it is necessary to ensure a potential difference in order to operate within the maximum duty or the minimum duty.
  • a voltage obtained by adding a voltage equal to or higher than the potential difference of the series regulator to the output voltage of the series regulator must be used as the input voltage. In order to satisfy these requirements under any load conditions, it is necessary to increase the output voltage of the secondary winding of the insulation transformer of the insulated power supply circuit in advance.
  • the input voltage of the regulator connected to the secondary winding that does not perform feedback control is the maximum load connected to the regulator even if the secondary winding that performs feedback control is in a light load state.
  • the secondary winding that performs feedback control is lightly loaded, the potential difference of the regulator increases. As a result, there is a problem that the efficiency of the regulator that does not perform the feedback control is lowered and the heat generation becomes excessive.
  • a shunt regulator is connected to the sub output circuit, and a switching function between the main output circuit and the sub output circuit is provided.
  • the main output circuit is not cut off even when the main output circuit is switched to the sub output circuit.
  • the ON voltage between the LED lamp connected to the main output circuit and the LED auxiliary lamp connected to the sub output circuit is different from the forward voltage Vf by several times. There is a need to. In such a case, if the difference in forward voltage Vf between the LED lamp and the LED auxiliary lamp is about several volts, there is a problem that the LED lamp does not operate normally.
  • the present invention has been made to solve such problems, and is provided in the output voltage of the secondary winding generated by the load connected to the secondary side of the isolation transformer and the secondary winding.
  • An object of the present invention is to provide an insulated power supply circuit that can reduce the potential difference between the optimum input voltage of the power supply output circuit and the high-efficiency and low heat generation.
  • An insulated power supply circuit is connected to an insulation transformer having a primary side winding on the primary side and a secondary side winding on the secondary side, and to the primary side winding and supplying power.
  • Power supply input circuit that excites the primary winding by turning on and off the switching function, and the output that is connected to the secondary winding and that is generated in the secondary winding when the primary winding is excited
  • a power supply output circuit that applies a constant voltage to the load using the voltage as an input voltage, the power supply input circuit being generated according to the load condition and instructing an output voltage change
  • the switching function on / off according to the change instruction signal it has a voltage generation function that generates a voltage corresponding to the expected value of the excitation level set in advance. Excitation level at side winding Changing the Le, power output circuit, in response to the change of the excitation levels, as the input voltage an output voltage generated by the secondary winding is applied to the load.
  • the output voltage of the secondary winding generated by the load connected to the secondary side of the isolation transformer, and the optimum input voltage of the power output circuit provided in the secondary winding can be reduced, resulting in high efficiency and low heat generation.
  • FIG. 1 is a schematic circuit diagram showing a basic configuration of an insulated power supply circuit according to Embodiment 1 of the present invention. It is the schematic circuit diagram which showed the basic composition of the insulated power supply circuit which concerns on Embodiment 2 of this invention. It is the schematic circuit diagram which showed the basic composition of the insulated power supply circuit which concerns on Embodiment 3 of this invention. It is the schematic circuit diagram which showed the basic composition of the insulated power supply circuit which concerns on Embodiment 4 of this invention. It is the schematic circuit diagram which showed the basic composition of the insulated power supply circuit which concerns on Embodiment 5 of this invention. It is the simple circuit diagram which showed the basic composition of the insulated power supply circuit which concerns on an example of a well-known technique.
  • FIG. 2 is a schematic circuit diagram showing a basic configuration of an insulated power supply circuit according to a comparative example in a case where an output condition change instruction signal is not used in the configuration of FIG. 1.
  • FIG. 6 is a simplified circuit diagram showing a basic configuration of an insulated power supply circuit according to an example of a known technique.
  • one primary winding 21a is provided on the primary side of the switching transformer 21, and a pair of secondary windings 21b and 21c are provided on the secondary side. .
  • a switching power supply circuit 22 is connected to the primary winding 21a.
  • Output circuits 23 and 24 are connected to the pair of secondary windings 21b and 21c, respectively.
  • the output circuit 23 is used for feedback control, and is configured to output a feedback signal 25 to the switching power supply circuit 22.
  • the input voltage of the output circuit 24 needs to ensure a potential difference with respect to the maximum load connected to the output circuit 24 even if the output circuit 23 is a light load. This means that the current consumption of the device in the output circuit 23 increases and the output voltage of the output circuit 24 increases. In addition, if the output circuit 23 is lightly loaded, the potential difference of the output circuit 24 increases. As a result, the output circuit 24 is reduced in efficiency and excessively generates heat.
  • An object of the present invention is to provide an insulated power supply circuit that can be reduced in size and that is highly efficient and generates low heat.
  • the insulated power supply circuit is configured to have an insulation transformer in which a primary side winding is provided on the primary side and a secondary side winding is provided on the secondary side.
  • a switching-type power input circuit that is connected to the primary side winding and receives the power supply to excite the primary side winding by turning on and off the switching function is provided.
  • the power supply to the power input circuit can be supplied from a DC power source or converted from an AC power source to a DC power source.
  • it has a power supply output circuit that is connected to the secondary side winding and applies a constant voltage to the load using the output voltage generated in the secondary side winding as the input voltage when the primary side winding is excited.
  • the power supply output circuit shall show the connection circuit structure after the constant voltage power supply circuit connected to a secondary side winding so that the following may be the same.
  • the power supply input circuit uses an output condition change instruction signal that is generated according to the load condition of the load and that instructs the change of the output condition for changing the output voltage.
  • the power input circuit has a voltage generation function for generating a voltage corresponding to an expected value of a preset excitation level by controlling on / off of the switching function.
  • the excitation level in the primary side winding is changed by the voltage obtained by this voltage generation function.
  • the output voltage generated by the secondary winding is input as the input voltage in response to the change in the excitation level.
  • FIG. 1 is a schematic circuit diagram showing a basic configuration of an insulated power supply circuit according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic circuit diagram showing a basic configuration of an insulated power supply circuit when the output condition change instruction signal 101 is not used in the configuration of FIG. 1 as a comparative example.
  • the insulated power supply circuit according to the first embodiment is configured such that the output condition change instruction signal 101 is input to the switching control circuit 3 of the power input circuit described later.
  • the insulated power supply circuit according to the comparative example is configured such that the output condition change instruction signal 101 is not input to the switching control circuit 3 ′ of the power supply input circuit.
  • one primary winding 201a is provided on the primary side of the insulation transformer 2A, and a pair of secondary windings 202a on the secondary side, 202 is provided.
  • a power supply input circuit having a switching function is connected to the primary winding 201a.
  • a power output circuit is connected to each of the pair of secondary windings 202a and 202b.
  • the power input circuit includes a switching control circuit 3, 3 ′ supplied with power from the DC power supply 1, a switching element 4 connected to the switching control circuit 3, 3 ′, and a snubber as a protection circuit for the switching element 4. Circuit 5.
  • the power source for the insulating transformer 2 may be other than DC, and for example, the AC including ripples may be applied after being converted into DC.
  • One output system is a power supply output circuit in which a rectifying / smoothing circuit 6a is connected to the secondary winding 202a and connected to the rectifying / smoothing circuit 6a to generate a constant voltage output A110 and output it to a terminal.
  • a series regulator 7a as a constant voltage power supply circuit is provided.
  • a rectifying / smoothing circuit 6b is connected to the secondary winding 202b, and a power output circuit for generating a constant voltage output B111 connected to the rectifying / smoothing circuit 6b and outputting it to a terminal.
  • a series regulator 7b as a constant voltage power supply circuit.
  • the secondary winding 202a is grounded through the rectifying / smoothing circuit 6a.
  • the series regulator 7a is also grounded.
  • the secondary winding 202b is grounded through the rectifying / smoothing circuit 6b.
  • the series regulator 7b is also grounded.
  • the positive side of the DC power source 1 is connected to one end of the switching control circuits 3 and 3 ′ of the power input circuit and one end of the secondary winding 201 a of the insulating transformer 2 ⁇ / b> A via the snubber circuit 5. .
  • the negative electrode side of the DC power supply 1 is connected to the switching element 4 of the power supply input circuit.
  • the output condition change instruction signal 101 generated externally is used to change the output voltage of the secondary windings 202a and 202b of the insulation transformer 2A. Is input to the switching control circuit 3 in the circuit via a terminal.
  • the circuit configuration is the same as that of FIG.
  • the series regulators 7a and 7b are used for step-down.
  • the input voltage of the series regulators 7a and 7b needs to be equal to or higher than the voltage obtained by adding the minimum operating potential difference of the series regulators 7a and 7b to the output voltage of the series regulators 7a and 7b.
  • the output voltage generated in the secondary windings 202a and 202b is conditional. That is, a voltage equal to or higher than the voltage obtained by adding the minimum operating potential difference of the series regulators 7a and 7b to the output voltage of the series regulators 7a and 7b when the load current of the load connected to the series regulators 7a and 7b becomes maximum is output. It needs to be generated as a voltage.
  • the load connected to the output A110 and the output B111 is different and the load current is different, either one of the secondary windings 202a and 202b has a larger load current. It is necessary to match the output voltage.
  • the potential difference between the optimum input voltage and the actually inputted input voltage is increased, and the loss and heat generation are increased.
  • the optimum input voltage is a voltage obtained by adding a minimum operating potential difference to the output voltages of the series regulators 7a and 7b.
  • the duty ratio is changed by the control of the switching control circuits 3 and 3 ′.
  • the duty ratio is extremely increased or decreased, the loss of the power input circuit on the primary side in the insulated power circuit increases.
  • the loss of the switching control circuits 3 and 3 'itself also increases.
  • the required output voltages of the secondary windings 202a and 202b differ depending on the load currents of the output A110 and the output B111.
  • the insulated power supply circuit according to the comparative example shown in FIG. 7 has a function of changing the output voltage of the secondary windings 202a and 202b depending on the duty ratio condition set by the control of the switching control circuit 3 ′. For this reason, when there is a large or small load current between the output A110 and the output B111, the potential difference between the output voltage of the secondary windings 202a and 202b and the optimum input voltage of the series regulators 7a and 7b should be reduced. Has become difficult.
  • the output condition change instruction signal for changing the output condition of the switching control circuit 3 generated externally according to the load condition of the output A110 and the output B111. 101 is input to the switching control circuit 3 through the input terminal.
  • the load condition may be, for example, the magnitude of the load current.
  • the control of the switching control circuit 3 can change the excitation level in the primary winding 201a by receiving an instruction to change not only the duty ratio condition but also the output condition of the switching control circuit 3. It has become.
  • the switching control circuit 3 has a voltage generation function for generating a voltage corresponding to an expected value of a preset excitation level by controlling on / off of the switching element 4 in a state where the output condition can be changed. .
  • the excitation level of the primary winding 201a of the insulation transformer 2A is changed by the voltage obtained by this voltage generation function.
  • the on / off control of the switching element 4 includes a switching function for changing the period or frequency.
  • the structure of the switching control circuit 3 does not ask
  • an output voltage corresponding to the output condition is generated from the secondary windings 202a and 202b.
  • the potential difference between the output voltage of the secondary windings 202a and 202b and the optimum input voltage of the series regulators 7a and 7b is reduced. Can be suppressed. As a result, loss and heat generation of the series regulators 7a and 7b are suppressed.
  • the duty ratio in the switching control circuit 3 does not need to be extremely increased or decreased, so that the loss of the switching control circuit 3 is suppressed.
  • the switching control circuit 3 and the switching element 4 can excite the primary side winding 201a, the detailed configuration mode is changed. It doesn't matter.
  • waveform generation may be performed by an oscillation circuit, a D / A converter, a comparator, a microcomputer I / O port, or the like.
  • the switching element 4 may be built in the switching control circuit 3.
  • the numbers of secondary windings 202a and 202b, rectifying / smoothing circuits 6a and 6b, and series regulators 7a and 7b are merely examples, If so, the number is not limited. That is, the insulating transformer 2A can be appropriately changed as long as a device having the same function as that of a general-purpose transformer can be used and the circuit configuration can be insulated. For example, the topology represented by flyback, forward, and push-pull is not limited.
  • the series regulators 7a and 7b as constant voltage power supply circuits provided on the secondary side of the insulation transformer 2A are only examples, and any circuit form can be used as long as voltage conversion can be performed.
  • a switching regulator or a shunt regulator can be substituted.
  • the configuration of the series regulators 7a and 7b is not limited to the presence or absence of a feedback circuit.
  • the output condition change instruction signal 101 input to the switching control circuit 3 is not necessarily a single logic signal.
  • a serial signal, a parallel signal, an analog signal, or the like may be used.
  • the switching control circuit 3 is configured by a program using a microcomputer, FPGA (field-programmable gate array), or a logic circuit
  • the output condition change instruction signal 101 may be provided on the program instead of the circuit.
  • the output condition change instruction signal 101 used in the insulated power supply circuit of the first embodiment is generated externally according to the magnitude of the load connected to the secondary side of the insulated transformer 2A, and as shown in FIG. It is assumed that the signal is input to the switching control circuit 3 through the input terminal.
  • FIG. 2 is a schematic circuit diagram showing a basic configuration of an insulated power supply circuit according to Embodiment 2 of the present invention.
  • the insulated power supply circuit according to the second embodiment uses a microcomputer 300A as an operation switching control circuit having an operation switching control function for a power output circuit, and obtains four power supply outputs on the secondary side of the insulation transformer 2B. It is a thing.
  • one primary winding 201c is provided on the primary side of the insulation transformer 2B, and a total of four secondary windings 202c, 202d are provided on the secondary side. , 202e, 202f are provided.
  • the power input circuit related to the primary side winding 201c of the primary side of the isolation transformer 2B has the same configuration as that of the first embodiment.
  • the secondary side windings 202c, 202d, 202e, and 202f on the secondary side of the isolation transformer 2B are respectively connected to series regulators 7c, 7d, and the like as constant voltage power supply circuits that serve as power supply output circuits through rectification / smoothing circuits. 7e and 7f are connected.
  • the secondary winding 202c is grounded through a rectifying / smoothing circuit and a series regulator 7c.
  • the secondary winding 202d is grounded through a rectifying / smoothing circuit and a series regulator 7d.
  • the secondary winding 202e is grounded through the rectifying / smoothing circuit and the series regulator 7e.
  • the secondary winding 202f is grounded through the rectifying / smoothing circuit and the series regulator 7f.
  • the power condition is supplied, and the output condition change instruction signal 101 generated by the microcomputer 300A to which the operation instruction signal 102 such as the sleep instruction signal is input from the input terminal is supplied to the primary side power input. It is input to the switching control circuit 3 of the circuit. Further, the operation switching signal 103 generated through the microcomputer 300A to which the operation instruction signal 102 is input is input to the series regulators 7c, 7d, and 7e of the secondary side power output circuit. The operation switching signal 103 input to the series regulators 7c, 7d, and 7e is used as an on / off operation enable EN.
  • the output terminal of the series regulator 7c is for the external I / F power supply 112, and the output terminal of the series regulator 7d is for the analog power supply 113.
  • I / F is an interface notation.
  • the output terminal of the series regulator 7e is for the microcomputer power supply 114, and the output terminal of the series regulator 7f is for the standby power supply 115.
  • the external I / F power source 112 for the external I / F circuit and the analog power source 113 for the analog circuit of the microcomputer 300A are turned off or the load is low. State. In this way, power is continuously supplied to the peripheral circuit of the microcomputer 300A.
  • the microcomputer 300A In order to set the standby state by the microcomputer 300A, the load current becomes small. Therefore, in the insulated power supply circuit according to the second embodiment, the microcomputer 300A outputs the output condition change instruction signal 101 to set the output condition of the switching control circuit 3. This output condition is such that the voltage of the secondary winding 202f of the isolation transformer 2B exceeds the minimum operating potential difference of the series regulator 7f necessary for obtaining the standby power supply 115 necessary for the microcomputer 300A.
  • the voltage corresponding to the expected value of the excitation level set in advance is generated by the on / off control of the switching element 4 by the switching control circuit 3, and the control includes a switching function for changing the period or frequency.
  • the configuration of the switching control circuit 3 is not limited to the presence or absence of a feedback circuit.
  • an output voltage is generated in the secondary windings 202c, 202d, 202e, and 202f in response to a change in the excitation level of the primary winding 201b due to the on / off control of the switching element 4.
  • the input operation instruction signal 102 is a sleep instruction signal
  • the microcomputer 300A operates in an off state, and the operation switching signal 103 enables the enable EN of the series regulators 7c, 7d, and 7e to be turned on effectively. State.
  • the potential difference of the input / output in secondary side winding 202c, 202d, 202e and series regulator 7c, 7d, 7e by the operating condition, secondary side winding 202f, and series regulator 7f becomes small.
  • the above object is achieved, and an insulated power supply circuit with high efficiency and low heat generation can be obtained.
  • the input operation instruction signal 102 is a sleep instruction signal
  • the microcomputer 300A is turned off when the operation instruction signal 102 is turned on, and the operation switching signal 103 is turned off to disable the enable EN of the series regulators 7c, 7d, and 7e. It becomes a state. That is, the output condition change instruction signal 101 here is on / off of the microcomputer 300A itself having an operation switching control function to the power output circuit, or on / off of some main functions of the microcomputer 300A, or by the microcomputer 300A. Generated according to the logical operation.
  • the series regulators 7c, 7d, 7e and 7f used in the constant voltage power supply circuit of the power supply output circuit according to the second embodiment shown in FIG. 2 generate and apply the dedicated constant voltage described above to the output terminal.
  • a switching regulator, a shunt regulator, or the like may be substituted, and any circuit format may be used as long as it has a voltage conversion function.
  • FIG. 3 is a schematic circuit diagram showing a basic configuration of an insulated power supply circuit according to Embodiment 3 of the present invention.
  • the insulated power supply circuit according to the third embodiment uses a microcomputer 300B as a logical operation device to which power is supplied, and the switching function and the voltage generation function of the power input circuit according to the first embodiment are generated in advance by a logical operation. It is what I did.
  • a usage pattern an application example is shown in which one system of analog input is performed and one system of analog output is obtained.
  • one primary winding 201c is provided on the primary side of the isolation transformer 2C, and a pair of secondary windings 202g and 202h are provided on the secondary side. Is provided.
  • a microcomputer 300B is connected to the primary winding 201c through buffer circuits 15a and 15b.
  • the pair of secondary windings 202g and 202h are connected to power supply circuits 17a and 17b of a constant voltage power supply circuit serving as a power supply output circuit via a rectifying / smoothing circuit.
  • a D / A converter 18a and a differential circuit 19a are connected to the power supply circuit 17a.
  • the differential circuit 19a has an input side connected to the D / A converter 18a and an output terminal for analog output.
  • an A / D converter 18b and a differential circuit 19b are connected to the power supply circuit 17b.
  • the differential circuit 19b has an output side connected to the A / D converter 18b and an input terminal for analog input.
  • an isolator 16 is interposed between the D / A converter 18a and the A / D converter 18b and the microcomputer 300B, so that the microcomputer 300B can communicate with the D / A converter 18a and the A / D converter 18b. .
  • the configuration including the microcomputer 300B and the buffer circuits 15a and 15b is a power supply input circuit.
  • the power circuit 17a is a power output circuit.
  • the configuration including the differential circuits 19a and 19b, the D / A converter 18a, the A / D converter 18b, and the isolator 16 is a communication system circuit connected to the microcomputer 300B.
  • the secondary winding 202g is grounded through a rectifying / smoothing circuit and a power supply circuit 17a.
  • the secondary winding 202h is grounded through the rectification / smoothing circuit and the power supply circuit 17b.
  • the applied voltage obtained when the analog input inputted from the outside via the differential circuit 19b is A / D converted by the A / D converter 18b, or set to the microcomputer 300B.
  • the output voltage of the D / A converter 18a is used.
  • the microcomputer 300B determines the load condition based on the applied voltage of the A / D converter 18b or the output voltage of the D / A converter 18a, and according to this, the primary side of the insulating transformer 2C via the buffer circuits 15a and 15b.
  • the winding 202c is excited.
  • a switching function that is generated by the microcomputer 300B and that excites the primary winding 202c of the isolation transformer 2C via the buffer circuits 15a and 15b is on / off controlled based on the internally generated output condition change instruction signal 101 including. Furthermore, a voltage generation function for generating a voltage corresponding to an expected value of a preset excitation level obtained by the switching function is included.
  • the microcomputer 300B is not limited to the program conditions, but may determine the output voltage, output current, and load resistance and add them to the conditions or switch the conditions.
  • the output current generally increases as the load resistance decreases.
  • the load condition is current output
  • the required current can be roughly estimated from the output current value set from the microcomputer 300B. Therefore, for example, the output voltage, current, and load resistance may be determined by the A / D converter 18b, the comparator, and the like, and the output condition change instruction signal 101 may be generated internally by a program of the microcomputer 300B accordingly.
  • the microcomputer 300B generates an excitation signal having a voltage corresponding to the expected value of the excitation level obtained by the switching function that is on / off controlled based on the internally generated output condition change instruction signal 101 and the voltage generation function that receives the switching function.
  • the data is output to the buffer circuits 15a and 15b.
  • the buffer circuits 15a and 15b give a desired excitation signal to the primary winding 202c of the insulating transformer 2C.
  • the excitation level changes.
  • an output voltage is generated in the secondary windings 202g and 202h of the insulating transformer 2C.
  • the output voltage of the secondary winding 202g is rectified and smoothed by the rectifying / smoothing circuit and then applied to the power supply circuit 17a.
  • the output voltage of the secondary winding 202h is rectified and smoothed by a rectifying / smoothing circuit and then applied to the power supply circuit 17b.
  • the power supply circuit 17a generates a constant voltage and applies it to the D / A converter 18a and the differential circuit 19a.
  • the power supply circuit 17b generates a constant voltage and applies it to the A / D converter 18b and the differential circuit 19b.
  • the analog input input from the terminal of the differential circuit 19a is A / D converted by the A / D converter 18b to become a digital signal.
  • the digital signal is sent to the isolator 16 and the D / A converter 18a.
  • the D / A converter 18a converts an analog signal generated by D / A converting a digital signal into an analog output through a terminal of the differential circuit 19a.
  • the isolator 16 sends a digital signal to the microcomputer 300B for communication.
  • the potential difference between the signals when the analog input and the analog output are performed causes the microcomputer 300B to change the excitation level of the primary side winding 202c so that the output voltages of the secondary side windings 202g and 202h and the power supply circuits 17a and 17b Since the potential difference from the input voltage is controlled, it hardly occurs.
  • the above object is achieved, and an insulated power supply circuit with high efficiency and low heat generation can be obtained.
  • a DC / DC converter may be connected to the A / D converter 18b in the insulated power supply circuit of the third embodiment, and the output condition of the DC / DC converter may be changed by the microcomputer 300B.
  • FIG. 4 is a schematic circuit diagram showing a basic configuration of an insulated power supply circuit according to Embodiment 4 of the present invention.
  • the insulated power supply circuit according to the fourth embodiment has a configuration in which a feedback circuit 11A is provided before the power supply output circuit on the secondary side of the insulated transformer 2D.
  • one primary winding 201d is provided on the primary side of the isolation transformer 2D, and a pair of secondary windings 202j and 202k are provided on the secondary side. Is provided.
  • the power supply input circuit on the primary side of the isolation transformer 2D includes a snubber circuit similar to that of the first embodiment connected to the primary winding 201d, and also includes a switching regulator 9A.
  • a MOS-FET 8 is used as a switching element connected to the snubber circuit and the switching regulator 9A.
  • the power input circuit is provided with a photocoupler 10a for receiving light that gives a feedback signal to the switching regulator 9A after photoelectric conversion.
  • one secondary winding 202j is connected to a feedback circuit 11A via a rectification / smoothing circuit.
  • the feedback circuit 11A includes an electronic switch 14, feedback resistors 13a and 13b, a shunt regulator 12, and a photocoupler 10b for light emission.
  • the feedback circuit 11A is connected to a series regulator 7g of a constant voltage power circuit serving as a power output circuit that generates a constant voltage output C116 and applies it to an output terminal.
  • the other secondary winding 202j is connected to a series regulator 7h of a constant voltage power circuit serving as a power output circuit via a rectifying / smoothing circuit.
  • the series regulator 7h generates a constant voltage output D117 and applies it to the output terminal.
  • the secondary winding 202j is grounded through the rectification / smoothing circuit, the feedback circuit 11A, and the series regulator 7g.
  • the secondary winding 202k is grounded through a rectifying / smoothing circuit and a series regulator 7h.
  • the photocouplers 10a and 10b receive feedback between the primary side and the secondary side of the insulating transformer 2D, and the primary-side photocoupler 10a receives light emitted from the secondary-side light-emitting photocoupler 10b. Then, it is performed by photoelectric conversion.
  • the electronic switch 14 when an output condition change instruction signal 101 for switching the feedback resistors 13a and 13b is input to the electronic switch 14 from the outside via an input terminal, the electronic switch 14 is turned on / off. At this time, the shunt regulator 12 generates a constant reference voltage so that the feedback circuit 11A can switch the resistance values, reference voltage values, and the like of the feedback resistors 13a and 13b for comparison or reference.
  • the output C116 to the output terminal of the series regulator 7g connected to the feedback circuit 11A is a light load
  • the load current of the output D117 to the output terminal of the series regulator 7h not connected to the feedback circuit 11A is increased.
  • the output voltage of the secondary winding 202j related to the feedback circuit 11A is kept constant.
  • the output voltage of the secondary winding 202k not related to the feedback circuit 11A decreases.
  • the feedback resistor 13b and the electronic switch 14 are arranged in parallel with the feedback resistor 13a of the shunt regulator 12 in the feedback circuit 11A provided in the previous stage of the power output circuit.
  • the electronic switch 14 is turned on / off by an output condition change instruction signal 101 for switching the feedback resistors 13a and 13b input from the input terminal.
  • the voltage applied to the shunt regulator 12 as a comparison input of the feedback voltage of the feedback circuit 11A is switched to two stages divided by the feedback resistor 13a or the feedback resistors 13a and 13b. Is received by the primary-side photocoupler 10a for photoelectric conversion.
  • the output condition of the switching regulator 9A on the primary side of the isolation transformer 2D is indirectly changed.
  • the MOS-FET 8 is controlled to be turned on / off, thereby generating a voltage corresponding to the expected value of the preset excitation level and changing the excitation level of the primary winding 201d. Accordingly, an output voltage is generated in the secondary side windings 202j and 202k on the secondary side of the insulating transformer 2D.
  • the above object is achieved, and an insulated power supply circuit with high efficiency and low heat generation can be obtained.
  • the number of switches and the circuit configuration in the feedback circuit 11A of the isolated power supply circuit of Embodiment 4 are merely examples, and are not limited to those disclosed. Any circuit that monitors the voltage or current on the secondary side of the isolation transformer 2D, compares the voltage or current with the reference voltage or reference current, and provides feedback is applicable. In such a circuit, the value of the feedback voltage is varied based on the output condition change instruction signal 101, and is indirectly one of the output voltage of the primary side switching regulator 9A of the isolation transformer 2D or the secondary side windings 202j, 202k. Any form can be used as long as one or more can be changed.
  • the output condition change instruction signal 101 used in the insulated power supply circuit according to the fourth embodiment is generated externally based on the voltage or current on the secondary side of the insulated transformer 2D, and is input from the input terminal to the electronic switch 14 of the feedback circuit 11A. Shall be entered.
  • the output condition change instruction signal 101 contributes to generation of irradiation light from the photocoupler 10b.
  • FIG. 5 is a schematic circuit diagram showing a basic configuration of an insulated power supply circuit according to Embodiment 5 of the present invention.
  • the insulated power supply circuit according to the fifth embodiment has a configuration in which a feedback auxiliary winding 201f is provided on the primary side of the insulating transformer 2E, and a feedback circuit 11B that performs feedback from the feedback auxiliary winding 201f is provided in the power supply input circuit. It is a thing.
  • a primary side winding 201e and a feedback auxiliary winding 201f are provided on the primary side of the insulation transformer 2E, and a pair of secondary side windings are provided on the secondary side. Lines 202m and 202n are provided.
  • the power supply input circuit on the primary side of the isolation transformer 2D includes a snubber circuit similar to that of the first embodiment connected to the primary winding 201e, and also includes a switching regulator 9B.
  • a MOS-FET 8 is used as a switching element connected to the snubber circuit and the switching regulator 9B.
  • the power input circuit is provided with a feedback circuit 11B connected to the feedback winding 201f.
  • one secondary winding 202m is connected to a series regulator 7j of a constant voltage power circuit serving as a power output circuit through a rectifying / smoothing circuit.
  • the series regulator 7j generates a constant voltage output C116 and applies it to the output terminal.
  • the other secondary winding 202n is connected to a series regulator 7k of a constant voltage power circuit serving as a power output circuit through a rectifying / smoothing circuit.
  • the series regulator 7k generates a constant voltage output D117 and applies it to the output terminal.
  • the secondary winding 202m is grounded through a rectifying / smoothing circuit and a series regulator 7j.
  • the secondary winding 202n is grounded through a rectifying / smoothing circuit and a series regulator 7k.
  • the feedback circuit 11B provided in the primary-side power input circuit includes a feedback auxiliary winding 201f, an electronic switch 14, and feedback resistors 13a and 13b.
  • a comparison signal for comparison of feedback is obtained from the auxiliary winding for feedback 201f.
  • a feedback resistor 13b and an electronic switch 14 are arranged in parallel with the feedback resistor 13a.
  • the electronic switch 14 is turned on / off by an output condition change instruction signal 101 for switching the feedback resistors 13a and 13b input from the input terminals.
  • the feedback voltage applied as the comparison input of the switching regulator 9B of the feedback circuit 11B is switched to two stages divided by the feedback resistor 13a or the feedback resistors 13a and 13b, and indirectly the primary side of the isolation transformer 2E.
  • the output condition of the switching regulator 9B is changed.
  • the number of switches and the circuit configuration in the feedback circuit 11B of the insulated power supply circuit of Embodiment 5 are merely examples, and are not limited to those disclosed. Any circuit that monitors the voltage or current on the primary side of the isolation transformer 2E, compares the voltage or current with the reference voltage or reference current, and performs feedback is the target. In such a circuit, the value of the feedback voltage is varied based on the output condition change instruction signal 101, and indirectly one of the output voltage of the switching regulator 9B on the primary side of the isolation transformer 2E or the secondary side windings 202m and 202n. Any form can be used as long as one or more can be changed.
  • the output condition change instruction signal 101 used in the insulated power supply circuit according to the fifth embodiment is generated based on the voltage or current on the primary side of the insulated transformer 2E, and is input from the input terminal to the electronic switch 14 of the feedback circuit 11B. Shall be.
  • the output condition change instruction signal 101 contributes to the generation of the feedback voltage of the feedback circuit 11B.
  • the comparison signal of the feedback circuit 11B can be acquired and used without providing the auxiliary winding 201f on the primary side of the insulation transformer 2E.
  • the voltage or current of the primary winding 202e of the isolation transformer 2E or the MOS-FET 8 may be monitored and used as a comparison signal for the feedback circuit 11B.
  • the feedback circuit 11B provided in the power supply input circuit performs feedback control based on the output voltage of the feedback auxiliary winding 201f.
  • the feedback circuit 11B can stabilize the output voltage by performing feedback control according to the drive waveform as a result of monitoring the drive waveform on the primary side of the isolation transformer 2E.
  • the feedback circuit 11B can change the output voltage by switching the physical quantity related to the drive condition on the primary side of the isolation transformer 2E by the output condition change instruction signal 101.
  • the physical quantity related to the primary side drive condition here indicates voltage, current, frequency, duty ratio, dead time, etc., and indicates that the output voltage can be changed by switching these.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the technical scope thereof, and technical matters included in the technical idea described in the claims. All are subject of the present invention.
  • Each of the above embodiments shows a preferable example, but those skilled in the art can realize various modified examples from the disclosed contents.
  • the method for generating the output condition change instruction signal 101 is limited. However, it can be replaced with another embodiment by replacing necessary components and applying it. It is possible to apply.
  • the insulated power supply circuit of the present invention can be applied to circuits and devices having multiple power supply circuits by mounting a microcomputer, FPGA or the like.
  • a microcomputer FPGA or the like.
  • it can be used for industrial equipment, consumer equipment, in-vehicle equipment, etc. that require low power consumption and low heat generation.
  • Examples of industrial equipment are applicable to D / A output, A / D output, instrumentation, temperature input, relay-driven I / O, and the like.
  • D / A output when an unused channel of the multi-output D / A output unit is turned on / off, the loss of the insulated power source can be suppressed and high efficiency can be achieved.
  • AV equipment having a standby function white goods equipment such as a rice cooker and a water heater in which the standby function and a heavy load are repeated, are suitable for reducing standby power.
  • an on-vehicle device it is suitable for reducing power consumption when the main unit is operated and stopped, or when a specific function is off, such as an AV device or an ECU.
  • 2A-2E isolation transformer 3, 3 'switching control circuit, 4 switching element, 7a-7k series regulator, 8 MOS-FET, 9A, 9B switching regulator, 11A, 11B feedback circuit, 12 shunt regulator, 13a, 13b feedback resistance , 14 Electronic switch, 17a, 17b Power supply circuit, 201a to 201e Primary side winding, 202a to 202n Secondary side winding, 101 Output condition change instruction signal, 102 Operation instruction signal, 103 Operation switching signal, 112 External I / F Power supply, 113 analog power supply, 114 microcomputer power supply, 115 standby power supply, 201f auxiliary winding for feedback, 300A, 300B microcomputer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Dc-Dc Converters (AREA)

Abstract

絶縁電源回路は、トランスの巻線に接続されるスイッチング制御回路及びスイッチング素子を含む電源入力回路、巻線に接続されるレギュレータを含む2系統の電源出力回路を備える。制御回路が、レギュレータの出力先の負荷条件に応じて生成された出力条件変更指示信号に従い、素子のオン・オフを制御することにより、予め設定された励起レベルの見込み値に該当する電圧を生成し、巻線の励起レベルを変化させる。レギュレータは、これを受けて、巻線で生成される出力電圧を、入力する。

Description

絶縁電源回路
 本発明は、絶縁トランスの二次側に複数設けられる二次側巻線に接続される負荷に応じて、各二次側巻線の出力電圧を変更可能な絶縁電源回路に関する。
 近年、マイクロコンピュータ(以下、マイコンと呼ぶ)に代表されるデジタル回路には、低電圧で多系統化が可能であること、低消費電力化できること等が要求されている。また、FA(Factory Automation)機器では、機器の内部に搭載されるアナログ入出力回路、デジタル入出力回路、外部インターフェースにおける絶縁性が求められている。
 絶縁した複数系統の出力電力を生成する周知技術として、絶縁電源回路の絶縁トランスの二次側に巻線を複数設け、その一つからフィードバック制御を行い、フィードバック制御を行わない他の二次側巻線にレギュレータを配設する構成が知られている。
 一例として、負荷となる大電力LEDと小電力LEDとに対し、スイッチングトランスの二次側の二つの巻線にメイン出力回路とサブ出力回路とを設け、メイン出力回路に状態遷移部、サブ出力回路に開閉部を持たせた電源装置(例えば、特許文献1参照)が挙げられる。LED(Light Emitting Diode)は、所謂発光ダイオードである。因みに、上述したレギュレータ、メイン出力回路及びサブ出力回路は、電源出力回路とみなすことができる。
 この電源装置では、切替制御信号によって、開閉部の開閉状態を切り替え制御すると共に、メイン出力回路又はサブ出力回路の出力をフィードバック制御している。これにより、大電力LEDに印加される電圧を高レベル、低レベルの二つの状態に切り替える。因みに、高レベルは順方向電圧Vf以上、低レベルは順方向電圧Vf未満である。
特開2014-217135号公報
 上述した特許文献1に係る電源装置では、フィードバック制御を行わないスイッチングトランスの二次側巻線の出力電圧が、各二次側巻線に接続される負荷状況によって、変動する。例えば、二つの二次側巻線のうちの一方でフィードバック制御を行い、その二次側巻線に接続される負荷を重くする。こうした場合、フィードバック制御を行わない他方の二次側巻線の出力電圧は、上昇する。
 一般に、絶縁電源回路の絶縁トランスの二次側巻線に接続した定電圧電源回路の一例であるレギュレータの出力を安定化させるためには、レギュレータの入力電圧と出力電圧とに対して規定値以上の電位差を確保する必要がある。例えば、レギュレータの種別として、スイッチングレギュレータを使用する場合には、最大デューティ内か、或いは最小デューティ内で動作させるために電位差を確保する必要がある。また、シリーズレギュレータを使用する場合には、昇圧できないため、シリーズレギュレータの出力電圧にシリーズレギュレータの電位差以上の電圧を加えた電圧を、入力電圧とする必要がある。如何なる負荷条件でも、これらの要件を満足するためには、絶縁電源回路の絶縁トランスの二次側巻線の出力電圧を、予め電位差分高くすることが必要になる。
 要するに、フィードバック制御を行わない二次側巻線に接続されるレギュレータの入力電圧は、フィードバック制御を行う二次側巻線が軽負荷の状態であっても、電位差をレギュレータに接続される最大負荷に対し、確保する必要がある。この事は、フィードバック制御をしている二次側巻線に接続されている1つ以上のデバイスの消費電流が大きくなり、フィードバック制御を行わない二次側巻線の出力電圧が高くなることを意味する。しかも、フィードバック制御を行う二次側巻線が軽負荷であれば、レギュレータの電位差が大きくなる。この結果、フィードバック制御を行わないレギュレータの効率が低下し、発熱が過大になってしまうという問題がある。
 特許文献1の電源装置では、サブ出力回路にシャントレギュレータが接続されており、メイン出力回路とサブ出力回路との切り替え機能を備えている。しかしながら、特許文献1の電源装置では、メイン出力回路からサブ出力回路に切り替えた際にも、メイン出力回路が遮断されない。これにより、本装置を異常なく動作させるためには、メイン出力回路に接続されるLED電灯と、サブ出力回路に接続されるLED補助灯とのオン電圧を順方向電圧Vfの数倍の違いとする必要がある。こうした場合、LED電灯とLED補助灯との順方向電圧Vfの差が数V程度であれば、正常動作しないという問題を生じる。
 本発明は、このような問題点を解決するためになされたもので、絶縁トランスの二次側に接続される負荷によって生ずる二次側巻線の出力電圧と、二次側巻線に設けられる電源出力回路の最適な入力電圧と、の電位差を小さくでき、高効率で低発熱の絶縁電源回路を提供することを目的とする。
 本発明に係る絶縁電源回路は、一次側に一次側巻線が設けられ、二次側に二次側巻線が設けられた絶縁トランスと、一次側巻線に接続されると共に、電源供給を受けてスイッチング機能のオン・オフにより一次側巻線を励起する電源入力回路と、二次側巻線に接続されると共に、一次側巻線の励起に伴い、二次側巻線で発生する出力電圧を入力電圧として、負荷へ定電圧を印加する電源出力回路と、を備えた構成であって、電源入力回路は、負荷条件に応じて生成されると共に、出力電圧の変更を指示する出力条件変更指示信号に従って、スイッチング機能のオン・オフを制御することにより、予め設定される励起レベルの見込み値に該当する電圧を生成する電圧生成機能を有し、電圧生成機能で得られた電圧により一次側巻線での励起レベルを変化させ、電源出力回路は、励起レベルの変化を受けて、二次側巻線で生成される出力電圧を入力電圧として、負荷へ印加する。
 本発明によれば、上記構成により、絶縁トランスの二次側に接続される負荷によって生ずる二次側巻線の出力電圧と、二次側巻線に設けられる電源出力回路の最適な入力電圧との電位差を小さくでき、高効率で低発熱となる。
本発明の実施の形態1に係る絶縁電源回路の基本構成を示した概略回路図である。 本発明の実施の形態2に係る絶縁電源回路の基本構成を示した概略回路図である。 本発明の実施の形態3に係る絶縁電源回路の基本構成を示した概略回路図である。 本発明の実施の形態4に係る絶縁電源回路の基本構成を示した概略回路図である。 本発明の実施の形態5に係る絶縁電源回路の基本構成を示した概略回路図である。 周知技術の一例に係る絶縁電源回路の基本構成を示した簡易回路図である。 図1の構成で出力条件変更指示信号を用いない場合の比較例に係る絶縁電源回路の基本構成を示した概略回路図である。
 以下、本発明の絶縁電源回路に係る幾つかの実施の形態について、図面を参照して詳細に説明する。
 最初に、本発明の理解を助けるため、周知技術の絶縁電源回路における問題点と、その問題点を解決するための技術的概要を具体的に説明する。図6は、周知技術の一例に係る絶縁電源回路の基本構成を示した簡易回路図である。
 図6を参照すれば、この絶縁電源回路では、スイッチングトランス21の一次側に1つの一次側巻線21aが設けられ、二次側に一対の二次側巻線21b、21cが設けられている。一次側巻線21aには、スイッチング電源回路22が接続されている。一対の二次側巻線21b、21cには、それぞれ出力回路23、24が接続されている。出力回路23は、フィードバック制御用であり、フィードバック信号25をスイッチング電源回路22へ出力するように構成されている。
 この絶縁電源回路によれば、フィードバック制御を行う二次側巻線21bに接続された出力回路23の負荷を重くすると、フィードバック制御を行わない二次側巻線21cに接続された出力回路24の出力電圧は、上昇する。出力回路24の出力電圧を安定化させるためには、出力回路24における入力電圧と出力電圧との電位差を規定値以上として、確保する必要がある。
 ところが、出力回路24の入力電圧は、出力回路23が軽負荷であっても、電位差を出力回路24に接続される最大負荷に対して、確保する必要がある。この事は、出力回路23におけるデバイスの消費電流が大きくなり、出力回路24の出力電圧が高くなることを意味する。しかも、出力回路23が軽負荷であれば、出力回路24の電位差が大きくなる。この結果、出力回路24は、効率が低下し、発熱が過大になってしまう。
 そこで、本発明では、絶縁トランスの二次側に接続される負荷によって生ずる二次側巻線の出力電圧と、二次側巻線に設けられる電源出力回路の最適な入力電圧と、の電位差を小さくでき、高効率で低発熱の絶縁電源回路を提供することを目的とする。
 この目的を達成するためには、絶縁電源回路が構成上、一次側に一次側巻線が設けられ、二次側に二次側巻線が設けられた絶縁トランスを持つものとする。また、一次側巻線に接続されると共に、電源供給を受けてスイッチング機能のオン・オフにより一次側巻線を励起するスイッチング方式の電源入力回路を有するものとする。電源入力回路への電源供給は、直流電源から行うか、或いは交流電源から直流電源に変換して行うことが可能である。更に、二次側巻線に接続されると共に、一次側巻線の励起に伴い、二次側巻線で発生する出力電圧を入力電圧として、負荷へ定電圧を印加する電源出力回路を有するものとする。尚、電源出力回路は、以下も同様であるように、二次側巻線に接続される定電圧電源回路以降の接続回路構成を示すものとする。
 このような構成の絶縁電源回路において、電源入力回路は、負荷の負荷条件に応じて生成されると共に、出力電圧を変更する出力条件の変更を指示する出力条件変更指示信号を用いる。これに従って、電源入力回路では、スイッチング機能のオン・オフを制御することにより、予め設定される励起レベルの見込み値に該当する電圧を生成する電圧生成機能を有する。この電圧生成機能で得られた電圧により、一次側巻線での励起レベルを変化させる。また、電源出力回路では、励起レベルの変化を受けて、二次側巻線で生成される出力電圧を入力電圧として、入力する。この結果、上記目的が達成され、高効率で低発熱の絶縁電源回路が得られる。以下は、本発明の絶縁電源回路に好適な幾つかの実施の形態を、具体的に説明する。
 実施の形態1.
 図1は、本発明の実施の形態1に係る絶縁電源回路の基本構成を示した概略回路図である。また、図7は、比較例として、図1の構成で出力条件変更指示信号101を用いない場合の絶縁電源回路の基本構成を示した概略回路図である。ここで、実施の形態1に係る絶縁電源回路は、後述する電源入力回路のスイッチング制御回路3に出力条件変更指示信号101が入力される形態である。これに対し、比較例に係る絶縁電源回路は、電源入力回路のスイッチング制御回路3′に出力条件変更指示信号101が入力されない形態となっている。
 各図を参照すれば、これらの絶縁電源回路に共通する基本構成として、絶縁トランス2Aの一次側に1つの一次側巻線201aが設けられ、二次側に一対の二次側巻線202a、202が設けられている。一次側巻線201aには、スイッチング機能を持つ電源入力回路が接続されている。一対の二次側巻線202a、202bには、それぞれ電源出力回路が接続されている。
 このうち、電源入力回路は、直流電源1から電源供給されるスイッチング制御回路3、3′と、スイッチング制御回路3、3′に接続されたスイッチング素子4と、スイッチング素子4に対する保護回路としてのスナバ回路5と、を含んで構成される。尚、絶縁トランス2用の電源は、直流以外でも良く、例えば、リプルを含んだ交流を直流に変換してから印加するようにしても良い。
 一方の出力系は、二次側巻線202aに整流・平滑回路6aが接続され、この整流・平滑回路6aに接続されて定電圧の出力A110を生成して端子へ出力する電源出力回路となる定電圧電源回路としてのシリーズレギュレータ7aを有している。また、他方の出力系は、二次側巻線202bに整流・平滑回路6bが接続され、この整流・平滑回路6bに接続されて定電圧の出力B111を生成して端子へ出力する電源出力回路となる定電圧電源回路としてのシリーズレギュレータ7bを有している。
 係る絶縁電源回路において、二次側巻線202aは、整流・平滑回路6aを通して接地接続されている。シリーズレギュレータ7aについても、接地接続されている。また、二次側巻線202bは、整流・平滑回路6bを通して接地接続されている。シリーズレギュレータ7bについても、接地接続されている。また、直流電源1の正極側は、電源入力回路のスイッチング制御回路3、3′の一端と、スナバ回路5を介して絶縁トランス2Aの二次側巻線201aの一端と、に接続されている。直流電源1の負極側は、電源入力回路のスイッチング素子4に接続されている。以上に説明した回路構成は、図1及び図7ともに共通している。
 図1に示す実施の形態1に係る絶縁電源回路の場合には、絶縁トランス2Aの二次側巻線202a、202bの出力電圧を変更するために、外部で生成された出力条件変更指示信号101が、端子を介して回路内のスイッチング制御回路3に入力される構成となっている。この構成以外は、図7の回路構成と同じである。
 これらの絶縁電源回路では、基本機能として、スイッチング制御回路3、3′によって、スイッチング素子4のオン・オフを制御すると、絶縁トランス2Aの一次側巻線201aが励起され、これに伴って二次側巻線202a、202bで出力電圧が生成される。二次側巻線202a、202bからの出力電圧は、整流・平滑回路6a、6bを通って整流・平滑された後、シリーズレギュレータ7a、7bに印加される。これにより、シリーズレギュレータ7a、7bは、定電圧化された出力A110、出力B111を生成して出力端子へ印加する。
 係る絶縁電源回路において、出力A110及び出力B111の負荷電流が増えた場合、絶縁トランス2Aの二次側巻線202a、202bに発生する出力電圧が低下する。また、出力A110及び出力B111の負荷電流が均等でない場合には、絶縁トランス2Aの二次側巻線202a、202bに発生する出力電圧も均等でなくなる。
 一般に、シリーズレギュレータ7a、7bは、降圧で使用するものである。シリーズレギュレータ7a、7bの入力電圧は、シリーズレギュレータ7a、7bの出力電圧に、シリーズレギュレータ7a、7bの最小動作電位差を加えた電圧以上の電圧にする必要がある。このため、二次側巻線202a、202bで発生する出力電圧は、条件付きとなる。即ち、シリーズレギュレータ7a、7bに接続される負荷の負荷電流が最大になるときのシリーズレギュレータ7a、7bの出力電圧に、シリーズレギュレータ7a、7bの最小動作電位差を加えた電圧以上の電圧を、出力電圧として発生する必要がある。
 具体的に云えば、出力A110と出力B111とに接続される負荷の大小が違い、負荷電流が異なる場合には、二次側巻線202a、202bの何れか一方の、負荷電流が大きい側の出力電圧に合わせる必要がある。負荷電流が小さい方に接続されているシリーズレギュレータは、最適な入力電圧と、実際に入力される入力電圧との電位差が大きくなり、損失及び発熱が大きくなる。最適な入力電圧とは、シリーズレギュレータ7a、7bの出力電圧に最小動作電位差を加えた電圧である。
 また、二次側巻線202a、202bが発生する出力電圧を大きくするために、スイッチング制御回路3、3′の制御によって、デューティ比を変更する。デューティ比を極端に大きくするか、或いは小さくした場合には、絶縁電源回路における一次側の電源入力回路の損失が大きくなる。勿論、こうした場合には、スイッチング制御回路3、3′自体の損失も大きくなってしまう。このように、出力A110と出力B111との負荷電流によって、要求される二次側巻線202a、202bの出力電圧が異なる。
 図7に示す比較例に係る絶縁電源回路では、スイッチング制御回路3′の制御により設定されるデューティ比の条件によって、二次側巻線202a、202bの出力電圧を変更する機能を持つ。このため、出力A110と出力B111との負荷電流に大小がある場合には、二次側巻線202a、202bの出力電圧と、シリーズレギュレータ7a、7bの最適な入力電圧との電位差を小さくすることが困難になっている。
 これに対し、実施の形態1に係る絶縁電源回路では、出力A110と出力B111との負荷条件に応じて、外部で生成されたスイッチング制御回路3の出力条件を変更するための出力条件変更指示信号101を、入力端子を通してスイッチング制御回路3に入力している。負荷条件は、例えば、負荷電流の大小とすれば良い。このため、スイッチング制御回路3の制御は、デューティ比の条件だけでなく、スイッチング制御回路3の出力条件の変更指示を受けることによって、一次側巻線201aでの励起レベルを変化させることが可能になっている。
 即ち、スイッチング制御回路3は、出力条件を変更可能な状態でスイッチング素子4のオン・オフを制御することにより、予め設定された励起レベルの見込み値に該当する電圧を生成する電圧生成機能を持つ。この電圧生成機能により得られた電圧で絶縁トランス2Aの一次側巻線201aの励起レベルを変化させる。スイッチング素子4のオン・オフの制御は、期間、或いは周波数を変更させる切り替え機能を含む。尚、スイッチング制御回路3の構成は、フィードバック回路の有無を問わないものとする。
 これに伴い、一次側巻線201aの励起レベルの変化を受けて、二次側巻線202a、202bからは、出力条件に応じた出力電圧が生成される。このようにして、二次側巻線202a、202bの出力電圧を変更することにより、二次側巻線202a、202bの出力電圧と、シリーズレギュレータ7a、7bの最適な入力電圧との電位差を小さく抑えることができる。この結果、シリーズレギュレータ7a、7bの損失及び発熱を抑制することがする。また、実施の形態1に係る絶縁電源回路では、スイッチング制御回路3でのデューティ比を極端に大きくしたり、或いは小さくする必要がないため、スイッチング制御回路3の損失が抑制される。
 ところで、実施の形態1に係る絶縁電源回路において、絶縁トランス2Aの一次側の電源入力回路、即ち、スイッチング制御回路3及びスイッチング素子4は、一次側巻線201aを励起できれば、細部構成の様式を問わない。例えば、発振回路、D/Aコンバータ、コンパレータ、マイコンのI/Oポート等により波形生成を行っても良い。また、スイッチング素子4をスイッチング制御回路3に内蔵した構成にしても良い。
 また、図1に示した絶縁電源回路の基本構成について、例えば、二次側巻線202a、202b、整流・平滑回路6a、6b、及びシリーズレギュレータ7a、7bの数は、あくまでも一例であり、複数であればその数を問わないものとする。即ち、絶縁トランス2Aは、汎用的なトランスと同じ機能を備えたデバイスを使用し、絶縁する回路構成にできれば、適宜変更が可能である。例えば、フライバック、フォワード、プッシュプルに代表されるトポロジは、問わないものとする。
 更に、絶縁トランス2Aの二次側に設けた定電圧電源回路としてのシリーズレギュレータ7a、7bは、まくまでの一例であり、電圧変換を行うことができれば、回路様式を問わない。例えば、スイッチングレギュレータ、シャントレギュレータも代用できる。尚、シリーズレギュレータ7a、7bの構成についても、フィードバック回路の有無を問わないものとする。
 加えて、スイッチング制御回路3に入力される出力条件変更指示信号101は、必ずしも1本の論理信号である必要はない。例えば、シリアル信号、パラレル信号、アナログ信号等でも良い。マイコン、FPGA(field‐programmable gate array)等によるプログラム、或いは論理回路によって、スイッチング制御回路3を構成する場合、出力条件変更指示信号101は、回路上でなく、プログラム上に設けても良いことになる。但し、実施の形態1の絶縁電源回路で用いる出力条件変更指示信号101は、絶縁トランス2Aの二次側に接続される負荷の大小に応じて外部で生成され、図1に示したように、入力端子を通してスイッチング制御回路3に入力されるものとする。
 実施の形態2.
 図2は、本発明の実施の形態2に係る絶縁電源回路の基本構成を示した概略回路図である。実施の形態2の絶縁電源回路は、電源出力回路への動作切替制御機能を持つ動作切替制御回路としてのマイコン300Aを使用し、絶縁トランス2Bの二次側で4系統の電源出力を得る構成としたものである。
 図2を参照すれば、実施の形態2の絶縁電源回路は、絶縁トランス2Bの一次側に1つの一次側巻線201cが設けられ、二次側に総計4つの二次側巻線202c、202d、202e、202fが設けられている。絶縁トランス2Bの一次側の一次側巻線201cに係る電源入力回路は、実施の形態1と同様な構成となっている。また、絶縁トランス2Bの二次側の二次側巻線202c、202d、202e、202fには、それぞれ整流・平滑回路を介して電源出力回路となる定電圧電源回路としてのシリーズレギュレータ7c、7d、7e、7fが接続されている。
 実施の形態2の絶縁電源回路において、二次側巻線202cは、整流・平滑回路及びシリーズレギュレータ7cを通して接地接続されている。二次側巻線202dについても、同様に、整流・平滑回路及びシリーズレギュレータ7dを通して接地接続されている。二次側巻線202eについても、同様に、整流・平滑回路及びシリーズレギュレータ7eを通して接地接続されている。二次側巻線202fについても、同様に、整流・平滑回路及びシリーズレギュレータ7fを通して接地接続されている。
 実施の形態2の絶縁電源回路では、電源供給されると共に、入力端子からスリープ指示信号等の動作指示信号102が入力されるマイコン300Aで生成した出力条件変更指示信号101が、一次側の電源入力回路のスイッチング制御回路3に入力される。また、動作指示信号102が入力されたマイコン300Aを通して生成される動作切替信号103が二次側の電源出力回路のシリーズレギュレータ7c、7d、7eに入力される。シリーズレギュレータ7c、7d、7eに入力される動作切替信号103は、動作上のイネーブルENのオン・オフとして用いられる。
 また、実施の形態2の絶縁電源回路では、シリーズレギュレータ7cの出力端子が外部I/F電源112用、シリーズレギュレータ7dの出力端子がアナログ電源113用となっている。I/Fは、インターフェースの表記である。また、シリーズレギュレータ7eの出力端子がマイコン電源114用、シリーズレギュレータ7fの出力端子がスタンバイ電源115用となっている。
 一般に、マイコン300Aを使用してスタンバイ機能を実現する場合には、マイコン300Aの外部I/F回路用の外部I/F電源112及びアナログ回路用のアナログ電源113をオフにするか、或いは低負荷状態とする。こうして、マイコン300Aの周辺回路に電源供給を継続して行う。
 マイコン300Aによりスタンバイ状態とするためには、負荷電流が小さくなる。そこで、実施の形態2に係る絶縁電源回路では、マイコン300Aにより出力条件変更指示信号101を出力し、スイッチング制御回路3の出力条件を設定する。この出力条件は、絶縁トランス2Bの二次側巻線202fの電圧が、マイコン300Aに必要なスタンバイ電源115を得るために必要なシリーズレギュレータ7fの最小動作電位差を超えるようにする。
 マイコン300Aがスタンバイ状態を解除し、周辺回路をオンさせる場合には、周辺回路の消費電流を賄う必要がある。絶縁トランス2Bの二次側巻線202c、202d、202eの出力電圧が低下し、これに応じて二次側巻線202fの出力電圧も低下する。このため、マイコン300Aによって、出力条件変更指示信号101を生成し、二次側巻線202c、202d、202e、202fに負荷を加えても、周辺回路の各部に必要な電圧が得られるように、スイッチング制御回路3の出力条件を変更する。スイッチング制御回路3によるスイッチング素子4のオン・オフの制御により、予め設定される励起レベルの見込み値に該当する電圧が生成される点、その制御が期間、或いは周波数を変更させる切り替え機能を含む点は、実施の形態1の場合と同様である。尚、ここでも、スイッチング制御回路3の構成は、フィードバック回路の有無を問わないものとする。
 具体的に云えば、スイッチング素子4のオン・オフの制御による一次側巻線201bの励起レベルの変化を受け、二次側巻線202c、202d、202e、202fに出力電圧が発生する。この際、例えばマイコン300Aは、入力される動作指示信号102がスリープ指示信号であれば、そのオフの状態で動作し、動作切替信号103によりシリーズレギュレータ7c、7d、7eのイネーブルENを有効なオン状態とする。そして、動作条件による二次側巻線202c、202d、202e及びシリーズレギュレータ7c、7d、7eと、二次側巻線202fと及びシリーズレギュレータ7fとにおける出入力の電位差が小さくなる。この結果、実施の形態1の場合と同様に、上記目的が達成され、高効率で低発熱の絶縁電源回路が得られる。尚、マイコン300Aは、入力される動作指示信号102がスリープ指示信号であるとき、そのオンの状態で切り状態となり、動作切替信号103がシリーズレギュレータ7c、7d、7eのイネーブルENを無効とするオフ状態になる。即ち、ここでの出力条件変更指示信号101は、電源出力回路への動作切替制御機能を持つマイコン300A自体のオン・オフ又はマイコン300Aの一部の主要機能のオン・オフ、或いは、マイコン300Aによる論理演算に応じて生成される。
 因みに、図2に示した実施の形態2に係る電源出力回路の定電圧電源回路に用いたシリーズレギュレータ7c、7d、7e、7fは、出力端子に上記した専用の定電圧を生成して印加する機能を持つが、あくまでも一例であり、これに限定されない。例えば、スイッチングレギュレータ、シャントレギュレータ等を代用しても良く、電圧変換機能を備えるものであれば、回路様式を問わないものとする。
 実施の形態3.
 図3は、本発明の実施の形態3に係る絶縁電源回路の基本構成を示した概略回路図である。実施の形態3の絶縁電源回路は、電源供給される論理演算装置としてのマイコン300Bを使用し、実施の形態1に係る電源入力回路が持つスイッチング機能及び電圧生成機能を論理演算によって予め生成されるようにしたものである。使用形態として、1系統のアナログ入力を行い、1系統のアナログ出力を得る適用例を示している。
 図3を参照すれば、実施の形態3の絶縁電源回路は、絶縁トランス2Cの一次側に1つの一次側巻線201cが設けられ、二次側に一対の二次側巻線202g、202hが設けられている。一次側巻線201cには、バッファ回路15a、15bを介在させてマイコン300Bが接続されている。また、一対の二次側巻線202g、202hには、整流・平滑回路を介して電源出力回路となる定電圧電源回路の電源回路17a、17bが接続されている。
 更に、電源回路17aには、D/Aコンバータ18a及び差動回路19aが接続されている。差動回路19aは、入力側がD/Aコンバータ18aと接続され、出力端子がアナログ出力用とされる。加えて、電源回路17bには、A/Dコンバータ18b及び差動回路19bが接続されている。差動回路19bは、出力側がA/Dコンバータ18bと接続され、入力端子がアナログ入力用とされる。その他、D/Aコンバータ18a及びA/Dコンバータ18bとマイコン300Bとの間には、アイソレータ16が介在され、マイコン300BとD/Aコンバータ18a及びA/Dコンバータ18bとが通信可能になっている。
 実施の形態3の絶縁電源回路において、マイコン300B、及びバッファ回路15a、15bを含む構成は、電源入力回路となっている。また、電源回路17aが電源出力回路となっている。更に、差動回路19a、19b、D/Aコンバータ18a、A/Dコンバータ18b、及びアイソレータ16を含む構成は、マイコン300Bとの間で接続される通信系回路となっている。二次側巻線202gは、整流・平滑回路及び電源回路17aを通して接地接続されている。二次側巻線202hは、整流・平滑回路及び電源回路17bを通して接地接続されている。
 実施の形態3の絶縁電源回路では、外部から差動回路19bを介して入力されたアナログ入力がA/Dコンバータ18bによってA/D変換されたときに得られる印加電圧、或いはマイコン300Bに設定されたD/Aコンバータ18aの出力電圧を用いる。マイコン300Bは、A/Dコンバータ18bの印加電圧、或いはD/Aコンバータ18aの出力電圧に基づいて、負荷条件を判定し、これに応じてバッファ回路15a、15bを介して絶縁トランス2Cの一次側巻線202cを励起する。マイコン300Bによって生成され、バッファ回路15a、15bを介して絶縁トランス2Cの一次側巻線202cを励起する信号は、内部で生成した出力条件変更指示信号101に基づいてオン・オフ制御されるスイッチング機能を含む。更に、スイッチング機能により得られる予め設定された励起レベルの見込み値に該当する電圧を生成する電圧生成機能を含むものである。
 マイコン300Bは、プログラムの条件に限らず、出力電圧、出力電流、負荷抵抗を判断し、条件に加えるか、或いは条件を切り替えても良い。一例として、電圧出力を負荷条件とする場合には、一般的に負荷抵抗が小さい程、出力電流が大きくなる。例えば、負荷条件が電流出力である場合には、マイコン300Bから設定した出力電流値により要求電流を概算できる。このため、例えば、出力電圧、電流、負荷抵抗をA/Dコンバータ18b、コンパレータ等により判断し、それに応じてマイコン300Bのプログラムによって、出力条件変更指示信号101を内部で生成すれば良い。
 マイコン300Bは、内部で生成した出力条件変更指示信号101に基づいてオン・オフ制御されるスイッチング機能、及びそれを受ける電圧生成機能で得られた励起レベルの見込み値に該当する電圧の励起信号をバッファ回路15a、15bへ出力する。そして、バッファ回路15a、15bは、所望の励起信号を絶縁トランス2Cの一次側巻線202cに与える。これにより、絶縁トランス2Cの一次側巻線202cが励起されると、励起レベルが変化する。この励起レベルの変化に伴い、絶縁トランス2Cの二次側巻線202g、202hに出力電圧が発生する。二次側巻線202gの出力電圧は、整流・平滑回路で整流・平滑された後、電源回路17aに印加される。また、二次側巻線202hの出力電圧は、整流・平滑回路で整流・平滑された後、電源回路17bに印加される。電源回路17aは、定電圧を生成して、D/Aコンバータ18a及び差動回路19aに印加する。電源回路17bは、定電圧を生成して、A/Dコンバータ18b及び差動回路19bに印加する。
 実施の形態3の絶縁電源回路において、差動回路19aの端子から入力されたアナログ入力は、A/Dコンバータ18bでA/D変換されてデジタル信号となる。デジタル信号は、アイソレータ16及びD/Aコンバータ18aへ送出される。D/Aコンバータ18aは、デジタル信号をD/A変換して生成したアナログ信号を、差動回路19aの端子を通してアナログ出力とする。アイソレータ16は、デジタル信号をマイコン300Bへ送出して通信用とする。このアナログ入力とアナログ出力とを行う際の信号の電位差は、マイコン300Bで一次側巻線202cの励起レベルを変化させて、二次側巻線202g、202hの出力電圧と電源回路17a、17bの入力電圧との電位差を制御しているため、殆ど生じない。この結果、実施の形態1の場合と同様に、上記目的が達成され、高効率で低発熱の絶縁電源回路が得られる。
 因みに、実施の形態3の絶縁電源回路におけるA/Dコンバータ18bにDC/DCコンバータを接続し、マイコン300Bによって、DC/DCコンバータの出力条件を変更するようにしても良い。
 実施の形態4.
 図4は、本発明の実施の形態4に係る絶縁電源回路の基本構成を示した概略回路図である。実施の形態4の絶縁電源回路は、絶縁トランス2Dの二次側の電源出力回路の前段にフィードバック回路11Aを持たせた構成としたものである。
 図4を参照すれば、実施の形態4の絶縁電源回路は、絶縁トランス2Dの一次側に1つの一次側巻線201dが設けられ、二次側に一対の二次側巻線202j、202kが設けられている。絶縁トランス2Dの一次側の電源入力回路は、一次側巻線201dに接続された実施の形態1の場合と同様なスナバ回路を備える他、スイッチングレギュレータ9Aを備えている。また、電源入力回路には、スナバ回路及びスイッチングレギュレータ9Aと接続される開閉素子として、MOS-FET8が使用されている。更に、電源入力回路には、光電変換後にスイッチングレギュレータ9Aへフィードバック信号を与える受光用のフォトカプラ10aが備えられている。
 絶縁トランス2Dの二次側において、一方の二次側巻線202jには、整流・平滑回路を介してフィードバック回路11Aが接続されている。フィードバック回路11Aは、電子スイッチ14、フィードバック抵抗13a、13b、シャントレギュレータ12、及び発光用のフォトカプラ10bを含んで構成される。フィードバック回路11Aには、定電圧の出力C116を生成して出力端子へ印加する電源出力回路となる定電圧電源回路のシリーズレギュレータ7gが接続されている。他方の二次側巻線202jには、整流・平滑回路を介して電源出力回路となる定電圧電源回路のシリーズレギュレータ7hが接続されている。シリーズレギュレータ7hは、定電圧の出力D117を生成して出力端子へ印加する。
 実施の形態4に係る絶縁電源回路において、二次側巻線202jは、整流・平滑回路、フィードバック回路11A、及びシリーズレギュレータ7gを通して接地接続されている。また、二次側巻線202kは、整流・平滑回路及びシリーズレギュレータ7hを通して接地接続されている。フォトカプラ10a、10bは、絶縁トランス2Dの一次側と二次側との間のフィードバックを、二次側の発光用のフォトカプラ10bからの照射光を一次側の受光用のフォトカプラ10aが受光し、光電変換することによって行う。
 フィードバック回路11Aでは、外部から入力端子を介して電子スイッチ14に、フィードバック抵抗13a、13bを切り替えるための出力条件変更指示信号101が入力されると、電子スイッチ14がオン・オフする。これに際して、シャントレギュレータ12は、フィードバック回路11Aにおいて、フィードバック抵抗13a、13bの抵抗値、基準電圧値等を比較用又は基準用として切り替えられるように、定電圧の基準電圧を生成する。
 例えば、フィードバック回路11Aに接続されるシリーズレギュレータ7gの出力端子への出力C116を軽負荷とし、フィードバック回路11Aが接続されていないシリーズレギュレータ7hの出力端子への出力D117の負荷電流を増やした場合を想定する。この場合、フィードバック回路11Aに関わる二次側巻線202jの出力電圧は、一定に保たれる。しかし、フィードバック回路11Aに関わらない二次側巻線202kの出力電圧は、低下する。
 実施の形態4の絶縁電源回路では、電源出力回路の前段に設けたフィードバック回路11Aにシャントレギュレータ12のフィードバック抵抗13aと並列にフィードバック抵抗13bと電子スイッチ14とを配設している。そして、入力端子から入力されるフィードバック抵抗13a、13bを切り替えるための出力条件変更指示信号101によって、電子スイッチ14をオン・オフする構成としている。これによって、フィードバック回路11Aのフィードバック電圧の比較入力として、シャントレギュレータ12に印加される電圧を、フィードバック抵抗13a又はフィードバック抵抗13a、13bで分圧された二段階に切り替え、これに応じてフォトカプラ10bからの照射光を一次側の受光用のフォトカプラ10aが受光し、光電変換する。この結果、間接的に絶縁トランス2Dの一次側のスイッチングレギュレータ9Aの出力条件を変更している。
 この状態により、MOS-FET8のオン・オフの制御が行われることにより、予め設定された励起レベルの見込み値に該当する電圧が生成され、一次側巻線201dの励起レベルが変化する。これに伴い、絶縁トランス2Dの二次側の二次側巻線202j、202kに出力電圧が生成される。この結果、実施の形態1の場合と同様に、上記目的が達成され、高効率で低発熱の絶縁電源回路が得られる。
 因みに、実施の形態4の絶縁電源回路のフィードバック回路11Aにおける切替数、回路構成は、あくまでも一例であり、開示したものに限定されない。絶縁トランス2Dの二次側の電圧又は電流を監視し、基準電圧又は基準電流と比較し、フィードバックを行う回路であれば、全てが対象になる。係る回路でフィードバック電圧の値を出力条件変更指示信号101に基づいて可変させ、間接的に絶縁トランス2Dの一次側のスイッチングレギュレータ9A、或いは二次側巻線202j、202kの出力電圧の何れか一つ以上を変更することができれば、形態を問わない。尚、実施の形態4の絶縁電源回路で用いる出力条件変更指示信号101は、絶縁トランス2Dの二次側の電圧又は電流に基づいて外部で生成され、入力端子からフィードバック回路11Aの電子スイッチ14に入力されるものとする。係る出力条件変更指示信号101は、フォトカプラ10bからの照射光の生成に寄与する。
 実施の形態5.
 図5は、本発明の実施の形態5に係る絶縁電源回路の基本構成を示した概略回路図である。実施の形態5の絶縁電源回路は、絶縁トランス2Eの一次側にフィードバック用補助巻線201fを設け、このフィードバック用補助巻線201fからフィードバックを行うフィードバック回路11Bを電源入力回路に持たせた構成としたものである。
 図5を参照すれば、実施の形態5の絶縁電源回路は、絶縁トランス2Eの一次側に一次側巻線201e、フィードバック用補助巻線201fが設けられ、二次側に一対の二次側巻線202m、202nが設けられている。絶縁トランス2Dの一次側の電源入力回路は、一次側巻線201eに接続された実施の形態1の場合と同様なスナバ回路を備える他、スイッチングレギュレータ9Bを備えている。また、電源入力回路には、スナバ回路及びスイッチングレギュレータ9Bと接続される開閉素子として、MOS-FET8が使用されている。更に、電源入力回路には、フィードバック巻線201fと接続されるフィードバック回路11Bが備えられている。
 絶縁トランス2Eの二次側において、一方の二次側巻線202mには、整流・平滑回路を介して電源出力回路となる定電圧電源回路のシリーズレギュレータ7jが接続されている。シリーズレギュレータ7jは、定電圧の出力C116を生成して出力端子へ印加する。他方の二次側巻線202nには、整流・平滑回路を介して電源出力回路となる定電圧電源回路のシリーズレギュレータ7kが接続されている。シリーズレギュレータ7kは、定電圧の出力D117を生成して出力端子へ印加する。
 実施の形態5に係る絶縁電源回路において、二次側巻線202mは、整流・平滑回路及びシリーズレギュレータ7jを通して接地接続されている。また、二次側巻線202nは、整流・平滑回路及びシリーズレギュレータ7kを通して接地接続されている。
 一次側の電源入力回路に備えられたフィードバック回路11Bは、フィードバック用補助巻線201f、電子スイッチ14、及びフィードバック抵抗13a、13bを含んで構成される。フィードバック用補助巻線201fからは、フィードバックの比較用の比較信号が得られる。このフィードバック回路11Bでは、フィードバック抵抗13aと並列にフィードバック抵抗13bと電子スイッチ14とを配設している。そして、入力端子から入力されるフィードバック抵抗13a、13bを切り替えるための出力条件変更指示信号101によって、電子スイッチ14をオン・オフする構成としている。これによって、フィードバック回路11Bのスイッチングレギュレータ9Bの比較入力として印加されるフィードバック電圧を、フィードバック抵抗13a又はフィードバック抵抗13a、13bで分圧された二段階に切り替え、間接的に絶縁トランス2Eの一次側のスイッチングレギュレータ9Bの出力条件を変更している。
 この状態により、MOS-FET8のオン・オフの制御が行われることにより、予め設定された励起レベルの見込み値に該当する電圧が生成され、一次側巻線201eの励起レベルが変化する。これに伴い、絶縁トランス2Eの二次側の二次側巻線202m、202nに出力電圧が生成される。この結果、実施の形態1の場合と同様に、上記目的が達成され、高効率で低発熱の絶縁電源回路が得られる。
 因みに、実施の形態5の絶縁電源回路のフィードバック回路11Bにおける切替数、回路構成は、あくまでも一例であり、開示したものに限定されない。絶縁トランス2Eの一次側の電圧又は電流を監視し、基準電圧又は基準電流と比較し、フィードバックを行う回路であれば、全てが対象となる。係る回路でフィードバック電圧の値を出力条件変更指示信号101に基づいて可変させ、間接的に絶縁トランス2Eの一次側のスイッチングレギュレータ9B、或いは二次側巻線202m、202nの出力電圧の何れか一つ以上を変更することができれば、形態を問わない。尚、実施の形態5に係る絶縁電源回路で用いる出力条件変更指示信号101は、絶縁トランス2Eの一次側の電圧又は電流に基づいて生成され、入力端子からフィードバック回路11Bの電子スイッチ14に入力されるものとする。係る出力条件変更指示信号101は、フィードバック回路11Bのフィードバック電圧の生成に寄与する。
 また、実施の形態5の絶縁電源回路において、フィードバック回路11Bの比較信号は、絶縁トランス2Eの一次側のフィードバック用補助巻線201fを設けずに取得し、使用することも可能である。例えば、絶縁トランス2Eの一次側巻線202e、或いはMOS-FET8の電圧又は電流を監視し、フィードバック回路11Bの比較信号として使用しても良い。
 即ち、実施の形態5の絶縁電源回路では、電源入力回路に設けられたフィードバック回路11Bがフィードバック用補助巻線201fの出力電圧に基づいて、フィードバック制御を行う。これにより、二次側巻線202m、202nの出力電圧を安定化させることができる。また、このフィードバック回路11Bは、絶縁トランス2Eの一次側の駆動波形を監視した結果の駆動波形に応じてフィードバック制御を行うことにより、出力電圧を安定化させることができる。更に、フィードバック回路11Bは、出力条件変更指示信号101で絶縁トランス2Eの一次側の駆動条件に係る物理量を切り替えることにより、出力電圧を変更することができる。ここでの一次側の駆動条件に係る物理量は、電圧、電流、周波数、デューティ比、デッドタイム等を示すもので、これらを切り替えることによって、出力電圧を変更できることを示す。
 尚、本発明は、上述した各実施の形態に限定されず、その技術的要旨を逸脱しない範囲で種々の変形が可能であり、特許請求の範囲に記載された技術思想に含まれる技術的事項の全てが本発明の対象となる。上記各実施の形態は、好適な例を示したものであるが、当業者であれば、開示した内容から様々な変形例を実現することが可能である。例えば、上述した各実施の形態の絶縁電源回路では、出力条件変更指示信号101の生成手法をそれぞれ限定したが、必要な構成部分を挿げ替えて適用する等により、他の実施の形態へ置き換えて適用することが可能である。即ち、その内容は、出力条件変更指示信号101を、二次側に接続される負荷の大小に応じて生成するか、一次側又は二次側の電圧又は電流に基づいて生成するか、電源出力回路への動作切替制御機能を持つ動作切替制御回路のオン・オフに応じて生成するか、論理演算装置の論理演算によって生成する場合を示す。
 本発明の絶縁電源回路は、マイコン、FPGA等の実装により、多電源回路を有する回路及び機器において適用可能である。例えば、低消費電力且つ低発熱が要求される産業用機器、民生用機器、車載機器等に利用できる。
 産業用機器の例としては、D/A出力、A/D出力、計装、温度入力、リレー駆動のI/O等に適用できる。適用例としては、多出力D/A出力ユニットの未使用チャンネルのオン・オフ時に絶縁電源の損失を抑えて高効率化を図ることができる。
 民生用機器の例としては、スタンバイ機能を有するAV機器、スタンバイ機能と重負荷とが繰り返される炊飯器、湯沸かし器等の白物機器において、待機電力の削減のために好適となる。
 車載機器の例としては、AV機器、ECU等の電装品の主機運転及び停止時、或いは特定機能オフ時の消費電力削減のために好適となる。
 2A~2E 絶縁トランス、3、3′ スイッチング制御回路、4 スイッチング素子、7a~7k シリーズレギュレータ、8 MOS-FET、9A、9B スイッチングレギュレータ、11A、11B フィードバック回路、12 シャントレギュレータ、13a、13b フィードバック抵抗、14 電子スイッチ、17a、17b 電源回路、201a~201e 一次側巻線、202a~202n 二次側巻線、101 出力条件変更指示信号、102 動作指示信号、103 動作切替信号、112 外部I/F電源、113 アナログ電源、114 マイコン電源、115 スタンバイ電源、201f フィードバック用補助巻線、300A、300B マイコン。

Claims (10)

  1.  一次側に一次側巻線が設けられ、二次側に二次側巻線が設けられた絶縁トランスと、
     前記一次側巻線に接続されると共に、電源供給を受けてスイッチング機能のオン・オフにより当該一次側巻線を励起する電源入力回路と、
     前記二次側巻線に接続されると共に、前記一次側巻線の励起に伴い、当該二次側巻線で発生する出力電圧を入力電圧として、負荷へ定電圧を印加する電源出力回路と、
     を備えた絶縁電源回路であって、
     前記電源入力回路は、負荷条件に応じて生成されると共に、前記出力電圧の変更を指示する出力条件変更指示信号に従って、前記スイッチング機能のオン・オフを制御することにより、予め設定される励起レベルの見込み値に該当する電圧を生成する電圧生成機能を有し、当該電圧生成機能で得られた当該電圧により前記一次側巻線での励起レベルを変化させ、
     前記電源出力回路は、前記励起レベルの変化を受けて、前記二次側巻線で生成される出力電圧を入力電圧として、前記負荷へ印加する
     絶縁電源回路。
  2.  前記絶縁トランスの二次側から一次側へのフィードバック制御を行うフィードバック回路が設けられ、
     前記フィードバック回路は、前記出力電圧を安定化させる
     請求項1に記載の絶縁電源回路。
  3.  前記フィードバック回路は、前記出力条件変更指示信号が入力されてオン・オフするスイッチ素子を備え、当該スイッチ素子のオン・オフに応じてフィードバック電圧を切り替えることにより、前記出力電圧を変更する
     請求項2に記載の絶縁電源回路。
  4.  前記絶縁トランスは、一次側にフィードバック用補助巻線を有し、
     前記フィードバック回路は、前記電源入力回路に備えられ、前記フィードバック用補助巻線の出力電圧に基づいてフィードバック制御を行うことにより、前記出力電圧を安定化させる
     請求項3に記載の絶縁電源回路。
  5.  前記フィードバック回路は、前記絶縁トランスの一次側の駆動波形を監視した結果の当該駆動波形に応じて前記フィードバック制御を行うことにより、前記出力電圧を安定化させる
     請求項4に記載の絶縁電源回路。
  6.  前記フィードバック回路は、前記出力条件変更指示信号で前記絶縁トランスの一次側の駆動条件に係る物理要素の物理量を切り替えることにより、前記出力電圧を変更する
     請求項4に記載の絶縁電源回路。
  7.  前記出力条件変更指示信号は、前記絶縁トランスの二次側に接続される前記負荷の大小に応じて生成される
     請求項1~6の何れか1項に記載の絶縁電源回路。
  8.  前記出力条件変更指示信号は、前記絶縁トランスの一次側又は二次側の電圧又は電流に基づいて生成される
     請求項1~6の何れか1項に記載の絶縁電源回路。
  9.  前記出力条件変更指示信号は、前記電源出力回路への動作切替制御機能を持つ動作切替制御回路のオン・オフに応じて生成される
     請求項1~6の何れか1項に記載の絶縁電源回路。
  10.  前記出力条件変更指示信号は、論理演算装置の論理演算によって生成される
     請求項1~6の何れか1項に記載の絶縁電源回路。
PCT/JP2018/016202 2018-04-19 2018-04-19 絶縁電源回路 WO2019202714A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/016202 WO2019202714A1 (ja) 2018-04-19 2018-04-19 絶縁電源回路
US16/980,682 US11496052B2 (en) 2018-04-19 2018-04-19 Insulated power supply circuit
JP2020514873A JP6909925B2 (ja) 2018-04-19 2018-04-19 絶縁電源回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016202 WO2019202714A1 (ja) 2018-04-19 2018-04-19 絶縁電源回路

Publications (1)

Publication Number Publication Date
WO2019202714A1 true WO2019202714A1 (ja) 2019-10-24

Family

ID=68240057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016202 WO2019202714A1 (ja) 2018-04-19 2018-04-19 絶縁電源回路

Country Status (3)

Country Link
US (1) US11496052B2 (ja)
JP (1) JP6909925B2 (ja)
WO (1) WO2019202714A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104069A (zh) * 2020-11-19 2020-12-18 南京国信能源有限公司 M个直流电源模块与n个输出负载切换模块电路
DE102023104716A1 (de) 2022-02-28 2023-08-31 Fuji Electric Co., Ltd. Transformator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082986U (ja) * 1983-11-10 1985-06-08 日本電気株式会社 スイツチング電源回路
JP2003169467A (ja) * 2001-12-04 2003-06-13 Sharp Corp 動作制御装置およびそれを用いるスイッチング電源装置
JP3461730B2 (ja) * 1998-07-07 2003-10-27 松下電器産業株式会社 電源装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862339A (en) * 1987-06-05 1989-08-29 Yokogawa Electric Corporation DC power supply with improved output stabilizing feedback
JPH08126313A (ja) * 1994-10-20 1996-05-17 Sharp Corp スイッチング電源
JP3740325B2 (ja) * 1999-08-04 2006-02-01 キヤノン株式会社 自励式スイッチング電源装置
JP2003143854A (ja) * 2001-11-06 2003-05-16 Canon Inc 多出力スイッチング電源装置
JP2006180595A (ja) * 2004-12-21 2006-07-06 Sony Corp スイッチング電源回路
JP2007159305A (ja) * 2005-12-07 2007-06-21 Rinnai Corp 電源装置
WO2014170976A1 (ja) * 2013-04-17 2014-10-23 三菱電機株式会社 スイッチング電源回路およびその制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082986U (ja) * 1983-11-10 1985-06-08 日本電気株式会社 スイツチング電源回路
JP3461730B2 (ja) * 1998-07-07 2003-10-27 松下電器産業株式会社 電源装置
JP2003169467A (ja) * 2001-12-04 2003-06-13 Sharp Corp 動作制御装置およびそれを用いるスイッチング電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104069A (zh) * 2020-11-19 2020-12-18 南京国信能源有限公司 M个直流电源模块与n个输出负载切换模块电路
DE102023104716A1 (de) 2022-02-28 2023-08-31 Fuji Electric Co., Ltd. Transformator

Also Published As

Publication number Publication date
US20210021196A1 (en) 2021-01-21
JP6909925B2 (ja) 2021-07-28
JPWO2019202714A1 (ja) 2020-12-03
US11496052B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
KR100692567B1 (ko) 스위칭모드 전원공급장치 및 절전모드 구현방법
JP5981337B2 (ja) 低コストの電力供給回路及び方法
US10355605B1 (en) Adjustable frequency curve for flyback converter at green mode
US9444246B2 (en) Power converter with switching element
US20060098461A1 (en) DC-AC converter
US8300437B2 (en) Multi-output DC-to-DC conversion apparatus with voltage-stabilizing function
US9344000B2 (en) Power module varying bias power and distributed power supply apparatus
JP2001103743A (ja) スイッチング電源装置
WO2019202714A1 (ja) 絶縁電源回路
JP2021503269A (ja) スイッチモード電力変換器及び変換方法
JP6332629B2 (ja) Led電源及びled照明装置
US20150117061A1 (en) Power supply apparatus
JP2022069834A (ja) 電源制御装置
KR101228767B1 (ko) 멀티 출력 스위칭모드 전원공급장치
JP4375839B2 (ja) スイッチング電源装置
JP2006340429A (ja) スイッチングレギュレータおよびマイクロコントローラを備えた機器
US5442536A (en) Low-loss power supply device comprising a DC/DC converter
US6304470B1 (en) Power supply device
US20030030421A1 (en) Power supply unit
JP2019216577A (ja) 交流電源装置およびその電圧コンバータ
KR101421021B1 (ko) 결합 인덕터 선택회로를 포함하는 다중 출력 컨버터
KR20190114920A (ko) 플라즈마 펄스 전원 장치
EP3643142B1 (en) Apparatus and system for providing a power converter
JP2009284636A (ja) スイッチング電源装置
JPH0993811A (ja) 昇降圧コンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514873

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915196

Country of ref document: EP

Kind code of ref document: A1