WO2019202683A1 - Refrigeration appliance - Google Patents

Refrigeration appliance Download PDF

Info

Publication number
WO2019202683A1
WO2019202683A1 PCT/JP2018/015992 JP2018015992W WO2019202683A1 WO 2019202683 A1 WO2019202683 A1 WO 2019202683A1 JP 2018015992 W JP2018015992 W JP 2018015992W WO 2019202683 A1 WO2019202683 A1 WO 2019202683A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
outer box
heat
partition plate
temperature
Prior art date
Application number
PCT/JP2018/015992
Other languages
French (fr)
Japanese (ja)
Inventor
荒木 正雄
酒井 啓太
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/015992 priority Critical patent/WO2019202683A1/en
Publication of WO2019202683A1 publication Critical patent/WO2019202683A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • the present invention relates to a refrigerator-freezer provided with a condensation pipe.
  • the refrigerator main body constitutes a heat insulating box body in which a vacuum heat insulating material is disposed between the outer box and the inner box.
  • the refrigeration capacity is adjusted by controlling the frequency of the compressor, the number of rotations of the internal fan, etc. according to the outside air temperature.
  • a heater unit is mounted on the partition plate, and the energization rate to the heater unit is controlled according to the outside air temperature, the outside air humidity, etc. Condensation is suppressed.
  • the opening of the refrigerator main body is likely to be dewed due to a temperature difference with the outside air, and electric power is required when a heater is installed to avoid this.
  • Patent Document 1 a technique is known that uses the heat of the condensing pipe to raise the temperature around the opening to prevent dew condensation (see, for example, Patent Document 1).
  • a housing part facing the front end surface of the vacuum heat insulation panel is formed by the outer box and the inner box on the opening side of the heat insulation box, and the housing part is in a high temperature state compressed by a compressor.
  • a dew-proof pipe through which the refrigerant flows is arranged.
  • an auxiliary member is disposed in the housing portion so as to be in contact with the dew-proof pipe in order to enhance the heat conduction effect from the dew-proof pipe to the outer shell.
  • Patent Document 2 a technique of installing a heat conductive sheet in the space in the housing is disclosed (for example, see Patent Document 2).
  • the condensation pipe is placed outside the vacuum heat insulating material, one end of the heat conductive sheet is wound around the condensation pipe, and the other end side is extended to the vicinity of the dew condensation prevention region on the outer wall, thereby providing dew. Is suppressed.
  • This invention was made in order to solve the above problems, and it aims at providing the refrigerator-freezer which can implement
  • an opening and a storage chamber are formed, a heat insulating box having an outer box and a vacuum heat insulating material provided on the inner surface side of the outer box, and a refrigerant discharged by the compressor flows.
  • a condensing pipe disposed on the inner surface side of the outer box and having the storage chamber side covered with the vacuum heat insulating material; and provided between the outer box and the vacuum heat insulating material;
  • a heat transfer sheet for transferring heat to the opening of the heat insulating box.
  • the condensing pipe is arranged in the outer box, the storage chamber side is covered with the vacuum heat insulating material, and the heat of the condensing pipe is transmitted to the opening through the heat transfer sheet. While suppressing heat intrusion, dew condensation around the opening can be suppressed by the heat of the condensation pipe. Moreover, since the thermal load of the storage room is reduced, energy saving can be realized.
  • FIG. 2 is a cross-sectional view showing an AA cross section of FIG.
  • FIG. 2 is a disassembled perspective view which shows the structure of the partition plate which concerns on Embodiment 1 of this invention.
  • FIG. 2 is a secondary sectional view showing a CC cross section of FIG. 1. It is explanatory drawing which shows the sticking position of the heat exchanger sheet which concerns on Embodiment 1 of this invention. It is a figure which shows the temperature distribution for every part of the partition plate and fin part which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a schematic front view showing the appearance of the refrigerator-freezer according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view showing a schematic configuration of the refrigerator-freezer according to Embodiment 1 of the present invention.
  • schematic structure of a refrigerator-freezer (refrigerator 100) is demonstrated.
  • the arrow X direction represents the width direction of the refrigerator 100
  • the arrow Y direction represents the depth direction of the refrigerator 100
  • the arrow Z direction represents the height direction of the refrigerator 100.
  • the refrigerator 100 includes a box-shaped refrigerator main body 6 having an open front surface and a plurality of doors that block the opening 6a of the refrigerator main body 6.
  • the refrigerator main body 6 includes an outer box 10 made of a steel plate, an inner box 20 made of a synthetic resin such as ABS resin, a plate-like vacuum heat insulating material 30, and a foam heat insulating material 35.
  • a portion 6b, a bottom wall portion 6c, a left side wall portion 6d, a right side wall portion 6e, and a rear wall portion 6f are configured.
  • the refrigerator main body 6 has an outer box 10 and an inner box 20, and a space formed by the outer box 10 and the inner box 20 is filled with a foam heat insulating material 35 made of hard urethane foam or the like.
  • the vacuum heat insulating material 30 is provided in each wall portion and embedded in the foam heat insulating material 35.
  • the outer casing 10, the inner box 20, and the vacuum heat insulating material 30 are integrated by the foam heat insulating material 35 and function as a heat insulating box.
  • the outer box 10 has a top side panel 11 that constitutes the top, left side, and right side of the refrigerator 100, a back panel 18 that constitutes the back of the refrigerator 100, and a bottom plate 19 that constitutes the bottom of the refrigerator 100.
  • An outer box front flange 13 (see FIG. 19) extending inward along the front surface is formed at the end of the top side panel 11 on the opening 6a side.
  • the outer casing front flange 13 is bent and has a substantially U-shaped cross section. As shown in FIG. 19, the outer casing front flange 13 includes an upper flange portion 14 constituting the front surface of the upper wall portion 6b, a left flange portion 15 constituting the front surface of the left wall portion 6d, and a right wall portion 6e.
  • a right flange portion 16 constituting the front surface. Further, a lower flange 17 extending inwardly along the bottom surface is formed at the lower end of both side surfaces of the top side panel 11.
  • An inlet (not shown) is formed in the back panel 18 and a raw material liquid for the foam heat insulating material 35 is injected through the inlet.
  • An inner box front flange 21 extending outward along the front surface is formed at the end of the inner box 20 on the opening 6a side.
  • the inner box front flange 21 has a shape portion protruding to the back side.
  • the top side panel 11 is fitted to the inner box 20 by the outer box front flange 13 coming into contact with the inner box front flange 21.
  • the space inside the inner box 20 is partitioned by a plurality of partitions 7a, 7b, 7c, and a refrigerator compartment 1a, an ice making compartment 1b, a switching compartment 1c, a freezer compartment 1d, and a vegetable compartment 1e are formed from the top of the refrigerator body 6.
  • the switching chamber 1c is provided on the right side of the ice making chamber 1b in the width direction (arrow X direction) of the refrigerator 100.
  • a first partition 7a is provided between the refrigerator compartment 1a, the ice making compartment 1b, and the switching chamber 1c.
  • a second partition 7b is provided between the ice making chamber 1b and the switching chamber 1c and the freezing chamber 1d.
  • a third partition 7c is provided between the freezer compartment 1d and the vegetable compartment 1e.
  • Each storage room is set to a different temperature zone depending on the application, and each storage room is composed of, for example, a thermistor, and a storage room temperature sensor (not shown) for measuring the temperature of the storage room is arranged. Yes
  • a door that can be opened and closed is provided in front of each storage room.
  • the door of the refrigerating room 1a is formed of a double door-rotating rotary door, and has a left door 3 arranged on the left side of the front surface of the refrigerating room 1a and a right door 4 arranged on the right side of the front surface of the refrigerating room 1a.
  • the ice making room 1b, the switching room 1c, the freezing room 1d, and the vegetable room 1e are provided with drawer-type doors 2, respectively.
  • connecting hinges for connecting the refrigerator main body 6 and the door of the refrigerator compartment 1a are provided at both side ends of the outer box 10 in the width direction (arrow X direction).
  • a connection hinge provided at the left end of the outer box 10 connects the refrigerator main body 6 and the left door 3.
  • a connection hinge provided at the right end of the outer box 10 connects the refrigerator main body 6 and the right door 4.
  • Each connection hinge has a hinge shaft, and the left door 3 and the right door 4 are opened from the center of the refrigerator main body 6 to both sides using each hinge shaft as a rotation axis.
  • An inter-door gap Gd is provided at the boundary between the left door 3 and the right door 4 so that the left door 3 and the right door 4 do not come into contact with each other in the rotation trajectory in which the left door 3 and the right door 4 rotate.
  • an outside air temperature sensor that measures the outside air temperature
  • an outside air humidity sensor that measures the outside air humidity (outside air relative humidity Hout) are installed on the hinge portion 3a to which the upper connection hinge of the left door 3 is attached. Has been.
  • the refrigerator 100 includes a partition plate 5 that closes the gap Gd between the doors and partitions the refrigerator compartment 1a from the external space.
  • the partition plate 5 is a plate-like member extending in the height direction (arrow Z direction) along the inter-door gap Gd.
  • the partition plate 5 is installed in the left door 3 so that the surface member 40 faces the surface of each door of the refrigerator compartment 1a on the refrigerator compartment 1a side, and covers the inter-door gap Gd from the refrigerator compartment 1a side.
  • the interval between the left door 3 and the right door 4 is about 10 mm
  • the width of the partition plate 5 is about 50 mm.
  • a heat insulating wall 36 is provided behind the freezer compartment 1d in the depth direction (arrow Y direction) of the refrigerator 100, and the cooler chamber 8 is provided between the heat insulating wall 36 and the rear wall portion 6f of the refrigerator main body 6. Is formed. Between the cooler room 8 and each storage room such as the refrigerating room 1a, a damper device (not shown) for adjusting the amount of cool air blown to the storage room is provided.
  • the refrigerator 100 is provided with the machine room 9 formed in the outer side of the heat insulation box body in which a part of the rear wall portion 6f is recessed inside at the lower back portion.
  • a machine room cover 37 having a plurality of ventilation holes 37 a is installed on the back surface of the machine room 9.
  • FIG. 3 is a schematic diagram showing the piping configuration of the refrigerant circuit according to Embodiment 1 of the present invention.
  • the configuration of the refrigerant circuit CR provided in the refrigerator 100 will be described with reference to FIGS.
  • the direction in which the refrigerant flows is represented by a solid arrow.
  • the refrigerant circuit CR is configured by connecting a compressor 70, an air-cooled condenser 71, a condensation pipe 72, a dew prevention pipe 73, a dryer 74, a decompression device 75, a cooler 78, and the like through pipes.
  • the compressor 70 compresses the refrigerant and circulates it in the refrigerant circuit CR, and is installed in the machine room 9.
  • the machine room 9 is provided with a machine room fan (not shown) for taking outside air into the machine room 9 through the ventilation holes 37a and circulating the air in the machine room 9 to cool the compressor 70 and the like. ing.
  • the air-cooled condenser 71, the condensation pipe 72, and the dew prevention pipe 73 have a function of condensing the refrigerant in the refrigerant circuit CR.
  • the air-cooled condenser 71 is composed of, for example, a fin-tube heat exchanger.
  • the air-cooled condenser 71 is disposed in the machine room 9 and radiates the heat of the refrigerant to the air blown by the machine room fan.
  • the condensing pipe 72 is provided so as to go into the wall portion of the refrigerator main body 6 and naturally dissipates heat of the refrigerant to the outside air via the outer box 10.
  • the condensing pipe 72 includes a left pipe part 72a provided on the left wall part 6d, a ceiling pipe part 72b provided on the upper wall part 6b, a rear pipe part 72c provided on the rear wall part 6f, and a right wall part. 6d and a right side piping part 72d.
  • the ceiling piping part 72b is provided in the middle of the left piping part 72a. In the direction in which the refrigerant flows, the left piping part 72a, the back piping part 72c, and the right piping part 72d are connected in this order from upstream.
  • the dew prevention pipe 73 is stretched around the opening 6a side of each storage room provided below the refrigerator compartment 1a, and prevents the occurrence of dew condensation on the front surface.
  • the dew prevention pipe 73 includes a first pipe part 73a provided in the first partition 7a, a second pipe part 73b provided in the second partition 7b, and a third part provided in the third partition 7c. It has the piping part 73c and the 4th piping part 73d provided in the bottom wall part 6c of the refrigerator main body.
  • the dew prevention piping 73 is installed in the region below the refrigerator compartment 1a in the left flange portion 15 and the right flange portion 16 (see FIG. 19) and inside the surface of each partition 7a, 7b, 7c. ing.
  • the refrigerator compartment 1a has a higher temperature than the freezer compartment 1d and the like, and is less likely to be exposed to the front surface. Therefore, the outer casing front flange 13 is prevented from being exposed to the area around the refrigerator compartment 1a including the upper flange portion 14.
  • the piping 73 is not provided.
  • the dryer 74 removes moisture in the refrigerant and prevents freezing due to moisture.
  • the decompression device 75 decompresses the refrigerant, and includes, for example, one switching valve 76 and two capillaries 77a and 77b.
  • the switching valve 76 is provided between the dryer 74 and the two capillaries 77a and 77b in the refrigerant circuit CR, and changes the flow rate of the refrigerant in each of the capillaries 77a and 77b.
  • the cooler 78 is disposed in the cooler chamber 8. In the cooler chamber 8, an internal fan 38 that circulates the air in the refrigerator 100 is disposed. The cooler 78 causes the refrigerant to absorb the heat of the air blown by the internal fan 38.
  • the refrigerator 100 includes a control unit 99 (see FIG. 2) that controls the operation of the entire refrigerator 100.
  • the control unit 99 is composed of a microcomputer or the like and is built in the refrigerator main body 6.
  • the measurement values of the storage chamber temperature sensors, the outside air temperature sensor, and the outside air humidity sensor are input to the control unit 99.
  • the control unit 99 controls operations of the compressor 70, the switching valve 76, each damper device, the internal fan 38, the machine room fan, and the like.
  • the refrigerant discharged from the compressor 70 sequentially passes through the air-cooled condenser 71, the condensation pipe 72, and the dew prevention pipe 73, and is condensed while releasing heat.
  • the refrigerant that has flowed out of the dew prevention pipe 73 is removed from the refrigerant by the dryer 74 and flows into the decompression device 75.
  • the refrigerant flowing into the decompression device 75 is decompressed, expands, and flows into the cooler 78.
  • the cooler 78 the refrigerant absorbs heat from the air circulating in the refrigerator 100 by the internal fan 38 and evaporates. At this time, the air around the cooler 78 is cooled.
  • the refrigerant evaporated in the cooler 78 flows into the compressor 70 through the suction pipe 79 and is compressed again. While the compressor 70 is in operation, the above cycle is repeated.
  • the cold air generated by the air in the refrigerator 100 exchanging heat with the refrigerant flowing in the cooler chamber 8 is blown to the respective storage chambers by the internal fans 38 via the respective damper devices. Cooling.
  • the temperature of each storage room is measured by a storage room temperature sensor installed in each storage room, and the control unit 99 controls the frequency of the compressor 70 and each damper so that the measured temperature becomes a preset temperature. By controlling the opening degree of the apparatus, it is kept at an appropriate temperature.
  • the cold air that has cooled each storage chamber is returned to the cooler chamber 8 by the internal fan 38 and cooled again by the cooler 78.
  • FIG. 4 is a cross-sectional view showing the AA cross section of FIG.
  • FIG. 5 is an exploded perspective view showing the structure of the partition plate according to Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional view showing a state before the heater unit according to Embodiment 1 of the present invention is attached to a surface member. Based on FIG.4, FIG.5 and FIG.6, the structure around the partition plate 5 and the partition plate 5 is demonstrated.
  • the partition plate 5 includes a surface member 40 formed of sheet metal or the like, a heater unit 45 disposed in the surface member 40, a heater cover 50 that covers the heater unit 45 disposed in the surface member 40, and the like.
  • Gaskets 94 and 95 having magnets 24 are respectively provided on the inner plates 3b and 4b of the doors of the refrigerator compartment 1a.
  • One gasket 94 brings the left door 3 and the surface member 40 of the partition plate 5 into close contact with each other.
  • the other gasket 95 brings the right door 4 and the surface member 40 into close contact with each other.
  • the surface member 40 transmits heat from the heater unit 45 to the two gaskets 94 and 95.
  • the heater unit 45 includes, for example, a planar aluminum foil heater or the like, and heats the surface member 40 by energization.
  • the heater cover 50 is made of resin or the like.
  • the heater unit 45 includes a cord-like heater 46 that generates heat when energized, a heat shield 48 made of aluminum foil or the like, and a double-sided tape 47 that attaches the heater 46 and the heat shield 48 to the surface member 40.
  • the double-sided tape 47, the heater 46, and the heat shield 48 are arranged in this order from the surface member 40 toward the heater cover 50.
  • the heater 46 is arranged meandering so as to form a plurality of turns.
  • the double-sided tape 47 sticks and holds the heater 46 and the heat shield 48 inside the surface member 40.
  • the heat shield part 48 is provided so as to cover the heater 46 disposed inside the surface member 40, and reflects the heat of the heater 46 to the surface member 40 side and suppresses heat transfer to the refrigerator compartment 1a side. To do.
  • the partition plate 5 further includes a heat insulating member 55 disposed on the refrigerator compartment 1 a side of the heater cover 50 and a back cover 60.
  • the heat insulating member 55 is made of polystyrene foam or the like, and suppresses the heat of the heater unit 45 from leaking from the heater cover 50 into the refrigerator compartment 1a.
  • the back cover 60 is formed of resin or the like and is attached to the heater cover 50 to hold the heat insulating member 55.
  • An upper hinge 62 and an upper cover 63 are attached to the upper end portion of the back cover 60 by screws 64, and a spring 65, a lower hinge 66, and a lower portion are attached to the lower end portion of the back cover 60.
  • a side cover 67 is attached by screws 64.
  • a spring stopper 68 serving as a fulcrum for the operation of the spring 65 is attached to the rear cover 60 with a screw 69 at the lower end of the rear cover 60.
  • Bearing portions 60 a for attaching the upper hinge 62 and the lower hinge 66 are formed at both ends of the back cover 60.
  • the upper hinge 62 and the lower hinge 66 connect the left door 3 and the partition plate 5 so that the partition plate 5 rotates in conjunction with the opening / closing operation of the left door 3.
  • the upper hinge 62 and the lower hinge 66 have shaft portions 62 a and 66 a that serve as rotation shafts of the partition plate 5, and the shaft portions 62 a and 66 a are inserted into the bearing portions 60 a of the back cover 60.
  • the spring 65 biases the partition plate 5 toward the left door 3 side.
  • the upper cover 63 and the lower cover 67 cover the end in the height direction (arrow Z direction) of the partition plate 5, and are attached to the back cover 60, so that the upper hinge 62 and the lower hinge 66 are attached. Retain each.
  • a cover groove 63 a is formed in the upper part of the upper cover 63.
  • a heater unit 45 is affixed to the surface member 40 and fitted with the heater cover 50 and the tab 41, a heat insulating member 55 is placed on the heater cover 50, and the back cover 60 to which the upper hinge 62 and the like are attached is fitted with the heater cover 50.
  • the partition plate 5 is formed by fastening with the let screws 64. The partition plate 5 formed in this way is rotatably attached to the inner plate 3b of the left door 3 via an upper hinge 62 and a lower hinge 66.
  • a fitting groove 96 is formed in each of the inner plate 3 b of the left door 3 and the inner plate 4 b of the right door 4.
  • One of the two gaskets 94, 95 described above is fitted in the fitting groove 96 of the inner plate 3 b of the left door 3, and the other gasket 95 is fitted in the fitting groove of the inner plate 4 b of the right door 4. 96.
  • the left door 3 and the right door 4 have standing walls 3c and 4c projecting toward the refrigerator compartment 1a in the depth direction (arrow Y direction) so as to sandwich the partition plate 5 in the width direction (arrow X direction).
  • a packing 97 is installed between the standing wall 3 c of the left door 3 and the partition plate 5.
  • the gasket 95 provided on the right door 4 has a rear extension 95a extending between the standing wall 4c of the right door 4 and the right side surface of the partition plate 5, and the partition plate is formed by the rear extension 95a. Heat leakage around 5 is suppressed.
  • the above-described control unit 99 also calculates the energization rate Pr of the heater unit 45 based on the measured temperature of the refrigerator compartment 1a, the outside air temperature, and the outside air relative humidity Hout, and issues an energization instruction. .
  • the energization rate Pr may be calculated by a known method.
  • FIG. 7 is an explanatory diagram showing an example of the energization rate of the heater unit according to Embodiment 1 of the present invention.
  • FIG. 8 is an explanatory diagram showing another example of the energization rate of the heater unit according to Embodiment 1 of the present invention.
  • Energization to the heater unit 45 is controlled so that the surface member 40 of the partition plate 5 and the gaskets 94 and 95 have a power supply rate Pr that does not cause dew.
  • the energization rate Pr is a rate of energization time to the heater 46. For example, when energizing for 5 seconds out of 10 seconds, the energization rate Pr is expressed as 50%.
  • the energization rate Pr is calculated, for example, by giving the measured outside air relative humidity Hout to a plurality of calculation formulas set with the outside air temperature as a parameter. Further, the reference energization rate varies depending on the structure such as the thickness of the partition plate 5 and the thermal conductivity of the material, the rated wattage of the heater 46, the set temperature of the refrigerator compartment 1a, and the like.
  • the calculation formula is set for each of three stages, that is, when the outside air temperature is 20 ° C. or less, when it is higher than 20 ° C. and 30 ° C. or less, and when it is higher than 30 ° C. and 40 ° C. or less.
  • the energization rate Pr increases linearly as the outside air relative humidity Hout increases.
  • FIG. 7 illustrates the energization rates Pr1, Pr2, and Pr3 in three temperature zones.
  • three levels are set for each of the case where the outside air temperature is 20 ° C. or less, the case where it is higher than 20 ° C. and 30 ° C. or less, and the case where it is higher than 30 ° C. and 40 ° C. or less.
  • the energization rate Pr increases logarithmically as the outside air relative humidity Hout increases.
  • FIG. 8 illustrates the energization rates Pr4, Pr5, and Pr6 in three temperature zones.
  • FIG. 9 is a top perspective view showing the configuration around the upper end of the partition plate according to Embodiment 1 of the present invention.
  • FIG. 9 illustrates a state in which the left door 3 is closed and the right door 4 is opened.
  • FIG. 10 is a secondary cross-sectional view showing the CC cross section of FIG.
  • the operation of the partition plate 5 and the structure around the partition plate 5 will be described in detail with reference to FIGS.
  • the lower surface of the upper wall portion 6b is the ceiling 81 of the refrigerator compartment 1a
  • the upper surface of the first partition 7a is the floor surface 82 of the refrigerator compartment 1a.
  • a guide portion 83 for guiding the rotation of the partition plate 5 is provided at a position relative to the upper end portion of the partition plate 5.
  • the guide part 83 has a base part 83b attached to the ceiling 81 and a protrusion 83a extending downward from the base part 83b.
  • the projection 83 a of the guide portion 83 is accommodated in the cover groove portion 63 a formed in the upper cover 63.
  • the partition plate 5 When the left door 3 is opened, the partition plate 5 has the projection 83a of the guide portion 83 abutted against the edge of the cover groove portion 63a formed on the upper cover 63, and the partition plate 5 rotates around the shaft portions 62a and 66a as the rotation shaft. Move. At this time, since the right side portion of the partition plate 5 is turned backward by the biasing force of the spring 65, the partition plate 5 can be prevented from contacting the right door 4. On the other hand, when the left door 3 is closed, the right side portion of the partition plate 5 that has turned back is guided to the guide portion 83 and is rotated so as to exit from the left door 3 to the right side. When both the left door 3 and the right door 4 are closed, the gap Gd between the doors is closed by the partition plate 5 and the two gaskets 94 and 95, and the intrusion of outside air from the outside into the refrigerator compartment 1a is suppressed.
  • the partition plate 5 is formed shorter in the height direction (arrow Z direction) than the opening width of the refrigerator compartment 1a, and the upper end of the partition plate 5 and the base portion 83b of the guide portion 83 provided on the ceiling 81 are provided. A gap Gt is formed between them. Further, a gap Gb smaller than the upper gap Gt is formed between the lower end of the partition plate 5 and the floor surface 82.
  • the opening width of the refrigerator compartment 1a is the distance between the ceiling 81 and the floor surface 82 of the refrigerator compartment 1a.
  • Each of the gaskets 94 and 95 described above has a fin portion formed so as to extend to the upper portion and the lower portion, and the gap Gt and the gap Gb are closed by the fin portion.
  • the gasket 94 provided in the left door 3 has an upper fin portion 94t formed in the upper portion and a lower fin portion (not shown) formed in the lower portion.
  • the gasket 95 provided in the right door 4 has an upper fin portion 95t formed in the upper portion and a lower fin portion (not shown) formed in the lower portion.
  • Each of the upper fin portions 94t and 95t covers the gap Gt, extends upward from the ceiling 81 of the refrigerator compartment 1a, overlaps with a part of the upper flange portion 14, and a part of the surface member 40 of the partition plate 5. Overlapping lengths are formed.
  • the upper fin portions 94t and 95t and the upper flange portion 14 are in contact with each other in an overlapping region, and the upper fin portions 94t and 95t and the surface member 40 are in contact with each other in an overlapping region.
  • the length of contact between the upper fin portions 94t and 95t and the upper flange portion 14 is referred to as a first contact length D1
  • the length of contact between the upper fin portions 94t and 95t and the surface member 40 is second. It is referred to as contact length D2.
  • the first contact length D1 and the second contact length D2 are each set to about 10 mm.
  • the upper fin portion 94t extends from the left door 3 to the right so as to cover the door gap Gd, and the upper fin portion 95t extends from the right door 4 so as to cover the door gap Gd. It extends to the left side. That is, in the gap Gt formed above the partition plate 5, the two upper fin portions 94t and 95t overlap to close the inter-door gap Gd.
  • FIG. 11 is an explanatory diagram showing the attachment position of the heat transfer sheet according to Embodiment 1 of the present invention.
  • FIG. 11 illustrates the inner surface side of the state before the bending process of the top side panel 11. Based on FIG.10 and FIG.11, the structure of the upper wall part 6b is demonstrated in detail.
  • the upper flange portion 14 is provided at the front end portion of the top surface portion 12 disposed on the top surface of the top surface panel 11.
  • the upper flange portion 14 is connected to the top surface portion 12, and extends downward so as to face the left door 3 and the right door 4, and a second surface portion 14b positioned so as to overlap the rear of the first surface portion 14a. And a bent portion 14c connecting the first surface portion 14a and the second surface portion 14b.
  • the inner box front flange 21 formed in the inner box 20 includes a front part 21a provided to face the second surface part 14b of the upper flange part 14, and a concave part 21b recessed from the front part 21a so as to swell rearward. Have The recess 21b is provided to maintain the shape of the inner box front flange 21.
  • the refrigerator 100 includes an aluminum tape 85 that fixes the condensing pipe 72 to the inner surface side of the top side panel 11 and a heat transfer sheet 86 that transfers heat of the condensing pipe 72 to the opening 6a.
  • the heat transfer sheet 86 is provided on the upper wall portion 6b and the dew on the opening 6a side of the upper wall portion 6b is prevented will be described as an example.
  • the heat transfer sheet 86 is provided between the top surface portion 12 of the top side panel 11 and the vacuum heat insulating material 30. Specifically, the heat transfer sheet 86 is affixed to the inner surface side of the top surface portion 12.
  • the heat transfer sheet 86 has, for example, a long shape extending from the ceiling piping part 72 b to the opening 6 a, and one end of the heat transfer sheet 86 extends forward from the vacuum heat insulating material 30 to the inner surface of the U-shaped upper flange part 14.
  • the ceiling piping part 72b is fixed to the inner surface side of the top surface part 12 to which the heat transfer sheet 86 is attached. Specifically, the ceiling piping part 72b is wound so as to cross the lower part of the heat transfer sheet 86, and the aluminum tape 85 is attached so as to cover the overlapping part of the heat transfer sheet 86 and the ceiling piping part 72b from below. Yes.
  • the heat transfer sheet 86 for example, a graphite sheet is used.
  • the graphite sheet is graphite (graphite) made into a thin sheet and has a very large thermal conductivity in the plane direction, but has a very small thermal conductivity in the thickness direction.
  • the thermal conductivity in the surface direction is about 2 to 5 times larger than other metals, and the heat hit by the spot can be diffused over a wide range, so exhaust heat treatment is performed. It is very useful above.
  • the thermal conductivity in the surface direction is about 40 ⁇ m with good pasting workability in consideration of bending when forming the outer casing front flange 13. It is good to be done.
  • the thermal conductivity in the surface direction a thermal conductivity of about 1000 W / (mK), which is larger than other metals, is used.
  • the heat transfer sheet 86 is provided at a position 90 of the partition plate 5 in the width direction (arrow X direction) of the refrigerator 100.
  • the heat transfer sheet 86 has a sheet width Ws of about 50 mm, and the sheet length Ls is set so as to overlap with the pipe part closest to the opening 6a of the ceiling pipe part 72b.
  • the sheet width Ws may be approximately the same as the width (50 mm) of the partition plate 5. Since the sheet width Ws of the heat transfer sheet 86 is sufficiently smaller than the width of the refrigerator 100, the heat of the ceiling pipe portion 72 b is transmitted to the portion of the upper flange portion 14 that faces the partition plate 5, and the partition plate 5 is provided. It is possible to suppress heat intrusion into the refrigerator 100 at a portion where there is not.
  • the groove 30a is formed in the surface which opposes the top
  • the heat-dissipating ceiling piping part 72 b is arranged inside the top surface part 12 and the refrigerator compartment 1 a side is covered with the vacuum heat insulating material 30.
  • the spacer which has a height comparable as the outer diameter of the ceiling piping part 72b is provided, and the top surface part 12 and the vacuum heat insulating material 30 are provided with a spacer. You may make it form a space
  • FIG. 12 is a diagram showing a temperature distribution for each part of the partition plate and the fin portion according to Embodiment 1 of the present invention.
  • the horizontal axis represents the position in the height direction (arrow Z direction). From the left side, the positions of the upper fin portions 94t and 95t, the positions of the respective parts obtained by dividing the partition plate 5 in the height direction, and the lower fin portions Represents the position of each.
  • the vertical axis represents the temperature [° C.] of each part.
  • FIG. 12 shows that the set temperature of the refrigerator compartment 1a is 3 ° C., the heater rating is 11.1 [W], and the energization rate is 54% under an environmental condition where the outside air temperature is 30 ° C. and the outside air relative humidity Hout is 75%. It is a measurement result in the case of.
  • the broken line represents the temperature distribution 87 of the conventional example, and the solid line represents the temperature distribution 88 obtained by the refrigerator 100 of the first embodiment.
  • the temperature of the central portion of the partition plate 5 is 35 ° C.
  • the temperatures of the upper fin portions 94t and 95t are 26.0 ° C.
  • the temperature of the lower fin portion is about 28 ° C. ing.
  • Each temperature of the seven portions is equal to or higher than the dew point temperature Td (25.1 ° C.), and the temperature difference between the upper fin portions 94t and 95t and the central portion of the partition plate 5 is 9 ° C.
  • the temperature of the fin portion is lower than that of the partition plate 5 on which the heater unit 45 is mounted.
  • the upper fin portions 94t and 95t having a large area exposed to the refrigerator compartment 1a have the lowest temperature.
  • the energization rate of the heater unit 45 is set so that the upper fin portions 94t and 95t are not dewed.
  • each temperature of the seven parts is equal to or higher than the dew point temperature Td (25.1 ° C.), and the temperature of each part of the partition plate 5 and the temperature of the lower fin portion are the same as those in the conventional example. The temperature is almost the same as the case. Further, the temperatures of the upper fin portions 94t and 95t are the lowest at 7 sites, which is 26.5 ° C.
  • the temperature difference between the upper fin portions 94t and 95t and the central portion of the partition plate 5 is 8.5 ° C, and the temperature of the upper fin portions 94t and 95t increases by 0.5 ° C compared to the conventional example. ing. In this case, the temperature difference between the partition plate 5 and the fin portion can be made smaller than before, and the power supply rate to the heater unit 45 can be reduced.
  • the upper flange portion 14 is not provided with the condensation pipe 72, the dew prevention pipe 73, and the like, but the upper fin portions 94t and 95t of the gaskets 94 and 95 are the surface members of the partition plate 5. 40 and in contact with the upper flange portion 14. For this reason, the heat of the heater unit 45 is transmitted to the upper fin portions 94t and 95t through the surface member 40, and the heat of the condensation pipe 72 is transmitted through the upper flange portion 14 and the heat transfer sheet 86. The temperature drop is suppressed.
  • the refrigerator 100 transmits heat from the condensing pipe 72 and heat from the heater unit 45 to the gaskets 94 and 95 to increase the temperature of the fin portion, thereby generating dew around the opening 6a. Can be suppressed. Further, the energization rate of the heater unit 45 can be reduced by increasing the temperature of the fin section, and the heat intrusion from the condensing pipe 72 to the refrigerating chamber 1a is suppressed by the vacuum heat insulating material 30, thereby operating the compressor 70. The rate can be reduced and energy saving can be realized. Furthermore, while it is necessary to newly provide the heat transfer sheet 86, the dew prevention piping provided around the refrigerator compartment 1a can be reduced, so that an increase in the manufacturing cost of the refrigerator 100 can be avoided.
  • FIG. 13 is an explanatory diagram showing a cutting process of the top side panel in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention.
  • FIG. 14 is an explanatory diagram showing a die-cutting process of the top side panel in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention.
  • FIG. 15 is an explanatory diagram showing a heat transfer sheet attaching step in the manufacturing process of the refrigerator body according to Embodiment 1 of the present invention.
  • FIG. 16 is an explanatory diagram showing a flange forming step of the top side panel in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention.
  • FIG. 13 is an explanatory diagram showing a cutting process of the top side panel in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention.
  • FIG. 14 is an explanatory diagram showing a die-cutting process of the top side panel in the manufacturing process of the refrigerator main body according to Embodiment 1 of
  • FIG. 17 is an explanatory diagram illustrating a piping process in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention.
  • FIG. 18 is an explanatory diagram showing a vacuum heat insulating material attaching step in the manufacturing process of the refrigerator body according to Embodiment 1 of the present invention.
  • FIG. 19 is an explanatory diagram showing a folding process of the top side panel in the manufacturing process of the refrigerator body according to Embodiment 1 of the present invention.
  • FIG. 20 is an explanatory diagram illustrating an assembly process in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention.
  • the roll-shaped outer box material 200 is fed by a sheet feeder and cut into a preset length to form the rectangular outer box plate material 111 that becomes the material of the top side panel 11 described above. Is done.
  • the outer box plate material 111 is die cut (FIG. 14).
  • a pretreatment for forming the outer box front flange 13 on the outer box plate material 111 is performed. Specifically, two V-shaped first notches 91 are provided at the center of the front edge of the outer box plate material 111, and second notches 92 in which the left end and the right end of the front edge are notched are provided.
  • the outer box plate member 111 is provided with a plurality of screw holes 93 through which a plurality of fixing screws for fixing the separately formed inner box 20 and the like are passed.
  • FIG. 14 and FIG. 15 show the surface which becomes the inner surface side of the top side panel 11.
  • the heat transfer sheet 86 is attached to a predetermined position on the front edge of the outer box plate material 111 using a jig.
  • the heat transfer sheet 86 is affixed to the position where the partition plate 5 between the two first cutouts 91 is arranged in the width direction (arrow X direction). Further, the heat transfer sheet 86 is attached so that one end thereof coincides with the front end portion 111 a of the outer box plate material 111 in the depth direction (arrow Y direction).
  • the front and left and right end faces of the outer box plate material 111 are bent to form the outer box front flange 13 and the lower flange 17 (FIG. 16).
  • the condensing piping 72 including the left piping portion 72a, the ceiling piping portion 72b, and the right piping portion 72d is arranged at a preset position using a jig, and the aluminum tape 85 is used at a plurality of locations. It is fixed (FIG. 17).
  • each vacuum heat insulating material 30 is arrange
  • the left piping part 72a, the ceiling piping part 72b, and the right piping part 72d are accommodated in the grooves 30a formed in each vacuum heat insulating material 30, respectively.
  • the outer box plate material 111 is bent in a U shape to form the top side panel 11 (FIG. 19).
  • the inner box 20 is assembled to the top side panel 11 to which the vacuum heat insulating material 30 has been affixed in the assembling step (FIG. 20).
  • the top side panel 11 and the inner box 20 are fitted by the outer box front flange 13 coming into contact with the inner box front flange 21 (see FIG. 2).
  • the back panel 18 and the bottom plate 19 are further attached to the top side panel 11, and the space between the outer box 10 and the inner box 20 is filled with hard urethane foam, and the manufacturing process of the refrigerator body 6 is completed.
  • the heat transfer sheet sticking step is performed after the die-cutting step of the top side panel 11 and before the flange forming step and the piping step. Therefore, as shown in FIG. 10, the heat transfer sheet 86 is interposed between the top side panel 11 and the ceiling piping portion 72 b and directly contacts the ceiling piping portion 72 b, and one end is an inner surface of the upper flange portion 14. Arranged along the side. For this reason, heat can be transported from the ceiling pipe portion 72b to the upper flange portion 14 by the heat transfer sheet 86, and the temperature of the upper fin portions 94t and 95t that are in contact with the first surface portion 14a of the upper flange portion 14 is lowered. Can be suppressed.
  • the condensation pipe 72 is arranged in the outer box 10 and the storage room (refrigeration room 1a) side is covered with the vacuum heat insulating material 30, and the heat transfer sheet 86 is disposed.
  • the heat of the condensing pipe 72 is transmitted to the opening 6a.
  • control unit 99 controls the compressor 70 so that the temperature measured by the storage room temperature sensor becomes a preset temperature. Thereby, when the heat
  • the refrigerator 100 includes a partition plate 5 including a heater unit 45, and includes a temperature measured by an outside air temperature sensor, an outside air relative humidity Hout measured by an outside air humidity sensor, and a temperature measured by a storage room temperature sensor.
  • the energization of the heater unit 45 is controlled based on Thereby, if the temperature of the opening 6a vicinity rises with the heat of the condensation pipe 72, the temperature difference for every part of the partition plate 5 and the fin part can be reduced. As a result, the energization rate Pr of the heater unit 45 that prevents dew can be minimized, and energy saving can be realized.
  • the fin portions (for example, the upper fin portions 94t and 95t) of the gaskets 94 and 95 cover the gap between the lower surface of the upper wall portion 6b (the ceiling 81 of the refrigerator compartment 1a) and the upper end portion of the partition plate 5 at the opening 6a. And contacts the end face of the upper wall 6 b on the opening 6 a side and the partition plate 5.
  • the heat transferred from the condensing pipe 72 to the opening 6a is further transferred to the upper fins 94t and 95t, and the temperature of the upper fins 94t and 95t, which are exposed to the refrigerating chamber 1a and tend to be low, is increased. Dew can be suppressed.
  • FIG. FIG. 21 is a partial vertical cross-sectional view showing the configuration around the gap between the upper wall portion and the partition plate according to Embodiment 2 of the present invention.
  • FIG. 22 is an explanatory diagram showing the attachment position of the heat transfer sheet according to Embodiment 2 of the present invention.
  • the second embodiment is different from the first embodiment in that the ceiling piping portion 72b is directly provided on the inner surface side of the top surface portion 12 of the top surface panel 11.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • the inner surface of the top surface portion 12 is fixed with an aluminum tape 185 so that the ceiling piping portion 72b is in contact therewith.
  • the heat transfer sheet 186 is affixed to the inner surface side of the top surface portion 12 to which the ceiling piping portion 72b is fixed.
  • One end of the heat transfer sheet 186 extends forward from the vacuum heat insulating material 30, and is disposed between the second surface portion 14 b of the upper flange portion 14 and the front surface portion 21 a of the inner box front flange 21.
  • FIG. 23 is an explanatory diagram showing a piping process and a heat transfer sheet pasting process in the manufacturing process of the refrigerator body according to the second embodiment of the present invention.
  • the heat transfer sheet sticking process in which the condensation pipe 72 is fixed to the outer box plate material 111 is performed before the process proceeds to the vacuum heat insulating material sticking process of FIG. (FIG. 23).
  • seat sticking process can be performed in the same work space as the piping process of FIG. 17, compared with the manufacturing process of Embodiment 1, the die cutting process and figure of FIG. It is not necessary to provide the work space of FIG. 15 between the 16 flange forming steps.
  • the heat transfer sheet 186 is not in direct contact with the first surface portion 14a that is in contact with the upper fin portions 94t and 95t, but the top surface portion 12 and the second surface portion 14b. Because of the contact, the temperature rises at the upper flange portion 14. Thereby, the temperature of the upper fin parts 94t and 95t provided overlapping with the upper flange part 14 rises, and dew is suppressed.
  • the embodiment of the present invention is not limited to the above embodiment, and various changes can be made.
  • the condensation pipe 72 may be affixed to the top side panel 11 by double-sided tape or glueing without using the aluminum tapes 85 and 185.
  • the heat transfer sheets 86 and 186 are not limited to graphite sheets, and those having excellent thermal diffusivity in the surface direction may be employed.
  • the configuration of the refrigerant circuit CR is not limited to the above.
  • the ceiling piping part 72b and the upper side flange 12a were connected by the heat-transfer sheet
  • the heat transfer sheets 86 and 186 may be provided so as to connect the right pipe part 72d and the right flange part 16, or may be provided so as to connect the left pipe part 72a and the left flange part 15. . Alternatively, the heat transfer sheets 86 and 186 may be provided at a plurality of locations. In any case, it is possible to efficiently transmit the heat of the condensing pipe 72 to the outer casing front flange 13 while suppressing heat intrusion into the inside of the box, thereby suppressing dew condensation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)

Abstract

This refrigeration appliance is provided with: a heat-insulating box body in which there are formed an opening part and a storage chamber, the heat-insulating box body having an outer box, and a vacuum heat-insulating material provided to the inner-surface side of the outer box; condensation piping through which a refrigerant discharged by a compressor flows, the condensation piping being disposed on the inner-surface side of the outer box and being configured such that the storage-chamber side of the condensation piping is covered by the vacuum heat-insulating material; and a heat-conducting sheet provided between the outer box and the vacuum heat-insulating material, the heat-conducting sheet conducting heat from the condensation piping to the opening part in the heat-insulating box body.

Description

冷凍冷蔵庫Freezer refrigerator
 本発明は、凝縮配管を備える冷凍冷蔵庫に関する。 The present invention relates to a refrigerator-freezer provided with a condensation pipe.
 近年、冷凍冷蔵庫において設置される環境に合わせ省エネルギー性を高めるような運転を行うために、外気温度センサ及び外気湿度センサ等を備えたものがある。冷蔵庫本体は、外箱と内箱との間に真空断熱材が配置された断熱箱体を構成している。一般に、断熱箱体の熱漏洩量は決まっているため、外気温度に合わせ圧縮機の周波数及び庫内ファンの回転数等が制御され、冷凍能力が調整される。また例えば、冷蔵庫本体と扉との間に仕切板が設けられる冷凍冷蔵庫において、仕切板にヒータユニットが搭載され、外気温度及び外気湿度等に応じてヒータユニットへの通電率が制御され、表面の露付きが抑制される。一般に、冷蔵庫本体の開口部には外気との温度差により露付きが生じ易く、これを回避するためにヒータが設置される場合には電力が必要とされる。 In recent years, there are some equipped with an outside air temperature sensor, an outside air humidity sensor, and the like in order to perform an operation that enhances energy saving in accordance with the environment installed in the refrigerator-freezer. The refrigerator main body constitutes a heat insulating box body in which a vacuum heat insulating material is disposed between the outer box and the inner box. In general, since the heat leakage amount of the heat insulating box is determined, the refrigeration capacity is adjusted by controlling the frequency of the compressor, the number of rotations of the internal fan, etc. according to the outside air temperature. Further, for example, in a refrigerator / freezer in which a partition plate is provided between the refrigerator main body and the door, a heater unit is mounted on the partition plate, and the energization rate to the heater unit is controlled according to the outside air temperature, the outside air humidity, etc. Condensation is suppressed. Generally, the opening of the refrigerator main body is likely to be dewed due to a temperature difference with the outside air, and electric power is required when a heater is installed to avoid this.
 そこで、凝縮配管の熱を利用して、開口部周辺の温度を上昇させ露付きを防止する技術が知られている(例えば、特許文献1参照)。特許文献1において、断熱箱体の開口側には、外箱と内箱とによって真空断熱パネルの前端面に面した収容部が形成されており、収容部に、圧縮機で圧縮された高温状態の冷媒が流れる防露パイプが配置される。また収容部には、防露パイプから外郭への熱伝導効果を高めるために防露パイプと接するように補助部材が配置される。開口側の外箱に対しても補助部材を介して防露パイプが接触することにより、開口の露付きが抑制される。 Therefore, a technique is known that uses the heat of the condensing pipe to raise the temperature around the opening to prevent dew condensation (see, for example, Patent Document 1). In Patent Document 1, a housing part facing the front end surface of the vacuum heat insulation panel is formed by the outer box and the inner box on the opening side of the heat insulation box, and the housing part is in a high temperature state compressed by a compressor. A dew-proof pipe through which the refrigerant flows is arranged. In addition, an auxiliary member is disposed in the housing portion so as to be in contact with the dew-proof pipe in order to enhance the heat conduction effect from the dew-proof pipe to the outer shell. When the dew-proof pipe comes into contact with the outer box on the opening side via the auxiliary member, the dew of the opening is suppressed.
 ところで、凝縮配管から結露防止領域へ熱を伝搬させるために、筐体内空間に熱伝導性シートを設置する技術が開示されている(例えば、特許文献2参照)。特許文献2では、真空断熱材の外側に凝縮配管を這わせ、その凝縮配管に熱伝導性シートの一端を巻き付け、他端側を外壁の結露防止領域近傍まで延ばして設置することにより、露付きが抑制される。 By the way, in order to propagate heat from the condensation pipe to the dew condensation prevention region, a technique of installing a heat conductive sheet in the space in the housing is disclosed (for example, see Patent Document 2). In Patent Document 2, the condensation pipe is placed outside the vacuum heat insulating material, one end of the heat conductive sheet is wound around the condensation pipe, and the other end side is extended to the vicinity of the dew condensation prevention region on the outer wall, thereby providing dew. Is suppressed.
特許第6005341号公報Japanese Patent No. 6005341 特開2013-79789号公報JP 2013-79789 A
 しかしながら、特許文献1及び特許文献2のいずれの構成においても、凝縮配管が真空断熱材の外側に配置されるため、凝縮配管と庫内壁面との間には真空断熱材よりも熱伝導率の劣るウレタン等の充填剤が存在する。充填剤の熱伝導率は、一般的には真空断熱材の熱伝導率よりも5~10倍ほど大きいため、真空断熱材が設けられていない箇所では凝縮配管から庫内への熱侵入が多くなる。そのため、凝縮配管の熱が開口側の外箱に伝わることにより露付き性は改善される一方で、熱侵入により庫内の温度が上昇し、圧縮機の運転率を増加させることになる。 However, in both configurations of Patent Document 1 and Patent Document 2, since the condensation pipe is disposed outside the vacuum heat insulating material, the thermal conductivity is higher than that of the vacuum heat insulating material between the condensation pipe and the inner wall surface of the cabinet. There are inferior fillers such as urethane. The thermal conductivity of the filler is generally about 5 to 10 times greater than the thermal conductivity of the vacuum heat insulating material, so there is a lot of heat intrusion from the condensing pipe into the chamber in places where no vacuum heat insulating material is provided. Become. Therefore, the heat of the condensation pipe is transmitted to the outer box on the opening side, so that the dewability is improved, but the temperature in the chamber rises due to heat penetration, and the operating rate of the compressor is increased.
 本発明は、上記のような課題を解決するためになされたもので、開口部周辺における露付きを抑制しつつ省エネルギー化を実現できる冷凍冷蔵庫を提供することを目的とする。 This invention was made in order to solve the above problems, and it aims at providing the refrigerator-freezer which can implement | achieve energy saving, suppressing the dew condensation around an opening part.
 本発明に係る冷凍冷蔵庫は、開口部及び貯蔵室が形成され、外箱と前記外箱の内面側に設けられた真空断熱材とを有する断熱箱体と、圧縮機により吐出された冷媒が流れる配管であって、前記外箱の内面側に配置されて前記貯蔵室側が前記真空断熱材により覆われた凝縮配管と、前記外箱と前記真空断熱材との間に設けられ、前記凝縮配管の熱を前記断熱箱体の前記開口部へ伝える伝熱シートとを備える。 In the refrigerator-freezer according to the present invention, an opening and a storage chamber are formed, a heat insulating box having an outer box and a vacuum heat insulating material provided on the inner surface side of the outer box, and a refrigerant discharged by the compressor flows. A condensing pipe disposed on the inner surface side of the outer box and having the storage chamber side covered with the vacuum heat insulating material; and provided between the outer box and the vacuum heat insulating material; A heat transfer sheet for transferring heat to the opening of the heat insulating box.
 本発明の冷凍冷蔵庫によれば、凝縮配管は外箱に配置されて貯蔵室側が真空断熱材により覆われ、伝熱シートを介して凝縮配管の熱が開口部へ伝えられるため、庫内への熱侵入を抑制しつつ、凝縮配管の熱によって開口部周辺の露付きを抑制することができる。また、貯蔵室の熱負荷が低減するので、省エネルギー化を実現できる。 According to the refrigerator-freezer of the present invention, the condensing pipe is arranged in the outer box, the storage chamber side is covered with the vacuum heat insulating material, and the heat of the condensing pipe is transmitted to the opening through the heat transfer sheet. While suppressing heat intrusion, dew condensation around the opening can be suppressed by the heat of the condensation pipe. Moreover, since the thermal load of the storage room is reduced, energy saving can be realized.
本発明の実施の形態1に係る冷凍冷蔵庫の外観を示す概略正面図である。It is a schematic front view which shows the external appearance of the refrigerator-freezer which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍冷蔵庫の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the refrigerator-freezer which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒回路の配管構成を示す概略図である。It is the schematic which shows the piping structure of the refrigerant circuit which concerns on Embodiment 1 of this invention. 図1のA-A断面を示す断面図である。FIG. 2 is a cross-sectional view showing an AA cross section of FIG. 本発明の実施の形態1に係る仕切板の構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the partition plate which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒータユニットを表面部材に貼付する前の状態を示す断面図である。It is sectional drawing which shows the state before sticking the heater unit which concerns on Embodiment 1 of this invention on a surface member. 本発明の実施の形態1に係るヒータユニットの通電率の一例を示す説明図である。It is explanatory drawing which shows an example of the electricity supply rate of the heater unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒータユニットの通電率の別の一例を示す説明図である。It is explanatory drawing which shows another example of the electricity supply rate of the heater unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る仕切板の上端部周辺の構成を示す上部斜視図である。It is a top perspective view which shows the structure of the upper end part periphery of the partition plate which concerns on Embodiment 1 of this invention. 図1のC―C断面を示す従断面図である。FIG. 2 is a secondary sectional view showing a CC cross section of FIG. 1. 本発明の実施の形態1に係る伝熱シートの貼り付け位置を示す説明図である。It is explanatory drawing which shows the sticking position of the heat exchanger sheet which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る仕切板とヒレ部の部位ごとの温度分布を示す図である。It is a figure which shows the temperature distribution for every part of the partition plate and fin part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫本体の製造工程における天側面パネルの裁断工程を示す説明図である。It is explanatory drawing which shows the cutting process of the top side panel in the manufacturing process of the refrigerator main body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫本体の製造工程における天側面パネルの型抜き工程を示す説明図である。It is explanatory drawing which shows the die cutting process of the top side panel in the manufacturing process of the refrigerator main body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫本体の製造工程における伝熱シート貼付工程を示す説明図である。It is explanatory drawing which shows the heat-transfer sheet sticking process in the manufacturing process of the refrigerator main body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫本体の製造工程における天側面パネルのフランジ形成工程を示す説明図である。It is explanatory drawing which shows the flange formation process of the top side panel in the manufacturing process of the refrigerator main body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫本体の製造工程における配管工程を示す説明図である。It is explanatory drawing which shows the piping process in the manufacturing process of the refrigerator main body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫本体の製造工程における真空断熱材貼付工程を示す説明図である。It is explanatory drawing which shows the vacuum heat insulating material sticking process in the manufacturing process of the refrigerator main body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫本体の製造工程における天側面パネルの折り曲げ工程を示す説明図である。It is explanatory drawing which shows the bending process of the top | upper side panel in the manufacturing process of the refrigerator main body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫本体の製造工程における組み付け工程を示す説明図である。It is explanatory drawing which shows the assembly | attachment process in the manufacturing process of the refrigerator main body which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る上壁部と仕切板との隙間周辺の構成を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the structure of the clearance gap periphery of the upper wall part and partition plate which concern on Embodiment 2 of this invention. 本発明の実施の形態2に係る伝熱シートの貼り付け位置を示す説明図である。It is explanatory drawing which shows the sticking position of the heat exchanger sheet which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷蔵庫本体の製造工程における配管工程と伝熱シート貼付工程を示す説明図である。It is explanatory drawing which shows the piping process and the heat-transfer sheet sticking process in the manufacturing process of the refrigerator main body which concerns on Embodiment 2 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍冷蔵庫の外観を示す概略正面図である。図2は、本発明の実施の形態1に係る冷凍冷蔵庫の概略構成を示す縦断面図である。図1及び図2に基づき、冷凍冷蔵庫(冷蔵庫100)の概略構成について説明する。矢印X方向は冷蔵庫100の幅方向を表し、矢印Y方向は冷蔵庫100の奥行き方向を表し、矢印Z方向は冷蔵庫100の高さ方向を表している。
Embodiment 1 FIG.
FIG. 1 is a schematic front view showing the appearance of the refrigerator-freezer according to Embodiment 1 of the present invention. FIG. 2 is a longitudinal sectional view showing a schematic configuration of the refrigerator-freezer according to Embodiment 1 of the present invention. Based on FIG.1 and FIG.2, schematic structure of a refrigerator-freezer (refrigerator 100) is demonstrated. The arrow X direction represents the width direction of the refrigerator 100, the arrow Y direction represents the depth direction of the refrigerator 100, and the arrow Z direction represents the height direction of the refrigerator 100.
 冷蔵庫100は、前面が開口した箱状の冷蔵庫本体6、及び冷蔵庫本体6の開口部6aを塞ぐ複数の扉を備えている。冷蔵庫本体6は、鋼板等から成る外箱10と、ABS樹脂等の合成樹脂から成る内箱20と、板状の真空断熱材30と、発泡断熱材35とを有し、冷蔵庫100の上壁部6b、底壁部6c、左側壁部6d、右側壁部6e及び後壁部6fを構成する。冷蔵庫本体6は、外箱10と内箱20とよって外郭が構成され、外箱10と内箱20とにより形成された空間に、硬質ウレタンフォーム等から成る発泡断熱材35が充填されている。真空断熱材30は、各壁部に設けられ、発泡断熱材35に埋設されている。このように、発泡断熱材35により外箱10と内箱20と真空断熱材30とが一体化されて断熱箱体として機能している。 The refrigerator 100 includes a box-shaped refrigerator main body 6 having an open front surface and a plurality of doors that block the opening 6a of the refrigerator main body 6. The refrigerator main body 6 includes an outer box 10 made of a steel plate, an inner box 20 made of a synthetic resin such as ABS resin, a plate-like vacuum heat insulating material 30, and a foam heat insulating material 35. A portion 6b, a bottom wall portion 6c, a left side wall portion 6d, a right side wall portion 6e, and a rear wall portion 6f are configured. The refrigerator main body 6 has an outer box 10 and an inner box 20, and a space formed by the outer box 10 and the inner box 20 is filled with a foam heat insulating material 35 made of hard urethane foam or the like. The vacuum heat insulating material 30 is provided in each wall portion and embedded in the foam heat insulating material 35. Thus, the outer casing 10, the inner box 20, and the vacuum heat insulating material 30 are integrated by the foam heat insulating material 35 and function as a heat insulating box.
 外箱10は、冷蔵庫100の天面、左側面及び右側面を構成する天側面パネル11と、冷蔵庫100の背面を構成する背面パネル18と、冷蔵庫100の底面を構成する底板19とを有する。天側面パネル11において開口部6a側の端部には、前面に沿って内側に延びる外箱前面フランジ13(図19参照)が形成されている。外箱前面フランジ13は、折り曲げられてほぼU字状の断面を有している。外箱前面フランジ13は、図19に示されるように、上壁部6bの前面を構成する上側フランジ部14と、左側壁部6dの前面を構成する左側フランジ部15と、右側壁部6eの前面を構成する右側フランジ部16とを有している。また天側面パネル11において両側面の下端には、底面に沿って内側に延びる下側フランジ17が形成されている。背面パネル18には、図示しない注入口が形成されており、注入口を介して発泡断熱材35の原料液が注入される。 The outer box 10 has a top side panel 11 that constitutes the top, left side, and right side of the refrigerator 100, a back panel 18 that constitutes the back of the refrigerator 100, and a bottom plate 19 that constitutes the bottom of the refrigerator 100. An outer box front flange 13 (see FIG. 19) extending inward along the front surface is formed at the end of the top side panel 11 on the opening 6a side. The outer casing front flange 13 is bent and has a substantially U-shaped cross section. As shown in FIG. 19, the outer casing front flange 13 includes an upper flange portion 14 constituting the front surface of the upper wall portion 6b, a left flange portion 15 constituting the front surface of the left wall portion 6d, and a right wall portion 6e. And a right flange portion 16 constituting the front surface. Further, a lower flange 17 extending inwardly along the bottom surface is formed at the lower end of both side surfaces of the top side panel 11. An inlet (not shown) is formed in the back panel 18 and a raw material liquid for the foam heat insulating material 35 is injected through the inlet.
 内箱20の開口部6a側の端部には、前面に沿って外側に延びる内箱前面フランジ21が形成されている。内箱前面フランジ21は、背面側へ突出した形状部を有している。天側面パネル11は、外箱前面フランジ13が内箱前面フランジ21に当接することにより内箱20と嵌合する。 An inner box front flange 21 extending outward along the front surface is formed at the end of the inner box 20 on the opening 6a side. The inner box front flange 21 has a shape portion protruding to the back side. The top side panel 11 is fitted to the inner box 20 by the outer box front flange 13 coming into contact with the inner box front flange 21.
 内箱20の内部の空間は複数の仕切り7a、7b、7cにより仕切られ、冷蔵庫本体6の上部から冷蔵室1a、製氷室1b、切替室1c、冷凍室1d及び野菜室1eが形成されている。切替室1cは、冷蔵庫100の幅方向(矢印X方向)において製氷室1bの右側に設けられる。冷蔵室1aと、製氷室1b及び切替室1cとの間には第1の仕切り7aが設けられている。製氷室1b及び切替室1cと、冷凍室1dとの間には第2の仕切り7bが設けられている。冷凍室1dと野菜室1eと間には第3の仕切り7cが設けられている。各貯蔵室は用途に応じて異なる温度帯に設定されており、各貯蔵室には、例えばサーミスタ等から成り、貯蔵室の温度を計測する貯蔵室温度センサ(図示せず)がそれぞれ配置されている。 The space inside the inner box 20 is partitioned by a plurality of partitions 7a, 7b, 7c, and a refrigerator compartment 1a, an ice making compartment 1b, a switching compartment 1c, a freezer compartment 1d, and a vegetable compartment 1e are formed from the top of the refrigerator body 6. . The switching chamber 1c is provided on the right side of the ice making chamber 1b in the width direction (arrow X direction) of the refrigerator 100. A first partition 7a is provided between the refrigerator compartment 1a, the ice making compartment 1b, and the switching chamber 1c. A second partition 7b is provided between the ice making chamber 1b and the switching chamber 1c and the freezing chamber 1d. A third partition 7c is provided between the freezer compartment 1d and the vegetable compartment 1e. Each storage room is set to a different temperature zone depending on the application, and each storage room is composed of, for example, a thermistor, and a storage room temperature sensor (not shown) for measuring the temperature of the storage room is arranged. Yes.
 各貯蔵室の前面にはそれぞれ開閉自在の扉が設けられる。冷蔵室1aの扉は、観音開きの回転式の扉により形成され、冷蔵室1aの前面の左側に配置された左扉3と、冷蔵室1aの前面の右側に配置された右扉4とを有する。製氷室1b、切替室1c、冷凍室1d及び野菜室1eには、引き出し式の扉2がそれぞれ設けられる。 A door that can be opened and closed is provided in front of each storage room. The door of the refrigerating room 1a is formed of a double door-rotating rotary door, and has a left door 3 arranged on the left side of the front surface of the refrigerating room 1a and a right door 4 arranged on the right side of the front surface of the refrigerating room 1a. . The ice making room 1b, the switching room 1c, the freezing room 1d, and the vegetable room 1e are provided with drawer-type doors 2, respectively.
 図示していないが、幅方向(矢印X方向)において外箱10の両側端部には、冷蔵庫本体6と冷蔵室1aの扉とを接続する接続ヒンジが設けられる。外箱10の左側端部に設けられた接続ヒンジは、冷蔵庫本体6と左扉3とを接続する。外箱10の右側端部に設けられた接続ヒンジは、冷蔵庫本体6と右扉4とを接続する。各接続ヒンジはヒンジ軸を有しており、各ヒンジ軸を回転軸として左扉3と右扉4とが冷蔵庫本体6の中央から両側方向に開かれる。左扉3及び右扉4が回転する回転軌跡において左扉3と右扉4とが接触しないように、左扉3と右扉4との境界には扉間隙間Gdが設けられている。また、左扉3の上部の接続ヒンジが取り付けられるヒンジ部3aには、図示しないが、外気温度を計測する外気温度センサと、外気湿度(外気相対湿度Hout)を計測する外気湿度センサとが設置されている。 Although not shown, connecting hinges for connecting the refrigerator main body 6 and the door of the refrigerator compartment 1a are provided at both side ends of the outer box 10 in the width direction (arrow X direction). A connection hinge provided at the left end of the outer box 10 connects the refrigerator main body 6 and the left door 3. A connection hinge provided at the right end of the outer box 10 connects the refrigerator main body 6 and the right door 4. Each connection hinge has a hinge shaft, and the left door 3 and the right door 4 are opened from the center of the refrigerator main body 6 to both sides using each hinge shaft as a rotation axis. An inter-door gap Gd is provided at the boundary between the left door 3 and the right door 4 so that the left door 3 and the right door 4 do not come into contact with each other in the rotation trajectory in which the left door 3 and the right door 4 rotate. In addition, although not shown, an outside air temperature sensor that measures the outside air temperature and an outside air humidity sensor that measures the outside air humidity (outside air relative humidity Hout) are installed on the hinge portion 3a to which the upper connection hinge of the left door 3 is attached. Has been.
 また冷蔵庫100は、扉間隙間Gdを閉塞し冷蔵室1aと外部の空間とを仕切る仕切板5を備えている。仕切板5は、扉間隙間Gdに沿うように高さ方向(矢印Z方向)に延びる板状の部材である。仕切板5は、表面部材40が冷蔵室1aの各扉の冷蔵室1a側の面と対向するように左扉3に設置され、扉間隙間Gdを冷蔵室1a側から覆う。例えば、冷蔵庫100の幅方向(矢印X方向)において、左扉3と右扉4との間隔は10mm程度であり、仕切板5の幅は50mm程度である。 Further, the refrigerator 100 includes a partition plate 5 that closes the gap Gd between the doors and partitions the refrigerator compartment 1a from the external space. The partition plate 5 is a plate-like member extending in the height direction (arrow Z direction) along the inter-door gap Gd. The partition plate 5 is installed in the left door 3 so that the surface member 40 faces the surface of each door of the refrigerator compartment 1a on the refrigerator compartment 1a side, and covers the inter-door gap Gd from the refrigerator compartment 1a side. For example, in the width direction (arrow X direction) of the refrigerator 100, the interval between the left door 3 and the right door 4 is about 10 mm, and the width of the partition plate 5 is about 50 mm.
 また、冷蔵庫100の奥行き方向(矢印Y方向)において冷凍室1dの後方には断熱壁36が設けられており、断熱壁36と、冷蔵庫本体6の後壁部6fとの間に冷却器室8が形成されている。冷却器室8と、冷蔵室1a等の各貯蔵室との間には、貯蔵室へ送風される冷気の量を調整するダンパ装置(図示せず)がそれぞれ設けられる。また冷蔵庫100は、背面下部に、後壁部6fの一部が内部に凹んで断熱箱体の外側に形成された機械室9を備える。機械室9の背面には、複数の通風孔37aを有する機械室カバー37が設置されている。 In addition, a heat insulating wall 36 is provided behind the freezer compartment 1d in the depth direction (arrow Y direction) of the refrigerator 100, and the cooler chamber 8 is provided between the heat insulating wall 36 and the rear wall portion 6f of the refrigerator main body 6. Is formed. Between the cooler room 8 and each storage room such as the refrigerating room 1a, a damper device (not shown) for adjusting the amount of cool air blown to the storage room is provided. Moreover, the refrigerator 100 is provided with the machine room 9 formed in the outer side of the heat insulation box body in which a part of the rear wall portion 6f is recessed inside at the lower back portion. A machine room cover 37 having a plurality of ventilation holes 37 a is installed on the back surface of the machine room 9.
 図3は、本発明の実施の形態1に係る冷媒回路の配管構成を示す概略図である。図1~図3に基づき、冷蔵庫100が備える冷媒回路CRの構成について説明する。図3において、冷媒が流れる方向が実線矢印で表される。 FIG. 3 is a schematic diagram showing the piping configuration of the refrigerant circuit according to Embodiment 1 of the present invention. The configuration of the refrigerant circuit CR provided in the refrigerator 100 will be described with reference to FIGS. In FIG. 3, the direction in which the refrigerant flows is represented by a solid arrow.
 冷媒回路CRは、圧縮機70と、空冷凝縮器71と、凝縮配管72と、露付き防止配管73と、ドライヤ74と、減圧装置75と、冷却器78等とが配管により接続されて構成される。圧縮機70は、冷媒を圧縮して冷媒回路CR内に循環させるものであり、機械室9に設置されている。また機械室9には、通風孔37aを介して外気を機械室9内に取り込み、機械室9内の空気を循環させて圧縮機70等を冷却する機械室ファン(図示せず)が設置されている。 The refrigerant circuit CR is configured by connecting a compressor 70, an air-cooled condenser 71, a condensation pipe 72, a dew prevention pipe 73, a dryer 74, a decompression device 75, a cooler 78, and the like through pipes. The The compressor 70 compresses the refrigerant and circulates it in the refrigerant circuit CR, and is installed in the machine room 9. The machine room 9 is provided with a machine room fan (not shown) for taking outside air into the machine room 9 through the ventilation holes 37a and circulating the air in the machine room 9 to cool the compressor 70 and the like. ing.
 空冷凝縮器71、凝縮配管72及び露付き防止配管73は、冷媒回路CRにおいて冷媒を凝縮させる機能を有している。空冷凝縮器71は、例えばフィン-チューブ式の熱交換器から成る。空冷凝縮器71は、機械室9に配置され、機械室ファンにより送風される空気に冷媒の熱を放熱する。凝縮配管72は、冷蔵庫本体6の壁部内に這うように設けられ、外箱10を介して冷媒の熱を外部の空気に自然放熱させる。凝縮配管72は、左側壁部6dに設けられた左側配管部72aと、上壁部6bに設けられた天井配管部72bと、後壁部6fに設けられた背面配管部72cと、右側壁部6eに設けられた右側配管部72dとを有する。天井配管部72bは左側配管部72aの途中に設けられている。冷媒が流れる方向において、上流から左側配管部72a、背面配管部72c及び右側配管部72dの順につながっている。 The air-cooled condenser 71, the condensation pipe 72, and the dew prevention pipe 73 have a function of condensing the refrigerant in the refrigerant circuit CR. The air-cooled condenser 71 is composed of, for example, a fin-tube heat exchanger. The air-cooled condenser 71 is disposed in the machine room 9 and radiates the heat of the refrigerant to the air blown by the machine room fan. The condensing pipe 72 is provided so as to go into the wall portion of the refrigerator main body 6 and naturally dissipates heat of the refrigerant to the outside air via the outer box 10. The condensing pipe 72 includes a left pipe part 72a provided on the left wall part 6d, a ceiling pipe part 72b provided on the upper wall part 6b, a rear pipe part 72c provided on the rear wall part 6f, and a right wall part. 6d and a right side piping part 72d. The ceiling piping part 72b is provided in the middle of the left piping part 72a. In the direction in which the refrigerant flows, the left piping part 72a, the back piping part 72c, and the right piping part 72d are connected in this order from upstream.
 露付き防止配管73は、冷蔵室1aよりも下方に設けられた各貯蔵室の開口部6a側の周囲に張り巡らされ、前面における露付きの発生を防止する。露付き防止配管73は、第1の仕切り7aに設けられた第1配管部73aと、第2の仕切り7bに設けられた第2配管部73bと、第3の仕切り7cに設けられた第3配管部73cと、冷蔵庫本体の底壁部6cに設けられた第4配管部73dとを有している。 The dew prevention pipe 73 is stretched around the opening 6a side of each storage room provided below the refrigerator compartment 1a, and prevents the occurrence of dew condensation on the front surface. The dew prevention pipe 73 includes a first pipe part 73a provided in the first partition 7a, a second pipe part 73b provided in the second partition 7b, and a third part provided in the third partition 7c. It has the piping part 73c and the 4th piping part 73d provided in the bottom wall part 6c of the refrigerator main body.
 具体的には、露付き防止配管73は、左側フランジ部15及び右側フランジ部16(図19参照)における冷蔵室1aより下側の領域と、各仕切り7a、7b、7cの表面内部に設置されている。冷蔵室1aは冷凍室1d等に比較して温度が高く、前面に露付きが発生しにくいため、外箱前面フランジ13において、上側フランジ部14を含む冷蔵室1a周辺の領域には露付き防止配管73が設けられていない。露付き防止配管73をこのように配置することにより、冷蔵室1aにおいて開口部6a側からの熱侵入を低減でき、冷蔵室1aの温度上昇を抑制できる。 Specifically, the dew prevention piping 73 is installed in the region below the refrigerator compartment 1a in the left flange portion 15 and the right flange portion 16 (see FIG. 19) and inside the surface of each partition 7a, 7b, 7c. ing. The refrigerator compartment 1a has a higher temperature than the freezer compartment 1d and the like, and is less likely to be exposed to the front surface. Therefore, the outer casing front flange 13 is prevented from being exposed to the area around the refrigerator compartment 1a including the upper flange portion 14. The piping 73 is not provided. By disposing the dew prevention pipe 73 in this way, heat intrusion from the opening 6a side in the refrigerator compartment 1a can be reduced, and an increase in temperature of the refrigerator compartment 1a can be suppressed.
 ドライヤ74は、冷媒内の水分を除去し、水分による凍結を防止する。減圧装置75は、冷媒を減圧するものであり、例えば、1つの切替弁76と2つの毛細管77a、77bとを有する。切替弁76は、冷媒回路CRにおいてドライヤ74と2つの毛細管77a、77bとの間に設けられ、各毛細管77a、77bにおける冷媒の流量を変化させる。 The dryer 74 removes moisture in the refrigerant and prevents freezing due to moisture. The decompression device 75 decompresses the refrigerant, and includes, for example, one switching valve 76 and two capillaries 77a and 77b. The switching valve 76 is provided between the dryer 74 and the two capillaries 77a and 77b in the refrigerant circuit CR, and changes the flow rate of the refrigerant in each of the capillaries 77a and 77b.
 冷却器78は、冷却器室8に配置される。また冷却器室8には、冷蔵庫100内の空気を循環させる庫内ファン38が配置されている。冷却器78は、庫内ファン38により送風される空気の熱を冷媒に吸熱させる。 The cooler 78 is disposed in the cooler chamber 8. In the cooler chamber 8, an internal fan 38 that circulates the air in the refrigerator 100 is disposed. The cooler 78 causes the refrigerant to absorb the heat of the air blown by the internal fan 38.
 また冷蔵庫100は、冷蔵庫100全体の運転を制御する制御部99(図2参照)を備える。制御部99は、マイクロコンピュータ等からなり、冷蔵庫本体6に内蔵されている。制御部99には、各貯蔵室温度センサ、外気温度センサ、及び外気湿度センサの各計測値が入力される。制御部99は、圧縮機70、切替弁76、各ダンパ装置、庫内ファン38及び機械室ファン等の動作を制御する。 Further, the refrigerator 100 includes a control unit 99 (see FIG. 2) that controls the operation of the entire refrigerator 100. The control unit 99 is composed of a microcomputer or the like and is built in the refrigerator main body 6. The measurement values of the storage chamber temperature sensors, the outside air temperature sensor, and the outside air humidity sensor are input to the control unit 99. The control unit 99 controls operations of the compressor 70, the switching valve 76, each damper device, the internal fan 38, the machine room fan, and the like.
 冷媒回路CRにおいて、圧縮機70から吐出された冷媒は、空冷凝縮器71、凝縮配管72及び露付き防止配管73を順に通過し、通過する間に放熱して凝縮される。露付き防止配管73から流出した冷媒は、ドライヤ74により冷媒中の水分が除去されて、減圧装置75に流入する。減圧装置75に流入した冷媒は減圧され膨張して冷却器78に流入する。冷却器78において、冷媒は、庫内ファン38により冷蔵庫100内を循環している空気から吸熱して蒸発する。このとき、冷却器78周辺の空気は冷却される。冷却器78において蒸発した冷媒は、吸入管79を通って圧縮機70に流入し、再び圧縮される。圧縮機70の運転中、上記サイクルが繰り返される。 In the refrigerant circuit CR, the refrigerant discharged from the compressor 70 sequentially passes through the air-cooled condenser 71, the condensation pipe 72, and the dew prevention pipe 73, and is condensed while releasing heat. The refrigerant that has flowed out of the dew prevention pipe 73 is removed from the refrigerant by the dryer 74 and flows into the decompression device 75. The refrigerant flowing into the decompression device 75 is decompressed, expands, and flows into the cooler 78. In the cooler 78, the refrigerant absorbs heat from the air circulating in the refrigerator 100 by the internal fan 38 and evaporates. At this time, the air around the cooler 78 is cooled. The refrigerant evaporated in the cooler 78 flows into the compressor 70 through the suction pipe 79 and is compressed again. While the compressor 70 is in operation, the above cycle is repeated.
 一方、冷蔵庫100内の空気が、冷却器室8内を流れる冷媒と熱交換して生成された冷気は、庫内ファン38により各ダンパ装置を介して各貯蔵室へ送風され、各貯蔵室を冷却する。各貯蔵室の温度は、各貯蔵室に設置された貯蔵室温度センサにより計測され、計測された温度が、予め設定された温度になるように、制御部99が圧縮機70の周波数及び各ダンパ装置の開度を制御することで、適切な温度に保たれる。各貯蔵室を冷却した冷気は、庫内ファン38により再び冷却器室8に戻され、冷却器78により再び冷却される。 On the other hand, the cold air generated by the air in the refrigerator 100 exchanging heat with the refrigerant flowing in the cooler chamber 8 is blown to the respective storage chambers by the internal fans 38 via the respective damper devices. Cooling. The temperature of each storage room is measured by a storage room temperature sensor installed in each storage room, and the control unit 99 controls the frequency of the compressor 70 and each damper so that the measured temperature becomes a preset temperature. By controlling the opening degree of the apparatus, it is kept at an appropriate temperature. The cold air that has cooled each storage chamber is returned to the cooler chamber 8 by the internal fan 38 and cooled again by the cooler 78.
 図4は、図1のA-A断面を示す断面図である。図5は、本発明の実施の形態1に係る仕切板の構造を示す分解斜視図である。図6は、本発明の実施の形態1に係るヒータユニットを表面部材に貼付する前の状態を示す断面図である。図4、図5及び図6に基づき、仕切板5及び仕切板5周囲の構造について説明する。 FIG. 4 is a cross-sectional view showing the AA cross section of FIG. FIG. 5 is an exploded perspective view showing the structure of the partition plate according to Embodiment 1 of the present invention. FIG. 6 is a cross-sectional view showing a state before the heater unit according to Embodiment 1 of the present invention is attached to a surface member. Based on FIG.4, FIG.5 and FIG.6, the structure around the partition plate 5 and the partition plate 5 is demonstrated.
 仕切板5は、板金等で形成された表面部材40と、表面部材40内に配置されるヒータユニット45と、表面部材40内に配置されたヒータユニット45を覆うヒータカバー50等とを有する。冷蔵室1aの各扉の内板3b、4bには、マグネット24を有するガスケット94、95がそれぞれ設けられており、一方のガスケット94は左扉3と仕切板5の表面部材40とを密着させ、他方のガスケット95は右扉4と表面部材40とを密着させる。 The partition plate 5 includes a surface member 40 formed of sheet metal or the like, a heater unit 45 disposed in the surface member 40, a heater cover 50 that covers the heater unit 45 disposed in the surface member 40, and the like. Gaskets 94 and 95 having magnets 24 are respectively provided on the inner plates 3b and 4b of the doors of the refrigerator compartment 1a. One gasket 94 brings the left door 3 and the surface member 40 of the partition plate 5 into close contact with each other. The other gasket 95 brings the right door 4 and the surface member 40 into close contact with each other.
 表面部材40は、ヒータユニット45からの熱を2つのガスケット94、95に伝達する。ヒータユニット45は、例えば面状のアルミ箔ヒータ等から成り、通電により表面部材40を加熱する。ヒータカバー50は樹脂等で形成されている。 The surface member 40 transmits heat from the heater unit 45 to the two gaskets 94 and 95. The heater unit 45 includes, for example, a planar aluminum foil heater or the like, and heats the surface member 40 by energization. The heater cover 50 is made of resin or the like.
 ヒータユニット45は、通電により発熱するコード状のヒータ46と、アルミ箔等から成る遮熱部48と、ヒータ46及び遮熱部48を表面部材40に貼り付ける両面テープ47とを備える。表面部材40からヒータカバー50へ向かって順に、両面テープ47、ヒータ46、及び遮熱部48の順に配置される。ヒータ46は、複数の折り返しを形成するように蛇行して配置されている。両面テープ47は、ヒータ46と遮熱部48とを表面部材40の内側に貼り付け保持する。遮熱部48は、表面部材40の内側に配置されたヒータ46を覆うように設けられており、ヒータ46の熱を表面部材40側へ反射するとともに、冷蔵室1a側への熱移動を抑制する。 The heater unit 45 includes a cord-like heater 46 that generates heat when energized, a heat shield 48 made of aluminum foil or the like, and a double-sided tape 47 that attaches the heater 46 and the heat shield 48 to the surface member 40. The double-sided tape 47, the heater 46, and the heat shield 48 are arranged in this order from the surface member 40 toward the heater cover 50. The heater 46 is arranged meandering so as to form a plurality of turns. The double-sided tape 47 sticks and holds the heater 46 and the heat shield 48 inside the surface member 40. The heat shield part 48 is provided so as to cover the heater 46 disposed inside the surface member 40, and reflects the heat of the heater 46 to the surface member 40 side and suppresses heat transfer to the refrigerator compartment 1a side. To do.
 仕切板5はさらに、ヒータカバー50の冷蔵室1a側に配置される断熱部材55と、背面カバー60とを有する。断熱部材55は、発泡スチロール等から成り、ヒータユニット45の熱がヒータカバー50から冷蔵室1a内へ漏洩するのを抑制する。背面カバー60は樹脂等で形成され、ヒータカバー50に取り付けられて断熱部材55を保持する。 The partition plate 5 further includes a heat insulating member 55 disposed on the refrigerator compartment 1 a side of the heater cover 50 and a back cover 60. The heat insulating member 55 is made of polystyrene foam or the like, and suppresses the heat of the heater unit 45 from leaking from the heater cover 50 into the refrigerator compartment 1a. The back cover 60 is formed of resin or the like and is attached to the heater cover 50 to hold the heat insulating member 55.
 また、背面カバー60の上側の端部には、上側ヒンジ62及び上側カバー63がねじ64により取り付けられており、背面カバー60の下側の端部には、バネ65と下側ヒンジ66と下側カバー67とがねじ64により取り付けられている。また背面カバー60の下側の端部には、バネ65の動作の支点となるバネ止め68が、ねじ69により背面カバー60に取り付けられている。背面カバー60の両端部には、上側ヒンジ62と下側ヒンジ66とを取り付けるための軸受部60aが形成されている。 An upper hinge 62 and an upper cover 63 are attached to the upper end portion of the back cover 60 by screws 64, and a spring 65, a lower hinge 66, and a lower portion are attached to the lower end portion of the back cover 60. A side cover 67 is attached by screws 64. A spring stopper 68 serving as a fulcrum for the operation of the spring 65 is attached to the rear cover 60 with a screw 69 at the lower end of the rear cover 60. Bearing portions 60 a for attaching the upper hinge 62 and the lower hinge 66 are formed at both ends of the back cover 60.
 上側ヒンジ62及び下側ヒンジ66は、左扉3の開閉動作に連動して仕切板5が回転するように左扉3と仕切板5とを接続する。上側ヒンジ62及び下側ヒンジ66は、仕切板5の回転軸となる軸部62a、66aをそれぞれ有し、各軸部62a、66aは背面カバー60の各軸受部60aに挿入される。バネ65は、仕切板5を左扉3側へ付勢する。 The upper hinge 62 and the lower hinge 66 connect the left door 3 and the partition plate 5 so that the partition plate 5 rotates in conjunction with the opening / closing operation of the left door 3. The upper hinge 62 and the lower hinge 66 have shaft portions 62 a and 66 a that serve as rotation shafts of the partition plate 5, and the shaft portions 62 a and 66 a are inserted into the bearing portions 60 a of the back cover 60. The spring 65 biases the partition plate 5 toward the left door 3 side.
 上側カバー63と下側カバー67とは、仕切板5の高さ方向(矢印Z方向)の端部を覆うものであり、背面カバー60に取り付けられることにより、上側ヒンジ62及び下側ヒンジ66をそれぞれ保持する。また上側カバー63の上部には、カバー溝部63aが形成されている。 The upper cover 63 and the lower cover 67 cover the end in the height direction (arrow Z direction) of the partition plate 5, and are attached to the back cover 60, so that the upper hinge 62 and the lower hinge 66 are attached. Retain each. A cover groove 63 a is formed in the upper part of the upper cover 63.
 表面部材40にヒータユニット45を貼付してヒータカバー50とツメ41により嵌合させ、ヒータカバー50に断熱部材55を載せ、上側ヒンジ62等が取り付けられた背面カバー60をヒータカバー50と嵌合させねじ64により締結して仕切板5が形成される。このように形成された仕切板5は、上側ヒンジ62と下側ヒンジ66とを介して左扉3の内板3bに回転自在に取り付けられている。 A heater unit 45 is affixed to the surface member 40 and fitted with the heater cover 50 and the tab 41, a heat insulating member 55 is placed on the heater cover 50, and the back cover 60 to which the upper hinge 62 and the like are attached is fitted with the heater cover 50. The partition plate 5 is formed by fastening with the let screws 64. The partition plate 5 formed in this way is rotatably attached to the inner plate 3b of the left door 3 via an upper hinge 62 and a lower hinge 66.
 左扉3の内板3b及び右扉4の内板4bにはそれぞれ、嵌合溝96が形成されている。上述した2つガスケット94、95のうち一方のガスケット94は左扉3の内板3bの嵌合溝96に嵌合されており、他方のガスケット95は右扉4の内板4bの嵌合溝96に嵌合されている。左扉3及び右扉4が閉じられると、各ガスケット94、95が設けられた各扉と表面部材40とが、マグネット24の磁力によって密着する。 A fitting groove 96 is formed in each of the inner plate 3 b of the left door 3 and the inner plate 4 b of the right door 4. One of the two gaskets 94, 95 described above is fitted in the fitting groove 96 of the inner plate 3 b of the left door 3, and the other gasket 95 is fitted in the fitting groove of the inner plate 4 b of the right door 4. 96. When the left door 3 and the right door 4 are closed, the door provided with the gaskets 94 and 95 and the surface member 40 are brought into close contact by the magnetic force of the magnet 24.
 左扉3と右扉4とは、幅方向(矢印X方向)において仕切板5を挟むように奥行き方向(矢印Y方向)に冷蔵室1a側へ突出した立ち壁3c、4cを有する。左扉3の立ち壁3cと仕切板5との間にはパッキン97が設置されている。一方、右扉4に設けられたガスケット95は、右扉4の立ち壁4cと仕切板5の右側面との間に延びた後方延出部95aを有し、後方延出部95aによって仕切板5の周囲の熱漏洩が抑制されている。 The left door 3 and the right door 4 have standing walls 3c and 4c projecting toward the refrigerator compartment 1a in the depth direction (arrow Y direction) so as to sandwich the partition plate 5 in the width direction (arrow X direction). A packing 97 is installed between the standing wall 3 c of the left door 3 and the partition plate 5. On the other hand, the gasket 95 provided on the right door 4 has a rear extension 95a extending between the standing wall 4c of the right door 4 and the right side surface of the partition plate 5, and the partition plate is formed by the rear extension 95a. Heat leakage around 5 is suppressed.
 上述した制御部99(図2参照)はまた、計測された冷蔵室1aの温度と、外気温度と、外気相対湿度Houtとに基づいてヒータユニット45の通電率Prを算出し、通電指示を行う。通電率Prは、既知の方法により算出されればよい。 The above-described control unit 99 (see FIG. 2) also calculates the energization rate Pr of the heater unit 45 based on the measured temperature of the refrigerator compartment 1a, the outside air temperature, and the outside air relative humidity Hout, and issues an energization instruction. . The energization rate Pr may be calculated by a known method.
 図7は、本発明の実施の形態1に係るヒータユニットの通電率の一例を示す説明図である。図8は、本発明の実施の形態1に係るヒータユニットの通電率の別の一例を示す説明図である。ヒータユニット45への通電は、仕切板5の表面部材40及び各ガスケット94、95に露が付かない通電率Prとなるように制御される。ここで通電率Prとは、ヒータ46への通電時間割合のことで、例えば10秒のうち5秒通電する場合、通電率Prは50%と表現される。 FIG. 7 is an explanatory diagram showing an example of the energization rate of the heater unit according to Embodiment 1 of the present invention. FIG. 8 is an explanatory diagram showing another example of the energization rate of the heater unit according to Embodiment 1 of the present invention. Energization to the heater unit 45 is controlled so that the surface member 40 of the partition plate 5 and the gaskets 94 and 95 have a power supply rate Pr that does not cause dew. Here, the energization rate Pr is a rate of energization time to the heater 46. For example, when energizing for 5 seconds out of 10 seconds, the energization rate Pr is expressed as 50%.
 通電率Prは、例えば、外気温度をパラメータとして設定された複数の算出式に、計測された外気相対湿度Houtを与えて算出される。また、仕切板5の厚さ及び素材の熱伝導率等といった構造、ヒータ46の定格W数、及び冷蔵室1aの設定温度等により、基準通電率が変化する。 The energization rate Pr is calculated, for example, by giving the measured outside air relative humidity Hout to a plurality of calculation formulas set with the outside air temperature as a parameter. Further, the reference energization rate varies depending on the structure such as the thickness of the partition plate 5 and the thermal conductivity of the material, the rated wattage of the heater 46, the set temperature of the refrigerator compartment 1a, and the like.
 図7において、算出式は、外気温度が20℃以下である場合と、20℃より高く30℃以下である場合と、30℃より高く40℃以下である場合との3段階についてそれぞれ設定されており、通電率Prは、外気相対湿度Houtの上昇にともない線形的に上昇する。図7には、3つの温度帯の通電率Pr1、Pr2、Pr3が例示される。一方、図8の算出式では、外気温度が20℃以下である場合と、20℃より高く30℃以下である場合と、30℃より高く40℃以下である場合の3段階についてそれぞれ設定されており、通電率Prは外気相対湿度Houtの上昇にともない対数的に上昇する。図8には、3つの温度帯の通電率Pr4、Pr5、Pr6が例示される。 In FIG. 7, the calculation formula is set for each of three stages, that is, when the outside air temperature is 20 ° C. or less, when it is higher than 20 ° C. and 30 ° C. or less, and when it is higher than 30 ° C. and 40 ° C. or less. The energization rate Pr increases linearly as the outside air relative humidity Hout increases. FIG. 7 illustrates the energization rates Pr1, Pr2, and Pr3 in three temperature zones. On the other hand, in the calculation formula of FIG. 8, three levels are set for each of the case where the outside air temperature is 20 ° C. or less, the case where it is higher than 20 ° C. and 30 ° C. or less, and the case where it is higher than 30 ° C. and 40 ° C. or less. The energization rate Pr increases logarithmically as the outside air relative humidity Hout increases. FIG. 8 illustrates the energization rates Pr4, Pr5, and Pr6 in three temperature zones.
 算出式は、予め制御部99にプログラムとして記憶されている。例えば、図7において各算出式は、基準通電率=C1×Hout+C2として、係数C1及び係数C2を外気温度の温度帯ごとに設定するように決定される。また図8において各算出式は、基準通電率=C3×ln(Hout)+C4として、係数C3及び係数C4を外気温度の温度帯ごとに設定するように決定される。各係数は、予め実験等により決定されるとよい。なお、算出式を設定する外気温度の温度帯は上記3段階に限定されず、例えば5℃刻みに設定されてもよい。 The calculation formula is stored in advance in the control unit 99 as a program. For example, in FIG. 7, each calculation formula is determined so that the coefficient C1 and the coefficient C2 are set for each temperature zone of the outside air temperature, where the reference energization rate = C1 × Hout + C2. Further, in FIG. 8, each calculation formula is determined so that the coefficient C3 and the coefficient C4 are set for each temperature zone of the outside air temperature as the reference energization rate = C3 × ln (Hout) + C4. Each coefficient may be determined in advance through experiments or the like. Note that the temperature range of the outside air temperature for setting the calculation formula is not limited to the above three stages, and may be set in increments of 5 ° C., for example.
 図9は、本発明の実施の形態1に係る仕切板の上端部周辺の構成を示す上部斜視図である。図9は、左扉3が閉じ、右扉4が開いた状態を例示する。図10は、図1のC―C断面を示す従断面図である。図2、図9及び図10に基づき、仕切板5の動作と仕切板5周囲の構造について詳しく説明する。以下、上壁部6bの下面が冷蔵室1aの天井81であり、第1の仕切り7aの上面が冷蔵室1aの床面82である。 FIG. 9 is a top perspective view showing the configuration around the upper end of the partition plate according to Embodiment 1 of the present invention. FIG. 9 illustrates a state in which the left door 3 is closed and the right door 4 is opened. FIG. 10 is a secondary cross-sectional view showing the CC cross section of FIG. The operation of the partition plate 5 and the structure around the partition plate 5 will be described in detail with reference to FIGS. Hereinafter, the lower surface of the upper wall portion 6b is the ceiling 81 of the refrigerator compartment 1a, and the upper surface of the first partition 7a is the floor surface 82 of the refrigerator compartment 1a.
 冷蔵室1aの上壁部6bには、仕切板5の上端部に対する位置に、仕切板5の回転を誘導するガイド部83が設けられている。ガイド部83は、天井81に取り付けられたベース部83bと、ベース部83bから下方へ延びる突起83aとを有する。左扉3が閉じている状態では、ガイド部83の突起83aが、上側カバー63に形成されたカバー溝部63aに収容される。 In the upper wall portion 6b of the refrigerator compartment 1a, a guide portion 83 for guiding the rotation of the partition plate 5 is provided at a position relative to the upper end portion of the partition plate 5. The guide part 83 has a base part 83b attached to the ceiling 81 and a protrusion 83a extending downward from the base part 83b. When the left door 3 is closed, the projection 83 a of the guide portion 83 is accommodated in the cover groove portion 63 a formed in the upper cover 63.
 仕切板5は、左扉3が開くときには、上側カバー63に形成されたカバー溝部63aの縁部にガイド部83の突起83aが当接して軸部62a、66aを回転軸として仕切板5が回動する。このとき、バネ65の付勢力により仕切板5の右側部分が後方へ回り込むので、仕切板5が右扉4に接触することが防止できる。一方、左扉3が閉じるときには、後方へ回り込んだ仕切板5の右側部分がガイド部83に導かれて左扉3から右側へ出るように回動する。左扉3及び右扉4の双方が閉じると、仕切板5と2つのガスケット94、95とにより扉間隙間Gdが閉塞され、外部から冷蔵室1a内への外気の侵入が抑制される。 When the left door 3 is opened, the partition plate 5 has the projection 83a of the guide portion 83 abutted against the edge of the cover groove portion 63a formed on the upper cover 63, and the partition plate 5 rotates around the shaft portions 62a and 66a as the rotation shaft. Move. At this time, since the right side portion of the partition plate 5 is turned backward by the biasing force of the spring 65, the partition plate 5 can be prevented from contacting the right door 4. On the other hand, when the left door 3 is closed, the right side portion of the partition plate 5 that has turned back is guided to the guide portion 83 and is rotated so as to exit from the left door 3 to the right side. When both the left door 3 and the right door 4 are closed, the gap Gd between the doors is closed by the partition plate 5 and the two gaskets 94 and 95, and the intrusion of outside air from the outside into the refrigerator compartment 1a is suppressed.
 仕切板5は、高さ方向(矢印Z方向)において冷蔵室1aの開口幅よりも短く形成されており、仕切板5の上端と、天井81に設けられたガイド部83のベース部83bとの間に隙間Gtが形成される。また、仕切板5の下端と床面82との間には、上部の隙間Gtよりも小さい隙間Gbが形成される。ここで、冷蔵室1aの開口幅は、冷蔵室1aの天井81と床面82との距離である。 The partition plate 5 is formed shorter in the height direction (arrow Z direction) than the opening width of the refrigerator compartment 1a, and the upper end of the partition plate 5 and the base portion 83b of the guide portion 83 provided on the ceiling 81 are provided. A gap Gt is formed between them. Further, a gap Gb smaller than the upper gap Gt is formed between the lower end of the partition plate 5 and the floor surface 82. Here, the opening width of the refrigerator compartment 1a is the distance between the ceiling 81 and the floor surface 82 of the refrigerator compartment 1a.
 上述した各ガスケット94、95は上部と下部とに延在するように形成されたヒレ部を有し、ヒレ部によって、隙間Gtと隙間Gbとが閉塞される。具体的には、左扉3に設けられた上記ガスケット94は、上部に形成された上側ヒレ部94tと、下部に形成された下側ヒレ部(図示せず)とを有する。同様に、右扉4に設けられたガスケット95は、上部に形成された上側ヒレ部95tと、下部に形成された下側ヒレ部(図示せず)とを有する。 Each of the gaskets 94 and 95 described above has a fin portion formed so as to extend to the upper portion and the lower portion, and the gap Gt and the gap Gb are closed by the fin portion. Specifically, the gasket 94 provided in the left door 3 has an upper fin portion 94t formed in the upper portion and a lower fin portion (not shown) formed in the lower portion. Similarly, the gasket 95 provided in the right door 4 has an upper fin portion 95t formed in the upper portion and a lower fin portion (not shown) formed in the lower portion.
 各上側ヒレ部94t、95tは、隙間Gtを覆うとともに、冷蔵室1aの天井81よりも上方まで延びて上側フランジ部14の一部と重複し、かつ仕切板5の表面部材40の一部と重複する長さに形成されている。各上側ヒレ部94t、95tと上側フランジ部14とは重複する領域で接触しており、また各上側ヒレ部94t、95tと表面部材40とは重複する領域で接触している。以下、各上側ヒレ部94t、95tと上側フランジ部14とが接触する長さを第1接触長さD1といい、各上側ヒレ部94t、95tと表面部材40とが接触する長さを第2接触長さD2という。ここでは、第1接触長さD1及び第2接触長さD2は、それぞれ10mm程度に設定されている。 Each of the upper fin portions 94t and 95t covers the gap Gt, extends upward from the ceiling 81 of the refrigerator compartment 1a, overlaps with a part of the upper flange portion 14, and a part of the surface member 40 of the partition plate 5. Overlapping lengths are formed. The upper fin portions 94t and 95t and the upper flange portion 14 are in contact with each other in an overlapping region, and the upper fin portions 94t and 95t and the surface member 40 are in contact with each other in an overlapping region. Hereinafter, the length of contact between the upper fin portions 94t and 95t and the upper flange portion 14 is referred to as a first contact length D1, and the length of contact between the upper fin portions 94t and 95t and the surface member 40 is second. It is referred to as contact length D2. Here, the first contact length D1 and the second contact length D2 are each set to about 10 mm.
 幅方向(矢印X方向)において、上側ヒレ部94tは扉間隙間Gdを覆うように左扉3から右側へ延出しており、上側ヒレ部95tは扉間隙間Gdを覆うように右扉4から左側へ延出している。すなわち、仕切板5の上方に形成された隙間Gtにおいて、2つの上側ヒレ部94t、95tが重なって扉間隙間Gdを閉塞している。 In the width direction (arrow X direction), the upper fin portion 94t extends from the left door 3 to the right so as to cover the door gap Gd, and the upper fin portion 95t extends from the right door 4 so as to cover the door gap Gd. It extends to the left side. That is, in the gap Gt formed above the partition plate 5, the two upper fin portions 94t and 95t overlap to close the inter-door gap Gd.
 図11は、本発明の実施の形態1に係る伝熱シートの貼り付け位置を示す説明図である。図11は、天側面パネル11の折り曲げ工程前の状態の内面側を例示する。図10及び図11に基づき、上壁部6bの構成について詳しく説明する。 FIG. 11 is an explanatory diagram showing the attachment position of the heat transfer sheet according to Embodiment 1 of the present invention. FIG. 11 illustrates the inner surface side of the state before the bending process of the top side panel 11. Based on FIG.10 and FIG.11, the structure of the upper wall part 6b is demonstrated in detail.
 上側フランジ部14は、天側面パネル11において天面に配置された天面部12の前側の端部に設けられている。上側フランジ部14は、天面部12につながり、左扉3及び右扉4と対向するように下方へ延びる第1面部14aと、第1面部14aの後方に重なるように位置する第2面部14bと、第1面部14aと第2面部14bとを接続する折り曲げ部14cとを有する。内箱20に形成された内箱前面フランジ21は、上側フランジ部14の第2面部14bと対向するように設けられた前面部21aと、後方へ膨らむように前面部21aから凹んだ凹部21bとを有する。凹部21bは、内箱前面フランジ21の形状を保つために設けられている。 The upper flange portion 14 is provided at the front end portion of the top surface portion 12 disposed on the top surface of the top surface panel 11. The upper flange portion 14 is connected to the top surface portion 12, and extends downward so as to face the left door 3 and the right door 4, and a second surface portion 14b positioned so as to overlap the rear of the first surface portion 14a. And a bent portion 14c connecting the first surface portion 14a and the second surface portion 14b. The inner box front flange 21 formed in the inner box 20 includes a front part 21a provided to face the second surface part 14b of the upper flange part 14, and a concave part 21b recessed from the front part 21a so as to swell rearward. Have The recess 21b is provided to maintain the shape of the inner box front flange 21.
 また冷蔵庫100は、凝縮配管72を天側面パネル11の内面側に固定するアルミテープ85と、凝縮配管72の熱を開口部6aへ伝える伝熱シート86とを備える。以下、伝熱シート86が上壁部6bに設けられ、上壁部6bにおける開口部6a側の露付きを防止する場合を例に説明する。 Further, the refrigerator 100 includes an aluminum tape 85 that fixes the condensing pipe 72 to the inner surface side of the top side panel 11 and a heat transfer sheet 86 that transfers heat of the condensing pipe 72 to the opening 6a. Hereinafter, the case where the heat transfer sheet 86 is provided on the upper wall portion 6b and the dew on the opening 6a side of the upper wall portion 6b is prevented will be described as an example.
 伝熱シート86は、天側面パネル11の天面部12と真空断熱材30との間に設けられている。具体的には、伝熱シート86は、天面部12の内面側に貼り付けられている。伝熱シート86は、例えば、天井配管部72bから開口部6aへ延びる長尺形状を有しており、一端が真空断熱材30よりも前方へ延伸してU字状の上側フランジ部14の内面に沿って配置されている。伝熱シート86が貼り付けられた天面部12の内面側に、天井配管部72bが接触するように固定されている。具体的には、伝熱シート86の下方を横切るように天井配管部72bが這わされ、伝熱シート86と天井配管部72bとの重複部分を下方から覆うようにアルミテープ85が貼り付けられている。 The heat transfer sheet 86 is provided between the top surface portion 12 of the top side panel 11 and the vacuum heat insulating material 30. Specifically, the heat transfer sheet 86 is affixed to the inner surface side of the top surface portion 12. The heat transfer sheet 86 has, for example, a long shape extending from the ceiling piping part 72 b to the opening 6 a, and one end of the heat transfer sheet 86 extends forward from the vacuum heat insulating material 30 to the inner surface of the U-shaped upper flange part 14. Are arranged along. The ceiling piping part 72b is fixed to the inner surface side of the top surface part 12 to which the heat transfer sheet 86 is attached. Specifically, the ceiling piping part 72b is wound so as to cross the lower part of the heat transfer sheet 86, and the aluminum tape 85 is attached so as to cover the overlapping part of the heat transfer sheet 86 and the ceiling piping part 72b from below. Yes.
 ここで、伝熱シート86としては、例えばグラファイトシートが用いられる。グラファイトシートとは、グラファイト(石墨)を薄いシート状にしたもので、面方向への熱伝導率が非常に大きい反面、厚み方向への熱伝導率が非常に小さい特性を有している。グラファイトシートには様々な種類のものがあるが、一般的に面方向への熱伝導率が他金属に比べ2~5倍程度大きく、スポットで当たる熱を広範囲に拡散できるため、排熱処理をする上で非常に有用なものである。伝熱シート86がグラファイトシートにより構成される場合、グラファイトシートの厚さは、外箱前面フランジ13を形成する際の折り曲げを考慮し、貼り付け加工性のよい40μm程度の厚さのシートが採用されるとよい。面方向の熱伝導率については他金属類よりも大きい1000W/(mK)程度のものを使用する。 Here, as the heat transfer sheet 86, for example, a graphite sheet is used. The graphite sheet is graphite (graphite) made into a thin sheet and has a very large thermal conductivity in the plane direction, but has a very small thermal conductivity in the thickness direction. There are various types of graphite sheets, but in general, the thermal conductivity in the surface direction is about 2 to 5 times larger than other metals, and the heat hit by the spot can be diffused over a wide range, so exhaust heat treatment is performed. It is very useful above. When the heat transfer sheet 86 is composed of a graphite sheet, the thickness of the graphite sheet is about 40 μm with good pasting workability in consideration of bending when forming the outer casing front flange 13. It is good to be done. As for the thermal conductivity in the surface direction, a thermal conductivity of about 1000 W / (mK), which is larger than other metals, is used.
 伝熱シート86は、冷蔵庫100の幅方向(矢印X方向)において仕切板5の位置90に設けられる。伝熱シート86は、50mm程度のシート幅Wsを有し、天井配管部72bの開口部6aから最も近い配管部分と重複するようにシート長さLsが設定されている。ここで、シート幅Wsは、仕切板5の幅(50mm)と同程度であればよい。伝熱シート86は、シート幅Wsが冷蔵庫100の幅よりも十分に小さいため、上側フランジ部14において仕切板5と対する部分に天井配管部72bの熱を伝達させ、仕切板5が設けられていない部分では冷蔵庫100内への熱侵入を抑制できる。ところで、従来のように伝熱シートを冷蔵庫の側面の高さ方向の半分程度まで配置する場合、シートを細い配管に巻きつけて密着させる作業が困難となる。そのため、伝熱シートの貼り付け工程にロボット等を導入する必要がある。一方、実施の形態1では伝熱シート86を設ける領域を小さくできるため、冷蔵庫本体6を製造するための費用及び製造スペースを削減できる。 The heat transfer sheet 86 is provided at a position 90 of the partition plate 5 in the width direction (arrow X direction) of the refrigerator 100. The heat transfer sheet 86 has a sheet width Ws of about 50 mm, and the sheet length Ls is set so as to overlap with the pipe part closest to the opening 6a of the ceiling pipe part 72b. Here, the sheet width Ws may be approximately the same as the width (50 mm) of the partition plate 5. Since the sheet width Ws of the heat transfer sheet 86 is sufficiently smaller than the width of the refrigerator 100, the heat of the ceiling pipe portion 72 b is transmitted to the portion of the upper flange portion 14 that faces the partition plate 5, and the partition plate 5 is provided. It is possible to suppress heat intrusion into the refrigerator 100 at a portion where there is not. By the way, when arrange | positioning a heat-transfer sheet | seat to about the half of the height direction of the side surface of a refrigerator like the past, the operation | work which winds a sheet | seat around thin piping and adheres becomes difficult. Therefore, it is necessary to introduce a robot or the like in the heat transfer sheet pasting process. On the other hand, in Embodiment 1, since the area | region which provides the heat exchanger sheet 86 can be made small, the expense and manufacturing space for manufacturing the refrigerator main body 6 can be reduced.
 真空断熱材30において天面部12と対向する面には、溝30aが形成されており、溝30aに天井配管部72bが収容される。つまり、放熱する天井配管部72bは、天面部12の内側に配置されて冷蔵室1a側が真空断熱材30により覆われる。このような構成によれば、上側フランジ部14に凝縮配管72が直接設けられる場合に比べて、真空断熱材30により冷蔵室1aへの熱侵入が抑制され、天井配管部72bの熱を伝熱シート86に効率的に与えることができる。したがって、冷蔵室1aの温度上昇を抑制しつつ伝熱シート86を介して仕切板5の位置の上側フランジ部14の温度を上昇させ、露付きを抑制することができる。なお、真空断熱材30に溝30aが形成される場合について説明したが、天井配管部72bの外径と同程度の高さを有するスペーサを設け、スペーサにより、天面部12と真空断熱材30との間に空隙を形成するようにしてもよい。 The groove 30a is formed in the surface which opposes the top | upper surface part 12 in the vacuum heat insulating material 30, and the ceiling piping part 72b is accommodated in the groove | channel 30a. In other words, the heat-dissipating ceiling piping part 72 b is arranged inside the top surface part 12 and the refrigerator compartment 1 a side is covered with the vacuum heat insulating material 30. According to such a structure, compared with the case where the condensing pipe 72 is directly provided in the upper flange portion 14, heat intrusion into the refrigerating chamber 1a is suppressed by the vacuum heat insulating material 30, and the heat of the ceiling pipe portion 72b is transferred. The sheet 86 can be efficiently provided. Therefore, it is possible to increase the temperature of the upper flange portion 14 at the position of the partition plate 5 through the heat transfer sheet 86 while suppressing the temperature increase in the refrigerator compartment 1a, thereby suppressing dew condensation. In addition, although the case where the groove | channel 30a was formed in the vacuum heat insulating material 30 was demonstrated, the spacer which has a height comparable as the outer diameter of the ceiling piping part 72b is provided, and the top surface part 12 and the vacuum heat insulating material 30 are provided with a spacer. You may make it form a space | gap between these.
 図12は、本発明の実施の形態1に係る仕切板とヒレ部の部位ごとの温度分布を示す図である。横軸は高さ方向(矢印Z方向)の位置を表し、左側から順に、上側ヒレ部94t、95tの位置、仕切板5を高さ方向で5分割した各部位の位置、及び下側ヒレ部の位置をそれぞれ表す。縦軸は、各部位の温度[℃]を表す。図12は、外気温度が30℃且つ外気相対湿度Houtが75%の環境条件のもと、冷蔵室1aの設定温度を3℃、ヒータ定格を11.1[W]、且つ通電率を54%とした場合の測定結果である。破線は従来例の温度分布87を表し、実線は実施の形態1の冷蔵庫100により得られた温度分布88を表す。 FIG. 12 is a diagram showing a temperature distribution for each part of the partition plate and the fin portion according to Embodiment 1 of the present invention. The horizontal axis represents the position in the height direction (arrow Z direction). From the left side, the positions of the upper fin portions 94t and 95t, the positions of the respective parts obtained by dividing the partition plate 5 in the height direction, and the lower fin portions Represents the position of each. The vertical axis represents the temperature [° C.] of each part. FIG. 12 shows that the set temperature of the refrigerator compartment 1a is 3 ° C., the heater rating is 11.1 [W], and the energization rate is 54% under an environmental condition where the outside air temperature is 30 ° C. and the outside air relative humidity Hout is 75%. It is a measurement result in the case of. The broken line represents the temperature distribution 87 of the conventional example, and the solid line represents the temperature distribution 88 obtained by the refrigerator 100 of the first embodiment.
 従来例の温度分布87では、仕切板5の中央部の温度は35℃であり、上側ヒレ部94t、95tの温度は26.0℃であり、下側ヒレ部の温度は28℃程度となっている。7つの部位の各温度は露点温度Td(25.1℃)以上であり、上側ヒレ部94t、95tと仕切板5の中央部との温度差は9℃である。ヒータユニット45を搭載した仕切板5に比べてヒレ部の温度は低く、特に、冷蔵室1aに露出する面積の大きい上側ヒレ部94t、95tで最も低温となっている。この場合、上側ヒレ部94t、95tに露付きが生じないようにヒータユニット45の通電率が設定される。 In the temperature distribution 87 of the conventional example, the temperature of the central portion of the partition plate 5 is 35 ° C., the temperatures of the upper fin portions 94t and 95t are 26.0 ° C., and the temperature of the lower fin portion is about 28 ° C. ing. Each temperature of the seven portions is equal to or higher than the dew point temperature Td (25.1 ° C.), and the temperature difference between the upper fin portions 94t and 95t and the central portion of the partition plate 5 is 9 ° C. The temperature of the fin portion is lower than that of the partition plate 5 on which the heater unit 45 is mounted. In particular, the upper fin portions 94t and 95t having a large area exposed to the refrigerator compartment 1a have the lowest temperature. In this case, the energization rate of the heater unit 45 is set so that the upper fin portions 94t and 95t are not dewed.
 実施の形態1の温度分布88では、7つの部位の各温度は露点温度Td(25.1℃)以上であり、仕切板5の各部位の温度及び下側ヒレ部の温度は、従来例の場合とほぼ同じ温度である。また、上側ヒレ部94t、95tの温度は7つの部位で最も低く、26.5℃である。温度分布88において、上側ヒレ部94t、95tと仕切板5の中央部との温度差は8.5℃であり、従来例に比べて上側ヒレ部94t、95tの温度が0.5℃上昇している。この場合、仕切板5及びヒレ部にわたる温度差を従来よりも小さくでき、ヒータユニット45への通電率を低減することができる。 In the temperature distribution 88 of the first embodiment, each temperature of the seven parts is equal to or higher than the dew point temperature Td (25.1 ° C.), and the temperature of each part of the partition plate 5 and the temperature of the lower fin portion are the same as those in the conventional example. The temperature is almost the same as the case. Further, the temperatures of the upper fin portions 94t and 95t are the lowest at 7 sites, which is 26.5 ° C. In the temperature distribution 88, the temperature difference between the upper fin portions 94t and 95t and the central portion of the partition plate 5 is 8.5 ° C, and the temperature of the upper fin portions 94t and 95t increases by 0.5 ° C compared to the conventional example. ing. In this case, the temperature difference between the partition plate 5 and the fin portion can be made smaller than before, and the power supply rate to the heater unit 45 can be reduced.
 上述したように冷蔵庫100において、上側フランジ部14には凝縮配管72及び露付き防止配管73等が配置されていないが、ガスケット94、95の上側ヒレ部94t、95tは、仕切板5の表面部材40と接触するとともに上側フランジ部14と接触している。このため、上側ヒレ部94t、95tには、表面部材40を介してヒータユニット45の熱が伝達されるとともに、上側フランジ部14と伝熱シート86とを介して凝縮配管72の熱が伝達され、温度低下が抑制されている。 As described above, in the refrigerator 100, the upper flange portion 14 is not provided with the condensation pipe 72, the dew prevention pipe 73, and the like, but the upper fin portions 94t and 95t of the gaskets 94 and 95 are the surface members of the partition plate 5. 40 and in contact with the upper flange portion 14. For this reason, the heat of the heater unit 45 is transmitted to the upper fin portions 94t and 95t through the surface member 40, and the heat of the condensation pipe 72 is transmitted through the upper flange portion 14 and the heat transfer sheet 86. The temperature drop is suppressed.
 このように、冷蔵庫100は、凝縮配管72からの熱とヒータユニット45からの熱とを各ガスケット94、95に伝えてヒレ部の温度を上昇させることで、開口部6a周辺における露付きの発生を抑制することができる。また、ヒレ部の温度が上昇することによってヒータユニット45の通電率を低減できるとともに、真空断熱材30により凝縮配管72からの冷蔵室1aへの熱侵入が抑制されることで圧縮機70の運転率を低減でき、省エネルギー化が実現できる。さらに、伝熱シート86を新たに設ける必要がある一方で、冷蔵室1a周辺に設けていた露付き防止配管を削減できるため、冷蔵庫100の製造コストの増加を回避できる。 As described above, the refrigerator 100 transmits heat from the condensing pipe 72 and heat from the heater unit 45 to the gaskets 94 and 95 to increase the temperature of the fin portion, thereby generating dew around the opening 6a. Can be suppressed. Further, the energization rate of the heater unit 45 can be reduced by increasing the temperature of the fin section, and the heat intrusion from the condensing pipe 72 to the refrigerating chamber 1a is suppressed by the vacuum heat insulating material 30, thereby operating the compressor 70. The rate can be reduced and energy saving can be realized. Furthermore, while it is necessary to newly provide the heat transfer sheet 86, the dew prevention piping provided around the refrigerator compartment 1a can be reduced, so that an increase in the manufacturing cost of the refrigerator 100 can be avoided.
 図13は、本発明の実施の形態1に係る冷蔵庫本体の製造工程における天側面パネルの裁断工程を示す説明図である。図14は、本発明の実施の形態1に係る冷蔵庫本体の製造工程における天側面パネルの型抜き工程を示す説明図である。図15は、本発明の実施の形態1に係る冷蔵庫本体の製造工程における伝熱シート貼付工程を示す説明図である。図16は、本発明の実施の形態1に係る冷蔵庫本体の製造工程における天側面パネルのフランジ形成工程を示す説明図である。図17は、本発明の実施の形態1に係る冷蔵庫本体の製造工程における配管工程を示す説明図である。図18は、本発明の実施の形態1に係る冷蔵庫本体の製造工程における真空断熱材貼付工程を示す説明図である。図19は、本発明の実施の形態1に係る冷蔵庫本体の製造工程における天側面パネルの折り曲げ工程を示す説明図である。図20は、本発明の実施の形態1に係る冷蔵庫本体の製造工程における組み付け工程を示す説明図である。 FIG. 13 is an explanatory diagram showing a cutting process of the top side panel in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention. FIG. 14 is an explanatory diagram showing a die-cutting process of the top side panel in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention. FIG. 15 is an explanatory diagram showing a heat transfer sheet attaching step in the manufacturing process of the refrigerator body according to Embodiment 1 of the present invention. FIG. 16 is an explanatory diagram showing a flange forming step of the top side panel in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention. FIG. 17 is an explanatory diagram illustrating a piping process in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention. FIG. 18 is an explanatory diagram showing a vacuum heat insulating material attaching step in the manufacturing process of the refrigerator body according to Embodiment 1 of the present invention. FIG. 19 is an explanatory diagram showing a folding process of the top side panel in the manufacturing process of the refrigerator body according to Embodiment 1 of the present invention. FIG. 20 is an explanatory diagram illustrating an assembly process in the manufacturing process of the refrigerator main body according to Embodiment 1 of the present invention.
 図13~図20に基づき、冷蔵庫本体6の製造工程について説明する。まず、裁断工程では、ロール状の外箱素材200がシートフィーダにより送られ、予め設定された長さに裁断されて、先述した天側面パネル11の材料となる長方形状の外箱板材111が形成される。次に、型抜き工程において、外箱板材111の型抜きが行われる(図14)。このとき、外箱板材111に、外箱前面フランジ13を形成するための前処理が行われる。具体的には、外箱板材111の前縁の中央部にV字状の第1切り欠き91が2箇所設けられ、前縁の左端部及び右端部が切り欠かれた第2切り欠き92が設けられる。また外箱板材111には、別途形成される内箱20等を固定するための複数の固定ねじが通される複数のネジ穴93が設けられる。 The manufacturing process of the refrigerator body 6 will be described with reference to FIGS. First, in the cutting process, the roll-shaped outer box material 200 is fed by a sheet feeder and cut into a preset length to form the rectangular outer box plate material 111 that becomes the material of the top side panel 11 described above. Is done. Next, in the die cutting process, the outer box plate material 111 is die cut (FIG. 14). At this time, a pretreatment for forming the outer box front flange 13 on the outer box plate material 111 is performed. Specifically, two V-shaped first notches 91 are provided at the center of the front edge of the outer box plate material 111, and second notches 92 in which the left end and the right end of the front edge are notched are provided. Provided. Further, the outer box plate member 111 is provided with a plurality of screw holes 93 through which a plurality of fixing screws for fixing the separately formed inner box 20 and the like are passed.
 図14及び図15は、天側面パネル11の内面側となる面を表す。型抜き工程後、伝熱シート貼付工程において、外箱板材111の前縁の予め設定された位置に冶具を使用して伝熱シート86が貼り付けられる。このとき、伝熱シート86は、幅方向(矢印X方向)において、2つの第1切り欠き91の間の仕切板5が配置される位置に貼り付けられる。また伝熱シート86は、奥行き方向(矢印Y方向)において、一端が外箱板材111の前側の端部111aに一致するように貼り付けられる。 FIG. 14 and FIG. 15 show the surface which becomes the inner surface side of the top side panel 11. After the die cutting step, in the heat transfer sheet sticking step, the heat transfer sheet 86 is attached to a predetermined position on the front edge of the outer box plate material 111 using a jig. At this time, the heat transfer sheet 86 is affixed to the position where the partition plate 5 between the two first cutouts 91 is arranged in the width direction (arrow X direction). Further, the heat transfer sheet 86 is attached so that one end thereof coincides with the front end portion 111 a of the outer box plate material 111 in the depth direction (arrow Y direction).
 伝熱シート貼付工程の後、フランジ形成工程において、外箱板材111の前方及び左右の端面が折り曲げられ、外箱前面フランジ13と下側フランジ17とが形成される(図16)。フランジ形成工程の後、配管工程において、左側配管部72a、天井配管部72b及び右側配管部72dを含む凝縮配管72が予め設定された位置に冶具を用いて配置され、アルミテープ85により複数箇所で固定される(図17)。真空断熱材貼付工程では、配管工程において凝縮配管72が固定された外箱板材111に、3つの真空断熱材30が貼り付けられる(図18)。各真空断熱材30は、左側配管部72a、天井配管部72b、及び右側配管部72dをそれぞれ覆うように配置される。このとき、各真空断熱材30に形成された溝30aに左側配管部72a、天井配管部72b、及び右側配管部72dがそれぞれ収容される。 After the heat transfer sheet sticking step, in the flange forming step, the front and left and right end faces of the outer box plate material 111 are bent to form the outer box front flange 13 and the lower flange 17 (FIG. 16). After the flange forming step, in the piping step, the condensing piping 72 including the left piping portion 72a, the ceiling piping portion 72b, and the right piping portion 72d is arranged at a preset position using a jig, and the aluminum tape 85 is used at a plurality of locations. It is fixed (FIG. 17). In the vacuum heat insulating material attaching step, three vacuum heat insulating materials 30 are attached to the outer box plate material 111 to which the condensation pipe 72 is fixed in the piping step (FIG. 18). Each vacuum heat insulating material 30 is arrange | positioned so that the left side piping part 72a, the ceiling piping part 72b, and the right side piping part 72d may each be covered. At this time, the left piping part 72a, the ceiling piping part 72b, and the right piping part 72d are accommodated in the grooves 30a formed in each vacuum heat insulating material 30, respectively.
 真空断熱材貼付工程の後、折り曲げ工程において、外箱板材111がU字状に折り曲げられて天側面パネル11が形成される(図19)。天側面パネル11が形成された後、組み付け工程において、真空断熱材30が貼り付けられた天側面パネル11に内箱20が組み付けられる(図20)。このとき、外箱前面フランジ13が内箱前面フランジ21(図2参照)に当接することにより天側面パネル11と内箱20とが嵌合する。その後、天側面パネル11にさらに背面パネル18及び底板19等が取り付けられ、外箱10と内箱20との間の空間に硬質ウレタンフォームが充填されて冷蔵庫本体6の製造工程が終了する。 After the vacuum heat insulating material attaching step, in the bending step, the outer box plate material 111 is bent in a U shape to form the top side panel 11 (FIG. 19). After the top side panel 11 is formed, the inner box 20 is assembled to the top side panel 11 to which the vacuum heat insulating material 30 has been affixed in the assembling step (FIG. 20). At this time, the top side panel 11 and the inner box 20 are fitted by the outer box front flange 13 coming into contact with the inner box front flange 21 (see FIG. 2). Thereafter, the back panel 18 and the bottom plate 19 are further attached to the top side panel 11, and the space between the outer box 10 and the inner box 20 is filled with hard urethane foam, and the manufacturing process of the refrigerator body 6 is completed.
 このように、実施の形態1の冷蔵庫本体6の製造方法では、天側面パネル11の型抜き工程の後であってフランジ形成工程及び配管工程の前に伝熱シート貼付工程が行われる。したがって、図10に示されるように、伝熱シート86は、天側面パネル11と天井配管部72bとの間に介在して天井配管部72bに直接接触するとともに、一端が上側フランジ部14の内面側に沿って配置される。このため、伝熱シート86により天井配管部72bから上側フランジ部14へ熱を輸送することができ、上側フランジ部14の第1面部14aに接触した上側ヒレ部94t、95tの温度が低下するのを抑制することができる。 Thus, in the manufacturing method of the refrigerator main body 6 of Embodiment 1, the heat transfer sheet sticking step is performed after the die-cutting step of the top side panel 11 and before the flange forming step and the piping step. Therefore, as shown in FIG. 10, the heat transfer sheet 86 is interposed between the top side panel 11 and the ceiling piping portion 72 b and directly contacts the ceiling piping portion 72 b, and one end is an inner surface of the upper flange portion 14. Arranged along the side. For this reason, heat can be transported from the ceiling pipe portion 72b to the upper flange portion 14 by the heat transfer sheet 86, and the temperature of the upper fin portions 94t and 95t that are in contact with the first surface portion 14a of the upper flange portion 14 is lowered. Can be suppressed.
 以上のように、実施の形態1の冷凍冷蔵庫(冷蔵庫100)において、凝縮配管72は外箱10に配置されて貯蔵室(冷蔵室1a)側が真空断熱材30により覆われ、伝熱シート86を介して凝縮配管72の熱が開口部6aへ伝えられる。これにより、凝縮配管72の熱が庫内へ侵入するのを抑制しつつ、開口部6a周辺の温度を上昇させ、露付きを抑制することができる。また、庫内への熱侵入が抑制されることにより冷蔵室1aの熱負荷が低減されるため、省エネルギー化を実現できる。 As described above, in the refrigerator-freezer (refrigerator 100) of the first embodiment, the condensation pipe 72 is arranged in the outer box 10 and the storage room (refrigeration room 1a) side is covered with the vacuum heat insulating material 30, and the heat transfer sheet 86 is disposed. The heat of the condensing pipe 72 is transmitted to the opening 6a. Thereby, while suppressing the heat | fever of the condensation piping 72 invading in a store | warehouse | chamber, the temperature around the opening part 6a can be raised and dew condensation can be suppressed. Moreover, since the heat load of the refrigerator compartment 1a is reduced by suppressing the heat | fever penetration | invasion into a store | warehouse | chamber, energy saving is realizable.
 また、制御部99は、貯蔵室温度センサにより計測された温度が、予め設定された温度となるように圧縮機70を制御する。これにより、庫内への熱侵入が抑制されることにより冷蔵室1aの温度上昇が抑えられると、それに伴って圧縮機70の運転率の増加が抑えられる。 Also, the control unit 99 controls the compressor 70 so that the temperature measured by the storage room temperature sensor becomes a preset temperature. Thereby, when the heat | fever penetration | invasion into a store | warehouse | chamber is suppressed and the temperature rise of the refrigerator compartment 1a is suppressed, the increase in the operating rate of the compressor 70 will be suppressed in connection with it.
 また冷蔵庫100は、ヒータユニット45を内蔵した仕切板5を備え、外気温度センサにより計測された温度と、外気湿度センサにより計測された外気相対湿度Houtと、貯蔵室温度センサにより計測された温度とに基づきヒータユニット45の通電を制御する。これにより、凝縮配管72の熱により開口部6a付近の温度が上昇すると、仕切板5及びヒレ部の部位ごとの温度差を小さくできる。その結果、露付きを防止するヒータユニット45の通電率Prを最小限にでき、省エネルギー化を実現できる。 The refrigerator 100 includes a partition plate 5 including a heater unit 45, and includes a temperature measured by an outside air temperature sensor, an outside air relative humidity Hout measured by an outside air humidity sensor, and a temperature measured by a storage room temperature sensor. The energization of the heater unit 45 is controlled based on Thereby, if the temperature of the opening 6a vicinity rises with the heat of the condensation pipe 72, the temperature difference for every part of the partition plate 5 and the fin part can be reduced. As a result, the energization rate Pr of the heater unit 45 that prevents dew can be minimized, and energy saving can be realized.
 またガスケット94、95のヒレ部(例えば上側ヒレ部94t、95t)は、開口部6aにおいて上壁部6bの下面(冷蔵室1aの天井81)と仕切板5の上端部との隙間を覆うように上方へ延在し、上壁部6bの開口部6a側の端面と仕切板5とに接触する。これにより、凝縮配管72から開口部6aに伝わった熱が、さらに上側ヒレ部94t、95tに伝わり、冷蔵室1aに露出して低温になり易い上側ヒレ部94t、95tの温度を上昇させて確実に露付きを抑制できる。 Further, the fin portions (for example, the upper fin portions 94t and 95t) of the gaskets 94 and 95 cover the gap between the lower surface of the upper wall portion 6b (the ceiling 81 of the refrigerator compartment 1a) and the upper end portion of the partition plate 5 at the opening 6a. And contacts the end face of the upper wall 6 b on the opening 6 a side and the partition plate 5. As a result, the heat transferred from the condensing pipe 72 to the opening 6a is further transferred to the upper fins 94t and 95t, and the temperature of the upper fins 94t and 95t, which are exposed to the refrigerating chamber 1a and tend to be low, is increased. Dew can be suppressed.
実施の形態2.
 図21は、本発明の実施の形態2に係る上壁部と仕切板との隙間周辺の構成を示す部分縦断面図である。図22は、本発明の実施の形態2に係る伝熱シートの貼り付け位置を示す説明図である。実施の形態2は、天井配管部72bが、天側面パネル11の天面部12の内面側に直接設けられている点で、実施の形態1の場合と異なる。なお、実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
FIG. 21 is a partial vertical cross-sectional view showing the configuration around the gap between the upper wall portion and the partition plate according to Embodiment 2 of the present invention. FIG. 22 is an explanatory diagram showing the attachment position of the heat transfer sheet according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in that the ceiling piping portion 72b is directly provided on the inner surface side of the top surface portion 12 of the top surface panel 11. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
 天面部12の内面側には、天井配管部72bが接触するようにアルミテープ185により固定されている。伝熱シート186は、天井配管部72bが固定された天面部12の内面側に貼り付けられている。伝熱シート186の一端は、真空断熱材30よりも前方へ延出し、上側フランジ部14の第2面部14bと内箱前面フランジ21の前面部21aとの間に配置されている。 The inner surface of the top surface portion 12 is fixed with an aluminum tape 185 so that the ceiling piping portion 72b is in contact therewith. The heat transfer sheet 186 is affixed to the inner surface side of the top surface portion 12 to which the ceiling piping portion 72b is fixed. One end of the heat transfer sheet 186 extends forward from the vacuum heat insulating material 30, and is disposed between the second surface portion 14 b of the upper flange portion 14 and the front surface portion 21 a of the inner box front flange 21.
 図23は、本発明の実施の形態2に係る冷蔵庫本体の製造工程における配管工程と伝熱シート貼付工程を示す説明図である。実施の形態2では、図17の配管工程が行われた後、図18の真空断熱材貼付工程に移行する前に、外箱板材111に凝縮配管72が固定される伝熱シート貼付工程が行われる(図23)。このような製造工程とすることにより、図17の配管工程と同じ作業スペースで伝熱シート貼付工程を行うことができ、実施の形態1の製造工程と比べて、図14の型抜き工程と図16のフランジ形成工程との間に図15の作業スペースを設ける必要がない。 FIG. 23 is an explanatory diagram showing a piping process and a heat transfer sheet pasting process in the manufacturing process of the refrigerator body according to the second embodiment of the present invention. In the second embodiment, after the piping process of FIG. 17 is performed, the heat transfer sheet sticking process in which the condensation pipe 72 is fixed to the outer box plate material 111 is performed before the process proceeds to the vacuum heat insulating material sticking process of FIG. (FIG. 23). By setting it as such a manufacturing process, the heat-transfer sheet | seat sticking process can be performed in the same work space as the piping process of FIG. 17, compared with the manufacturing process of Embodiment 1, the die cutting process and figure of FIG. It is not necessary to provide the work space of FIG. 15 between the 16 flange forming steps.
 実施の形態2の冷蔵庫本体6において、伝熱シート186は、上側ヒレ部94t、95tに接触した第1面部14aとは直接には接触していないが、天面部12と第2面部14bとに接触しているため、上側フランジ部14において温度が上昇する。これにより、上側フランジ部14に重複して設けられた上側ヒレ部94t、95tの温度が上昇し、露付きが抑制される。 In the refrigerator main body 6 of the second embodiment, the heat transfer sheet 186 is not in direct contact with the first surface portion 14a that is in contact with the upper fin portions 94t and 95t, but the top surface portion 12 and the second surface portion 14b. Because of the contact, the temperature rises at the upper flange portion 14. Thereby, the temperature of the upper fin parts 94t and 95t provided overlapping with the upper flange part 14 rises, and dew is suppressed.
 なお、本発明の実施の形態は上記実施の形態に限定されず、種々の変更を行うことができる。例えば、凝縮配管72は、アルミテープ85、185を用いずに、両面テープ又は糊引き等により天側面パネル11に貼り付けられてもよい。また、伝熱シート86、186はグラファイトシートに限定されず、面方向への熱拡散性に優れたものが採用されればよい。 The embodiment of the present invention is not limited to the above embodiment, and various changes can be made. For example, the condensation pipe 72 may be affixed to the top side panel 11 by double-sided tape or glueing without using the aluminum tapes 85 and 185. Further, the heat transfer sheets 86 and 186 are not limited to graphite sheets, and those having excellent thermal diffusivity in the surface direction may be employed.
 また、内箱前面フランジ21に凹部21bが形成されている場合について説明したが、内箱20の板部材の厚みを増やす等して強度が一定以上に確保されている場合には凹部21bの形成は不要である。また冷媒回路CRの構成も上記のものに限定されない。 Moreover, although the case where the recessed part 21b was formed in the inner case front flange 21 was demonstrated, when intensity | strength is ensured more than fixed by increasing the thickness of the plate member of the inner case 20, formation of the recessed part 21b is carried out. Is unnecessary. Further, the configuration of the refrigerant circuit CR is not limited to the above.
 また、天井配管部72bと上側フランジ12aとを伝熱シート86、186により接続して、上側ヒレ部94t、95tにおける結露を抑制する場合について説明したが、伝熱シート86、186を設ける位置は特にこれに限定されない。伝熱シート86、186は、右側配管部72dと右側フランジ部16とを接続するように設けられても良く、又は左側配管部72aと左側フランジ部15とを接続するように設けられても良い。あるいは、伝熱シート86、186は複数箇所に設けられてもよい。いずれの場合においても、庫内への熱侵入を抑制しつつ外箱前面フランジ13に凝縮配管72の熱を効率的に伝えて露付きを抑制することができる。 Moreover, although the ceiling piping part 72b and the upper side flange 12a were connected by the heat-transfer sheet | seats 86 and 186, and the case where the dew condensation in the upper fin parts 94t and 95t was suppressed was demonstrated, the position which provides the heat-transfer sheet | seats 86 and 186 is shown. It is not particularly limited to this. The heat transfer sheets 86 and 186 may be provided so as to connect the right pipe part 72d and the right flange part 16, or may be provided so as to connect the left pipe part 72a and the left flange part 15. . Alternatively, the heat transfer sheets 86 and 186 may be provided at a plurality of locations. In any case, it is possible to efficiently transmit the heat of the condensing pipe 72 to the outer casing front flange 13 while suppressing heat intrusion into the inside of the box, thereby suppressing dew condensation.
 1a 冷蔵室、1b 製氷室、1c 切替室、1d 冷凍室、1e 野菜室、2 扉、3 左扉、3a ヒンジ部、3b 内板、3c 立ち壁、4 右扉、4b 内板、4c 立ち壁、5 仕切板、6 冷蔵庫本体、6a 開口部、6b 上壁部、6c 底壁部、6d 左側壁部、6e 右側壁部、6f 後壁部、7a、7b、7c 仕切り、8 冷却器室、9 機械室、10 外箱、11 天側面パネル、12 天面部、12a 上側フランジ、13 外箱前面フランジ、14 上側フランジ部、14a 第1面部、14b 第2面部、14c 折り曲げ部、15 左側フランジ部、16 右側フランジ部、17 下側フランジ、18 背面パネル、19 底板、20 内箱、21 内箱前面フランジ、21a 前面部、21b 凹部、24 マグネット、30 真空断熱材、30a 溝、35 発泡断熱材、36 断熱壁、37 機械室カバー、37a 通風孔、38 庫内ファン、40 表面部材、41 ツメ、45 ヒータユニット、46 ヒータ、47 両面テープ、48 遮熱部、50 ヒータカバー、55 断熱部材、60 背面カバー、60a 軸受部、62 上側ヒンジ、62a 軸部、63 上側カバー、63a カバー溝部、64 ねじ、65 バネ、66 下側ヒンジ、66a 軸部、67 下側カバー、68 バネ止め、69 ねじ、70 圧縮機、71 空冷凝縮器、72 凝縮配管、72a 左側配管部、72b 天井配管部、72c 背面配管部、72d 右側配管部、73 露付き防止配管、73a 第1配管部、73b 第2配管部、73c 第3配管部、73d 第4配管部、74 ドライヤ、75 減圧装置、76 切替弁、77a 毛細管、77b 毛細管、78 冷却器、79 吸入管、81 天井、82 床面、83 ガイド部、83a 突起、83b ベース部、85、185 アルミテープ、86、186 伝熱シート、87 温度分布、88 温度分布、91 欠き、92 欠き、93 ネジ穴、94、95 ガスケット、94t、95t 上側ヒレ部、95a 後方延出部、96 嵌合溝、97 パッキン、99 制御部、100 冷蔵庫、111 外箱板材、200 外箱素材、CR 冷媒回路、Gb、Gt 隙間、Gd 扉間隙間、Hout 相対湿度(外気相対湿度)、Pr 通電率、Ws シート幅、Ls シート長さ。 1a cold storage room, 1b ice making room, 1c switching room, 1d freezing room, 1e vegetable room, 2 doors, 3 left door, 3a hinge part, 3b inner plate, 3c standing wall, 4 right door, 4b inner plate, 4c standing wall 5, partition plate, 6 refrigerator body, 6a opening, 6b upper wall, 6c bottom wall, 6d left wall, 6e right wall, 6f rear wall, 7a, 7b, 7c partition, 8 cooler room, 9 Machine room, 10 outer box, 11 top side panel, 12 top surface part, 12a upper flange, 13 outer box front flange, 14 upper flange part, 14a first surface part, 14b second surface part, 14c bent part, 15 left flange part , 16 Right flange part, 17 Lower flange, 18 Rear panel, 19 Bottom plate, 20 Inner box, 21 Inner box front flange, 21a Front part, 21b Recessed part, 4 magnet, 30 vacuum insulation, 30a groove, 35 foam insulation, 36 insulation wall, 37 machine room cover, 37a ventilation hole, 38 internal fan, 40 surface member, 41 claw, 45 heater unit, 46 heater, 47 double sides Tape, 48 Heat shield, 50 Heater cover, 55 Heat insulation member, 60 Back cover, 60a Bearing, 62 Upper hinge, 62a Shaft, 63 Upper cover, 63a Cover groove, 64 Screw, 65 Spring, 66 Lower hinge, 66a shaft, 67 lower cover, 68 spring stopper, 69 screw, 70 compressor, 71 air-cooled condenser, 72 condensing piping, 72a left piping, 72b ceiling piping, 72c rear piping, 72d right piping, 73 Dew prevention piping, 73a 1st piping part, 73b 2nd piping part, 73 3rd piping part, 73d 4th piping part, 74 dryer, 75 decompression device, 76 switching valve, 77a capillary tube, 77b capillary tube, 78 cooler, 79 suction pipe, 81 ceiling, 82 floor, 83 guide part, 83a protrusion, 83b Base part, 85, 185 Aluminum tape, 86, 186 Heat transfer sheet, 87 Temperature distribution, 88 Temperature distribution, 91 Notch, 92 Notch, 93 Screw hole, 94, 95 Gasket, 94t, 95t Upper fin part, 95a Back extension Outlet, 96 mating groove, 97 packing, 99 control unit, 100 refrigerator, 111 outer box plate material, 200 outer box material, CR refrigerant circuit, Gb, Gt gap, Gd door gap, Hout relative humidity (outside relative humidity) Pr power supply rate, Ws sheet width, Ls sheet length.

Claims (10)

  1.  開口部及び貯蔵室が形成され、外箱と前記外箱の内面側に設けられた真空断熱材とを有する断熱箱体と、
     圧縮機により吐出された冷媒が流れる配管であって、前記外箱の内面側に配置されて前記貯蔵室側が前記真空断熱材により覆われた凝縮配管と、
     前記外箱と前記真空断熱材との間に設けられ、前記凝縮配管の熱を前記断熱箱体の前記開口部へ伝える伝熱シートと
     を備える冷凍冷蔵庫。
    An insulating box body having an opening and a storage chamber, and having an outer box and a vacuum heat insulating material provided on the inner surface side of the outer box;
    A pipe through which the refrigerant discharged by the compressor flows, and is disposed on the inner surface side of the outer box and the storage chamber side is covered with the vacuum heat insulating material;
    A refrigerator-freezer comprising: a heat transfer sheet provided between the outer box and the vacuum heat insulating material and transmitting heat of the condensation pipe to the opening of the heat insulating box.
  2.  前記貯蔵室の温度を計測する貯蔵室温度センサと、
     前記貯蔵室温度センサにより計測された温度が予め設定された温度となるように前記圧縮機を制御する制御部と
     をさらに備える請求項1に記載の冷凍冷蔵庫。
    A storage room temperature sensor for measuring the temperature of the storage room;
    The refrigerator-freezer of Claim 1 further equipped with the control part which controls the said compressor so that the temperature measured by the said store room temperature sensor may turn into preset temperature.
  3.  前記開口部を塞ぐように並んで配置された開閉自在の2つの扉と、
     通電により発熱するヒータユニットを内蔵し、2つの前記扉間に形成された隙間を前記貯蔵室側から閉塞する仕切板と、
     外気の温度を計測する外気温度センサと、
     外気の相対湿度を計測する外気湿度センサと
     をさらに備え、
     前記制御部は、
     前記外気温度センサにより計測された温度と、前記外気湿度センサにより計測された相対湿度と、前記貯蔵室温度センサにより計測された温度とに基づき前記ヒータユニットの通電を制御する
     請求項2に記載の冷凍冷蔵庫。
    Two freely openable doors arranged side by side so as to close the opening,
    A built-in heater unit that generates heat when energized, and a partition plate that closes a gap formed between the two doors from the storage chamber side;
    An outside temperature sensor that measures the temperature of the outside air,
    And an outside air humidity sensor for measuring the relative humidity of outside air,
    The controller is
    The energization of the heater unit is controlled based on a temperature measured by the outside air temperature sensor, a relative humidity measured by the outside air humidity sensor, and a temperature measured by the storage chamber temperature sensor. Freezer refrigerator.
  4.  2つの前記扉にそれぞれ設けられ、前記扉と前記仕切板との間に形成された隙間を閉塞するガスケットをさらに備え、
     前記凝縮配管は、前記断熱箱体の前記貯蔵室の上壁部に配置され、
     前記ガスケットは、
     前記開口部において前記上壁部の下面と前記仕切板の上端部との隙間を覆うように上方へ延在し、前記上壁部の前記開口部側の端面と前記仕切板とに接触したヒレ部を有する
     請求項3に記載の冷凍冷蔵庫。
    A gasket that is provided on each of the two doors and that closes a gap formed between the door and the partition plate;
    The condensation pipe is disposed on the upper wall of the storage chamber of the heat insulation box,
    The gasket is
    In the opening, the fin extends upward so as to cover the gap between the lower surface of the upper wall and the upper end of the partition plate, and is in contact with the end surface on the opening side of the upper wall and the partition plate. The refrigerator-freezer according to claim 3 which has a section.
  5.  前記外箱は、
     前記開口部側の端部が折り曲げられ形成されたフランジ部を有する
     請求項1~4のいずれか1項に記載の冷凍冷蔵庫。
    The outer box is
    The refrigerator-freezer according to any one of claims 1 to 4, further comprising a flange portion formed by bending an end portion on the opening portion side.
  6.  前記伝熱シートは、前記外箱の内面に設けられ、一方が前記フランジ部に延伸されており、
     前記伝熱シートの他方には、前記凝縮配管が接触するように固定されている
     請求項5に記載の冷凍冷蔵庫。
    The heat transfer sheet is provided on the inner surface of the outer box, one of which is extended to the flange portion,
    The refrigerator-freezer according to claim 5, wherein the other end of the heat transfer sheet is fixed so that the condensation pipe is in contact therewith.
  7.  前記凝縮配管は、前記外箱の内面に接触するように固定され、
     前記伝熱シートは、一方が前記フランジ部の内面側まで延出し、他方が、前記外箱の内面に固定された前記凝縮配管を覆うように、前記外箱に設けられている
     請求項5に記載の冷凍冷蔵庫。
    The condensation pipe is fixed so as to contact the inner surface of the outer box,
    The heat transfer sheet is provided in the outer box so that one extends to the inner surface side of the flange portion and the other covers the condensation pipe fixed to the inner surface of the outer box. The refrigerator-freezer as described.
  8.  前記フランジ部は、前記開口部側の端面に沿って設けられ、U字状を有する
     請求項5~7のいずれか1項に記載の冷凍冷蔵庫。
    The refrigerator-freezer according to any one of claims 5 to 7, wherein the flange portion is provided along an end surface on the opening portion side and has a U-shape.
  9.  前記伝熱シートは、前記凝縮配管から前記開口部へ延びる長尺形状を有する
     請求項1~8のいずれか1項に記載の冷凍冷蔵庫。
    The refrigerator-freezer according to any one of claims 1 to 8, wherein the heat transfer sheet has a long shape extending from the condensation pipe to the opening.
  10.  前記真空断熱材において前記外箱と対向する位置には、前記凝縮配管を収容する溝が形成されている
     請求項1~9のいずれか1項に記載の冷凍冷蔵庫。
    The refrigerator-freezer according to any one of claims 1 to 9, wherein a groove for accommodating the condensing pipe is formed at a position facing the outer box in the vacuum heat insulating material.
PCT/JP2018/015992 2018-04-18 2018-04-18 Refrigeration appliance WO2019202683A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015992 WO2019202683A1 (en) 2018-04-18 2018-04-18 Refrigeration appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015992 WO2019202683A1 (en) 2018-04-18 2018-04-18 Refrigeration appliance

Publications (1)

Publication Number Publication Date
WO2019202683A1 true WO2019202683A1 (en) 2019-10-24

Family

ID=68239117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015992 WO2019202683A1 (en) 2018-04-18 2018-04-18 Refrigeration appliance

Country Status (1)

Country Link
WO (1) WO2019202683A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171404A1 (en) * 2020-02-26 2021-09-02 三菱電機株式会社 Refrigerator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355758B2 (en) * 1983-02-01 1991-08-26
JPH0587432A (en) * 1991-09-26 1993-04-06 Mitsubishi Electric Corp Refrigerator
JPH0772663B2 (en) * 1985-06-12 1995-08-02 松下冷機株式会社 refrigerator
JP2000266458A (en) * 1999-03-15 2000-09-29 Matsushita Refrig Co Ltd Box body of refrigerator
JP2004353972A (en) * 2003-05-29 2004-12-16 Toshiba Corp Refrigerator
US20050046319A1 (en) * 2003-08-29 2005-03-03 Chekal Raymond J. Refrigerator incorporating french doors with rotating mullion bar
US20080209812A1 (en) * 2007-01-26 2008-09-04 Arnaud Lancry Refrigerator gasket
JP2012229849A (en) * 2011-04-26 2012-11-22 Hitachi Appliances Inc Refrigerator and freezer
JP2013079789A (en) * 2011-10-05 2013-05-02 Samsung Yokohama Research Institute Co Ltd Refrigerator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355758B2 (en) * 1983-02-01 1991-08-26
JPH0772663B2 (en) * 1985-06-12 1995-08-02 松下冷機株式会社 refrigerator
JPH0587432A (en) * 1991-09-26 1993-04-06 Mitsubishi Electric Corp Refrigerator
JP2000266458A (en) * 1999-03-15 2000-09-29 Matsushita Refrig Co Ltd Box body of refrigerator
JP2004353972A (en) * 2003-05-29 2004-12-16 Toshiba Corp Refrigerator
US20050046319A1 (en) * 2003-08-29 2005-03-03 Chekal Raymond J. Refrigerator incorporating french doors with rotating mullion bar
US20080209812A1 (en) * 2007-01-26 2008-09-04 Arnaud Lancry Refrigerator gasket
JP2012229849A (en) * 2011-04-26 2012-11-22 Hitachi Appliances Inc Refrigerator and freezer
JP2013079789A (en) * 2011-10-05 2013-05-02 Samsung Yokohama Research Institute Co Ltd Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171404A1 (en) * 2020-02-26 2021-09-02 三菱電機株式会社 Refrigerator

Similar Documents

Publication Publication Date Title
US8161762B2 (en) Refrigerator
JP2010038528A (en) Refrigerator
KR20130009090A (en) Refrigerator
CN216814767U (en) Sealing beam for door body of refrigerating and freezing device
WO2019202683A1 (en) Refrigeration appliance
WO2010016196A1 (en) Refrigerator
WO2014136518A1 (en) Cold storage
WO2012172800A1 (en) Refrigerator
WO2020170310A1 (en) Refrigerator
KR100597303B1 (en) Heat exchange structure for refrigerator
JP4280243B2 (en) refrigerator
JP5401866B2 (en) refrigerator
JP5380216B2 (en) refrigerator
JP4086737B2 (en) refrigerator
JP4187611B2 (en) refrigerator
JP2008107045A (en) Refrigerator
JP2022104679A (en) refrigerator
AU2020431079B2 (en) Refrigerator
JP2006112640A (en) Refrigerator
CN113825965B (en) Refrigerator with a door
JP2005180720A (en) Refrigerator
JP2006112639A (en) Refrigerator
JPH11118327A (en) Freezing refrigerator
JP2007024463A (en) Refrigerator
JP2005345060A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP